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The first order of accuracy difference scheme for the numerical solution of the boundary value problem for the differential equation
with parameter 𝑝, 𝑖(𝑑𝑢(𝑡)/𝑑𝑡) + 𝐴𝑢(𝑡) + 𝑖𝑢(𝑡) = 𝑓(𝑡) + 𝑝, 0 < 𝑡 < 𝑇, 𝑢(0) = 𝜑, 𝑢(𝑇) = 𝜓, in a Hilbert space 𝐻 with self-adjoint
positive definite operator 𝐴 is constructed. The well-posedness of this difference scheme is established. The stability inequalities
for the solution of difference schemes for three different types of control parameter problems for the Schrödinger equation are
obtained.

1. Introduction: Difference Scheme

The theory and applications of well-posedness of inverse prob-
lems for partial differential equations have been studied
extensively in a large cycle of papers (see, e.g., [1–24] and the
references therein).

Our goal in this paper is to investigate Schrödinger equa-
tions with parameter. In the paper [25], the boundary value
problem for the differential equation with parameter 𝑝

𝑖
𝑑𝑢 (𝑡)

𝑑𝑡
+ 𝐴𝑢 (𝑡) + 𝑖𝑢 (𝑡) = 𝑓 (𝑡) + 𝑝, 0 < 𝑡 < 𝑇,

𝑢 (0) = 𝜑, 𝑢 (𝑇) = 𝜓

(1)

in a Hilbert space 𝐻 with self-adjoint positive definite oper-
ator 𝐴 was studied. The well-posedness of this problem
was established. The stability inequalities for the solution of
three determinations of control parameter problems for the
Schrödinger equationwere obtained. In the present paper, the
first order of accuracy Rothe difference scheme

𝑖𝜏
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𝑘−1

) + 𝐴𝑢
𝑘

+ 𝑖𝑢
𝑘

= 𝜑
𝑘

+ 𝑝, 𝜑
𝑘

= 𝑓 (𝑡
𝑘

) ,

𝑡
𝑘

= 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁, 𝑁𝜏 = 𝑇,

𝑢
0

= 𝜑, 𝑢
𝑁

= 𝜓

(2)

for the approximate solution of the boundary value problem
(1) for the differential equationwith parameter𝑝 is presented.
It is easy to see that

𝑢
𝑘

= V
𝑘

+ (𝐴 + 𝑖𝐼)
−1

𝑝,

𝑝 = (𝐴 + 𝑖𝐼) (𝜓 − V
𝑁

) ,

(3)

where {V
𝑘

}
𝑁

𝑘=0

is the solution of the following single-step
difference scheme:

𝑖𝜏
−1

(V
𝑘

− V
𝑘−1

) + 𝐴V
𝑘

+ 𝑖V
𝑘

= 𝜑
𝑘

, 𝜑
𝑘

= 𝑓 (𝑡
𝑘

) ,

𝑡
𝑘

= 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁, 𝑁𝜏 = 𝑇,

V
0

− V
𝑁

= 𝜑 − 𝜓.

(4)

The theorem on well-posedness of difference problem (2)
is proved. In practice, the stability inequalities for the solution
of difference schemes for the approximate solution of three
different types of control parameter problems are obtained.

The paper is organized as follows. Section 1 is the intro-
duction. In Section 2, the main theorem on stability of differ-
ence problem (2) is established. In Section 3, theorems on the
stability inequalities for the solution of difference schemes for
the approximate solution of three different types of control
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parameter problems are obtained. In Section 4, numerical
results are given. Finally, Section 5 is the conclusion.

2. The Main Theorem on Stability

In this section, we will study the stability of difference scheme
(2).

Let [0, 𝑇]
𝜏

= {𝑡
𝑘

= 𝑘𝜏, 𝑘 = 1, . . . , 𝑁, 𝑁𝜏 = 𝑇} be the
uniform grid space with step size 𝜏 > 0, where 𝑁 is a fixed
positive integer.Throughout the present paper,F([0, 𝑇]

𝜏

, 𝐻)

denotes the linear space of grid functions 𝜑𝜏 = {𝜑
𝑘

}
𝑁

1

with
values in the Hilbert space𝐻. Let C

𝜏

(𝐻) = C([0, 𝑇]
𝜏

, 𝐻) be
the Banach space of bounded grid functions with the norm

󵄩󵄩󵄩󵄩𝜑
𝜏
󵄩󵄩󵄩󵄩C
𝜏
(𝐻)

= max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝜑𝑘
󵄩󵄩󵄩󵄩𝐻. (5)

Let us start with a lemma we need below. We denote that 𝑅 =
((1 + 𝜏)𝐼 − 𝑖𝜏𝐴)

−1 is the step operator of problem (2).

Lemma 1. Assume that 𝐴 is a positive definite self-adjoint
operator. The operator 𝐼 − 𝑅𝑁 has an inverse 𝑇

𝜏

= (𝐼 − 𝑅
𝑁

)
−1

and the following estimate is satisfied:

󵄩󵄩󵄩󵄩𝑇𝜏
󵄩󵄩󵄩󵄩𝐻→𝐻 ≤ 𝑀(𝛿) . (6)

Proof. The proof of estimate (6) is based on the triangle
inequality and the estimate
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(𝐼 − 𝑅

𝑁

)
−1
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1
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󵄨󵄨󵄨󵄨󵄨
(1 + 𝜏 (1 − 𝑖𝜇))

−𝑁

󵄨󵄨󵄨󵄨󵄨

≤
1

1 − ((1 + 𝜏)
2

+ (𝜏𝛿)
2

)
−𝑁/2

≤ 𝜇 (𝛿) .

(7)

Now, let us obtain the formula for the solution of problem (2).
It is clear that the first order of accuracy difference scheme

𝑖𝜏
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= 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁, 𝑁𝜏 = 𝑇, 𝑢
0

= 𝜑

(8)

has a solution and the following formula
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𝑗

) 𝜏, 1 ≤ 𝑘 ≤ 𝑁 (9)

is satisfied. Applying formula (9) and the boundary condition
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) ,

(12)

we have that

𝜓 = 𝑅
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𝑁

∑
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−1
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) 𝑝. (13)

By Lemma 1, we get

𝑝 = 𝑇
𝜏
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Using (9) and (14), we get
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1 ≤ 𝑘 ≤ 𝑁.

(15)

Since
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we have that
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1 ≤ 𝑘 ≤ 𝑁.

(17)

Hence, difference scheme (2) is uniquely solvable and for
the solution, formulas (14) and (17) hold.
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Theorem 2. Suppose that the assumption of Lemma 1 holds.
Let 𝜑, 𝜓 ∈ 𝐷(𝐴). Then, for the solution ({𝑢

𝑘

}
𝑁

𝑘=1

, 𝑝) of dif-
ference scheme (2) in 𝐶

𝜏

(𝐻) × 𝐻, the estimates

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝐻 ≤ 𝑀[

󵄩󵄩󵄩󵄩𝐴𝜑
󵄩󵄩󵄩󵄩𝐻 +
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+
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𝐻

] ,

(18)

󵄩󵄩󵄩󵄩󵄩
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𝑘

}
𝑁
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󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
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󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻 +

󵄩󵄩󵄩󵄩𝜓
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󵄩󵄩󵄩󵄩󵄩
{𝜑
𝑘

}
𝑁
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󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
(𝐻)

] (19)

hold, where𝑀 is independent of 𝜏, 𝜑, 𝜓, and {𝜑
𝑘

}
𝑁

𝑘=1

.

Proof. From formulas (9) and (14), it follows that

𝑝 = 𝑇
𝜏

[

[
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𝑁
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𝑁
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1

−

𝑁

∑
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𝑗−1
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𝑗
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]

.

(20)

Using this formula, the triangle inequality, and estimate (6),
we obtain

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝐻 ≤

󵄩󵄩󵄩󵄩𝑇𝜏
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+

𝑁
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𝑅
𝑁−𝑗+1

󵄩󵄩󵄩󵄩󵄩𝐻→𝐻

󵄩󵄩󵄩󵄩󵄩
𝜑
𝑗

− 𝜑
𝑗−1

󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜑𝑁

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑅
𝑁

󵄩󵄩󵄩󵄩󵄩𝐻→𝐻

󵄩󵄩󵄩󵄩𝜑1
󵄩󵄩󵄩󵄩𝐻)

≤ 𝑀[
󵄩󵄩󵄩󵄩𝐴𝜑
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{𝜑
𝑘
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𝑁

𝑘=1

󵄩󵄩󵄩󵄩󵄩𝐶(1)
𝜏
(𝐻)

] .

(21)

Estimate (18) is proved. Using formula (17), the triangle ine-
quality, and estimate (6), we obtain

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻 ≤

[

[

󵄩󵄩󵄩󵄩󵄩
𝑅
𝑘

󵄩󵄩󵄩󵄩󵄩𝐻→𝐻

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻 +

𝑘

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑅
𝑘−𝑗+1

󵄩󵄩󵄩󵄩󵄩𝐻→𝐻

󵄩󵄩󵄩󵄩󵄩
𝜑
𝑗

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏

+ (1 +
󵄩󵄩󵄩󵄩󵄩
𝑅
𝑘

󵄩󵄩󵄩󵄩󵄩𝐻→𝐻
)
󵄩󵄩󵄩󵄩𝑇𝜏
󵄩󵄩󵄩󵄩𝐻→𝐻

× (
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐻 +

󵄩󵄩󵄩󵄩󵄩
𝑅
𝑁

󵄩󵄩󵄩󵄩󵄩𝐻→𝐻

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻

+

𝑁

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑅
𝑁−𝑗+1

󵄩󵄩󵄩󵄩󵄩𝐻→𝐻

󵄩󵄩󵄩󵄩󵄩
𝜑
𝑗

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏)]

]

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻 +

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐻 +

󵄩󵄩󵄩󵄩󵄩
{𝜑
𝑘

}
𝑁

𝑘=1

󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
(𝐻)

]

(22)

for any 𝑘. From that, it follows estimate (19). This completes
the proof of Theorem 2.

3. Applications

Now, we consider the simple applications of mainTheorem 2.
First, the boundary value problem for the Schrödinger

equation

𝑖𝑢
𝑡

− (𝑎 (𝑥) 𝑢
𝑥

)
𝑥

+ 𝛿𝑢 + 𝑖𝑢 = 𝑝 (𝑥) + 𝑓 (𝑡, 𝑥) ,

0 < 𝑡 < 𝑇, 0 < 𝑥 < 1,

𝑢 (0, 𝑥) = 𝜑 (𝑥) , 𝑢 (𝑇, 𝑥) = 𝜓 (𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) , 𝑢
𝑥

(𝑡, 0) = 𝑢
𝑥

(𝑡, 1) , 0 ≤ 𝑡 ≤ 𝑇

(23)

is considered. Problem (23) has a unique smooth solution
(𝑢(𝑡, 𝑥), 𝑝(𝑥)) for the smooth functions 𝑎(𝑥) ≥ 𝑎 > 0, 𝑥 ∈
(0, 1), 𝛿 > 0, 𝑎(1) = 𝑎(0), 𝜑(𝑥), 𝜓(𝑥) (𝑥 ∈ [0, 1]), and 𝑓(𝑡, 𝑥)
(𝑡 ∈ (0, 𝑇), 𝑥 ∈ (0, 1)). This allows us to reduce the boundary
value problem (23) to the boundary value problem (1) in a
Hilbert space𝐻 = 𝐿

2

[0, 1]with a self-adjoint positive definite
operator 𝐴𝑥 defined by formula

𝐴
𝑥

𝑢 (𝑥) = −(𝑎 (𝑥) 𝑢
𝑥

)
𝑥

+ 𝛿𝑢 (24)

with domain
𝐷(𝐴
𝑥

) = {𝑢 (𝑥) : 𝑢 (𝑥) , 𝑢
𝑥

(𝑥) , (𝑎 (𝑥) 𝑢
𝑥

)
𝑥

∈ 𝐿
2

[0, 1] ,

𝑢 (1) = 𝑢 (0) , 𝑢
𝑥

(1) = 𝑢
𝑥

(0)} .

(25)

The discretization of problem (23) is carried out in two steps.
In the first step, we define the grid space

[0, 1]
ℎ

= {𝑥 = 𝑥
𝑛

: 𝑥
𝑛

= 𝑛ℎ, 0 ≤ 𝑛 ≤ 𝑀, 𝑀ℎ = 1} . (26)

Let us introduce the Hilbert space 𝐿
2ℎ

= 𝐿
2

([0, 1]
ℎ

) of the
grid functions

𝜑
ℎ

(𝑥) = {𝜑
𝑛

}
𝑀−1

1

(27)

defined on [0, 1]
ℎ

, equipped with the norm

󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

= ( ∑

𝑥∈[0,1]

ℎ

󵄨󵄨󵄨󵄨𝜑 (𝑥)
󵄨󵄨󵄨󵄨
2

ℎ)

1/2

. (28)

To the differential operator 𝐴𝑥 defined by formula (24), we
assign the difference operator 𝐴𝑥

ℎ

by the formula

𝐴
𝑥

ℎ

𝜑
ℎ

(𝑥) = {− (𝑎 (𝑥) 𝜑
𝑥

)
𝑥,𝑛

+ 𝛿𝜑
𝑛

}
𝑀−1

1

(29)

acting in the space of grid functions 𝜑ℎ(𝑥) = {𝜑
𝑛

}
𝑀−1

1

satis-
fying the conditions 𝜑

0

= 𝜑
𝑀

, 𝜑
1

− 𝜑
0

= 𝜑
𝑀

− 𝜑
𝑀−1

. It is
well known that𝐴𝑥

ℎ

is a self-adjoint positive definite operator
in 𝐿
2ℎ

. With the help of 𝐴𝑥
ℎ

, we reach the boundary value
problem

𝑖
𝑑𝑢
ℎ

(𝑡, 𝑥)

𝑑𝑡
+ 𝐴
𝑥

ℎ

𝑢
ℎ

(𝑡, 𝑥) + 𝑖𝑢
ℎ

(𝑡, 𝑥) = 𝑝
ℎ

(𝑥) + 𝑓
ℎ

(𝑡, 𝑥) ,

0 < 𝑡 < 𝑇, 𝑥 ∈ [0, 1]
ℎ

,

𝑢
ℎ

(0, 𝑥) = 𝜑
ℎ

(𝑥) , 𝑢
ℎ

(𝑇, 𝑥) = 𝜓
ℎ

(𝑥) , 𝑥 ∈ [0, 1]
ℎ

.

(30)
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In the second step, we replace (30) with the difference
scheme (2)

𝑖
𝑢
ℎ

𝑘

(𝑥) − 𝑢
ℎ

𝑘−1

(𝑥)

𝜏
+ 𝐴
𝑥

ℎ

𝑢
ℎ

𝑘

(𝑥) + 𝑖𝑢
ℎ

𝑘

(𝑥) = 𝑝
ℎ

(𝑥) + 𝑓
ℎ

𝑘

(𝑥) ,

𝑓
ℎ

𝑘

(𝑥) = 𝑓
ℎ

(𝑡
𝑘

, 𝑥) , 𝑡
𝑘

= 𝑘𝜏, 𝑁𝜏 = 𝑇,

1 ≤ 𝑘 ≤ 𝑁, 𝑥 ∈ [0, 1]
ℎ

,

𝑢
ℎ

(0, 𝑥) = 𝜑
ℎ

(𝑥) , 𝑢
ℎ

(𝑇, 𝑥) = 𝜓
ℎ

(𝑥) , 𝑥 ∈ [0, 1]
ℎ

.

(31)

Theorem 3. The solution pairs ({𝑢ℎ
𝑘

(𝑥)}
𝑁

0

, 𝑝
ℎ

(𝑥)) of problem
(31) satisfy the stability estimates

󵄩󵄩󵄩󵄩󵄩
𝑝
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

≤ 𝑀
1

[
󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑥

ℎ

𝜑
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩
𝜓
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑥

ℎ

𝜓
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑓
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶(1)
𝜏
(𝐿

2ℎ
)

] ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑢
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
(𝐿

2ℎ
)

≤ 𝑀
2

[
󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩
𝜓
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑓
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
(𝐿

2ℎ
)

] ,

(32)

where𝑀
1

and𝑀
2

do not depend on𝜑ℎ,𝜓ℎ, and𝑓ℎ
𝑘

, 1 ≤ 𝑘 ≤ 𝑁.
Here,𝐶(1)

𝜏

(𝐿
2ℎ

) is the grid space of grid functions {𝑓ℎ
𝑘

}
𝑁

1

defined
on [0, 𝑇]

𝜏

× [0, 1]
ℎ

with norm

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑓
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶(1)
𝜏
(𝐿

2ℎ
)

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑓
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
(𝐿

2ℎ
)

+ sup
1≤𝑘<𝑘+𝑟≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

𝑘+𝑟

− 𝑓
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

𝑟𝜏
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑓
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
(𝐿

2ℎ
)

= max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

.

(33)

The proof of Theorem 3 is based on formulas for 𝑝ℎ(𝑥)
and {𝑢ℎ

𝑘

(𝑥)}
𝑁

1

and the symmetry property of operator 𝐴𝑥
ℎ

.
Second, let Ω = (𝑥 = (𝑥

1

, . . . , 𝑥
𝑛

) : 0 < 𝑥
𝑘

< 1, 𝑘 = 1, . . . ,

𝑛) be the unit open cube in the 𝑛-dimensional Euclidean
space R𝑛 with boundary 𝑆, Ω = Ω ∪ 𝑆. In [0, 𝑇] × Ω,
the boundary value problem for themultidimensional Schrö-
dinger equation

𝑖
𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
−

𝑛

∑

𝑟=1

(𝑎
𝑟

(𝑥) 𝑢
𝑥

𝑟

)
𝑥

𝑟

+ 𝑖𝑢 = 𝑝 (𝑥) + 𝑓 (𝑡, 𝑥) ,

𝑥 = (𝑥
1

, . . . , 𝑥
𝑛

) ∈ Ω, 0 < 𝑡 < 𝑇,

𝑢 (0, 𝑥) = 𝜑 (𝑥) , 𝑢 (𝑇, 𝑥) = 𝜓 (𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑡, 𝑥) = 0, 𝑥 ∈ 𝑆, 0 ≤ 𝑡 ≤ 𝑇

(34)

is considered. Here, 𝑎
𝑟

(𝑥) ≥ 𝑎 > 0 (𝑥 ∈ Ω), 𝑓(𝑡, 𝑥) (𝑡 ∈ (0, 𝑇),
𝑥 ∈ Ω), and 𝜑(𝑥), 𝜓(𝑥) (𝑥 ∈ Ω) are given smooth functions.

We consider the Hilbert space 𝐿
2

(Ω) of all square inte-
grable functions defined onΩ, equipped with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
2
(Ω)

= (∫ ⋅ ⋅ ⋅ ∫
𝑥∈Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥
1

⋅ ⋅ ⋅ 𝑑𝑥
𝑛

)

1/2

. (35)

Problem (34) has a unique smooth solution (𝑢(𝑡, 𝑥),𝑝(𝑥))
for the smooth functions 𝜑(𝑥), 𝜓(𝑥), 𝑎

𝑟

(𝑥), and 𝑓(𝑡, 𝑥). This
allows us to reduce the problem (34) to the boundary value
problem (1) in the Hilbert space 𝐻 = 𝐿

2

(Ω) with a self-
adjoint positive definite operator 𝐴𝑥 defined by the formula

𝐴
𝑥

𝑢 (𝑥) = −

𝑛

∑

𝑟=1

(𝑎
𝑟

(𝑥) 𝑢
𝑥

𝑟

)
𝑥

𝑟

(36)

with domain

𝐷(𝐴
𝑥

) = {𝑢 (𝑥) : 𝑢 (𝑥) , 𝑢
𝑥

𝑟

(𝑥) , (𝑎
𝑟

(𝑥) 𝑢
𝑥

𝑟

)
𝑥

𝑟

∈ 𝐿
2

(Ω) ,

1 ≤ 𝑟 ≤ 𝑛, 𝑢 (𝑥) = 0, 𝑥 ∈ 𝑆} .

(37)

The discretization of problem (34) is carried out in two steps.
In the first step, we define the grid space

Ω
ℎ

= {𝑥 = 𝑥
𝑟

= (ℎ
1

𝑗
1

, . . . , ℎ
𝑛

𝑗
𝑛

) ,

𝑗 = (𝑗
1

, . . . , 𝑗
𝑛

) , 0 ≤ 𝑗
𝑟

≤ 𝑁
𝑟

,

𝑁
𝑟

ℎ
𝑟

= 1, 𝑟 = 1, . . . , 𝑛} ,

Ω
ℎ

= Ω
ℎ

∩ Ω, 𝑆
ℎ

= Ω
ℎ

∩ 𝑆

(38)

and introduce the Hilbert space 𝐿
2ℎ

= 𝐿
2

(Ω
ℎ

) of the grid
functions

𝜑
ℎ

(𝑥) = {𝜑 (ℎ
1

𝑗
1

, . . . , ℎ
𝑛

𝑗
𝑛

)} (39)

defined on Ω
ℎ

, equipped with the norm

󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

= ( ∑

𝑥∈Ω

ℎ

󵄨󵄨󵄨󵄨󵄨
𝜑
ℎ

(𝑥)
󵄨󵄨󵄨󵄨󵄨

2

ℎ
1

⋅ ⋅ ⋅ ℎ
𝑛

)

1/2

. (40)

To the differential operator 𝐴𝑥 defined by formula (36), we
assign the difference operator 𝐴𝑥

ℎ

by the formula

𝐴
𝑥

ℎ

𝑢
ℎ

= −

𝑛

∑

𝑟=1

(𝛼
𝑟

(𝑥) 𝑢
ℎ

𝑥

𝑟

)
𝑥

𝑟
,𝑗

𝑟

, (41)

where 𝐴𝑥
ℎ

is known as self-adjoint positive definite operator
in 𝐿
2ℎ

, acting in the space of grid functions 𝑢ℎ(𝑥) satisfying
the conditions 𝑢ℎ(𝑥) = 0 for all 𝑥 ∈ 𝑆

ℎ

. With the help of the
difference operator 𝐴𝑥

ℎ

, we arrive to the following boundary
value problem:

𝑖𝑢
ℎ

𝑡

(𝑡, 𝑥) + 𝐴
𝑥

ℎ

𝑢
ℎ

(𝑡, 𝑥) + 𝑖𝑢
ℎ

(𝑡, 𝑥) = 𝑝
ℎ

(𝑥) + 𝑓
ℎ

(𝑡, 𝑥) ,

0 < 𝑡 < 𝑇, 𝑥 ∈ Ω
ℎ

,

𝑢
ℎ

(0, 𝑥) = 𝜑
ℎ

(𝑥) , 𝑢
ℎ

(𝑇, 𝑥) = 𝜓
ℎ

(𝑥) , 𝑥 ∈ Ω
ℎ

(42)

for an infinite system of ordinary differential equations.



Abstract and Applied Analysis 5

The first order of accuracy difference scheme for the
solution of problem (42) is

𝑖
𝑢
ℎ

𝑘

(𝑥) − 𝑢
ℎ

𝑘−1

(𝑥)

𝜏
+ 𝐴
𝑥

ℎ

𝑢
ℎ

𝑘

(𝑥) + 𝑖𝑢
ℎ

𝑘

(𝑥)

= 𝑝
ℎ

(𝑥) + 𝑓
ℎ

𝑘

(𝑥) ,

𝑓
ℎ

𝑘

(𝑥) = 𝑓
ℎ

(𝑡
𝑘

, 𝑥) , 𝑡
𝑘

= 𝑘𝜏, 𝑁𝜏 = 𝑇,

1 ≤ 𝑘 ≤ 𝑁, 𝑥 ∈ Ω
ℎ

,

𝑢
ℎ

(0, 𝑥) = 𝜑
ℎ

(𝑥) , 𝑢
ℎ

(𝑇, 𝑥) = 𝜓
ℎ

(𝑥) , 𝑥 ∈ Ω
ℎ

.

(43)

Theorem 4. The solution pairs ({𝑢ℎ
𝑘

(𝑥)}
𝑁

0

, 𝑝
ℎ

(𝑥)) of problem
(43) satisfy the stability estimates

󵄩󵄩󵄩󵄩󵄩
𝑝
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

≤ 𝑀
1

[
󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑥

ℎ

𝜑
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩
𝜓
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑥

ℎ

𝜓
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑓
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶(1)
𝜏
(𝐿

2ℎ
)

] ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑢
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
(𝐿

2ℎ
)

≤ 𝑀
2

[
󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩
𝜓
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑓
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
(𝐿

2ℎ
)

] ,

(44)

where𝑀
1

and𝑀
2

do not depend on𝜑ℎ,𝜓ℎ, and𝑓ℎ
𝑘

, 1 ≤ 𝑘 ≤ 𝑁.
Here,𝐶(1)

𝜏

(𝐿
2ℎ

) is the grid space of grid functions {𝑓ℎ
𝑘

}
𝑁

1

defined
on [0, 𝑇]

𝜏

× Ω
ℎ

with norm

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑓
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶(1)
𝜏
(𝐿

2ℎ
)

=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑓
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
(𝐿

2ℎ
)

+ sup
1≤𝑘<𝑘+𝑟≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

𝑘+𝑟

− 𝑓
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

𝑟𝜏
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑓
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
(𝐿

2ℎ
)

= max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

.

(45)

The proof of Theorem 4 is based on Theorem 3 and the
symmetry property of the operator 𝐴𝑥

ℎ

is defined by formula
(34) and the following theorem on the coercivity inequality
for the solution of the elliptic difference problem in 𝐿

2ℎ

.

Theorem 5. For the solutions of the elliptic difference problem
[26]

𝐴
𝑥

ℎ

𝑢
ℎ

(𝑥) = 𝜔
ℎ

(𝑥) , 𝑥 ∈ Ω
ℎ

,

𝑢
ℎ

(𝑥) = 0, 𝑥 ∈ 𝑆
ℎ

,

(46)

the following coercivity inequality holds:

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

𝑥

𝑟
𝑥

𝑟

󵄩󵄩󵄩󵄩󵄩
𝐿

2ℎ

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝜔
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

, (47)

where𝑀 does not depend on ℎ and 𝜔ℎ.

Third, in [0, 𝑇] × Ω, the boundary value problem for the
multidimensional Schrödinger equation

𝑖
𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
−

𝑛

∑

𝑟=1

(𝑎
𝑟

(𝑥) 𝑢
𝑥

𝑟

)
𝑥

𝑟

+ 𝛿𝑢 + 𝑖𝑢 = 𝑝 (𝑥) + 𝑓 (𝑡, 𝑥) ,

𝑥 = (𝑥
1

, . . . , 𝑥
𝑛

) ∈ Ω, 0 < 𝑡 < 𝑇,

𝑢 (0, 𝑥) = 𝜑 (𝑥) , 𝑢 (𝑇, 𝑥) = 𝜓 (𝑥) , 𝑥 ∈ Ω,

𝜕𝑢 (𝑡, 𝑥)

𝜕 ⃗𝑛
= 0, 𝑥 ∈ 𝑆, 0 ≤ 𝑡 ≤ 𝑇

(48)

with the Neumann condition is considered. Here, ⃗𝑛 is the
normal vector to 𝑆, 𝛿 > 0, and 𝑎

𝑟

(𝑥) ≥ 𝑎 > 0 (𝑥 ∈ Ω), 𝑓(𝑡, 𝑥)
(𝑡 ∈ (0, 𝑇), 𝑥 ∈ Ω), and 𝜑(𝑥), 𝜓(𝑥) (𝑥 ∈ Ω) are given smooth
functions.

Problem (48) has a unique smooth solution (𝑢(𝑡, 𝑥), 𝑝(𝑥))
for the smooth functions 𝜑(𝑥), 𝜓(𝑥), 𝑎

𝑟

(𝑥), and 𝑓(𝑡, 𝑥). This
allows us to reduce the problem (48) to the boundary value
problem (1) in the Hilbert space 𝐻 = 𝐿

2

(Ω) with a self-
adjoint positive definite operator 𝐴𝑥 defined by formula

𝐴
𝑥

𝑢 (𝑥) = −

𝑛

∑

𝑟=1

(𝑎
𝑟

(𝑥) 𝑢
𝑥

𝑟

)
𝑥

𝑟

+ 𝛿𝑢 (49)

with domain

𝐷(𝐴
𝑥

) = {𝑢 (𝑥) : 𝑢 (𝑥) , 𝑢
𝑥

𝑟

(𝑥) , (𝑎
𝑟

(𝑥) 𝑢
𝑥

𝑟

)
𝑥

𝑟

∈ 𝐿
2

(Ω) ,

1 ≤ 𝑟 ≤ 𝑛,
𝜕𝑢 (𝑥)

𝜕 ⃗𝑛
= 0, 𝑥 ∈ 𝑆} .

(50)

The discretization of problem (48) is carried out in two steps.
In the first step, we define the difference operator 𝐴𝑥

ℎ

by the
formula

𝐴
𝑥

ℎ

𝑢
ℎ

= −

𝑛

∑

𝑟=1

(𝛼
𝑟

(𝑥) 𝑢
ℎ

𝑥

𝑟

)
𝑥

𝑟
,𝑗

𝑟

+ 𝛿𝑢
ℎ

, (51)

where 𝐴𝑥
ℎ

is known as self-adjoint positive definite operator
in 𝐿
2ℎ

, acting in the space of grid functions 𝑢ℎ(𝑥) satisfying
the conditions 𝐷ℎ𝑢ℎ(𝑥) = 0 for all 𝑥 ∈ 𝑆

ℎ

. Here, 𝐷ℎ is the
approximation of the operator 𝜕⋅/𝜕 ⃗𝑛. With the help of the
difference operator 𝐴𝑥

ℎ

, we arrive to the following boundary
value problem:

𝑖𝑢
ℎ

𝑡

(𝑡, 𝑥) + 𝐴
𝑥

ℎ

𝑢
ℎ

(𝑡, 𝑥) + 𝑖𝑢
ℎ

(𝑡, 𝑥) = 𝑝
ℎ

(𝑥) + 𝑓
ℎ

(𝑡, 𝑥) ,

0 < 𝑡 < 𝑇, 𝑥 ∈ Ω
ℎ

,

𝑢
ℎ

(0, 𝑥) = 𝜑
ℎ

(𝑥) , 𝑢
ℎ

(𝑇, 𝑥) = 𝜓
ℎ

(𝑥) , 𝑥 ∈ Ω
ℎ

(52)

for an infinite system of ordinary differential equations.
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The first order of accuracy difference scheme for the solu-
tion of problem (52) is

𝑖
𝑢
ℎ

𝑘

(𝑥) − 𝑢
ℎ

𝑘−1

(𝑥)

𝜏
+ 𝐴
𝑥

ℎ

𝑢
ℎ

𝑘

(𝑥) + 𝑖𝑢
ℎ

𝑘

(𝑥) = 𝑝
ℎ

(𝑥) + 𝑓
ℎ

𝑘

(𝑥) ,

𝑓
ℎ

𝑘

(𝑥) = 𝑓
ℎ

(𝑡
𝑘

, 𝑥) , 𝑡
𝑘

= 𝑘𝜏, 𝑁𝜏 = 𝑇,

1 ≤ 𝑘 ≤ 𝑁, 𝑥 ∈ Ω
ℎ

,

𝑢
ℎ

(0, 𝑥) = 𝜑
ℎ

(𝑥) , 𝑢
ℎ

(𝑇, 𝑥) = 𝜓
ℎ

(𝑥) , 𝑥 ∈ Ω
ℎ

.

(53)

Theorem 6. The solution pairs ({𝑢ℎ
𝑘

(𝑥)}
𝑁

0

, 𝑝
ℎ

(𝑥)) of problem
(53) satisfy the stability estimates

󵄩󵄩󵄩󵄩󵄩
𝑝
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

≤ 𝑀
1

[
󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑥

ℎ

𝜑
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩
𝜓
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑥

ℎ

𝜓
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑓
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶(1)
𝜏
(𝐿

2ℎ
)

] ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑢
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
(𝐿

2ℎ
)

≤ 𝑀
2

[
󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩
𝜓
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
{𝑓
ℎ

𝑘

}
𝑁

1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐶
𝜏
(𝐿

2ℎ
)

] ,

(54)

where𝑀
1

and𝑀
2

do not depend on𝜑ℎ,𝜓ℎ, and𝑓ℎ
𝑘

, 1 ≤ 𝑘 ≤ 𝑁.

The proof of Theorem 6 is based on Theorem 2 and the
symmetry property of the operator 𝐴𝑥

ℎ

is defined by formula
(51) and the following theorem on the coercivity inequality
for the solution of the elliptic difference problem in 𝐿

2ℎ

.

Theorem 7. For the solution of the elliptic difference problem
[26]

𝐴
𝑥

ℎ

𝑢
ℎ

(𝑥) = 𝜔
ℎ

(𝑥) , 𝑥 ∈ Ω
ℎ

,

𝐷
ℎ

𝑢
ℎ

(𝑥) = 0, 𝑥 ∈ 𝑆
ℎ

,

(55)

the following coercivity inequality holds:

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

𝑥

𝑟
𝑥

𝑟

󵄩󵄩󵄩󵄩󵄩
𝐿

2ℎ

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝜔
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿
2ℎ

, (56)

where𝑀 does not depend on ℎ and 𝜔ℎ.

4. Numerical Results

In present section, for numerical analysis, the following
boundary value problem

𝑖
𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
−
𝜕
2

𝑢 (𝑡, 𝑥)

𝜕𝑥2
+ 𝑖𝑢 (𝑡, 𝑥) = 𝑝 (𝑥) + 𝑓 (𝑡, 𝑥) ,

𝑥 ∈ (0, 𝜋) , 𝑡 ∈ (0, 1) ,

𝑢 (0, 𝑥) = sin𝑥, 𝑢 (1, 𝑥) = 𝑒
−1 sin𝑥, 𝑥 ∈ [0, 𝜋] ,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 ∈ [0, 1]

(57)

is considered. The exact solution of problem (57) is 𝑢(𝑡, 𝑥) =
𝑒
−𝑡 sin𝑥 and 𝑝(𝑥) = sin𝑥.

The first order of accuracy difference scheme

𝑖
𝑢
𝑘

𝑛

− 𝑢
𝑘−1

𝑛

𝜏
−
𝑢
𝑘

𝑛+1

− 2𝑢
𝑘

𝑛

+ 𝑢
𝑘

𝑛−1

ℎ2
+ 𝑖𝑢
𝑘

𝑛

= 𝜑
𝑘

𝑛

+ 𝑝 (𝑥
𝑛

) ,

1 ≤ 𝑘 ≤ 𝑁, 1 ≤ 𝑛 ≤ 𝑀 − 1,

𝜑
𝑘

𝑛

= 𝑓 (𝑡
𝑘

, 𝑥
𝑛

) = (𝑒
−𝑡

𝑘 − 1) sin𝑥
𝑛

,

𝑡
𝑘

= 𝑘𝜏, 0 ≤ 𝑘 ≤ 𝑁, 𝑁𝜏 = 1,

𝑥
𝑛

= 𝑛ℎ, 1 ≤ 𝑛 ≤ 𝑀 − 1, 𝑀ℎ = 𝜋,

𝑢
0

𝑛

= sin (𝑥
𝑛

) , 𝑢
𝑁

𝑛

= 𝑒
−1 sin (𝑥

𝑛

) , 𝑥
𝑛

= 𝑛ℎ, 0 ≤ 𝑛 ≤ 𝑀,

𝑢
𝑘

0

= 𝑢
𝑘

𝑀

= 0, 0 ≤ 𝑘 ≤ 𝑁

(58)

for the numerical solution of problem (57) is constructed.
For obtaining the values of 𝑝(𝑥

𝑛

) at the grid points, we
will use the following equation:

𝑝 (𝑥
𝑛

) = −𝑒
−1

sin (𝑥
𝑛+1

) − 2 sin (𝑥
𝑛

) + sin (𝑥
𝑛−1

)

ℎ2

+ 𝑖𝑒
−1 sin (𝑥

𝑛

) +
V𝑁
𝑛+1

− 2V𝑁
𝑛

+ V𝑁
𝑛−1

ℎ2
− 𝑖V𝑁
𝑛

,

𝑥
𝑛

= 𝑛ℎ, 1 ≤ 𝑛 ≤ 𝑀 − 1,

(59)

where V𝑘
𝑠

, 𝑠 = 𝑛 ± 1, and 𝑛 is the solution of the first order of
accuracy difference scheme

𝑖
V𝑘
𝑛

− V𝑘−1
𝑛

𝜏
−
V𝑘
𝑛+1

− 2V𝑘
𝑛

+ V𝑘
𝑛−1

ℎ2
+ 𝑖V𝑘
𝑛

= 𝜑
𝑘

𝑛

,

𝜑
𝑘

𝑛

= 𝑓 (𝑡
𝑘

, 𝑥
𝑛

) , 𝑡
𝑘

= 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁, 𝑁𝜏 = 1,

𝑥
𝑛

= 𝑛ℎ, 1 ≤ 𝑛 ≤ 𝑀 − 1, 𝑀ℎ = 𝜋,

V𝑁
𝑛

− V0
𝑛

= (𝑒
−1

− 1) sin (𝑥
𝑛

) , 𝑥
𝑛

= 𝑛ℎ, 0 ≤ 𝑛 ≤ 𝑀,

V𝑘
0

= V𝑘
𝑀

= 0, 0 ≤ 𝑘 ≤ 𝑁

(60)

generated by difference scheme (58).
Using the difference scheme (60), we obtain (𝑁 + 1) ×

(𝑀 + 1) system of linear equations and we can write them in
the matrix form as

𝐴V
𝑛+1

+ 𝐵V
𝑛

+ 𝐶V
𝑛−1

= 𝑅𝜑
𝑛

, 1 ≤ 𝑛 ≤ 𝑀 − 1,

V
0

= V
𝑀

= 0̃,

(61)
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where

𝐶 = 𝐴 =

[
[
[
[
[
[
[

[

0 0 0 ⋅ 0 0 0 0

0 𝑥 0 ⋅ 0 0 0 0

0 0 𝑥 ⋅ 0 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ 0 0 𝑥 0

0 0 0 ⋅ 0 0 0 𝑥

]
]
]
]
]
]
]

]
(𝑁+1)×(𝑁+1)

,

𝐵 =

[
[
[
[
[
[
[

[

−1 0 0 ⋅ 0 0 1

𝑦 𝑧 0 ⋅ 0 0 0

0 𝑦 𝑧 ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ 𝑦 𝑧 0

0 0 0 ⋅ 0 𝑦 𝑧

]
]
]
]
]
]
]

]
(𝑁+1)×(𝑁+1)

.

(62)

Here,

𝑥 = −
1

ℎ2
, 𝑦 = −

𝑖

𝜏
, 𝑧 =

𝑖

𝜏
+
2

ℎ2
+ 𝑖,

V
𝑠

=
[
[

[

V0
𝑠

...
V𝑁
𝑠

]
]

]
(𝑁+1)×1

for 𝑠 = 𝑛 + 1, 𝑛, 𝑛 − 1,

𝜑
𝑛

=

[
[
[
[
[
[
[

[

(𝑒
−1

− 1) sin𝑥
𝑛

𝜑
1

𝑛

...
𝜑
𝑁−1

𝑛

𝜑
𝑁

𝑛

]
]
]
]
]
]
]

]
(𝑁+1)×1

.

(63)

So, we have the second-order difference equationwith respect
to 𝑛 with matrix coefficients. Using the modified Gauss
eliminationmethod, we can obtain V𝑘

𝑛

, 0 ≤ 𝑘 ≤ 𝑁, 0 ≤ 𝑛 ≤ 𝑀.
For the solution of the matrix equations, we seek the

solution of the form

V
𝑛

= 𝛼
𝑛+1

V
𝑛+1

+ 𝛽
𝑛+1

, 𝑛 = 𝑀 − 1, . . . , 2, 1,

V
𝑀

= 0̃,

(64)

where 𝛼
𝑗

and 𝛽
𝑗

, 𝑗 = 1, . . . ,𝑀, are calculated as

𝛼
𝑛+1

= −(𝐵 + 𝐶𝛼
𝑛

)
−1

(𝐴) ,

𝛽
𝑛+1

= (𝐵 + 𝐶𝛼
𝑛

)
−1

(𝐷𝜑
𝑛

− 𝐶𝛽
𝑛

) ,

(65)

where 𝛼
1

is (𝑁+1)×(𝑁+1) and 𝛽
1

is (𝑁+1)×1 zero matrix.
Then, using (59), values of 𝑝(𝑥

𝑛

) at grid points are
obtained. Replacing 𝑝(𝑥

𝑛

) in (58), we get (𝑁 + 1) × (𝑀 + 1)

system of linear equations and it can be written in the matrix
form

𝐴
2

𝑢
𝑛+1

+ 𝐵
2

𝑢
𝑛

+ 𝐶
2

𝑢
𝑛−1

= 𝑅𝜃
𝑛

, 1 ≤ 𝑛 ≤ 𝑀 − 1,

1𝑢
0

= 𝑢
𝑀

= 0̃,

(66)

Table 1: Error analysis for the exact solution 𝑢(𝑡, 𝑥).

Method 𝑁 = 𝑀 = 20 𝑁 = 𝑀 = 40 𝑁 = 𝑀 = 80

1st order of
accuracy d.s. 0.0024 0.0012 6.0463 × 10−4

where

𝐶
2

= 𝐶, 𝐴
2

= 𝐴,

𝐵
2

=

[
[
[
[
[
[
[

[

1 0 0 ⋅ 0 0 0

𝑦 𝑧 0 ⋅ 0 0 0

0 𝑦 𝑧 ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ 𝑦 𝑧 0

0 0 0 ⋅ 0 𝑦 𝑧

]
]
]
]
]
]
]

]
(𝑁+1)×(𝑁+1)

.
(67)

Here,

𝑦 = −
𝑖

𝜏
, 𝑧 =

𝑖

𝜏
+
2

ℎ2
+ 𝑖,

𝑢
𝑠

=
[
[

[

𝑢
0

𝑠

...
𝑢
𝑁

𝑠

]
]

]
(𝑁+1)×1

for 𝑠 = 𝑛 + 1, 𝑛, 𝑛 − 1,

𝜃
𝑛

=

[
[
[
[
[
[

[

sin𝑥
𝑛

𝜑
1

𝑛

+ 𝑝 (𝑥
𝑛

)

...
𝜑
𝑁−1

𝑛

+ 𝑝 (𝑥
𝑛

)

𝜑
𝑁

𝑛

+ 𝑝 (𝑥
𝑛

)

]
]
]
]
]
]

]
(𝑁+1)×1

.

(68)

Using the modified Gauss elimination method again, we can
obtain 𝑢𝑘

𝑛

, 0 ≤ 𝑘 ≤ 𝑁, 0 ≤ 𝑛 ≤ 𝑀.
We will give the results of the numerical analysis. The

numerical solutions are recorded for different values of𝑁 and
𝑀 and 𝑢𝑘

𝑛

represents the numerical solutions of the difference
scheme at (𝑡

𝑘

, 𝑥
𝑛

). Table 1 is constructed for 𝑁 = 𝑀 = 20,
40, and 80, respectively and the errors are computed by the
following formula:

𝐸 = max
1≤𝑘≤𝑁

{

𝑀

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨
𝑢(𝑡
𝑘

, 𝑥
𝑛

) − 𝑢
𝑘

𝑛

󵄨󵄨󵄨󵄨󵄨

2

ℎ}

1/2

. (69)

For their comparison, Table 2 is constructed when errors are
computed by

𝐸 = max
1≤𝑘≤𝑁

1≤𝑛≤𝑀

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑘

, 𝑥
𝑛

) − 𝑢
𝑘

𝑛

󵄨󵄨󵄨󵄨󵄨
. (70)

Table 3 is constructed for the error of 𝑝(𝑥) at the nodes in
maximum norm.

5. Conclusion

In the present study, thewell-posedness of difference problem
for the approximate solution of determination of a control
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Table 2: Error analysis for the exact solution 𝑢(𝑡, 𝑥).

Method 𝑁 = 𝑀 = 20 𝑁 = 𝑀 = 40 𝑁 = 𝑀 = 80

1st order of
accuracy d.s. 0.0019 9.5692 × 10−4 4.8241 × 10−4

Table 3: Error analysis for 𝑝(𝑥).

Method 𝑁 = 20 𝑁 = 40 𝑁 = 80

1st order of accuracy d.s. 0.0145 0.0072 0.0036

parameter for the Schrödinger equation is established. In
practice, the stability inequalities for the solution of dif-
ference schemes of the approximate solution of three dif-
ferent types of control parameter problems are obtained.
The well-posedness of the boundary value problem (1) is
established. The stability inequalities for the solution of
difference schemes for three different types of control param-
eter problems for the Schrödinger equation are obtained.
Moreover, applying the result of the monograph [15], the
high order of accuracy single-step difference schemes for the
numerical solution of the boundary value problem (1) can be
presented. Of course, the stability inequalities for the solution
of these difference schemes have been establishedwithout any
assumptions about the grid steps.
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2004.

[17] S. Avdonin, S. Lenhart, and V. Protopopescu, “Solving the
dynamical inverse problem for the Schrödinger equation by the
boundary control method,” Inverse Problems, vol. 18, no. 2, pp.
349–361, 2002.

[18] G. Eskin and J. Ralston, “Inverse scattering problem for the
Schrödinger equationwithmagnetic potential at a fixed energy,”
Communications in Mathematical Physics, vol. 173, no. 1, pp.
199–224, 1995.

[19] A. Mercado, A. Osses, and L. Rosier, “Inverse problems for the
Schrödinger equation via Carleman inequalities with degener-
ate weights,” Inverse Problems, vol. 24, no. 1, Article ID 015017,
2008.

[20] T. Nadareishvili and A. Khelashvili, “Pragmatic SAE procedure
in the Schrodinger equation for the inverse-square-like poten-
tials,” High Energy Physics—Theory, vol. 93, pp. 1–26, 2012.

[21] H. Nakatsuji, “Inverse Schrödinger equation and the exact wave
function,” Physical Review A, vol. 65, no. 5, pp. 1–15, 2002.

[22] A. Ashyralyev and A. Sirma, “Nonlocal boundary value prob-
lems for the Schrödinger equation,” Computers & Mathematics
with Applications, vol. 55, no. 3, pp. 392–407, 2008.

[23] A. Ashyralyev and A. Sirma, “Modified Crank-Nicolson dif-
ference schemes for nonlocal boundary value problem for
the Schrödinger equation,” Discrete Dynamics in Nature and
Society, vol. 2009, Article ID 584718, 15 pages, 2009.

[24] A. Ashyralyev and A. Sirma, “A note on the numerical solution
of the semilinear Schrödinger equation,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 71, no. 12, pp. e2507–e2516,
2009.

[25] A. Ashyralyev and M. Urun, “Determination of a control
parameter for the Schrödinger equation,” Contemporary Analy-
sis and Applied Mathematics, vol. 1, no. 2, pp. 156–166, 2013.

[26] P. E. Sobolevskii, Difference Methods for the Approximate Solu-
tion ofDifferential Equations, IzdatelstvoVoronezhskogoGosud
Universiteta, Voronezh, Russia, 1975 (Russian).


