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A class of generalized impulsive stochastic functional differential systems with delayed impulses is considered. By employing
piecewise continuous Lyapunov functions and the Razumikhin techniques, several criteria on the exponential stability and uniform
stability in terms of two measures for the mentioned systems are obtained, which show that unstable stochastic functional
differential systems may be stabilized by appropriate delayed impulses. Based on the stability results, delayed impulsive controllers
which mean square exponentially stabilize linear stochastic delay systems are proposed. Finally, numerical examples are given to
verify the effectiveness and advantages of our results.

1. Introduction

In recent years, the theory of impulsive functional differential
systems (IFDSs) has attracted an increasing interest due to
the wide existence of impulse effects and time delays in real-
world systems. An area of particular interest has been the
impulsive control of delay systems, with consequent emphasis
on stability analysis of IFDSs; see [1–8] and reference therein.
However, in the current literature on IFDSs, most authors
have assumed that the impulses are only related to the present
states. But in most cases, it is more realistic that the impulses
depend not only on the present but, also the past states, and
such impulses are called delayed impulses. Recently, several
studies have attempted to investigate IFDSs with delayed
impulses (IFDSs-DI); see [9–12]. By employing Lyapunov
functions coupled with Razumikhin techniques, [9] investi-
gated the asymptotic stability and practical stability for a class
of generalized IFDSs-DI, while [10, 11] further established
several criteria for the exponential stability of the systems. In
[12], sufficient conditions for the stability of impulsive differ-
ential systems with linear delayed impulses were derived and
then applied to impulsively synchronize two coupled chaotic
systems by using delayed impulses.

In addition to impulse effects and time delays, as is well
known, environment noise exists inevitably in real systems
and may greatly affect the performance of systems. Recently,
[13, 14] took environment noise into account and generalized
delayed impulses to stochastic systems. In particular, applying
the Lyapunov-Razumikhin techniques, [13] investigated both
moment and almost sure exponential stability of impul-
sive stochastic functional differential systems with delayed
impulses (ISFDSs-DI). In [14], the authors started the study of
robust stability and state-feedback stabilization of uncertain
impulsive stochastic delayed differential systems with linear
delayed impulses.

On the other hand, impulsive control has become an
active research area and found successful applications in a
wide variety of areas, such as control and synchronization of
chaotic systems [15–17], ecosystems management [18], secure
communication [15], and orbital transfer of satellite [19, 20].
In the past few years, the impulsive control theory has been
generalized from deterministic systems to stochastic systems;
see [13, 21, 22]. But inmany cases, some well-designed impul-
sive control schemes cannot work as expected. One reason is
that the schemes designed are usually free of delays, but time
delays do exist due to time spent in computation and transfer.
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As is well known, the presence of time delays of controllers
may be the cause of serious deterioration of performance or
even instability of the resulting controlled system if it is not
considered in controller design [23]. One way to overcome
this problem is to use delayed impulsive control laws.

Motivated by the above discussion, the present paper
will employ the Razumikhin techniques to investigate the
problems of stability analysis and impulsive stabilization of
ISFDSs-DI. Obviously, it ismore difficult tomotivate ISFDSs-
DI than the common ISFDSs with nondelayed impulses
(ISFDSs-nDI), and the key difficulties and challenges lie in
finding proper way to deal with the delayed impulses. Differ-
ent from [13], we will exploit the notion of supremum to deal
with the delayed impulses, which will relaxe the restriction
imposed on impulses. The proof of the paper is enlightened
by the idea from [6, 10]. Our results extend and generalize
some results existing in the literature and show that appro-
priate delayed impulsive perturbations may make unstable
stochastic functional differential systems stable. The rest of
the paper is organized as follows. In Section 2, we introduce
some notations and definitions. In Section 3, several criteria
on the exponential stability and uniform stability in terms of
two measures for ISFDSs-DI are established. Then, Section 4
is devoted to the discussion of two special types of ISFDSs-
DI, which is followed by the stabilization of linear stochastic
delay systems by using delay impulses in Section 5. Finally,
illustrative examples and concluding remarks are given in
Section 6 and Section 7, respectively.

2. Preliminaries

Throughout this paper, unless otherwise specified, we will
employ the following notations. Let (Ω,F, {F

𝑡
}
𝑡⩾0

,P) be a
complete probability space with a filtration {F

𝑡
}
𝑡⩾0

satisfying
the usual conditions (i.e., it is right continuous, and F

0

contains all P-null sets), and let E[⋅] be the expectation
operator with respect to the probability measure. Let 𝐵(𝑡) =
(𝐵
1
(𝑡), . . . , 𝐵

𝑚
(𝑡))

T be an 𝑚-dimensional Brownian motion
defined on the probability space. R = (−∞, +∞), R

+
=

[0, +∞), N = {1, 2, 3, . . .}, and R𝑛 denotes the 𝑛-dimensional
real space equipped with the Euclidean norm | ⋅ |. Moreover,
Γ = {ℎ : [𝑡

0
− 𝜏,∞) × R𝑛 → R

+
| ℎ(𝑡, 𝑥) is continuous with

inf
(𝑡,𝑥)

ℎ(𝑡, 𝑥) = 0}.
Let 𝜏 ⩾ 0, and 𝑃𝐶([−𝜏, 0];R𝑛) = {𝜑 : [−𝜏, 0] → R𝑛 |𝜑(𝑡)

is continuous for all but at most a finite number of points
𝑡 at which 𝜑(𝑡

+

), 𝜑(𝑡
−

) exist, and 𝜑(𝑡
+

) = 𝜑(𝑡)} with the
norm ‖𝜑‖ = sup{|𝜑(𝜃)| : −𝜏 ⩽ 𝜃 ⩽ 0}, where 𝜑(𝑡

+

) and
𝜑(𝑡
−

) denote the right-hand and left-hand limits of 𝜑(𝑡) at
𝑡, respectively. Let 𝑃𝐶𝑏F

𝑡

([−𝜏, 0];R𝑛) be the family of all F
𝑡
-

measurable and bounded 𝑃𝐶([−𝜏, 0];R𝑛)-valued random
variables 𝜉 = {𝜉(𝜃) : −𝜏 ⩽ 𝜃 ⩽ 0}.

If 𝐴 is a vector or matrix, its transpose is denoted by 𝐴T.
If 𝑃 is a square matrix, then 𝑃 > 0 (𝑃 < 0) means that 𝑃 is a
symmetric positive (negative) definite matrix, while 𝑃 ⩾

0 (𝑃 ⩽ 0) is a symmetric positive (negative) semidefinite
matrix. 𝜆min(⋅) and 𝜆max(⋅) represent the minimum andmax-
imum eigenvalues of the corresponding matrix, respectively,
and 𝐼 stands for the identity matrix. Unless explicitly stated,

all matrices are assumed to have real entries and compatible
dimensions.

Let us consider the following ISFDSs-DI as follows:

d𝑥 (𝑡) = 𝑓 (𝑡, 𝑥
𝑡
) d𝑡 + 𝜎 (𝑡, 𝑥

𝑡
) d𝐵 (𝑡) , 𝑡 ⩾ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
,

𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑡
𝑘
, 𝑥
𝑡
−

𝑘

) , 𝑘 ∈ N,
(1)

with initial value 𝑥
𝑡
0

= 𝜉 = {𝜉(𝜃) : −𝜏 ⩽ 𝜃 ⩽ 0} ∈ 𝑃𝐶𝑏F
𝑡0

([−𝜏,

0];R𝑛), where 𝑥 ∈ R𝑛; 𝑥
𝑡
= {𝑥(𝑡+𝜃) : −𝜏 ⩽ 𝜃 ⩽ 0} is regarded

as a 𝑃𝐶([−𝜏, 0];R𝑛)-valued random variables. Moreover, 𝑓 :

R
+
× 𝑃𝐶([−𝜏, 0];R𝑛) → R𝑛 and 𝜎 : R

+
× 𝑃𝐶([−𝜏, 0];

R𝑛) → R𝑛×𝑚 are Borelmeasurable; 𝐼
𝑘
(𝑡
𝑘
, 𝑥
𝑡
−

𝑘

) : R
+
×𝑃𝐶([−𝜏,

0];R𝑛) → R𝑛 represents the impulsive perturbation of 𝑥 at
time 𝑡

𝑘
. The fixed moments of time 𝑡

𝑘
satisfy 0 ⩽ 𝑡

0
< 𝑡
1
<

⋅ ⋅ ⋅ < 𝑡
𝑘
< ⋅ ⋅ ⋅ , lim

𝑘→∞
𝑡
𝑘
= ∞.

As a standing hypothesis, we assume that for any 𝜉 ∈

𝑃𝐶𝑏F
𝑡0

([−𝜏, 0];R𝑛), there exists a unique solution to system
(1) denoted by 𝑥(𝑡; 𝑡

0
, 𝜉) [24], which is continuous except at

𝑡 = 𝑡
𝑘
, at which it is right continuous and left limitable.

For the purpose of stability analysis, we further assume that
𝑓(𝑡, 0) = 𝜎(𝑡, 0) = 𝐼

𝑘
(𝑡, 0) ≡ 0 for all 𝑡 ⩾ 𝑡

0
, 𝑘 ∈ N, then

system (1) admits a trivial solution 𝑥(𝑡) ≡ 0.

Definition 1 (see [25]). A function 𝑉(𝑡, 𝑥) : [𝑡
0
− 𝜏,∞) ×

R𝑛 → R
+
is said to belong to the class V

0
, if 𝑉 is continuous

on each of the sets [𝑡
𝑘−1

, 𝑡
𝑘
) × R𝑛, lim

(𝑡,𝑦)→ (𝑡
−

𝑘
,𝑥)
𝑉(𝑡, 𝑦) =

𝑉(𝑡−
𝑘
, 𝑥) exists, and𝑉

𝑡
,𝑉
𝑥
, and𝑉

𝑥𝑥
are continuous for (𝑡, 𝑥) ∈

(𝑡
𝑘−1

, 𝑡
𝑘
) ×R𝑛, 𝑘 ∈ N, where

𝑉
𝑡
(𝑡, 𝑥) =

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡
,

𝑉
𝑥
(𝑡, 𝑥) = [

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑉 (𝑡, 𝑥)

𝜕𝑥
𝑛

] ,

𝑉
𝑥𝑥

(𝑡, 𝑥) = [
𝜕2𝑉(𝑡, 𝑥)

𝜕𝑥
𝑖
𝜕𝑥
𝑗

]

𝑛×𝑛

.

(2)

For each 𝑉 ∈ V
0
and (𝑡, 𝜙) ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) × 𝑃𝐶𝑏F

𝑡

([−𝜏, 0];

R𝑛), (𝑘 ∈ N), one defines the Kolmogorov operator L𝑉

associated with system (1) by

L𝑉 (𝑡, 𝜙) = 𝑉
𝑡
(𝑡, 𝜙 (0)) + 𝑉

𝑥
(𝑡, 𝜙 (0)) 𝑓 (𝑡, 𝜙)

+
1

2
trace [𝜎T

(𝑡, 𝜙)𝑉
𝑥𝑥

(𝑡, 𝜙 (0)) 𝜎 (𝑡, 𝜙)] .
(3)

Definition 2 (see [4]). Let ℎ0 ∈ Γ, 𝜑 ∈ 𝑃𝐶([−𝜏, 0];R𝑛). One
defines

ℎ
0
(𝑡, 𝜑) = sup

−𝜏⩽𝑠⩽0

ℎ
0
(𝑡 + 𝑠, 𝜑 (𝑠)) , 𝑡 ⩾ 𝑡

0
. (4)

Definition 3. Let ℎ0, ℎ ∈ Γ. Then, system (1) is said to be

(S1) (ℎ
0
, ℎ)-uniformly stable, if for any given 𝜀 > 0 and

𝑡
0
∈ R
+
, there exists a 𝛿 = 𝛿(𝜀) > 0 such that

Eℎ
0
(𝑡
0
, 𝜉) < 𝛿 implies Eℎ (𝑡, 𝑥 (𝑡; 𝑡

0
, 𝜉)) < 𝜀, 𝑡 ⩾ 𝑡

0
,

(5)
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(S2) (ℎ
0
, ℎ)-globally exponentially stable, if there exist

constants 𝛼 > 0 and 𝐶 ⩾ 1 such that, for all 𝜉 ∈

𝑃𝐶
𝑏

F
𝑡0

([−𝜏, 0];R𝑛) and 𝑡
0
∈ R
+
,

Eℎ (𝑡, 𝑥 (𝑡; 𝑡
0
, 𝜉)) ⩽ 𝐶Eℎ

0
(𝑡
0
, 𝜉) e−𝛼(𝑡−𝑡0), 𝑡 ⩾ 𝑡

0
. (6)

Remark 4. The (ℎ
0
, ℎ)-stability notions are considered here

in the spirit of the work by Lakshmikantham and Liu [26] to
unify different stability concepts found in the literature such
as the stability of the trivial solution, the partial stability, the
conditional stability, and the stability of invariant sets, which
would otherwise be treated separately. For example, it is easy
to see that (S2) in Definition 3 gives

(1) the 𝑝th-moment exponential stability of the trivial
solution 𝑥(𝑡) ≡ 0, if ℎ(𝑡, 𝑥) = ℎ

0(𝑡, 𝑥) = |𝑥|𝑝. When
𝑝 = 2, it is usually called mean square exponential
stability;

(2) the 𝑝th-moment exponentially partial stability of the
trivial solution, if ℎ(𝑡, 𝑥) = |(𝑥

1
, . . . , 𝑥

𝑠
)|𝑝, 1 ⩽ 𝑠 ⩽ 𝑛

and ℎ0(𝑡, 𝑥) = |𝑥|𝑝;
(3) the global exponential stability of the prescribed

motion 𝑦(𝑡), if ℎ(𝑡, 𝑥) = ℎ0(𝑡, 𝑥) = |𝑥 − 𝑦|;
(4) the global exponential stability of the invariant set𝐴 ∈

R𝑛, if ℎ(𝑡, 𝑥) = ℎ0(𝑡, 𝑥) = 𝑑(𝑥, 𝐴), where 𝑑(𝑥, 𝐴) is the
distance of 𝑥 from the set 𝐴;

(5) the global exponential orbital stability of a periodic
solution, if ℎ(𝑡, 𝑥) = ℎ0(𝑡, 𝑥) = 𝑑(𝑥, 𝐶), where 𝐶 is the
closed orbit in the phase space.

3. Stability Results

In this section, we will develop Lyapunov-Razumikhinmeth-
ods and establish some criteria which provide sufficient
conditions for the (ℎ

0
, ℎ)-exponential stability and (ℎ

0
, ℎ)-

uniform stability of ISFDSs-DI. Our results illustrate that the
impulses play a positive role in making the continuous flow
stable.

Theorem 5. Assume that there exist functions 𝑉 ∈ V
0
, ℎ0, ℎ ∈

Γ and constants 𝑐
1
> 0, 𝑐
2
> 0, 𝛾 > 𝑞 > 1 such that

(i) 𝑐
1
ℎ(𝑡, 𝑥) ⩽ 𝑉(𝑡, 𝑥) ⩽ 𝑐

2
ℎ0(𝑡, 𝑥) for any (𝑡, 𝑥) ∈ [𝑡

0
−

𝜏,∞) ×R𝑛;
(ii) EL𝑉(𝑡, 𝜙) ⩽ 𝑏(𝑡)𝑐(E𝑉(𝑡, 𝜙(0))) for all 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
),

𝑘 ∈ N and those 𝜙 ∈ 𝑃𝐶F
𝑡

([−𝜏, 0];R𝑛) satisfying

E𝑉 (𝑡 + 𝜃, 𝜙 (𝜃)) ⩽ 𝛾E𝑉 (𝑡, 𝜙 (0)) 𝑜𝑛 − 𝜏 ⩽ 𝜃 ⩽ 0, (7)

where 𝑏, 𝑐 : R
+
→ R
+
are continuous;

(iii) E𝑉(𝑡
𝑘
, 𝐼
𝑘
(𝑡
𝑘
, 𝜙)) ⩽ (1/𝛾)(1 + 𝛽

𝑘
)sup
𝑠∈[−𝜏,0]

E𝑉(𝑡−
𝑘
+ 𝑠,

𝜙(𝑠)), where 𝛽
𝑘
⩾ 0 and ∑∞

𝑘=1
𝛽
𝑘
< ∞;

(iv) ln 𝑞 > 𝑀
1
𝑀
2
, where 𝑀

1
= sup

𝑡⩾0
∫
𝑡+𝜇

𝑡
𝑏(𝑠)d𝑠, 𝑀

2
=

sup
𝑠>0

{𝑐(𝑠)/𝑠}, and 𝜇 = sup
𝑘∈N{𝑡𝑘 − 𝑡

𝑘−1
}.

Then, system (1) is (ℎ
0
, ℎ)-exponentially stable for any time

delay 𝜏 ∈ (0,∞), and the convergence rate is not greater than
min{ln(𝛾/𝑞)/𝜏, (ln 𝑞 −𝑀

1
𝑀
2
)/𝜇}.

Proof. Fix any initial data 𝜉 ∈ 𝑃𝐶
𝑏

F
𝑡0

([−𝜏, 0);R𝑛), and write
𝑥(𝑡; 𝑡
0
, 𝜉) = 𝑥(𝑡) simply. Let 𝛽 > 1 be an arbitrary constant,

and define 𝛼 = min{ln(𝛾/𝑞)/𝜏, (ln 𝑞 −𝑀
1
𝑀
2
)/𝛽𝜇}. We claim

that

E𝑉 (𝑡, 𝑥 (𝑡)) ⩽ 𝑞𝑐
2
Eℎ
0
(𝑡
0
, 𝜉)𝐻 (𝑡) e−𝛼(𝑡−𝑡0), 𝑡 ⩾ 𝑡

0
, (8)

where

𝐻(𝑡) =
{

{

{

1, 𝑡
0
− 𝜏 ⩽ 𝑡 < 𝑡

1
,

∏
𝑡
0
<𝑡
𝑘
⩽𝑡

(1 + 𝛽
𝑘
) , 𝑡 ⩾ 𝑡

1
. (9)

Obviously,𝐻(𝑡) is nondecreasing and

𝐻(𝑡) = 𝐻 (𝑡
𝑚−1

) for 𝑡 ∈ [𝑡
𝑚−1

, 𝑡
𝑚
) , 𝑚 ∈ N,

𝐻 (𝑡) = 1 for 𝑡 ∈ [𝑡
0
, 𝑡
1
) .

(10)

For convenience, we write E𝑉(𝑡, 𝑥(𝑡)) = V(𝑡) and 𝑞𝑐
2
Eℎ
0
(𝑡
0
,

𝜉)𝐻(𝑡)e−𝛼(𝑡−𝑡0) = 𝑤(𝑡). Then, (8) can be written as

V (𝑡) ⩽ 𝑤 (𝑡) , 𝑡 ⩾ 𝑡
0
. (11)

We first prove that

V (𝑡) ⩽ 𝑤 (𝑡) , 𝑡 ∈ [𝑡
0
, 𝑡
1
) . (12)

If (12) is not true, there would be some 𝑡 ∈ [𝑡
0
, 𝑡
1
) such that

V(𝑡) > 𝑤(𝑡). Let 𝑡∗ = inf{𝑡 ∈ [𝑡
0
, 𝑡
1
) : V(𝑡) > 𝑤(𝑡)}. Due to the

continuity of V(𝑡) on [𝑡
0
, 𝑡
1
) and

V (𝑡
0
+ 𝜃) ⩽ 𝑐

2
Eℎ
0
(𝑡
0
, 𝜉) ⩽

1

𝑞
𝑤 (𝑡
0
+ 𝜃) < 𝑤 (𝑡

0
+ 𝜃) ,

𝜃 ∈ [−𝜏, 0] ,

(13)

we get

𝑡
∗
> 𝑡
0
, V (𝑡

∗
) = 𝑤 (𝑡

∗
) , V (𝑡) ⩽ 𝑤 (𝑡)

for 𝑡 ∈ [𝑡
0
, 𝑡
∗
) .

(14)

Noticing V(𝑡∗) = 𝑤(𝑡∗) > (1/𝑞)𝑤(𝑡∗), V(𝑡
0
) ⩽ (1/𝑞)𝑤(𝑡

0
), we

further define 𝑡∗∗ = sup{𝑡 ∈ [𝑡
0
, 𝑡∗) : V(𝑡) ⩽ (1/𝑞)𝑤(𝑡)}, then

𝑡
∗
> 𝑡
∗∗
, V (𝑡

∗∗
) =

1

𝑞
𝑤 (𝑡
∗∗
) , V (𝑡) >

1

𝑞
𝑤 (𝑡)

for 𝑡 ∈ (𝑡
∗∗
, 𝑡
∗
] .

(15)

Hence,

1

𝑞
𝑤 (𝑡) ⩽ V (𝑡) ⩽ 𝑤 (𝑡) , 𝑡 ∈ [𝑡

∗∗
, 𝑡
∗
] . (16)

Consequently, since 𝑡 + 𝜃 ∈ [𝑡
0
− 𝜏, 𝑡
∗
] for any 𝑡 ∈ [𝑡

∗∗
, 𝑡
∗
]

and 𝜃 ∈ [−𝜏, 0], it follows from (13), (14), and (16) that

V (𝑡 + 𝜃) ⩽ 𝑤 (𝑡 + 𝜃) ⩽ e𝛼𝜏𝑤 (𝑡) ⩽ 𝑞e𝛼𝜏V (𝑡) ⩽ 𝛾V (𝑡) ,

𝑡 ∈ [𝑡
∗∗
, 𝑡
∗
] , 𝜃 ∈ [−𝜏, 0] ,

(17)
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which, by condition (ii), implies that

EL𝑉 (𝑡, 𝑥
𝑡
) ⩽ 𝑏 (𝑡) 𝑐 (V (𝑡)) ⩽ 𝑀

2
𝑏 (𝑡) V (𝑡) , 𝑡 ∈ [𝑡

∗∗
, 𝑡
∗
] .

(18)

By the Itô formula and applying the Gronwall inequality, we
can derive that

V (𝑡
∗
) ⩽ V (𝑡

∗∗
) e∫
𝑡
∗

𝑡
∗∗ 𝑀2𝑏(𝑠)d𝑠 ⩽ V (𝑡

∗∗
) e𝑀1𝑀2 . (19)

That is,

𝑞𝑐
2
Eℎ
0
(𝑡
0
, 𝜉) e−𝛼(𝑡

∗
−𝑡
0
)
⩽ 𝑐
2
Eℎ
0
(𝑡
0
, 𝜉) e−𝛼(𝑡

∗∗
−𝑡
0
)+𝑀
1
𝑀
2 , (20)

which leads to

ln 𝑞 ⩽ 𝛼𝜇 +𝑀
1
𝑀
2
. (21)

This contradicts the definition of 𝛼. Hence, (12) holds.
Now, we assume that

V (𝑡) ⩽ 𝑤 (𝑡) , 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) ,

𝑘 = 1, 2, . . . , 𝑚 (𝑚 ∈ N, 𝑚 ⩾ 1) .
(22)

Then, the following inequality holds by condition, (iii), (13),
and (22) as follows:

V (𝑡
𝑚
) ⩽

1

𝛾
(1 + 𝛽

𝑚
) sup
𝑠∈[−𝜏,0]

V (𝑡
−

𝑚
+ 𝑠)

⩽
1

𝛾
(1 + 𝛽

𝑚
) sup
𝑠∈[−𝜏,0]

𝑤 (𝑡
−

𝑚
+ 𝑠)

⩽
1

𝛾
(1 + 𝛽

𝑚
) 𝑞𝑐
2
Eℎ
0
(𝑡
0
, 𝜉) e𝛼𝜏𝐻(𝑡

−

𝑚
) e−𝛼(𝑡𝑚−𝑡0)

⩽ 𝑐
2
Eℎ
0
(𝑡
0
, 𝜉)𝐻 (𝑡

𝑚
) e−𝛼(𝑡𝑚−𝑡0) = 1

𝑞
𝑤 (𝑡
𝑚
) < 𝑤 (𝑡

𝑚
) .

(23)

Next, we proceed to prove that

V (𝑡) ⩽ 𝑤 (𝑡) , 𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚+1

) . (24)

On the contrary, we suppose that (24) is not true.Then, there
exist some 𝑡 ∈ [𝑡

𝑚
, 𝑡
𝑚+1

) such that V(𝑡) > 𝑤(𝑡). Setting 𝑡 =

inf{𝑡 ∈ [𝑡
𝑚
, 𝑡
𝑚+1

) : V(𝑡) > 𝑤(𝑡)}, it follows from (23) and the
continuity of V(𝑡) on [𝑡

𝑚
, 𝑡
𝑚+1

) that

𝑡 > 𝑡
𝑚
, V (𝑡) = 𝑤 (𝑡) , V (𝑡) ⩽ 𝑤 (𝑡) for 𝑡 ∈ [𝑡

𝑚
, 𝑡) .

(25)

In view of V(𝑡) = 𝑤(𝑡) > (1/𝑞)𝑤(𝑡) and V(𝑡
𝑚
) ⩽ (1/𝑞)𝑤(𝑡

𝑚
),

we further define 𝑡 = sup{𝑡 ∈ [𝑡
𝑚
, 𝑡) : V(𝑡) ⩽ (1/𝑞)𝑤(𝑡)}, then

𝑡 < 𝑡, V (𝑡) =
1

𝑞
𝑤 (𝑡) , V (𝑡) >

1

𝑞
𝑤 (𝑡) for 𝑡 ∈ (𝑡, 𝑡] .

(26)

Thus,

1

𝑞
𝑤 (𝑡) ⩽ V (𝑡) ⩽ 𝑤 (𝑡) , 𝑡 ∈ [𝑡, 𝑡] . (27)

Consequently, since 𝑡 + 𝜃 ∈ [𝑡
0
− 𝜏, 𝑡] for all 𝑡 ∈ [𝑡, 𝑡] and

𝜃 ∈ [−𝜏, 0], we get from (13), (22), (25), and (27) that

V (𝑡 + 𝜃) ⩽ 𝑤 (𝑡 + 𝜃) ⩽ e𝛼𝜏𝑤 (𝑡) ⩽ 𝑞e𝛼𝜏V (𝑡) ⩽ 𝛾V (𝑡) ,

𝑡 ∈ [𝑡, 𝑡] , 𝜃 ∈ [−𝜏, 0] .
(28)

By similar argument, we will be led to contradiction (21) once
again, which verifies the validity of (24).

By mathematical induction, we conclude that (11) or
equivalently, (8), is true. Then, it follows from condition (i)
that

Eℎ (𝑡, 𝑥 (𝑡)) ⩽ 𝐶Eℎ
0
(𝑡
0
, 𝜉) e−𝛼(𝑡−𝑡0), 𝑡 ⩾ 𝑡

0
, (29)

where 𝐶 = max{𝑞𝑐
2
/𝑐
1
∏
∞

𝑘=1
(1 + 𝛽

𝑘
), 1}. Thus, system (1)

is (ℎ
0
, ℎ)-exponentially stable with convergence rate 𝛼. Fur-

thermore, in view of the fact that 𝛽 > 1 is arbitrary, we must
have 𝛼 = min{ln(𝛾/𝑞)/𝜏, (ln 𝑞 − 𝑀

1
𝑀
2
)/𝜇} > 0. The proof is

therefore complete.

Remark 6. It is noted that Theorem 5 allows for significant
increases in 𝑉 between impulses as long as the decrease
of 𝑉 at impulse times balance it properly. We can see that
the impulses do contribute to the stability behavior of the sys-
tem. Moreover, compared with the 𝑝th-moment exponential
stability theorem in [13] which assumed that

E𝑉 (𝑡
𝑘
, 𝐼
𝑘
(𝑡
𝑘
, 𝜙)) ⩽ 𝜌𝑑

𝑘
E𝑉 (𝑡
−

𝑘
, 𝜙 (0)) , (30)

where 0 < 𝜌 < 1, 𝑑
𝑘
> 0, ∏

∞

𝑘=1
𝑑
𝑘
< ∞, our result has a

wider adaptive range.
Especially, the convergence rate 𝛼 = 0 if 𝑞 = 𝛾 in

Theorem 5, which implies that system (1) is (ℎ
0
, ℎ)-uniformly

stable. Therefore, letting 𝑞 tend to 𝛾 in Theorem 5 will
immediately yield the following corollary.

Corollary 7. Assume that conditions (i)–(iii) of Theorem 5
hold, while condition (iv) is replaced by

(iv∗) ln 𝛾 > 𝑀
1
𝑀
2
, where𝑀

1
= sup

𝑡⩾0
∫
𝑡+𝜇

𝑡
𝑏(𝑠)d𝑠,𝑀

2
=

sup
𝑠>0

{𝑐(𝑠)/𝑠}, and 𝜇 = sup
𝑘∈N{𝑡𝑘 − 𝑡

𝑘−1
}.

Then, system (1) is (ℎ
0
, ℎ)-uniformly stable for any time

delay 𝜏 ∈ (0,∞).

4. Special Cases

In this section, we will apply the general Razumikhin-type
theorems established in previous section to deal with the
stability of two special types of system (1).

Case 1 (ISFDSs-nDI). An important special case of system (1)
is the following ISFDSs-nDI, in which the state variables on
impulses are not related to the time delay

d𝑥 (𝑡) = 𝑓 (𝑡, 𝑥
𝑡
) d𝑡 + 𝜎 (𝑡, 𝑥

𝑡
) d𝐵 (𝑡) , 𝑡 ⩾ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
,

𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑡
𝑘
, 𝑥 (𝑡
−

𝑘
)) , 𝑘 ∈ N.

(31)
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Theorem8. Assume that all conditions ofTheorem 5 holdwith
the following change:

(iii∗) E𝑉(𝑡
𝑘
, 𝐼
𝑘
(𝑡
𝑘
, 𝑥)) ⩽ 1/𝑞(1 + 𝛽

𝑘
)E𝑉(𝑡−

𝑘
, 𝑥), where 𝛽

𝑘
⩽

0 and ∏
∞

𝑘=1
𝛽
𝑘

< ∞. Then, system (31) is (ℎ
0
, ℎ)-

exponentially stable for any time delay 𝜏 ∈ (0,∞), and
the convergence rate is not greater than min{ln(𝑟/
𝑞)/𝜏, (ln 𝑞 −𝑀

1
𝑀
2
)/𝜇}.

Proof. Theproof is similar to that ofTheorem 5only replacing
(23) by

V (𝑡
𝑚
) ⩽

1

𝑞
(1 + 𝛽

𝑚
) V (𝑡
−

𝑚
) ⩽

1

𝑞
(1 + 𝛽

𝑚
) 𝑤 (𝑡
−

𝑚
)

= 𝑐
2
Eℎ
0
(𝑡
0
, 𝜉)𝐻 (𝑡

𝑚
) e−𝛼(𝑡𝑚−𝑡0) = 1

𝑞
𝑤 (𝑡
𝑚
) < 𝑤 (𝑡

𝑚
) .

(32)

Remark 9. In a special case when ℎ(𝑡, 𝑥) = ℎ0(𝑡, 𝑥) = |𝑥|𝑝,

𝑏(𝑡) ≡ 1, 𝑐(𝑠) = 𝛾
1
(𝑠),Theorem 8 can be expressed asTheorem

3.1 in [25], which demonstrates the generality of our result.

Case 2 (IFDSs-DI). Deterministic systems may be regarded
as a special class of stochastic systems. The following deter-
ministic IFDSs-DI, which have been investigated in [10, 11],
are exactly system (1) with 𝜎(𝑡, 𝜙) ≡ 0:

�̇� (𝑡) = 𝑓 (𝑡, 𝑥
𝑡
) , 𝑡 ⩾ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
,

𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑡
𝑘
, 𝑥
𝑡
−

𝑘

) , 𝑘 ∈ N.
(33)

Based on Theorem 5, one can easily get the following expo-
nential stability result for system (33). For the notation of V

0

function family and the upper right-hand derivative appeared
in the following theorem, we refer to [6].

Theorem 10. Assume that there exist functions𝑉 ∈ V
0
, ℎ0, ℎ ∈

Γ and constants 𝑐
1
> 0, 𝑐
2
> 0, 𝛾 > 𝑞 > 1 such that

(i) 𝑐
1
ℎ(𝑡, 𝑥) ⩽ 𝑉(𝑡, 𝑥) ⩽ 𝑐

2
ℎ0(𝑡, 𝑥) for any (𝑡, 𝑥) ∈ [𝑡

0
−

𝜏,∞) ×R𝑛;

(ii) 𝐷+𝑉(𝑡, 𝜙(0)) ⩽ 𝑏(𝑡)𝑐(𝑉(𝑡, 𝜙(0))) for all 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
),

𝑘 ∈ N and those 𝜙 ∈ 𝑃𝐶([−𝜏, 0];R𝑛) satisfying

𝑉 (𝑡 + 𝜃, 𝜙 (𝜃)) ⩽ 𝛾𝑉 (𝑡, 𝜙 (0)) 𝑜𝑛 − 𝜏 ⩽ 𝜃 ⩽ 0; (34)

(iii) 𝑉(𝑡
𝑘
, 𝐼
𝑘
(𝑡
𝑘
, 𝜙)) ⩽ (1/𝛾)(1+𝛽

𝑘
)sup
𝑠∈[−𝜏,0]

𝑉(𝑡−
𝑘
+𝑠, 𝜙(𝑠)),

where 𝛽
𝑘
⩾ 0 and ∑∞

𝑘=1
𝛽
𝑘
< ∞;

(iv) ln 𝑞 > 𝑀
1
𝑀
2
, where 𝑀

1
= sup

𝑡⩾0
∫
𝑡+𝜇

𝑡
𝑏(𝑠)d𝑠, 𝑀

2
=

sup
𝑠>0

{𝑐(𝑠)/𝑠}, and 𝜇 = sup
𝑘∈N{𝑡𝑘 − 𝑡

𝑘−1
}.

Then, system (33) is (ℎ
0
, ℎ)-exponentially stable for any time

delay 𝜏 ∈ (0,∞), and the convergence rate is not greater than
min{ln(𝛾/𝑞)/𝜏, (ln 𝑞 −𝑀

1
𝑀
2
)/𝜇}.

Remark 11. Obviously, Theorem 10 includes Theorem 3.1 in
[10] as a special case. While in [11], the exponential stability
theorem was obtained under the following condition:

𝑉 (𝑡
𝑘
, 𝐼
𝑘
(𝑡
𝑘
, 𝜙)) ⩽ 𝑑

𝑘
𝑉 (𝑡
−

𝑘
, 𝜙 (0)) ,

where 0 < 𝑑
𝑘−1

⩽ 1 are constants,
(35)

which is simpler but stronger.Therefore, our results are more
general and considerably less conservative.

5. Impulsive Stabilization

This section is devoted to designing a delayed impulsive con-
troller which mean square exponentially stabilize a linear
stochastic delay system.

Suppose that we are given an 𝑛-dimensional linear sto-
chastic system with time-varying delay

d𝑥 (𝑡) = [𝐴
0
𝑥 (𝑡) + 𝐴

1
𝑥 (𝑡 − 𝜏 (𝑡))] d𝑡

+ [𝐷
0
𝑥 (𝑡) + 𝐷

1
𝑥 (𝑡 − 𝜏 (𝑡))] d𝐵 (𝑡) , 𝑡 ⩾ 𝑡

0
,

(36)

where 𝑥(𝑡) ∈ R𝑛 is the state vector; time delay of the system
𝜏(𝑡) is a Borel-measurable function on 𝑡 ⩾ 0 with 0 ⩽ 𝜏(𝑡) ⩽

𝜏, where 𝜏 is a positive constant; and 𝐵(𝑡) is a standard one-
dimensional Brownian motion. We are required to stabilize
system (36) by delayed impulses of the form

𝑥 (𝑡
𝑘
) = 𝐶
0
𝑥 (𝑡
−

𝑘
) + 𝐶
1
𝑥 (𝑡
−

𝑘
− 𝜏 (𝑡
−

𝑘
)) , 𝑘 ∈ N. (37)

In other words, we need to find appropriate impulsive
gain matrices 𝐶

0
, 𝐶
1
and impulse time sequence {𝑡

𝑘
}
𝑘∈N

such that the corresponding linear impulsive stochastic delay
system

d𝑥 (𝑡) = [𝐴
0
𝑥 (𝑡) + 𝐴

1
𝑥 (𝑡 − 𝜏 (𝑡))] d𝑡

+ [𝐷
0
𝑥 (𝑡) + 𝐷

1
𝑥 (𝑡 − 𝜏 (𝑡))] d𝐵 (𝑡) ,

𝑡 ⩾ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

𝑥 (𝑡
𝑘
) = 𝐶
0
𝑥 (𝑡
−

𝑘
) + 𝐶
1
𝑥 (𝑡
−

𝑘
− 𝜏 (𝑡
−

𝑘
)) , 𝑘 ∈ N.

(38)

Will be mean square exponentially stable.

Theorem 12. System (36) can be mean square exponentially
stabilized by impulses in the form of (37) if there exist matrices
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𝐶
𝑖
, 𝑖 = 0, 1, 𝑃 > 0 and positive scalars 𝜀, 𝜀

𝑗
, 𝑗 = 1, 2, 3, 4 such

that the following matrix inequalities hold

[

[

𝑃𝐴
0
+ 𝐴T
0
𝑃 + 𝐷T

0
𝑃𝐷
0
− 𝜀
1
𝑃 𝑃𝐴

1
+ 𝐷T
0
𝑃𝐷
1

𝐷T
1
𝑃𝐷
1
− 𝜀
2
𝑃

]

]

⩽ 0, (39)

[
[
[
[
[

[

−𝜀
3
𝑃 0 𝐶T

0

∗ −𝜀
4
𝑃 𝐶T

1

∗ ∗ −𝑃−1

]
]
]
]
]

]

⩽ 0, (40)

𝜀
3
+ 𝜀
4
< 𝜀 < 1, (41)

𝜇 = sup
𝑘∈N

{𝑡
𝑘
− 𝑡
𝑘−1

} <
(𝜀
3
+ 𝜀
4
) ln (𝜀/ (𝜀

3
+ 𝜀
4
))

𝜀
1
(𝜀
3
+ 𝜀
4
) + 𝜀
2

, (42)

where entries denoted by ∗ can be readily inferred from the
symmetry of a matrix.

Proof. The conclusion follows from Theorem 5 by consider-
ing 𝑉(𝑡, 𝑥) = 𝑥T𝑃𝑥 and ℎ0(𝑡, 𝑥) = ℎ(𝑡, 𝑥) = |𝑥|2.

Although (39)-(40) are linear with respect to (𝐶
𝑖
, 𝜀
𝑗
), 𝑖 =

0, 1, 𝑗 = 1, 2, 3, 4 for fixed 𝑃, it is not linear with the com-
bined variables (𝐶

𝑖
, 𝜀
𝑗
, 𝑃), and, therefore, it is not LMIs. This

makes the computation difficult but flexible. Two different
impulsive controller designing steps are given as follows.

Method I

Step 1. Choose matrix 𝑃 > 0.

Step 2. Get 𝜀
𝑖
, 𝑖 = 1, 2, 3, 4 and 𝐶

0
, 𝐶
1
by solving LMI (39),

(40), and

𝜀
𝑖
> 0, 𝑖 = 1, 2, 3, 4, 𝜀

3
+ 𝜀
4
< 1,

𝐶
𝑗
> (<) 0, 𝑗 = 0, 1.

(43)

Step 3.Choose {𝑡
𝑘
}
𝑘∈N such that 𝑡

𝑘
−𝑡
𝑘−1

< ((𝜀
3
+𝜀
4
) ln(𝜀/(𝜀

3
+

𝜀
4
)))/(𝜀
1
(𝜀
3
+ 𝜀
4
) + 𝜀
2
), 𝑘 ∈ N, where 𝜀 is an arbitrary number

satisfying 𝜀
3
+ 𝜀
4
< 𝜀 < 1.

Method II

Step 1. Give appropriate positive scalars 𝜀
1
and 𝜀
2
such that

LMI (39) is feasible and get matrix 𝑃 > 0.

Step 2. Get 𝜀
3
, 𝜀
4
and 𝐶

0
, 𝐶
1
by solving LMI (40) and

𝜀
𝑖
> 0, 𝑖 = 3, 4, 𝜀

3
+ 𝜀
4
< 1,

𝐶
𝑗
> (<) 0, 𝑗 = 0, 1.

(44)

Step 3.Choose {𝑡
𝑘
}
𝑘∈N such that 𝑡

𝑘
−𝑡
𝑘−1

< ((𝜀
3
+𝜀
4
) ln(𝜀/(𝜀

3
+

𝜀
4
)))/(𝜀
1
(𝜀
3
+ 𝜀
4
) + 𝜀
2
), 𝑘 ∈ N, where 𝜀 is an arbitrary number

satisfying 𝜀
3
+ 𝜀
4
< 𝜀 < 1.

Remark 13. Obviously, the stabilizing impulses (37) are not
unique. For example, 𝐶

0
= 𝐶
1
= 0 and {𝑡

𝑘
}
𝑘∈N with the first

impulse interval being finite will be a simple one. In the above
two methods, we impose conditions 𝐶

𝑖
> 0 or 𝐶

𝑖
< 0 to get

impulsive controllers with 𝐶
𝑖
̸= 0, 𝑖 = 0, 1.

6. Illustrative Examples

In this section, examples are given to verify the effectiveness
and advantages of our results. For simplicity, we consider the
case of constant delay in the following examples. It should be
pointed out that our results can be applied to systems with
time-varying delay.
Example 14. Let us consider a two-dimensional impulsive
stochastic delay system

d𝑥
1
(𝑡) = 𝑥

1
(𝑡) d𝑡 + 𝑥

1
(𝑡) d𝐵 (𝑡) , 𝑡 ⩾ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
,

d𝑥
2
(𝑡) = [−𝑥

2

1
(𝑡 − 𝜏) 𝑥

2
(𝑡) −

1

2
𝑎𝑥
2
(𝑡)] d𝑡

− √𝑎𝑥
2
(𝑡 − 𝜏) d𝐵 (𝑡) , 𝑡 ⩾ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
,

𝑥
1
(𝑡
𝑘
) = 𝑥
1
(𝑡
−

𝑘
) , 𝑘 ∈ N,

𝑥
2
(𝑡
𝑘
) =

1

2√𝛾
(1 + 𝑘

−2
) [𝑥
2
(𝑡
−

𝑘
) + 𝑥
2
(𝑡
−

𝑘
− 𝜏)] ,

𝑘 ∈ N,

(45)

where constants 𝑎 > 0, 𝜏 > 0, and 𝛾 > 1. If

𝜇 = sup
𝑘∈N

{𝑡
𝑘
− 𝑡
𝑘−1

} <
ln 𝑞

𝑎 (𝛾 − 1)
, (46)

for any 𝑞 satisfying 1 < 𝑞 < 𝛾, then system (45) ismean square
exponentially stable with respect to 𝑥

2
. If

𝜇 <
ln 𝛾

𝑎 (𝛾 − 1)
, (47)

then system (45) ismean square uniformly stable with respect
to 𝑥
2
.
We first note that the (ℎ

0
, ℎ)-stability properties reduce

to the mean square stability properties with respect to 𝑥
2
if

ℎ0(𝑡, 𝑥) = 𝑥2
1
+ 𝑥2
2
, ℎ(𝑡, 𝑥) = 𝑥2

2
. Choose 𝑉(𝑥) = 𝑥2

2
, then

E𝑉 (𝑥 (𝑡
𝑘
))

=
1

4𝛾
(1 + 𝑘

−2
)
2

E[𝑥
2
(𝑡
−

𝑘
) + 𝑥
2
(𝑡
−

𝑘
− 𝜏)]
2

⩽
1

𝛾
(1 + 𝑘

−4
+ 2𝑘
−2
) sup
𝑠∈[−𝜏,0]

E𝑉 (𝑥 (𝑡
−

𝑘
+ 𝑠)) ,

EL𝑉 (𝑥
𝑡
)

= E [−2𝑥
2

1
(𝑡 − 𝜏) 𝑥

2

2
(𝑡) − 𝑎𝑥

2

2
(𝑡) + 𝑎𝑥

2

2
(𝑡 − 𝜏)]

⩽ 𝑎 (𝛾 − 1)E𝑥
2

2
(𝑡) = 𝑎 (𝛾 − 1)E𝑉 (𝑥 (𝑡)) ,

(48)

whenever E𝑉(𝑥(𝑡 + 𝑠)) ⩽ 𝛾(E𝑉(𝑥(𝑡))), −𝜏 ⩽ 𝑠 ⩽ 0.
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Figure 1: The solution to system (51) without impulses (single sam-
ple).

Taking 𝑐
1
=𝑐
2
= 1, 𝑏(𝑡)≡1, 𝑐(𝑠) = 𝑎(𝛾−1)𝑠, and 𝛽

𝑘
=𝑘−4+

2𝑘−2, it is easy to check that all the conditions of Theorem 5
are satisfied under condition (46), which means that system
(45) is mean square exponentially stable with respect to 𝑥

2
.

Aswell, under condition (47), one can derive themean square
uniform stability with respect to 𝑥

2
according to Corollary 7.

It is noted that

𝑥
1
(𝑡) = 𝑥

10
exp[ 1

2 (𝑡 − 𝑡
0
)
+ 𝐵 (𝑡) − 𝐵 (𝑡

0
)] , (49)

where 𝑥
10
is the initial data of 𝑥

1
(𝑡). Thus,

E

𝑥
1
(𝑡) |
2
=

𝑥
10
|
2e𝑡−𝑡0 , (50)

which demonstrates that the state 𝑥
1
is mean square expo-

nentially unstable. Hence, the existing stability theorems for
the trivial solution fail to work. This shows that the notion of
stability in terms of two measures is more general, and our
results have a wider adaptive range.

Example 15. Consider the following stochastic delay system

d𝑥 (𝑡) = [𝐴
0
𝑥 (𝑡) + 𝐴

1
𝑥 (𝑡 − 𝜏)] d𝑡

+ [𝐷
0
𝑥 (𝑡) + 𝐷

1
𝑥 (𝑡 − 𝜏)] d𝐵 (𝑡) , 𝑡 ⩾ 𝑡

0
,

(51)

where𝐴
0
= [ 0.5 0.3
0 0.4

],𝐴
1
= [ 1.3 0.3
0.23 1.5

],𝐷
0
= [ 0.2 0.1
0.3 0.1

], and𝐷
1
=

0.1𝐼.
It is noted that system (51) is not stable, and that its

simulations with 𝜏 = 0.002, initial data 𝜉(𝜃) = [1 − 1]
T, and

𝜃 ∈ [−0.002, 0] are shown in Figures 1 and 2. In the following,
we will design a delayed impulsive control law according to
Theorem 12 to exponentially stabilize system (51). Adopting
Method I, we choose 𝑃 = 3.25𝐼, 𝜀 = 0.9999, then

𝜀
1
= 3.6290, 𝜀

2
= 3.0558, 𝜀

3
= 0.7334,

𝜀
4
= 0.1929, 𝐶

0
= 0.8089𝐼, 𝐶

1
= 0.1110𝐼

(52)
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Figure 2: The mean square of the solution to system (51) without
impulses (2000 samples).
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Figure 3:The solution to system (51) with impulses (single sample).

is a group of feasible solution to linear matrix inequalities
(39)–(41), and the maximum impulse interval can be chosen
as

𝜇 = 0.01 <
(𝜀
3
+ 𝜀
4
) ln (𝜀/ (𝜀

3
+ 𝜀
4
))

𝜀
1
(𝜀
3
+ 𝜀
4
) + 𝜀
2

= 0.011. (53)

The simulations of system (51) under impulsive control are
displayed in Figures 3 and 4, where 𝜏 = 0.002, initial data
𝜉(𝜃) = [1 − 1]

T
, 𝜃 ∈ [−0.002, 0], and impulse interval 𝑡

𝑘
−

𝑡
𝑘−1

= 0.01, 𝑘 ∈ N. It is clearly demonstrated that the
impulses we designed successfully stabilize an unstable sto-
chastic delay system.

7. Conclusion

This paper has investigated the exponential stability in terms
of two measures for ISFDSs-DI based on Razumikhin-type
arguments. The results obtained improve and complement
some recent works. Moreover, the stability criteria obtained
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Figure 4: The mean square of the solution to system (51) with
impulses (2000 samples).

are applied to stabilize linear stochastic delay systems, and
delayed impulsive controllers that exponentially stabilize the
systems are proposed.
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