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We introduce a general algorithm to approximate common fixed points for a countable family of nonexpansive mappings in a real
Banach space.We prove strong convergence theorems for the sequences produced by themethods and approximate a commonfixed
point of a countable family of nonexpansivemappingswhich solves uniquely the corresponding variational inequality. Furthermore,
we apply our results for finding a zero of an accretive operator. It is important to state clearly that the contribution of this paper in
relation with the previous works (Marino and Xu, 2006) is a technical method to prove strong convergence theorems of a general
iterative algorithm for an infinite family of nonexpansive mappings in Banach spaces. Our results improve and generalize many
known results in the current literature.

1. Introduction

Viscosity approximation method for finding the fixed points
of nonexpansive mappings was first proposed by Moudafi
[1]. He proved the convergence of the sequence generated
by the proposed method. In 2004, Xu [2] proved the strong
convergence of the sequence generated by the viscosity
approximationmethod to a unique solution of a certain varia-
tional inequality problem defined on the set of fixed points of
a nonexpansivemap (see also [3]).Marino andXu [4] consid-
ered a general iterative method and proved that the sequence
generated by the method converges strongly to a unique
solution of a certain variational inequality problem which
is the optimality condition for a particular minimization
problem. Liu [5] and Qin et al. [6] also studied some appli-
cations of the iterative method considered in [4]. Yamada [7]
introduced the so-called hybrid steepest-descent method for
solving the variational inequality problem and also studied
the convergence of the sequence generated by the proposed
method. Recently, Tian [8] combined the iterative methods
of [4, 7] in order to propose implicit and explicit schemes

for constructing a fixed point of a nonexpansive mapping 𝑇

defined on a real Hilbert space. He also proved the strong
convergence of these two schemes to a fixed point of 𝑇 under
appropriate conditions. Related iterative methods for solving
fixed point problems, variational inequalities, and optimiza-
tion problems can be found in [9–14] and the references
therein. By virtue of the projection, the authors in [13, 15]
extended the implicit and explicit iterative schemes proposed
in [8]. The approximation methods for common fixed points
of a countable family of nonexpansive mappings have been
recently studied by several authors; see, for example, [16, 17].

The purpose of this paper is to introduce a general
algorithm to approximate common fixed points for a count-
able family of nonexpansive mappings in a Banach space.
We prove strong convergence theorems for the sequences
produced by the methods for a common fixed point of a
countable family of nonexpansive mappings which solves
uniquely the corresponding variational inequality. Further-
more, we apply our results for finding a zero of an accretive
operator. Our results improve and generalize many known
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results in the current literature; see, for example, [4, 7, 8, 13–
15, 18–20].

2. Preliminaries

Throughout this paper, we denote the set of real numbers and
the set of positive integers byR andN, respectively. Let 𝐸 be a
Banach space with the norm ‖⋅‖ and the dual space𝐸

∗. When
{𝑥
𝑛
} is a sequence in 𝐸, we denote the strong convergence

of {𝑥
𝑛
} to 𝑥 ∈ 𝐸 by 𝑥

𝑛
→ 𝑥 and the weak convergence by

𝑥
𝑛

⇀ 𝑥. For any sequence {𝑥
∗

𝑛
} in 𝐸

∗, we denote the strong
convergence of {𝑥

∗

𝑛
} to 𝑥

∗

∈ 𝐸
∗ by 𝑥

∗

𝑛
→ 𝑥

∗, the weak
convergence by 𝑥

∗

𝑛
⇀ 𝑥
∗, and the weak-star convergence by

𝑥
∗

𝑛
⇀
∗

𝑥
∗. The normalized duality mapping 𝐽 : 𝐸 → 2

𝐸
∗

is
defined by

𝐽 (𝑥) = {𝑓 ∈ 𝐸
∗

: ⟨𝑥, 𝑓⟩ = ‖𝑥‖
2

, ‖𝑥‖ =
𝑓

} , ∀𝑥 ∈ 𝐸.

(1)

The modulus 𝛿 of convexity of 𝐸 is denoted by

𝛿 (𝜖) = inf {1 −

𝑥 + 𝑦


2
: ‖𝑥‖ ≤ 1,

𝑦
 ≤ 1,

𝑥 − 𝑦
 ≥ 𝜖}

(2)

for every 𝜖 with 0 ≤ 𝜖 ≤ 2. A Banach space 𝐸 is said to be
uniformly convex if 𝛿(𝜖) > 0 for every 𝜖 > 0. Let 𝑆 = {𝑥 ∈ 𝐸 :

‖𝑥‖ = 1}. The norm of 𝐸 is said to be Gâteaux differentiable if
for each 𝑥, 𝑦 ∈ 𝑆, the limit

lim
𝑡→0

𝑥 + 𝑡𝑦
 − ‖𝑥‖

𝑡

(3)

exists. In this case,𝐸 is called smooth. If the limit (3) is attained
uniformly in 𝑥, 𝑦 ∈ 𝑆, then 𝐸 is called uniformly smooth. The
Banach space 𝐸 is said to be strictly convex if ‖(𝑥 + 𝑦)/2‖ < 1

whenever 𝑥, 𝑦 ∈ 𝑆 and 𝑥 ̸= 𝑦. It is well known that 𝐸 is
uniformly convex if and only if 𝐸

∗ is uniformly smooth. It
is also known that if 𝐸 is reflexive, then 𝐸 is strictly convex
if and only if 𝐸∗ is smooth; for more details, see [21]. Now,
we define a mapping 𝜌 : [0,∞) → [0,∞), the modulus of
smoothness of 𝐸, as follows:

𝜌 (𝑡) = sup {
1

2
(
𝑥 + 𝑦

 +
𝑥 − 𝑦

) − 1 :

𝑥, 𝑦 ∈ 𝐸, ‖𝑥‖ = 1,
𝑦

 = 𝑡} .

(4)

It is well known that 𝐸 is uniformly smooth if and only if
lim
𝑡→0

(𝜌(𝑡)/𝑡) = 0. Let 𝑞 ∈ R be such that 1 < 𝑞 ≤ 2. Then
a Banach space 𝐸 is said to be 𝑞-uniformly smooth if there
exists a constant 𝑐

𝑞
> 0 such that 𝜌(𝑡) ≤ 𝑐

𝑞
𝑡
𝑞 for all 𝑡 > 0.

If a Banach space 𝐸 admits a sequentially continuous duality
mapping 𝐽 from weak topology to weak star topology, then
𝐽 is single valued and also 𝐸 is smooth; for more details, see
[22]. In this case, the normalized duality mapping 𝐽 is said
to be weakly sequentially continuous; that is, if {𝑥

𝑛
} ⊂ 𝐸 is

a sequence with 𝑥
𝑛

⇀ 𝑥 ∈ 𝐸, then 𝐽(𝑥
𝑛
)⇀
∗

𝐽(𝑥) [22]. A

Banach space 𝐸 is said to satisfy the Opial property [23] if for
any weakly convergent sequence {𝑥

𝑛
} in 𝐸 with weak limit 𝑥,

lim sup
𝑛→∞

𝑥𝑛 − 𝑥
 < lim sup
𝑛→∞

𝑥𝑛 − 𝑦
 (5)

for all𝑦 ∈ 𝐸with𝑦 ̸= 𝑥. It is well known that allHilbert spaces,
all finite dimensional Banach spaces, and the Banach spaces
𝑙
𝑝 (1 ≤ 𝑝 < ∞) satisfy the Opial property; for example, see
[22, 23]. It is also known that if𝐸 admits a weakly sequentially
continuous duality mapping, then𝐸 is smooth and enjoys the
Opial property; see for more details [22].

Let 𝐸 be a real Banach space and 𝐶 a nonempty subset of
𝐸. Let 𝑇 : 𝐶 → 𝐸 be a mapping. We denote by 𝐹(𝑇) the set
of fixed points of 𝑇; that is, 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}.

Definition 1. Let 𝐶 be a nonempty, closed, and convex subset
of a real Banach space 𝐸. An operator 𝐴 : 𝐶 → 𝐸 is said to
be

(i) accretive if there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶; (6)

(ii) 𝜂-strongly accretive if, for some 𝜂 > 0, there exists 𝑗(𝑥−

𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝜂
𝑥 − 𝑦



2

, ∀𝑥, 𝑦 ∈ 𝐶; (7)

(iii) 𝑙-Lipschitzian if, for some 𝑙 > 0,
𝐴𝑥 − 𝐴𝑦

 ≤ 𝑙
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶; (8)

in particular, if 𝑙 ∈ [0, 1), then 𝐴 is called a
contraction;

(iv) nonexpansive if
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶. (9)

A linear bounded operator𝐴 : 𝐸 → 𝐸
∗ is said to be strongly

positive if there exists 𝛾 > 0 such that

⟨𝑥, 𝐴𝑥⟩ ≥ 𝛾‖𝑥‖
2

, ∀𝑥 ∈ 𝐸. (10)

Remark 2. Let𝐶 be a nonempty, closed, and convex subset of
a real Banach space 𝐸 and let 𝑇 : 𝐶 → 𝐶 be a nonexpansive
mapping. Then 𝐼 − 𝑇 is an accretive operator, where 𝐼 is the
identity mapping. Indeed, for any 𝑥, 𝑦 ∈ 𝐶 we have

⟨(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦, 𝑗 (𝑥 − 𝑦)⟩

= ⟨𝑥 − 𝑦, 𝑗 (𝑥 − 𝑦)⟩ − ⟨𝑇𝑥 − 𝑇𝑦, 𝑗 (𝑥 − 𝑦)⟩

≥
𝑥 − 𝑦



2

−
𝑇𝑥 − 𝑇𝑦


𝑥 − 𝑦



≥
𝑥 − 𝑦



2

−
𝑥 − 𝑦



2

= 0,

(11)

which means that 𝐼 − 𝑇 is accretive.

The following result has been proved in [24].
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Lemma 3. Let 𝐸 be a real 2-uniformly smooth Banach space.
Then there exists a best uniformly smooth constant 𝜌 > 0 such
that

𝑥 + 𝑦


2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑗 (𝑥)⟩ + 2𝜌
2𝑦



2

, (12)

for all 𝑥, 𝑦 ∈ 𝐸.

Let 𝐶 and 𝐷 be nonempty subsets of real Banach space 𝐸

with 𝐷 ⊂ 𝐶. A mapping 𝑄
𝐷

: 𝐶 → 𝐷 is said to be sunny if

𝑄
𝐷
(𝑄
𝐷
𝑥 + 𝑡 (𝑥 − 𝑄

𝐷
𝑥)) = 𝑄

𝐷
𝑥 (13)

for each 𝑥 ∈ 𝐸 and 𝑡 ≥ 0. A mapping 𝑄
𝐷

: 𝐶 → 𝐷 is said to
be a retraction if 𝑄

𝐷
𝑥 = 𝑥 for each 𝑥 ∈ 𝐶.

The following result has been proved in [25].

Lemma 4. Let 𝐶 and𝐷 be nonempty subsets of a real Banach
space 𝐸 with 𝐷 ⊂ 𝐶 and 𝑄

𝐷
: 𝐶 → 𝐷 a retraction from 𝐶

into 𝐷. Then 𝑄
𝐷
is sunny and nonexpansive if and only if

⟨𝑧 − 𝑄
𝐷
(𝑧) , 𝑗 (𝑦 − 𝑄

𝐷
(𝑧))⟩ ≤ 0 (14)

for all 𝑧 ∈ 𝐶 and 𝑦 ∈ 𝐷.

Lemma 5 (demiclosedness principle [26]). Let 𝐶 be a closed
and convex subset of a real 2-uniformly smooth Banach space𝐸
and let the normalized duality mapping 𝐽 : 𝐸 → 𝐸

∗ be weakly
sequentially continuous at zero. Suppose that 𝑇 : 𝐶 → 𝐸 is
a nonexpansive mapping with 𝐹(𝑇) ̸=⌀. If {𝑥

𝑛
} is a sequence

in 𝐶 that converges weakly to 𝑥 and if {(𝐼 − 𝑇)𝑥
𝑛
} converges

strongly to 𝑦, then (𝐼 − 𝑇)𝑥 = 𝑦; in particular, if 𝑦 = 0, then
𝑥 ∈ 𝐹(𝑇).

Lemma6 (see [27]). Let {𝑠
𝑛
} be a sequence of nonnegative real

numbers satisfying the inequality

𝑠
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑠
𝑛
+ 𝛾
𝑛
𝛿
𝑛
, ∀𝑛 ≥ 0, (15)

where {𝛾
𝑛
} and {𝛿

𝑛
} satisfy the conditions

(i) {𝛾
𝑛
} ⊂ [0, 1] and ∑

∞

𝑛=0
𝛾
𝑛

= ∞, or equivalently,
Π
∞

𝑛=0
(1 − 𝛾

𝑛
) = 0;

(ii) lim sup
𝑛→∞

𝛿
𝑛
≤ 0, or

(ii) ∑∞
𝑛=0

𝛾
𝑛
𝛿
𝑛
< ∞.

Then, lim
𝑛→∞

𝑠
𝑛
= 0.

Lemma 7 (see [28]). Let {𝑥
𝑛
} and {𝑧

𝑛
} be two sequences in a

Banach space 𝐸 such that

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑧
𝑛
, 𝑛 ≥ 1, (16)

where {𝛽
𝑛
} satisfies the following conditions:

0 < lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1. If
lim sup

𝑛→∞
(‖𝑧
𝑛+1

− 𝑧
𝑛
‖ − ‖𝑥

𝑛+1
− 𝑥
𝑛
‖) ≤ 0, then

lim
𝑛→∞

‖𝑥
𝑛
− 𝑧
𝑛
‖ = 0.

Let 𝐶 be a subset of a real Banach space 𝐸 and {𝑇
𝑛
}
∞

𝑛=1

a family of mappings of 𝐶 such that ∩
∞

𝑛=1
𝐹(𝑇
𝑛
) ̸=⌀. Then

{𝑇
𝑛
}
∞

𝑛=1
is said to satisfy the 𝐴𝐾𝑇𝑇-condition [29] if for each

bounded subset 𝐾 of 𝐶,
∞

∑

𝑛=1

sup {
𝑇𝑛+1𝑧 − 𝑇

𝑛
𝑧
 : 𝑧 ∈ 𝐾} < ∞. (17)

Lemma8 (see [29]). Let𝐶 be a subset of a real Banach space𝐸
and {𝑇

𝑛
}
∞

𝑛=1
a family of mappings of 𝐶 into itself which satisfies

the𝐴𝐾𝑇𝑇-condition. Then, for each 𝑥 ∈ 𝐶, {𝑇
𝑛
𝑥}
∞

𝑛=1
converges

strongly to a point in𝐶. Moreover, let the mapping𝑇 be defined
by

𝑇𝑥 = lim
𝑛→∞

𝑇
𝑛
𝑥, ∀𝑥 ∈ 𝐶. (18)

Then for each bounded subset 𝐾 of 𝐶,

lim sup
𝑛→∞

{
𝑇𝑛𝑧 − 𝑇𝑧

 : 𝑧 ∈ 𝐾} = 0. (19)

In the sequel, one will write that ({𝑇
𝑛
}
∞

𝑛=1
, 𝑇) satisfies the

𝐴𝐾𝐾𝑇-condition if {𝑇
𝑛
}
∞

𝑛=1
satisfies the 𝐴𝐾𝐾𝑇-condition and

𝑇 is defined by Lemma 8 with 𝐹(𝑇) = ∩
∞

𝑛=1
𝐹(𝑇
𝑛
).

We end this section with the following simple exam-
ples of mappings satisfying the 𝐴𝐾𝑇𝑇-condition (see also
Lemma 19).

Example 9. (i) Let 𝐸 be a Banach space. For any 𝑛 ∈ N, let a
mapping 𝑇

𝑛
: 𝐸 → 𝐸 be defined by

𝑇
𝑛
(𝑥) =

𝑥

𝑛
, ∀𝑥 ∈ 𝐸. (20)

Then, 𝑇
𝑛
is a nonexpansive mapping for each 𝑛 ∈ N. It could

easily be seen that ({𝑇
𝑛
}
∞

𝑛=1
, 𝑇) satisfies the𝐴𝐾𝐾𝑇-condition,

where 𝑇(𝑥) = 0 for all 𝑥 ∈ 𝐸.
(ii) Let 𝐸 be a smooth Banach space and let 𝑥

0
̸= 0 be any

element of𝐸. For any 𝑗 ∈ N, we define amapping𝑇
𝑗
: 𝐸 → 𝐸

by

𝑇
𝑗
(𝑥) =

{{{

{{{

{

(
1

2
+

1

2𝑛+1
)𝑥
0
, if 𝑥 = (

1

2
+

1

2𝑛
)𝑥
0
;

−𝑥

𝑗
, if 𝑥 ̸= (

1

2
+

1

2𝑛
)𝑥
0
,

(21)

for all 𝑛 ≥ 0. We define also a mapping 𝑇 : 𝐸 → 𝐸 by

𝑇 (𝑥) =

{{{

{{{

{

(
1

2
+

1

2𝑛+1
)𝑥
0
, if 𝑥 = (

1

2
+

1

2𝑛
)𝑥
0
;

0, if 𝑥 ̸= (
1

2
+

1

2𝑛
)𝑥
0
,

(22)

for all 𝑛 ≥ 0. It is easy to verify that ({𝑇
𝑗
}
∞

𝑗=1
, 𝑇) satisfies the

𝐴𝐾𝐾𝑇-condition.
(iii) Let 𝐸 = 𝑙

2, where

𝑙
2

= {𝜎 = (𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
, . . .) :

∞

∑

𝑛=1

𝜎𝑛


2

< ∞} ,

‖𝜎‖ = (

∞

∑

𝑛=1

𝜎𝑛


2

)

1/2

, ∀𝜎 ∈ 𝑙
2

,

⟨𝜎, 𝜂⟩ =

∞

∑

𝑛=1

𝜎
𝑛
𝜂
𝑛
,

∀𝛿 = (𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
, . . .) ,

𝜂 = (𝜂
1
, 𝜂
2
, . . . , 𝜂

𝑛
, . . .) ∈ 𝑙

2

.

(23)
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Let {𝑥
𝑛
}
𝑛∈N∪{0} ⊂ 𝐸 be a sequence defined by

𝑥
0
= (1, 0, 0, 0, . . .)

𝑥
1
= (1, 1, 0, 0, 0, . . .)

𝑥
2
= (1, 0, 1, 0, 0, 0, . . .)

𝑥
3
= (1, 0, 0, 1, 0, 0, 0, . . .)

...

𝑥
𝑛
= (𝜎
𝑛,1

, 𝜎
𝑛,2

, . . . , 𝜎
𝑛,𝑘

, . . .)

...,

(24)

where

𝜎
𝑛,𝑘

= {
1 if 𝑘 = 1, 𝑛 + 1,

0 if 𝑘 ̸= 1, 𝑘 ̸= 𝑛 + 1,
(25)

for all 𝑛 ∈ N. It is clear that the sequence {𝑥
𝑛
}
𝑛∈N converges

weakly to 𝑥
0
. Indeed, for any Λ = (𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
, . . .) ∈ 𝑙

2

=

(𝑙
2

)
∗, we have

Λ (𝑥
𝑛
− 𝑥
0
) = ⟨𝑥

𝑛
− 𝑥
0
, Λ⟩ =

∞

∑

𝑘=2

𝜆
𝑘
𝜎
𝑛,𝑘

→ 0 (26)

as 𝑛 → ∞. It is also obvious that ‖𝑥
𝑛

− 𝑥
𝑚
‖ = √2 for

any 𝑛 ̸=𝑚 with 𝑛,𝑚 sufficiently large. Thus, {𝑥
𝑛
}
𝑛∈N is not a

Cauchy sequence. We define a countable family of mappings
𝑇
𝑗
: 𝐸 → 𝐸 by

𝑇
𝑗
(𝑥) =

{{{

{{{

{

𝑛

𝑛 + 1
𝑥, if 𝑥 = 𝑥

𝑛
;

−𝑗

𝑗 + 1
𝑥, if 𝑥 ̸= 𝑥

𝑛
,

(27)

for all 𝑗 ≥ 1 and 𝑛 ≥ 0. It is clear that 𝐹(𝑇
𝑗
) = {0} for all

𝑗 ≥ 1. It is obvious that 𝑇
𝑗
is a quasi-nonexpansive mapping

for each 𝑗 ∈ N. Thus {𝑇
𝑗
}
𝑗∈N is a countable family of quasi-

nonexpansive mappings.
Let 𝑇𝑥 = lim

𝑗→∞
𝑇
𝑗
𝑥 for all 𝑥 ∈ 𝐸. It is easy to see that

𝑇 (𝑥) =
{

{

{

𝑛

𝑛 + 1
𝑥, if 𝑥 = 𝑥

𝑛
;

−𝑥, if 𝑥 ̸= 𝑥
𝑛
.

(28)

Then, we obtain that𝑇 is a quasi-nonexpansivemapping with
𝐹(𝑇) = {0} = 𝐹(𝑇). Let 𝐷 be a bounded subset of 𝐸. Then
there exists 𝑟 > 0 such that 𝐷 ⊂ 𝐵

𝑟
= {𝑧 ∈ 𝐸 : ‖𝑧‖ < 𝑟}. On

the other hand, for any 𝑗 ∈ N, we have
∞

∑

𝑗=1

sup {

𝑇
𝑗+1

𝑧 − 𝑇
𝑗
𝑧

: 𝑧 ∈ 𝐷}

=

∞

∑

𝑗=1

sup{



−𝑗 − 1

𝑗 + 2
𝑧 −

−𝑗

𝑗 + 1
𝑧



: 𝑧 ∈ 𝐷}

=

∞

∑

𝑗=1

1

(𝑗 + 2) (𝑗 + 1)
sup {‖𝑧‖ : 𝑧 ∈ 𝐷} < ∞.

(29)

Furthermore, we have

lim sup
𝑗→∞

{

𝑇
𝑗
𝑧 − 𝑇𝑧


: 𝑧 ∈ 𝐷} = 0. (30)

Therefore, ({𝑇
𝑗
}
∞

𝑗=1
, 𝑇) satisfies the 𝐴𝐾𝐾𝑇-condition.

3. Fixed Point and Convergence Theorems

Let 𝐸 be a 2-uniformly smooth Banach space with the 2-
uniform smooth constant 𝜌 and let 𝐶 be a closed and convex
subset of 𝐸. Let 𝐴 : 𝐶 → 𝐸 be a 𝑘-Lipschitzian and
𝜂-strongly accretive operator with constants 𝑘, 𝜂 > 0, let
𝐵 : 𝐶 → 𝐸 be an 𝑙-Lipschitzian mapping with constant
𝑙 ≥ 0, and let 𝑇 : 𝐶 → 𝐶 be a nonexpansive mapping with
𝐹(𝑇) ̸=⌀. Suppose that 0 < 𝜂 < √2𝑘𝜌, 0 < 𝜇 < 𝜂/𝑘

2

𝜌
2.

Define a mapping 𝑓 : [0, 1] → R by

𝑓 (𝑡) =

{{

{{

{

1 − √1 − 2𝑡𝜇 (𝜂 − 𝑡𝜇𝑘2𝜌2)

𝑡
if 𝑡 ∈ (0, 1] ,

𝜇𝜂 if 𝑡 = 0.

(31)

From the definition of 𝑓 we deduce that

𝑓 (𝑡) ≤ 𝜇𝜂, ∀𝑡 ∈ [0, 1] . (32)

Indeed, for any 𝑡 ∈ (0, 1], in view of (31) we obtain

𝑓 (𝑡) < 𝜇𝜂 ⇐⇒

1 − √1 − 2𝑡𝜇 (𝜂 − 𝑡𝜇𝑘2𝜌2)

𝑡
< 𝜇𝜂

⇐⇒ 1 − √1 − 2𝑡𝜇 (𝜂 − 𝑡𝜇𝑘2𝜌2) < 𝜇𝜂𝑡

⇐⇒ 1 − 𝜇𝜂𝑡 < √1 − 2𝑡𝜇 (𝜂 − 𝑡𝜇𝑘2𝜌2)

⇐⇒ 1 + 𝜇
2

𝜂
2

𝑡
2

− 2𝜇𝜂𝑡 < 1 − 2𝑡𝜇 (𝜂 − 𝑡𝜇𝑘
2

𝜌
2

)

⇐⇒ 0 < 𝜂 < √2𝑘𝜌.

(33)

On the other hand, it is easy to see that 𝑓 is continuous on
compact interval [0, 1]. In fact, employing L’Hôpital’s Rule,
we conclude that lim

𝑡→0
𝑓(𝑡) = 𝜇𝜂. Thus,

∃𝑡
0
∈ [0, 1] such that 𝑓 (𝑡

0
) = min {𝑓 (𝑡) : 𝑡 ∈ [0, 1]} .

(34)

Set 𝜏
0
:= 𝜏
𝑡
0

= 𝑓(𝑡
0
) and 𝜏

𝑡
:= 𝑓(𝑡) if 𝑡 ∈ [0, 1]. Then we have

0 < 𝜏
0
≤ 𝜏
𝑡
≤ 𝜇𝜂. (35)

Assume now that 𝛾 satisfies 0 ≤ 𝛾𝑙 < 𝜏
0
. Then we get

0 <
1

𝜇𝜂 − 𝛾𝑙
≤

1

𝜏
𝑡
− 𝛾𝑙

≤
1

𝜏
0
− 𝛾𝑙

< ∞ ∀𝑡 ∈ [0, 1] . (36)

In this section, we introduce the following implicit scheme
that generates a net {𝑥

𝑡
}
𝑡∈(0,1)

in an implicit way:

𝑥
𝑡
= 𝑄
𝐶
[𝑡𝛾𝐵𝑥

𝑡
+ (𝐼 − 𝑡𝜇𝐴)𝑇𝑥

𝑡
] . (37)
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We prove the strong convergence of {𝑥
𝑡
} to a fixed point 𝑥 of

𝑇 which solves the variational inequality

⟨(𝜇𝐴 − 𝛾𝐵) 𝑥, 𝑗 (𝑥 − 𝑧)⟩ ≤ 0, ∀𝑧 ∈ 𝐹 (𝑇) . (38)

We first prove the following extension of Lemma 3.1 in [7] in
a 2-uniformly smooth Banach space.

Lemma 10. Let 𝐸 be a 2-uniformly smooth Banach space with
the 2-uniform smooth constant 𝜌 and let 𝐶 be a closed and
convex subset of 𝐸. Let 𝐴 : 𝐶 → 𝐸 be a 𝑘-Lipschitzian and
𝜂-strongly accretive operator with 0 < 𝜂 < √2𝑘𝜌, 0 < 𝜇 <

𝜂/𝑘
2

𝜌
2, and 𝑡 ∈ (0, 1). In association with a nonexpansive

mapping 𝑇 : 𝐶 → 𝐶, define the mapping 𝑆
𝑡
: 𝐶 → 𝐸 by

𝑆
𝑡
𝑥 := 𝑇𝑥 − 𝑡𝜇𝐴 (𝑇𝑥) , ∀𝑥 ∈ 𝐶. (39)

Then, 𝑆
𝑡
is a contraction with contraction constant 𝜏

𝑡
= 1 − 𝑐

𝑡
,

where 𝑐
𝑡
= √1 − 2𝑡𝜇(𝜂 − 𝑡𝜇𝑘2𝜌2).

Proof. In view of Lemma 3, we conclude that

𝑆𝑡𝑥 − 𝑆
𝑡
𝑦


2

=
(𝑇 − 𝑡𝜇𝐴𝑇) 𝑥 − (𝑇 − 𝑡𝜇𝐴𝑇) 𝑦



2

=
(𝑇𝑥 − 𝑇𝑦) − 𝑡𝜇(𝐴𝑇𝑥 − 𝐴𝑇𝑦)



2

≤
𝑇𝑥 − 𝑇𝑦



2

− 2𝑡𝜇 ⟨𝐴𝑇𝑥 − 𝐴𝑇𝑦, 𝑗 (𝑇𝑥 − 𝑇𝑦)⟩

+ 2𝑡
2

𝜇
2

𝜌
2𝐴𝑇𝑥 − 𝐴𝑇𝑦



2

≤
𝑇𝑥 − 𝑇𝑦



2

− 2𝑡𝜇𝜂
𝑇𝑥 − 𝑇𝑦



2

+ 2𝑡
2

𝜇
2

𝑘
2

𝜌
2𝑇𝑥 − 𝑇𝑦



2

= (1 − 2𝑡𝜇 (𝜂 − 𝑡𝜇𝑘
2

𝜌
2

))
𝑇𝑥 − 𝑇𝑦



2

≤ (1 − 2𝑡𝜇 (𝜂 − 𝑡𝜇𝑘
2

𝜌
2

))
𝑥 − 𝑦



2

,

(40)

for all 𝑥, 𝑦 ∈ 𝐶. Put 𝑐
𝑡
= √1 − 2𝑡𝜇(𝜂 − 𝑡𝜇𝑘2𝜌2) ∈ (0, 1). Then

by the assumptions 𝑡 ∈ (0, 1) and 0 < 𝜂 < √2𝑘𝜌, we infer that
𝑆𝑡𝑥 − 𝑆

𝑡
𝑦
 ≤ 𝑐
𝑡

𝑥 − 𝑦
 . (41)

Let 𝜏
𝑡
= (1 − 𝑐

𝑡
) ∈ (0, 1). Then we have
𝑆𝑡𝑥 − 𝑆

𝑡
𝑦
 ≤ (1 − 𝜏

𝑡
)
𝑥 − 𝑦

 . (42)

Therefore, 𝑆
𝑡
is a contraction with contraction constant 1−𝜏

𝑡
,

which completes the proof.

Remark 11. Let 𝐸 be a uniformly convex and 2-uniformly
smooth Banach space with the 2-uniform smooth constant
𝜌 and 𝐶 a closed convex subset of 𝐸. Let 𝐴 : 𝐶 → 𝐸 be a 𝑘-
Lipschitzian and 𝜂-strongly accretive operator with constants
𝜅, 𝜂 > 0 and let 𝐵 : 𝐶 → 𝐻 be an 𝑙-Lipschitzian mapping
with constant 𝑙 ≥ 0. Assume 𝑇 : 𝐶 → 𝐶 is a nonexpansive
mapping with 𝐹(𝑇) ̸=⌀. Let 0 < 𝜂 < √2𝑘𝜌, 0 < 𝜇 < 𝜂/𝑘

2

𝜌
2,

and 0 ≤ 𝛾𝑙 < 𝜏
0
, where 𝜏

0
= (1 − √1 − 2𝑡

0
𝜇(𝜂 − 𝑡

0
𝜇𝑘2𝜌2))/𝑡

0

satisfies (34). For any 𝑡 ∈ (0, 1), let the mapping 𝑅
𝑡
: 𝐶 → 𝐸

be defined by

𝑅
𝑡
𝑥 := 𝑄

𝐶
[𝑡𝛾𝐵𝑥 + (𝐼 − 𝑡𝜇𝐴)𝑇𝑥] , ∀𝑥 ∈ 𝐶. (43)

Using Remark 11, it could easily be seen that

𝑅𝑡𝑥 − 𝑅
𝑡
𝑦
 ≤ (1 − 𝑡 (𝜏

0
− 𝛾𝑙))

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (44)

Thus in view of Banach contraction principle, the contraction
mapping 𝑅

𝑡
: 𝐶 → 𝐸 has a unique fixed point 𝑥

𝑡
in 𝐶, which

uniquely solves the fixed point equation (37).

Remark 12. Let 𝐸 be a uniformly convex and 2-uniformly
smooth Banach space with the 2-uniform smooth constant
𝜌 and 𝐶 a closed convex subset of 𝐸. Let 𝐴 : 𝐶 → 𝐸 be a 𝑘-
Lipschitzian and 𝜂-strongly accretive operator with constants
𝜅, 𝜂 > 0 and let 𝐵 : 𝐶 → 𝐸 be an 𝑙-Lipschitzian mapping
with constant 𝑙 ≥ 0. Assume 𝑇 : 𝐶 → 𝐶 is a nonexpansive
mapping with 𝐹(𝑇) ̸=⌀. Let 0 < 𝜂 < √2𝑘𝜌, 0 < 𝜇 < 𝜂/𝑘

2

𝜌
2,

and 0 ≤ 𝛾𝑙 < 𝜏
0
, where 𝜏

0
= (1 − √1 − 2𝑡

0
𝜇(𝜂 − 𝑡

0
𝜇𝑘2𝜌2))/𝑡

0

satisfies (34). Then

⟨(𝜇𝐴 − 𝛾𝐵) 𝑥 − (𝜇𝐴 − 𝛾𝐵) 𝑦, 𝑗 (𝑥 − 𝑦)⟩

≥ (𝜇𝜂 − 𝛾𝑙)
𝑥 − 𝑦



2

, ∀𝑥, 𝑦 ∈ 𝐶.

(45)

That is, 𝜇𝐴 − 𝛾𝐵 is strongly accretive with coefficient 𝜇𝜂 − 𝛾𝑙.

In the following result, we drive some important proper-
ties of the net {𝑥

𝑡
}
𝑡∈(0,1)

which will be used in the sequel.

Proposition 13. Let 𝐸 be a uniformly convex and 2-uniformly
smooth Banach space with the 2-uniform smooth constant 𝜌

and let 𝐶 be a closed and convex subset of 𝐸. Let 𝐴 : 𝐶 →

𝐸 be a 𝑘-Lipschitzian and 𝜂-strongly accretive operator with
constants 𝜅, 𝜂 > 0 and let 𝐵 : 𝐶 → 𝐻 be an 𝑙-Lipschitzian
mapping with constant 𝑙 ≥ 0. Assume 𝑇 : 𝐶 → 𝐶 is a
nonexpansive mapping with 𝐹(𝑇) ̸=⌀. Let 0 < 𝜂 < √2𝑘𝜌,
0 < 𝜇 < 𝜂/𝑘

2

𝜌
2, and 0 ≤ 𝛾𝑙 < 𝜏

0
, where 𝜏

0
= (1 −

√1 − 2𝑡
0
𝜇(𝜂 − 𝑡

0
𝜇𝑘2𝜌2))/𝑡

0
satisfies (34). For each 𝑡 ∈ (0, 1),

let 𝑥
𝑡
denote a unique solution of the fixed point equation (37).

Then, the following properties hold for the net {𝑥
𝑡
}
𝑡∈(0,1)

:

(1) {𝑥
𝑡
}
𝑡∈(0,1)

is bounded;

(2) lim
𝑡→0

‖ 𝑥
𝑡
− 𝑇𝑥
𝑡
‖= 0;

(3) 𝑥
𝑡
defines a continuous curve from (0, 1) into 𝐶.

Proof. (1) Let 𝑝 ∈ 𝐹(𝑇) be taken arbitrarily. Then, in view of
Lemma 10 we obtain

𝑥𝑡 − 𝑝
 =

𝑄𝐶 [𝑡𝛾𝐵𝑥
𝑡
+ (𝐼 − 𝑡𝜇𝐴)𝑇𝑥

𝑡
] − 𝑄
𝐶
𝑝


≤
𝑡𝛾𝐵𝑥

𝑡
+ (𝐼 − 𝑡𝜇𝐴)𝑇𝑥

𝑡
− 𝑝
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=
(𝐼 − 𝑡𝜇𝐴)𝑇𝑥

𝑡
+ (𝐼 − 𝑡𝜇𝐴) 𝑝

+𝑡 (𝛾𝐵𝑥
𝑡
− 𝜇𝐴 (𝑝))



≤ (1 − 𝑡𝜏
𝑡
)
𝑥𝑡 − 𝑝



+ 𝑡 (𝛾𝑙
𝑥𝑡 − 𝑝

 +
𝛾𝐵𝑝 − 𝜇𝐴𝑝

)

= (1 − 𝑡 (𝜏
𝑡
− 𝛾𝑙))

𝑥𝑡 − 𝑝
 + 𝑡

(𝛾𝐵 − 𝜇𝐴) 𝑝


≤ (1 − 𝑡 (𝜏
0
− 𝛾𝑙))

𝑥𝑡 − 𝑝
 + 𝑡

(𝛾𝐵 − 𝜇𝐴) 𝑝
 .

(46)

This implies that

𝑥𝑡 − 𝑝
 ≤

(𝛾𝐵 − 𝜇𝐴) 𝑝


𝜏
0
− 𝛾𝑙

. (47)

This shows that {𝑥
𝑡
} is bounded.

(2) Since {𝑥
𝑡
} is bounded, we have that {𝐵𝑥

𝑡
} and {𝐴𝑇𝑥

𝑡
}

are bounded too. In view of the definition of {𝑥
𝑡
}we conclude

that
𝑥𝑡 − 𝑇𝑥

𝑡

 =
𝑄𝐶 [𝑡𝛾𝐵𝑥

𝑡
+ (𝐼 − 𝑡𝜇𝐴)𝑇𝑥

𝑡
] − 𝑄
𝐶
[𝑇𝑥
𝑡
]


≤
𝑡𝛾𝐵𝑥

𝑡
+ (𝐼 − 𝑡𝜇𝐴)𝑇𝑥

𝑡
− 𝑇𝑥
𝑡



= 𝑡
𝛾𝐵𝑥
𝑡
− 𝜇𝐴𝑇𝑥

𝑡

 → 0,

(48)

as 𝑡 → 0.
(3) Take 𝑡

1
, 𝑡
2
∈ (0, 1) arbitrarily. Then, we have


𝑥
𝑡
1

− 𝑥
𝑡
2


=


𝑄
𝐶
[𝑡
1
𝛾𝐵𝑥
𝑡
1

+ (𝐼 − 𝑡
1
𝜇𝐴)𝑇𝑥

𝑡
1

]

− 𝑄
𝐶
[𝑡
2
𝛾𝐵𝑥
𝑡
2

+ (𝐼 − 𝑡
2
𝜇𝐴)𝑇𝑥

𝑡
2

]


≤

𝑡
1
𝛾𝐵𝑥
𝑡
1

+ (𝐼 − 𝑡
1
𝜇𝐴)𝑇𝑥

𝑡
1

− [𝑡
2
𝛾𝐵𝑥
𝑡
2

+ (𝐼 − 𝑡
2
𝜇𝐴)𝑇𝑥

𝑡
2

]


=

(𝑡
2
− 𝑡
1
) 𝛾𝐵𝑥
𝑡
2

+ 𝑡
1
𝛾 (𝐵𝑥

𝑡
2

− 𝐵𝑥
𝑡
1

)

+ (𝑡
1
− 𝑡
2
) 𝜇𝐴𝑇𝑥

𝑡
2

+ (𝐼 − 𝑡
1
𝜇𝐴)𝑇𝑥

𝑡
2

− (𝐼 − 𝑡
1
𝜇𝐴)𝑇𝑥

𝑡
1



≤ (𝛾

𝐵𝑥
𝑡
2


+ 𝜇


𝐴𝑇𝑥
𝑡
2


)
𝑡1 − 𝑡

2



+ (1 − 𝑡
1
(𝜏
𝑡
1

− 𝛾𝑙))

𝑥
𝑡
1

− 𝑥
𝑡
2



≤ (𝛾

𝐵𝑥
𝑡
2


+ 𝜇


𝐴𝑇𝑥
𝑡
2


)
𝑡1 − 𝑡

2



+ (1 − 𝑡
1
(𝜏
0
− 𝛾𝑙))


𝑥
𝑡
1

− 𝑥
𝑡
2


.

(49)

This implies that


𝑥
𝑡
2

− 𝑥
𝑡
1


≤

𝛾

𝐵𝑥
𝑡
2


+ 𝜇


𝐴𝑇𝑥
𝑡
2



𝑡
1
(𝜏
0
− 𝛾𝑙)

𝑡2 − 𝑡
1

 .
(50)

The boundedness of {𝑥
𝑡
} implies that 𝑥

𝑡
defines a continuous

curve from (0, 1) into 𝐶.

Theorem 14. Let 𝐸 be a uniformly convex and 2-uniformly
smooth Banach space with the 2-uniform smooth constant 𝜌

and let 𝐶 be a closed and convex subset of 𝐸. Let 𝐴 : 𝐶 →

𝐸 be a 𝑘-Lipschitzian and 𝜂-strongly accretive operator with
constants 𝜅, 𝜂 > 0 and let 𝐵 : 𝐶 → 𝐻 be an 𝑙-Lipschitzian
mapping with constant 𝑙 ≥ 0. Assume 𝑇 : 𝐶 → 𝐶 is a
nonexpansive mapping with 𝐹(𝑇) ̸=⌀. Let 0 < 𝜂 < √2𝑘𝜌,
0 < 𝜇 < 𝜂/𝑘

2

𝜌
2, and 0 ≤ 𝛾𝑙 < 𝜏

0
, where 𝜏

0
= (1 −

√1 − 2𝑡
0
𝜇(𝜂 − 𝑡

0
𝜇𝑘2𝜌2))/𝑡

0
satisfies (34). For each 𝑡 ∈ (0, 1),

let {𝑥
𝑡
} denote a unique solution of the fixed point equation

(37). Then the net {𝑥
𝑡
} converges strongly, as 𝑡 → 0, to a fixed

point 𝑥 of 𝑇 which solves the variational inequality (38), or
equivalently, 𝑄

𝐹(𝑇)
(𝐼 − 𝜇𝐴 + 𝛾𝐵)𝑥 = 𝑥.

Proof. In view of Remark 11 the variational inequality (38) has
a unique solution, say 𝑥 ∈ 𝐶.We show that𝑥

𝑡
→ 𝑥 as 𝑡 → 0.

To this end, let 𝑧 ∈ 𝐹(𝑇) be given arbitrary. Set

𝑦
𝑡
= 𝑡𝛾𝐵𝑥

𝑡
+ (𝐼 − 𝑡𝜇𝐴)𝑇𝑥

𝑡
, ∀𝑡 ∈ (0, 1) . (51)

Then we have 𝑥
𝑡
= 𝑄
𝐶
𝑦
𝑡
and hence

𝑥
𝑡
− 𝑧 = 𝑄

𝐶
𝑦
𝑡
− 𝑦
𝑡
+ 𝑦
𝑡
− 𝑧

= 𝑄
𝐶
𝑦
𝑡
− 𝑦
𝑡
+ 𝑡 (𝛾𝐵𝑥

𝑡
− 𝜇𝐴𝑧)

+ (𝐼 − 𝑡𝜇𝐴)𝑇𝑥
𝑡
− (𝐼 − 𝑡𝜇𝐴)𝑇𝑧.

(52)

Since 𝑄
𝐶
is a nonexpansive mapping from 𝐸 onto 𝐶, in view

of Lemma 4, we conclude that

⟨𝑄
𝐶
𝑦
𝑡
− 𝑦
𝑡
, 𝑗 (𝑄
𝐶
𝑦
𝑡
− 𝑧)⟩ ≤ 0. (53)

Exploiting Lemma 10, (37), and (52), we obtain
𝑥𝑡 − 𝑧



2

= ⟨𝑥
𝑡
− 𝑧, 𝑗 (𝑥

𝑡
− 𝑧)⟩

= ⟨𝑄
𝐶
𝑦
𝑡
− 𝑦
𝑡
, 𝑗 (𝑄
𝐶
𝑦
𝑡
− 𝑧)⟩

+ ⟨(𝐼 − 𝑡𝜇𝐴)𝑇𝑥
𝑡
− (𝐼 − 𝑡𝜇𝐴) 𝑧⟩

+ ⟨𝑡 (𝛾𝐵𝑥
𝑡
− 𝜇𝐴𝑧) , 𝑗 (𝑥

𝑡
− 𝑧)⟩

≤
1

𝜏
0

[𝛾𝑙
𝑥𝑡 − 𝑧



2

+ ⟨𝛾𝐵𝑧 − 𝜇𝐴𝑧, 𝑗 (𝑥
𝑡
− 𝑧)⟩] .

(54)

This implies that

𝑥𝑡 − 𝑧


2

≤
1

𝜏
0
− 𝛾𝑙

⟨𝛾𝐵𝑧 − 𝜇𝐴𝑧, 𝑗 (𝑥
𝑡
− 𝑧)⟩ . (55)

Let {𝑡
𝑛
} ⊂ (0, 1) be such that 𝑡

𝑛
→ 0
+ as 𝑛 → ∞. Letting

𝑥
∗

𝑛
:= 𝑥
𝑡
𝑛

, it follows fromProposition 13(2) that lim
𝑛→∞

‖𝑥
∗

𝑛
−

𝑇𝑥
∗

𝑛
‖ = 0. The boundedness of {𝑥

𝑡
} implies that there exists

𝑥
∗

∈ 𝐶 such that 𝑥∗
𝑛

⇀ 𝑥
∗ as 𝑛 → ∞. In view of Lemma 5,

we deduce that 𝑥
∗

∈ 𝐹. Since 𝑥
∗

𝑛
⇀ 𝑥
∗ as 𝑛 → ∞, it

follows from (55) that lim
𝑛→∞

‖𝑥
∗

𝑛
− 𝑥
∗

‖ = 0. Thus we have
lim
𝑡→0
+𝑥
𝑡
= 𝑥
∗ well defined. Next, we show that 𝑥∗ solves

the variational inequality (38). We first notice that

𝑥
𝑡
= 𝑄
𝐶
𝑦
𝑡
= 𝑄
𝐶
𝑦
𝑡
− 𝑦
𝑡
+ 𝑡𝛾𝐵𝑥

𝑡
+ (𝐼 − 𝑡𝜇𝐴)𝑇𝑥

𝑡
. (56)
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This, together with (52), implies that

(𝜇𝐴 − 𝛾𝐵) 𝑥
𝑡
=

1

𝑡
(𝑄
𝐶
𝑦
𝑡
− 𝑦
𝑡
)

−
1

𝑡
(𝐼 − 𝑇) 𝑥

𝑡
+ 𝜇 (𝐴𝑥

𝑡
− 𝐴𝑇𝑥

𝑡
) .

(57)

Since 𝑇 is nonexpansive, in view of Remark 2, we conclude
that 𝐼 − 𝑇 is accretive. This implies that

⟨(𝛾𝐵 − 𝜇𝐴) 𝑥
𝑡
, 𝑗 (𝑥
𝑡
− 𝑧)⟩

=
1

𝑡
⟨𝑄
𝐶
𝑦
𝑡
− 𝑦
𝑡
, 𝑗 (𝑥
𝑡
− 𝑧)⟩

−
1

𝑡
⟨(𝐼 − 𝑇) 𝑥

𝑡
− (𝐼 − 𝑇) 𝑧, 𝑗 (𝑥

𝑡
− 𝑧)⟩

+ 𝜇 ⟨𝐴𝑥
𝑡
− 𝐴𝑇𝑥

𝑡
, 𝑗 (𝑥
𝑡
− 𝑧)⟩

≤ 𝜇 ⟨𝐴𝑥
𝑡
− 𝐴𝑇𝑥

𝑡
, 𝑗 (𝑥
𝑡
− 𝑧)⟩

≤ 𝜇𝑙
𝑥𝑡 − 𝑇𝑥

𝑡


𝑥𝑡 − 𝑧

 .

(58)

Replacing 𝑡 by 𝑡
𝑛
in (58), taking the limit 𝑛 → ∞, and

noticing that {𝑥
𝑡
−𝑧}
𝑡∈(0,1)

is bounded for 𝑧 ∈ 𝐹(𝑇), we obtain

⟨(𝜇𝐴 − 𝛾𝐵) 𝑥
∗

, 𝑗 (𝑥
∗

− 𝑧)⟩ ≤ 0. (59)

Thus, we have 𝑥
∗

∈ 𝐹(𝑇) a solution of the variational
inequality (38). Consequently, 𝑥

∗

= 𝑥 by uniqueness.
Therefore, 𝑥

𝑡
→ 𝑥 as 𝑡 → 0. The variational inequality (38)

can be written as

⟨(𝐼 − 𝜇𝐴 + 𝛾𝐵) 𝑥 − 𝑥, 𝑗 (𝑥 − 𝑧)⟩ ≥ 0, ∀𝑧 ∈ 𝐹 (𝑇) . (60)

Thus, in view of Lemma 4, it is equivalent to the following
fixed point equation:

𝑄
𝐹(𝑇)

(𝐼 − 𝜇𝐴 + 𝛾𝐵) 𝑥 = 𝑥. (61)

This completes the proof.

Theorem 15. Let 𝐸 be a uniformly convex and 2-uniformly
smooth Banach space with the 2-uniform smooth constant 𝜌

and let𝐶 be a nonempty, closed and convex subset of𝐸. Suppose
that the normalized duality mapping 𝐽 : 𝐸 → 𝐸

∗ is weakly
sequentially continuous at zero. Let 𝐴 : 𝐶 → 𝐸 be a 𝑘-
Lipschitzian and 𝜂-strongly accretive operator with constants
𝜅, 𝜂 > 0 and let 𝐵 : 𝐶 → 𝐻 be an 𝑙-Lipschitzian mapping
with constant 𝑙 ≥ 0. Let 0 < 𝜂 < √2𝑘𝜌, 0 < 𝜇 < 𝜂/𝑘

2

𝜌
2, and

0 ≤ 𝛾𝑙 < 𝜏
0
, where 𝜏

0
= (1 − √1 − 2𝑡

0
𝜇(𝜂 − 𝑡

0
𝜇𝑘2𝜌2))/𝑡

0

satisfies (34). Assume {𝑇
𝑛
}
∞

𝑛=1
is a sequence of nonexpansive

mappings from 𝐶 into itself such that ∩∞
𝑛=1

𝐹(𝑇
𝑛
) ̸=⌀. Suppose

in addition that 𝑇 : 𝐶 → 𝐶 is a nonexpansive mapping
such that ({𝑇

𝑛
}
∞

𝑛=1
, 𝑇) satisfies the 𝐴𝐾𝑇𝑇-condition. For given

𝑥
1
∈ 𝐶 arbitrarily, let the sequence {𝑥

𝑛
} be generated iteratively

by

𝑦
𝑛
= 𝑄
𝐶
[𝛼
𝑛
𝛾𝐵𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐴)𝑇

𝑛
𝑥
𝑛
] ,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑦
𝑛
+ 𝛽
𝑛
𝑇
𝑛
𝑦
𝑛
, 𝑛 ∈ N,

(62)

where 𝑄
𝐶
is the sunny nonexpansive retraction from 𝐸 onto 𝐶

and {𝛼
𝑛
} and {𝛽

𝑛
} are two real sequences in (0, 1) satisfying the

following control conditions:

(a) : lim
𝑛→∞

𝛼
𝑛
= 0,

∞

∑

𝑛=1

𝛼
𝑛
= ∞;

(b) : 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup
𝑛→∞

𝛽
𝑛
< 1.

(63)

Then, the sequence {𝑥
𝑛
} converges strongly to 𝑥

∗

∈ ∩
∞

𝑛=1
𝐹(𝑇
𝑛
)

which solves the variational inequality

⟨(𝜇𝐴 − 𝛾𝐵) 𝑥
∗

, 𝑗 (𝑥
∗

− 𝑧)⟩ ≤ 0, 𝑧 ∈

∞

⋂

𝑛=1

𝐹 (𝑇
𝑛
) . (64)

Proof. We divide the proof into several steps.

Step 1. We claim that the sequence {𝑥
𝑛
} is bounded. Let 𝑝 ∈ 𝐹

be fixed. In view of (62)–(64) and Lemma 10, we obtain
𝑦𝑛 − 𝑝

 =
𝑄𝐶 [𝛼𝑛𝛾𝐵𝑥

𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐴)𝑇

𝑛
𝑥
𝑛
] − 𝑄
𝐶
𝑝


≤
𝛼𝑛𝛾𝐵𝑥

𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐴) 𝑥

𝑛
− 𝑝



=
𝛼𝑛 (𝛾𝐵𝑥

𝑛
− 𝜇𝐴𝑝)

+ (𝐼 − 𝛼
𝑛
𝜇𝐴) 𝑥

𝑛
− (𝐼 − 𝛼

𝑛
𝜇𝐴) 𝑝



=
𝛼𝑛 (𝛾𝐵𝑥

𝑛
− 𝛾𝐵𝑝) + 𝛼

𝑛
(𝛾𝐵𝑝 − 𝜇𝐴𝑝)

+ (𝐼 − 𝛼
𝑛
𝜇𝐴) 𝑥

𝑛
− (𝐼 − 𝛼

𝑛
𝜇𝐴) 𝑝



≤ 𝛼
𝑛
𝛾𝑙

𝑥𝑛 − 𝑝
 + 𝛼
𝑛

(𝛾𝐵 − 𝜇𝐴) 𝑝


+ (1 − 𝛼
𝑛
𝜏
0
)
𝑥𝑛 − 𝑝



= (1 − 𝛼
𝑛
(𝜏
0
− 𝛾𝑙))

𝑥𝑛 − 𝑝


+ 𝛼
𝑛

(𝛾𝐵 − 𝜇𝐴) 𝑝


≤ max{
𝑥𝑛 − 𝑝

 ,

(𝛾𝐵 − 𝜇𝐴) 𝑝


𝜏
0
− 𝛾𝑙

} .

(65)

Since 𝑇
𝑛
is nonexpansive, for all 𝑛 ∈ N, it follows from (62)

and (65) that
𝑥𝑛+1 − 𝑝

 =
(1 − 𝛽

𝑛
) (𝑥
𝑛
− 𝑝) + 𝛽

𝑛
(𝑇
𝑛
𝑦
𝑛
− 𝑝)



≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑝

 + 𝛽
𝑛

𝑇𝑛𝑦𝑛 − 𝑝


≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑝

 + 𝛽
𝑛

𝑦𝑛 − 𝑝


≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑝



+ 𝛽
𝑛
max{

𝑥𝑛 − 𝑝
 ,

(𝛾𝐵 − 𝜇𝐴) 𝑝


𝜏
0
− 𝛾𝑙

}

≤ max{
𝑥𝑛 − 𝑝

 ,

(𝛾𝐵 − 𝜇𝐴) 𝑝


𝜏
0
− 𝛾𝑙

} .

(66)
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By induction, we conclude that {𝑥
𝑛
} is bounded. This implies

that the sequences {𝐴𝑥
𝑛
}, {𝐵𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑇

𝑛
𝑦
𝑛
} are bounded

too. Let 𝑀
1

= sup{‖𝑥
𝑛
‖, ‖𝐴𝑥

𝑛
‖, ‖𝐵𝑥

𝑛
‖, ‖𝑦
𝑛
‖, ‖𝑇
𝑛
𝑦
𝑛
‖ : 𝑛 ∈

N} < ∞ and set 𝐾 = {𝑧 ∈ 𝐸 : ‖𝑧‖ ≤ 𝑀}. Then we have
𝐾 a bounded subset of 𝐸 and {𝑥

𝑛
, 𝐴𝑥
𝑛
, 𝐵𝑥
𝑛
, 𝑦
𝑛
, 𝑇
𝑛
𝑦
𝑛
} ⊂ 𝐾.

Step 2.We claim that lim
𝑛→∞

‖𝑦
𝑛
−𝑇𝑦
𝑛
‖ = 0. For this purpose,

we denote a sequence {𝑧
𝑛
} by 𝑧
𝑛
= 𝑇
𝑛
𝑦
𝑛
. Then we have

𝑧𝑛+1 − 𝑧
𝑛

 =
𝑇𝑛+1𝑦𝑛+1 − 𝑇

𝑛
𝑦
𝑛



≤
𝑇𝑛+1𝑦𝑛+1 − 𝑇

𝑛+1
𝑦
𝑛

 +
𝑇𝑛+1𝑦𝑛 − 𝑇

𝑛
𝑦
𝑛



≤
𝑦𝑛+1 − 𝑦

𝑛

 + sup {
𝑇𝑛+1𝑧 − 𝑇

𝑛
𝑧
 : 𝑧 ∈ 𝐾} .

(67)

This implies that
𝑧𝑛+1 − 𝑧

𝑛

 −
𝑦𝑛+1 − 𝑦

𝑛



≤ sup {
𝑇𝑛+1𝑧 − 𝑇

𝑛
𝑧
 : 𝑧 ∈ 𝐾} .

(68)

In view of Lemma 8 and (63)(a) we conclude that

lim sup
𝑛→∞

(
𝑧𝑛+1 − 𝑧

𝑛

 −
𝑦𝑛+1 − 𝑦

𝑛

) ≤ 0. (69)

Utilizing Lemma 7, we deduce that

lim
𝑛→∞

𝑧𝑛 − 𝑦
𝑛

 = 0. (70)

It follows from (63)(b) and (70) that

lim
𝑛→∞

𝑦𝑛+1 − 𝑦
𝑛

 = lim
𝑛→∞

(1 − 𝛽
𝑛
)
𝑧𝑛 − 𝑦

𝑛

 = 0. (71)

Observe now that
𝑦𝑛+1 − 𝑦

𝑛

 =
𝑄𝐶 [𝛼𝑛+1𝛾𝐵𝑥

𝑛+1
+ (𝐼 − 𝛼

𝑛+1
𝜇𝐴)𝑇

𝑛+1
𝑥
𝑛+1

]

− 𝑄
𝐶
[𝛼
𝑛
𝛾𝐵𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐴)𝑇

𝑛
𝑥
𝑛
]


≤
𝛼𝑛+1𝛾𝐵𝑥

𝑛+1
+ (𝐼 − 𝛼

𝑛+1
𝜇𝐴)𝑇

𝑛+1
𝑥
𝑛+1

− [𝛼
𝑛
𝛾𝐵𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐴)𝑇

𝑛
𝑥
𝑛
]


=
𝛼𝑛+1𝛾𝐵𝑥

𝑛+1
+ 𝑇
𝑛+1

𝑥
𝑛+1

− 𝛼
𝑛+1

𝜇𝐴𝑇
𝑛+1

𝑥
𝑛+1

−𝛼
𝑛
𝛾𝐵𝑥
𝑛
− 𝑇
𝑛
𝑥
𝑛
+ 𝛼
𝑛
𝜇𝐴𝑇
𝑛
𝑥
𝑛



≤ 𝛼
𝑛+1

𝛾
𝐵𝑥
𝑛+1

 + 𝛼
𝑛
𝛾
𝐵𝑥
𝑛



+ 𝛼
𝑛+1

𝜇
𝐴𝑇
𝑛+1

𝑥
𝑛+1

 + 𝛼
𝑛
𝜇
𝐴𝑇
𝑛
𝑥
𝑛



+
𝑇𝑛+1𝑥𝑛+1 − 𝑇

𝑛
𝑥
𝑛



≤ (𝛼
𝑛+1

+ 𝛼
𝑛
) (𝛾 + 𝜇)𝑀

1

+
𝑇𝑛+1𝑥𝑛+1 − 𝑇

𝑛+1
𝑥
𝑛

 +
𝑇𝑛+1𝑥𝑛 − 𝑇

𝑛
𝑥
𝑛



≤ (𝛼
𝑛+1

+ 𝛼
𝑛
) (𝛾 + 𝜇)𝑀

1
+

𝑥𝑛+1 − 𝑥
𝑛



+ sup {
𝑇𝑛+1𝑧 − 𝑇

𝑛
𝑧
 : 𝑧 ∈ 𝐾} .

(72)

This implies that

𝑦𝑛+1 − 𝑦
𝑛

 −
𝑥𝑛+1 − 𝑥

𝑛



≤ (𝛼
𝑛+1

+ 𝛼
𝑛
) (𝛾 + 𝜇)𝑀

1

+ sup {
𝑇𝑛+1𝑧 − 𝑇

𝑛
𝑧
 : 𝑧 ∈ 𝐾} .

(73)

Utilizing Lemma 7 and taking into account 𝛼
𝑛

→ 0, we
deduce that

lim
𝑛→∞

𝑥𝑛 − 𝑦
𝑛

 = 0. (74)

On the other hand, we have

𝑦𝑛 − 𝑇𝑦
𝑛

 ≤
𝑦𝑛 − 𝑇

𝑛
𝑦
𝑛

 +
𝑇𝑛𝑦𝑛 − 𝑇𝑦

𝑛



≤
𝑦𝑛 − 𝑧

𝑛

 + sup {
𝑇𝑛𝑧 − 𝑇𝑧

 : 𝑧 ∈ 𝐾} .

(75)

Employing Lemma 8, we obtain

lim
𝑛→∞

𝑦𝑛 − 𝑇𝑦
𝑛

 = 0. (76)

Step 3. We prove that there exists 𝑥∗ ∈ 𝐹 such that

lim sup
𝑛→∞

⟨(𝜇𝐴 − 𝛾𝐵) 𝑥
∗

, 𝑗 (𝑥
∗

− 𝑦
𝑛
)⟩ ≤ 0, (77)

where 𝑥
∗ is as inTheorem 14. We first note that there exists a

subsequence {𝑦
𝑛
𝑖

} of {𝑦
𝑛
} such that

lim sup
𝑛→∞

⟨𝜇𝐴𝑥
∗

− 𝛾𝐵𝑥
∗

, 𝑗 (𝑥
∗

− 𝑦
𝑛
)⟩

= lim
𝑖→∞

⟨𝜇𝐴𝑥
∗

− 𝛾𝐵𝑥
∗

, 𝑗 (𝑥
∗

− 𝑦
𝑛
𝑖

)⟩ .

(78)

Since {𝑦
𝑛
} is bounded, without loss of generality, we may

assume that 𝑦
𝑛
𝑖

⇀ 𝑢 ∈ 𝐶 as 𝑖 → ∞. In view of Lemma 6
and Step 2, we conclude that 𝑢 ∈ 𝐹. This, together with (78),
implies that

lim sup
𝑛→∞

⟨𝜇𝐴𝑥
∗

− 𝛾𝐵𝑥
∗

, 𝑗 (𝑥
∗

− 𝑦
𝑛
)⟩

= lim
𝑖→∞

⟨𝜇𝐴𝑥
∗

− 𝛾𝐵𝑥
∗

, 𝑗 (𝑥
∗

− 𝑦
𝑛
𝑖

)⟩

= ⟨𝜇𝐴𝑥
∗

− 𝛾𝐵𝑥
∗

, 𝑗 (𝑥
∗

− 𝑢⟩) ≤ 0.

(79)

Step 4. We claim that lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
∗

‖ = 0.



Abstract and Applied Analysis 9

For each 𝑛 ∈ N ∪ {0}, by Lemma 10 and (36) we obtain

𝑦𝑛 − 𝑥
∗

2

= ⟨𝑦
𝑛
− 𝑥
∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

= ⟨𝑄
𝐶
[𝛼
𝑛
𝛾𝐵𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐴)𝑇

𝑛
𝑥
𝑛
]

−𝑥
∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

= ⟨𝑄
𝐶
[𝛼
𝑛
𝛾𝐵𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐴)𝑇

𝑛
𝑥
𝑛
]

− [𝛼
𝑛
𝛾𝐵𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐴)

×𝑇
𝑛
𝑥
𝑛
− 𝑥
∗

] , 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

+ ⟨𝛼
𝑛
𝛾𝐵𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐴)𝑇

𝑛
𝑥
𝑛

−𝑥
∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

≤ ⟨𝛼
𝑛
𝛾𝐵𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐴)𝑇

𝑛
𝑥
𝑛

−𝑥
∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

= 𝛼
𝑛
⟨𝛾𝐵𝑥
𝑛
− 𝜇𝐴 (𝑥

∗

) , 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

+ ⟨(𝐼 − 𝛼
𝑛
𝜇𝐴)𝑇𝑥

𝑛

− (𝐼 − 𝛼
𝑛
𝜇𝐴)𝑇𝑥

∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

= 𝛼
𝑛
𝛾 ⟨𝐵𝑥

𝑛
− 𝐵𝑥
∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

+ 𝛼
𝑛
⟨(𝛾𝐵 − 𝜇𝐴) 𝑥

∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

+ ⟨(𝐼 − 𝛼
𝑛
𝜇𝐴)𝑇𝑥

𝑛

− (𝐼 − 𝛼
𝑛
𝜇𝐴)𝑇𝑥

∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

≤ 𝛼
𝑛
𝛾𝑙

𝑥𝑛 − 𝑥
∗

𝑦𝑛 − 𝑥
∗

+ 𝛼
𝑛
⟨(𝛾𝐵 − 𝜇𝐴) 𝑥

∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

+ (1 − 𝛼
𝑛
𝜏
0
)
𝑥𝑛 − 𝑥

∗
𝑦𝑛 − 𝑥

∗

= (1 − 𝛼
𝑛
(𝜏
0
− 𝛾𝑙))

𝑥𝑛 − 𝑥
∗

𝑦𝑛 − 𝑥
∗

+ 𝛼
𝑛
⟨(𝛾𝐵 − 𝜇𝐴) 𝑥

∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

≤ (1 − 𝛼
𝑛
(𝜏
0
− 𝛾𝑙))

1

2
(
𝑥𝑛 − 𝑥

∗

2

+
𝑦𝑛 − 𝑥

∗

2

)

+ 𝛼
𝑛
⟨(𝛾𝐵 − 𝜇𝐴) 𝑥

∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩.

(80)

This implies that

𝑦𝑛 − 𝑥
∗

2

≤
(1 − 𝛼

𝑛
(𝜏
0
− 𝛾𝑙))

(1 + 𝛼
𝑛
(𝜏
0
− 𝛾𝑙))

𝑥𝑛 − 𝑥
∗

2

+
2𝛼
𝑛

1 + 𝛼
𝑛
(𝜏
0
− 𝛾𝑙)

⟨(𝛾𝐵 − 𝜇𝐴) 𝑥
∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

≤ (1 − 𝛼
𝑛
(𝜏
0
− 𝛾𝑙))

𝑥𝑛 − 𝑥
∗

2

+
2𝛼
𝑛

1 + 𝛼
𝑛
(𝜏
0
− 𝛾𝑙)

⟨(𝛾𝐵 − 𝜇𝐴) 𝑥
∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

= (1 − 𝛼
𝑛
(𝜏
0
− 𝛾𝑙))

𝑥𝑛 − 𝑥
∗

2

+ 𝜃
𝑛
𝜉
𝑛
,

(81)

where

𝜃
𝑛
= 𝛼
𝑛
(𝜏
0
− 𝛾𝑙) ,

𝜉
𝑛
=

2

(1 + 𝛼
𝑛
(𝜏
0
− 𝛾𝑙)) (𝜏

0
− 𝛾𝑙)

× ⟨(𝛾𝐵 − 𝜇𝐴) 𝑥
∗

, 𝑗 (𝑦
𝑛
− 𝑥
∗

)⟩

(82)

In view of (81), we conclude that
𝑥𝑛+1 − 𝑥

∗

2

=
(1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇
𝑛
𝑦
𝑛
− 𝑥
∗

2

≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑥

∗

2

+ 𝛽
𝑛

𝑇𝑛𝑦𝑛 − 𝑥
∗

2

≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑥

∗

2

+ 𝛽
𝑛

𝑦𝑛 − 𝑥
∗

2

≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑥

∗

2

+ 𝛽
𝑛
[(1 − 𝛼

𝑛
(𝜏
0
− 𝛾𝑙))

𝑥𝑛 − 𝑥
∗

2

+ 𝜃
𝑛
𝜉
𝑛
]

≤ (1 − 𝛽
𝑛
𝛼
𝑛
(𝜏
0
− 𝛾𝑙))

𝑥𝑛 − 𝑥
∗

2

+ 𝛽
𝑛
𝜃
𝑛
𝜉
𝑛

= (1 − 𝛽
𝑛
𝛼
𝑛
(𝜏
0
− 𝛾𝑙))

𝑥𝑛 − 𝑥
∗

2

+ 𝛽
𝑛
𝛼
𝑛
(𝜏
0
− 𝛾𝑙) 𝜉

𝑛

= (1 − 𝛾
𝑛
)
𝑥𝑛 − 𝑥

∗

2

+ 𝛾
𝑛
𝜉
𝑛
,

(83)

where 𝛾
𝑛
= 𝛽
𝑛
𝛼
𝑛
(𝜏
0
− 𝛾𝑙). It is easy to show that lim

𝑛→∞
𝛾
𝑛
=

0, ∑
∞

𝑛=0
𝛾
𝑛

= ∞, and lim sup
𝑛→∞

𝜉
𝑛

≤ 0. Hence, in
view of Lemma 6 and (83), we conclude that the sequence
{𝑥
𝑛
} converges strongly to 𝑥

∗

∈ 𝐹(𝑇). This completes the
proof.

Remark 16. Theorem 15 improves and extends [19, Theorems
3.1 and 3.2] in the following aspects.

(i) The self-contractive mapping 𝑓 : 𝐶 → 𝐶 in [19,
Theorems 3.1 and 3.2] is extended to the case of a
Lipschitzian (possibly nonself-) mapping 𝐵 : 𝐶 → 𝐸

on a nonempty closed convex subset 𝐶 of a Banach
space 𝐸.

(ii) The identitymapping 𝐼 is extended to the case of 𝐼−𝐴 :

𝐶 → 𝐸, where 𝐴 : 𝐶 → 𝐸 is a 𝑘-Lipschitzian and
𝜂-strongly accretive (possibly nonself-) mapping.

(iii) The contractive coefficient 𝛼 ∈ (0, 1) in [19,Theorems
3.1 and 3.2] is extended to the case where the Lips-
chitzian constant 𝑙 lies in [0,∞).

(iv) In order to find a common fixed point of a countable
family of nonexpansive self-mappings 𝑇

𝑛
: 𝐶 → 𝐶,

the Mann type iterations in [19,Theorems 3.1 and 3.2]
are extended to develop the new Mann type iteration
(62).
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(v) The new technique of argument is applied in deriving
Theorem 14. For instance the characteristic properties
(Lemma 4) of sunny nonexpansive retraction play an
important role in proving the strong convergence of
the net {𝑥

𝑡
}
𝑡∈(0,1)

in Theorem 14.
(vi) Whenever we have 𝐶 = 𝐸, 𝐵 = 𝑓 a contraction

mapping with coefficient 𝛼 ∈ (0, 1),𝐴 = 𝐼 the identity
mapping on 𝐶, and 𝑙 = 𝛼 with 0 < 𝛾𝛼 < 𝜏

0
=

(1 − √1 − 2𝑡
0
𝜇(𝜂 − 𝑡

0
𝜇𝑘2𝜌2))/𝑡

0
, Theorem 14 reduces

to [19,Theorems 3.1 and 3.2].Thus,Theorem 14 covers
[19, Theorems 3.1 and 3.2] as special cases.

Remark 17. Proposition 13 and Theorems 14 and 15 improve
and generalize the corresponding results of [4] from Hilbert
spaces to Banach spaces.

4. Applications

In this section, we apply Theorem 15 for finding a zero of an
accretive operator. Let 𝐸 be a real Banach space and let 𝑆 :

𝐸 → 2
𝐸 be a mapping. The effective domain of 𝑆 is denoted

by dom(𝑆); that is, dom(𝑆) = {𝑥 ∈ 𝐸 : 𝑆𝑥 ̸=⌀}. The range of
𝑆 is denoted by 𝑅(𝑆). A multivalued mapping 𝑆 is said to be
accretive if for all 𝑥, 𝑦 ∈ 𝐸 there exists 𝑗 ∈ 𝐽(𝑥 − 𝑦) such that
⟨𝑥−𝑦, 𝑗⟩ ≥ 0, where 𝐽 : 𝐸 → 2

𝐸
∗

is the duality mapping. An
accretive operator 𝑆 is 𝑚-accretive if 𝑅(𝐼 + 𝑟𝑆) = 𝐸 for each
𝑟 ≥ 0. Throughout this section, we assume that 𝑆 : 𝐸 → 2

𝐸

is 𝑚-accretive and has a zero. For an accretive operator 𝑆 on
𝐸 and 𝑟 > 0, we may define a single-valued operator 𝐽

𝑟
=

(𝐼 + 𝑟𝑆)
−1

: 𝐸 → dom(𝑆), which is called the resolvent of 𝑆
for 𝑟 > 0. Assume 𝑆

−1

0 = {𝑥 ∈ 𝐸 : 0 ∈ 𝑆𝑥}. It is known that
𝑆
−1

0 = 𝐹(𝐽
𝑟
) for all 𝑟 > 0.

The following lemma has been proved in [21].

Lemma 18. Let 𝐸 be a real Banach space and let 𝑆 be an 𝑚-
accretive operator on 𝐸. For 𝑟 > 0, let 𝐽

𝑟
be the resolvent

operator associated with 𝑆 and 𝑟. Then

𝐽𝑟𝑥 − 𝐽
𝑠
𝑥
 ≤

|𝑟 − 𝑠|

𝑟

𝑥 − 𝐽
𝑟
𝑥
 , (84)

for all 𝑟, 𝑠 > 0 and 𝑥 ∈ 𝐸.

We also know the following lemma from [29].

Lemma 19. Let 𝐶 be a nonempty, closed, and convex subset of
a real Banach space 𝐸 and let 𝑆 be an accretive operator on 𝐸

such that 𝑆−10 ̸=⌀ and dom(𝑆) ⊂ 𝐶 ⊂ ∩
𝑟>0

𝑅(𝐼+𝑟𝑆). Suppose
that {𝑟

𝑛
} is a sequence of (0,∞) such that inf{𝑟

𝑛
: 𝑛 ∈ N} > 0

and ∑
∞

𝑛=1
|𝑟
𝑛+1

− 𝑟
𝑛
| < ∞. Then

(i) ∑
∞

𝑛=1
sup{‖ 𝐽

𝑟
𝑛+1

𝑧−𝐽
𝑟
𝑛

𝑧 ‖: 𝑧 ∈ 𝐵} < ∞ for any bounded
subset 𝐵 of 𝐶;

(ii) lim
𝑛→∞

𝐽
𝑟
𝑛

𝑧 = 𝐽
𝑟
𝑧 for all 𝑧 ∈ 𝐶 and 𝐹(𝐽

𝑟
) =

∩
∞

𝑛=1
𝐹(𝐽
𝑟
𝑛

), where 𝑟
𝑛

→ 𝑟 as 𝑛 → ∞.

As an application of ourmain result, we include a concrete
example in support of Theorem 15. Using Theorem 15, we

obtain the following strong convergence theorem for 𝑚-
accretive operators.

Theorem 20. Let 𝐸 be a uniformly convex and 2-uniformly
smooth Banach space with the 2-uniform smooth constant 𝜌

and 𝐶 a nonempty, closed, and convex subset of 𝐸. Suppose
that the normalized duality mapping 𝐽 : 𝐸 → 𝐸

∗ is weakly
sequentially continuous at zero. Let 𝐴 : 𝐶 → 𝐸 be a 𝑘-
Lipschitzian and 𝜂-strongly accretive operator with constants
𝜅, 𝜂 > 0 and let 𝐵 : 𝐶 → 𝐻 be an 𝑙-Lipschitzian mapping
with constant 𝑙 ≥ 0. Let 0 < 𝜂 < √2𝑘𝜌, 0 < 𝜇 < 𝜂/𝑘

2

𝜌
2,

and 0 ≤ 𝛾𝑙 < 𝜏
0
, where 𝜏

0
= (1 − √1 − 2𝑡

0
𝜇(𝜂 − 𝑡

0
𝜇𝑘2𝜌2))/𝑡

0

satisfies (34). Let 𝑆 be an 𝑚-accretive operator from 𝐸 to 𝐸
∗

such that 𝑆−1(0) ̸=⌀. Let 𝑟
𝑛
> 0 such that liminf

𝑛→∞
𝑟
𝑛
> 0,

∑
∞

𝑛=1
|𝑟
𝑛+1

−𝑟
𝑛
| < ∞ and let 𝐽

𝑟
𝑛

= (𝐼+𝑟
𝑛
𝑆)
−1 be the resolvent of

𝑆. Let {𝛼
𝑛
}
∞

𝑛=1
and {𝛽

𝑛
}
∞

𝑛=1
be sequences in [0, 1] satisfying the

following control conditions:

(a) lim
𝑛→∞

𝛼
𝑛
= 0;

(b) ∑
∞

𝑛=1
𝛼
𝑛
= ∞;

(c) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Let {𝑥
𝑛
}
∞

𝑛=1
be a sequence generated by

𝑦
𝑛
= 𝑄
𝐶
[𝛼
𝑛
𝛾𝐵𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐴) 𝐽
𝑟
𝑛

𝑥
𝑛
] ,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑦
𝑛
+ 𝛽
𝑛
𝐽
𝑟
𝑛

𝑦
𝑛
, 𝑛 ∈ N,

(85)

where𝑄
𝐶
is the sunny nonexpansive retraction from 𝐸 onto 𝐶.

Then, the sequence {𝑥
𝑛
} defined in (85) converges strongly to

𝑥
∗

∈ 𝑆
−1

(0).

Proof. Letting 𝑇
𝑛
= 𝐽
𝑟
𝑛

, ∀𝑛 ∈ N, inTheorem 15, from (62), we
obtain (85). It is easy to see that 𝑇

𝑛
satisfies all the conditions

inTheorem 15 for all 𝑛 ∈ N. Therefore, in view ofTheorem 15
we have the conclusions of Theorem 20. This completes the
proof.

Remark 21. Theorem 20 improves and extendsTheorems 4.2,
4.3, 4.4, and 4.5 in [19].
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