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By use of the Lie symmetry group methods we analyze the relationship between the first integrals of the simplest linear third-order
ordinary differential equations (ODEs) and their point symmetries. It is well known that there are three classes of linear third-order
ODEs for maximal cases of point symmetries which are 4, 5, and 7. The simplest scalar linear third-order equation has seven-point
symmetries. We obtain the classifying relation between the symmetry and the first integral for the simplest equation. It is shown
that the maximal Lie algebra of a first integral for the simplest equation 𝑦


= 0 is unique and four-dimensional. Moreover, we

show that the Lie algebra of the simplest linear third-order equation is generated by the symmetries of the two basic integrals. We
also obtain counting theorems of the symmetry properties of the first integrals for such linear third-order ODEs. Furthermore, we
provide insights into the manner in which one can generate the full Lie algebra of higher-order ODEs of maximal symmetry from
two of their basic integrals.

1. Introduction

Ordinary differential equations (ODEs) are a fertile area of
study, especially the Lie algebraic properties of such equa-
tions and their first integrals have great importance. Initial
investigations since the works of Lie [1] were motivated by
physical problems, such as the free particle, one-dimensional
harmonic oscillator, and Emden-Fowler equations and classi-
fication. Indeed, most of the earlier works dealt with second-
order linear equations (see, e.g., [2–8]). In the investigation
by Mahomed and Leach [9], they found that the Lie point
symmetries of the maximal cases of scalar linear 𝑛th-order
ODEs, 𝑛 ≥ 3, are 𝑛 + 1, 𝑛 + 2, and 𝑛 + 4. Thus for scalar
linear third-order equations these correspond to 4, 5, and
7 symmetries. Moreover for scalar third-order linear ODEs,
Govinder and Leach [10] provided the algebraic structure of
the basic first integrals for such equations. They showed that
the three equivalence classes each has certain first integrals
with a specific number of point symmetries. They followed
on the initial investigation of Leach and Mahomed [11] who
considered the point symmetries of the basic first integrals of

linear second-order ODEs. Then in the work [12] Flessas et
al. attempted the symmetry structure for the first integrals of
higher-order equations of maximal symmetry.

The subject of the present paper is the investigation of
the Lie algebraic properties of first integrals of scalar linear
third-order ODEs of the maximal class which is represented
by 𝑦


= 0. We remind the reader that for the simplest class
there has been some analysis made in Flessas et al. [12]. This
is in regards to the maximal algebra possessed by an integral
of 𝑦


= 0 which is listed in Table II of [12]. However, this
is incomplete. We extend this study and provide a complete
analysis on the Lie point symmetries and first integrals for
the simplest third-order ODE including the maximal algebra
case. We firstly deduce the classifying relation between the
point symmetries and first integrals for this simple class.Then
we use this to study the point symmetry properties of the first
integrals of 𝑦 = 0 which also represents all linearizable by
point transformations third-order ODEs that reduce to this
class.

We begin by noting the condition for symmetries of the
first integrals of scalar linear ODEs of order one. Then for
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completeness we review briefly the results of the paper by
Mahomed and Momoniat [13] which discusses the relation-
ship between the point symmetries of the first integrals of
scalar linear second-order ODEs. These two cases are shown
to be distinct in terms of their algebraic properties of their
integrals when compared to higher-order ODEs of maximal
symmetry.

1.1. Linear First-Order Equations. Consider the simplest first-
order ODE

𝑦

= 0. (1)

It is easy to see that

𝑋 = 𝜉 (𝑥, 𝑦)
𝜕

𝜕𝑥
+ 𝜂 (𝑥, 𝑦)

𝜕

𝜕𝑦
(2)

is a point symmetry generator of (1) if

𝑋
[1]

𝑦
𝑦=0

= 0, (3)

where

𝑋
[1]

= 𝜉
𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜁
𝑥

𝜕

𝜕𝑦
(4)

with

𝜁
𝑥
= 𝐷
𝑥
(𝜂) − 𝑦


𝐷
𝑥
(𝜉) , (5)

in which 𝐷
𝑥
is the total differentiation operator and 𝑋

[1] is
the first prolongation of the generator 𝑋. We quickly see that

𝜂
𝑥
= 0, 𝜂 = 𝜂 (𝑦) , (6)

where 𝜂 is an arbitrary function of 𝑦. Therefore,

𝑋 = 𝜉 (𝑥, 𝑦)
𝜕

𝜕𝑥
+ 𝜂 (𝑦)

𝜕

𝜕𝑦
. (7)

Thus there is an infinite number of point symmetries.We now
show that only 𝑋 = 𝜉(𝑥, 𝑦)𝜕/𝜕𝑥 are symmetries of the first
integral.

This forms an infinite-dimensional subalgebra of the Lie
algebra of (1).

Now 𝐼 = 𝑦 is a first integral of (1). It has point symmetry
𝑋 as in (2) if

𝑋𝐼 = 0. (8)

This implies that 𝜂 = 0 which immediately results in

𝑋 = 𝜉 (𝑥, 𝑦)
𝜕

𝜕𝑥
. (9)

There is an infinite number of symmetries of the first integral
𝐼 = 𝑦 of (1).

Let 𝐹 be an arbitrary function of 𝐼, namely, 𝐹 = 𝐹(𝐼). The
symmetry of this general function of the first integral is

𝑋𝐹 = 𝑋𝐼
𝜕𝐹

𝜕𝐼
= 0. (10)

Therefore 𝑋 as in (9) is a symmetry of 𝐼 = 𝑦 and also any
function of 𝐹(𝑦). Since any scalar first-order ODE is equiva-
lent to the simplest one (1), this means that a first integral of
a nonlinear first-order ODE has infinitely many symmetries
too.

As an example, we consider the nonlinear first-order Ric-
cati equation

𝑦

+ 𝑦
2
= 0, (11)

the first integral of which is

𝐼 =
1

𝑦
− 𝑥. (12)

A symmetry of the first integral (12) is

𝑋 =
𝜕

𝜕𝑥
− 𝑦
2 𝜕

𝜕𝑦
. (13)

In fact, we have an infinite number of symmetries given by

𝑋 = 𝜉 (𝑥, 𝑦) (
𝜕

𝜕𝑥
− 𝑦
2 𝜕

𝜕𝑦
) , (14)

where 𝜉 is an arbitrary function in its arguments.
Therefore we note here that the symmetries of the first

integrals of a first-order equation form a proper subalgebra
of the Lie algebra of the equation itself. We cannot generate
the full algebra as is the case for linear scalar second-order
ODEs [11] by use of the algebra of the basic integral alone.

The symmetries of the first integrals of scalar linear
second-order ODEs have interesting properties [11, 13]. The
first integrals of such linear equations can have 0, 1, 2, and
themaximum 3 symmetries [13].The Lie algebra of themaxi-
mum case is unique. Peculiar to such equations is the other
remarkable property that their Lie algebra is generated by the
symmetry properties of the basic integrals and their quotient
[11].

Below we study the symmetry properties of first integral
for the simplest scalar linear third-order ODEs of maximal
point symmetry. In the case of the basic first integrals, the
algebraic properties are known from the work [10]. Here we
pursue the relationship between symmetries and first inte-
grals of scalar linear third-order ODEs for the simplest and
maximal class.We obtain the classifying relation for this class
and invoke this to arrive at counting theorems and the result
on the maximal case of symmetries of the first integrals.

In the following we look at algebraic properties of first
integrals for the seven point symmetry case by deriving the
classifying relation between the symmetries and their first
integrals. We use this relation to arrive at interesting prop-
erties which appear for the first time in the literature.

2. Algebraic Properties of the First Integrals
of 𝑦


= 0

We consider the simplest third-order ODE

𝑦


= 0, (15)
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which as is well known has the seven symmetries (Lie [1] and
e.g., [4])

𝑋
1
=

𝜕

𝜕𝑦
, 𝑋

2
= 𝑥

𝜕

𝜕𝑦
,

𝑋
3
= 𝑥
2 𝜕

𝜕𝑦
, 𝑋

4
= 𝑦

𝜕

𝜕𝑦
, 𝑋

5
=

𝜕

𝜕𝑥
,

𝑋
6
= 𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
, 𝑋

7
= 𝑥
2 𝜕

𝜕𝑥
+ 2𝑥𝑦

𝜕

𝜕𝑦
.

(16)

We have listed the symmetries in the order of the solution
symmetries being first, then the homogeneity symmetry, and
the remaining three which form the algebra 𝑠𝑙(2, 𝑅). This
ODE (15) also represents all linearizable third-order ODEs
reducible to it via point transformation. The order in which
the symmetries appear in (16) is used in what follows. It is
obvious that (15) has three functionally independent first
integrals

𝐼
1
= 𝑦

, (17a)

𝐼
2
= 𝑥𝑦


− 𝑦

, (17b)

𝐼
3
=

1

2
𝑥
2
𝑦


− 𝑥𝑦

+ 𝑦. (17c)

We use the ordering of the integrals as given in [10]. The first
integral (17a) has four symmetries [10]

𝑋
1
=

𝜕

𝜕𝑥
,

𝑋
2
=

𝜕

𝜕𝑦
,

𝑋
3
= 𝑥

𝜕

𝜕𝑦
,

𝑋
4
= 𝑥

𝜕

𝜕𝑥
+ 2𝑦

𝜕

𝜕𝑦
,

(18)

from which we observe that there are two solution symme-
tries, one translation in 𝑥 symmetry and a scaling symmetry.
The translation in 𝑥 symmetry is a subset of the 𝑠𝑙(2, 𝑅)

symmetries with 𝑋
4
being a combination of the uniform

scaling symmetry in both variables contained in the 𝑠𝑙(2, 𝑅)

symmetries together with the homogeneity symmetry. Part of
this fact was also noted in [12]. The second first integral (17b)
has three symmetries [10]

𝑌
1
=

𝜕

𝜕𝑦
,

𝑌
2
= 𝑥
2 𝜕

𝜕𝑦
,

𝑌
3
= 𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
,

(19)

with two solution symmetries and𝑌
3
being part of the 𝑠𝑙(2, 𝑅)

symmetries. The third first integral (17c) also has four sym-
metries [10]

𝐺
1
= 𝑥

𝜕

𝜕𝑥
,

𝐺
2
= 𝑥

𝜕

𝜕𝑦
,

𝐺
3
= 𝑥
2 𝜕

𝜕𝑦
,

𝐺
4
= 𝑥
2 𝜕

𝜕𝑥
+ 2𝑥𝑦

𝜕

𝜕𝑦
.

(20)

Again one can see the solution symmetries, scaling, and the
symmetry 𝐺

4
which is contained in the 𝑠𝑙(2, 𝑅) symmetries.

Note further that the symmetries in (20) are found by
multiplying those of (18) by the factor 𝑥. In fact these two
sets are equivalent via a point transformation [10]. The other
important properties are discussed in the next section.

Below we obtain the classifying relation.

2.1. ClassifyingRelation for the Symmetries and Integrals. Now
let 𝐹 be an arbitrary function of the integrals (17a), (17b), and
(17c), 𝐼

1
, 𝐼
2
, and 𝐼

3
, namely,

𝐹 = 𝐹 (𝐼
1
, 𝐼
2
, 𝐼
3
) . (21)

The symmetry of this general function of the first integrals is

𝑋
[2]

𝐹 = 𝑋
[2]

𝐼
1

𝜕𝐹

𝜕𝐼
1

+ 𝑋
[2]

𝐼
2

𝜕𝐹

𝜕𝐼
2

+ 𝑋
[2]

𝐼
3

𝜕𝐹

𝜕𝐼
3

= 0, (22)

where

𝑋
[2]

𝐼
1
= [𝜉

𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜁
𝑥

𝜕

𝜕𝑦
+ 𝜁
𝑥𝑥

𝜕

𝜕𝑦
] 𝑦


= 𝜁
𝑥𝑥

,

𝑋
[2]

𝐼
2
= [𝜉

𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜁
𝑥

𝜕

𝜕𝑦
+ 𝜁
𝑥𝑥

𝜕

𝜕𝑦
] (𝑥𝑦


− 𝑦

)

= 𝜉𝑦


− 𝜁
𝑥
+ 𝑥𝜁
𝑥𝑥

,

𝑋
[2]

𝐼
3
= [𝜉

𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜁
𝑥

𝜕

𝜕𝑦
+ 𝜁
𝑥𝑥

𝜕

𝜕𝑦
]

× (
1

2
𝑥
2
𝑦


− 𝑥𝑦

+ 𝑦)

= 𝜉 (𝑥𝑦


− 𝑦

) + 𝜂 − 𝑥𝜁

𝑥
+

1

2
𝑥
2
𝜁
𝑥𝑥

.

(23)

The coefficient functions 𝜉, 𝜂, 𝜁
𝑥
, and 𝜁

𝑥𝑥
are

𝜉 = 𝑎
5
+ 𝑥𝑎
6
+ 𝑥
2
𝑎
7
,

𝜂 = 𝑎
1
+ 𝑥𝑎
2
+ 𝑥
2
𝑎
3
+ 𝑦𝑎
4
+ 𝑦𝑎
6
+ 2𝑥𝑦𝑎

7
,

𝜁
𝑥
= 𝑎
2
+ 2𝑥𝑎

3
+ 𝑦

𝑎
4
+ 2𝑦𝑎

7
,

𝜁
𝑥𝑥

= 2𝑎
3
+ 𝑦

𝑎
4
− 𝑦

𝑎
6
+ (2𝑦


− 2𝑥𝑦


) 𝑎
7
.

(24)
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These are obtained by setting

𝑋
[2]

=

7

∑

𝑖=1

𝑎
𝑖
𝑋
[2]

𝑖
, (25)

where the𝑋
𝑖
are the symmetry generators as given in (16) and

the 𝑎
𝑖
are constants. The reason being that the symmetries of

the first integrals are always the symmetries of the equation
(see [14]).

After substitution of the values of 𝑋
[2]

𝐼
1
, 𝑋
[2]

𝐼
2
, and

𝑋
[2]

𝐼
3
as in (23), with 𝜉, 𝜂, 𝜁

𝑥
, and 𝜁

𝑥𝑥
given in (24), as well

as by use of the first integrals 𝐼
1

= 𝑦
, 𝐼
2

= 𝑥𝑦


− 𝑦
, and

𝐼
3
= (1/2)𝑥

2
𝑦


− 𝑥𝑦

+ 𝑦 in (22), we arrive at the classifying

relation

[2𝑎
3
+ (𝑎
4
− 𝑎
6
) 𝐼
1
− 2𝑎
7
𝐼
2
]
𝜕𝐹

𝜕𝐼
1

+ (−𝑎
2
+ 𝑎
4
𝐼
2
+ 𝑎
5
𝐼
1
− 2𝑎
7
𝐼
3
)

𝜕𝐹

𝜕𝐼
2

+ [𝑎
1
+ (𝑎
4
+ 𝑎
6
) 𝐼
3
+ 𝑎
5
𝐼
2
]
𝜕𝐹

𝜕𝐼
3

= 0.

(26)

The relation (26) explicitly provides the relationship between
the symmetries and the first integrals of the simple third-
order equation (15). We invoke this to classify the first inte-
grals according to their symmetries in what follows.

We use the classifying relation (26) to establish the num-
ber and property of symmetries possessed by the first inte-
grals of the simplest third-order equation (15).

There arise five cases. We deal with each below.

Case 1 (no symmetry). If 𝐹 is any arbitrary function of 𝐼
1
, 𝐼
2
,

and 𝐼
3
, then 𝐹

𝐼
1

, 𝐹
𝐼
2

, and 𝐹
𝐼
3

are not related to each other. In
this case we have from (26) that

2𝑎
3
+ (𝑎
4
− 𝑎
6
) 𝐼
1
− 2𝑎
7
𝐼
2
= 0,

−𝑎
2
+ 𝑎
4
𝐼
2
+ 𝑎
5
𝐼
1
− 2𝑎
7
𝐼
3
= 0,

𝑎
1
+ (𝑎
4
+ 𝑎
6
) 𝐼
3
+ 𝑎
5
𝐼
2
= 0.

(27)

It is easy to see from (27) that all the 𝑎’s are zero. Therefore
there exists no symmetry for this case.

As an illustrative example, if we take 𝐹 = 𝐼
1
𝐼
2
ln 𝐼
3
, then

(26) straightforwardly yields

[2𝑎
3
+ (𝑎
4
− 𝑎
6
) 𝐼
1
− 2𝑎
7
𝐼
2
] 𝐼
2
𝐼
3
ln 𝐼
3

+ (−𝑎
2
+ 𝑎
4
𝐼
2
+ 𝑎
5
𝐼
1
− 2𝑎
7
𝐼
3
) 𝐼
1
𝐼
3
ln 𝐼
3

+ [𝑎
1
+ (𝑎
4
+ 𝑎
6
) 𝐼
3
+ 𝑎
5
𝐼
2
] 𝐼
1
𝐼
2
= 0.

(28)

This easily results in all the 𝑎’s being zero.

Case 2 (one symmetry). If 𝐹 satisfies the relation (26), then
there exists one symmetry. For the simple symmetries of
(15) one obtains further symmetries except for 𝑋

6
which we

consider below.

If we take 𝐹 = 𝐼
1
𝐼
2
𝐼
3
or any function of this product, then

the relation (26) becomes

[2𝑎
3
+ (𝑎
4
− 𝑎
6
) 𝐼
1
− 2𝑎
7
𝐼
2
] 𝐼
2
𝐼
3

+ (−𝑎
2
+ 𝑎
4
𝐼
2
+ 𝑎
5
𝐼
1
− 2𝑎
7
𝐼
3
) 𝐼
1
𝐼
3

+ [𝑎
1
+ (𝑎
4
+ 𝑎
6
) 𝐼
3
+ 𝑎
5
𝐼
2
] 𝐼
1
𝐼
2
= 0.

(29)

In (29), 𝑎
1
to 𝑎
7
are zeros except 𝑎

6
which gives the one sym-

metry

𝑋
6
= 𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
. (30)

Consider 𝐽 = 𝐼
1
𝐼
3
−(1/2)𝐼

2

2
and 𝐼
2
= 𝑥𝑦

−𝑦
. Now let𝐹 = 𝐽/𝐼

2

(cf. [12]). Then relation (26) becomes

[2𝑎
3
+ (𝑎
4
− 𝑎
6
) 𝐼
1
− 2𝑎
7
𝐼
2
] 2𝐼
2
𝐼
3

+ (−𝑎
2
+ 𝑎
4
𝐼
2
+ 𝑎
5
𝐼
1
− 2𝑎
7
𝐼
3
) (−2𝐼

1
𝐼
3
− 𝐼
2

2
)

+ [𝑎
1
+ (𝑎
4
+ 𝑎
6
) 𝐼
3
+ 𝑎
5
𝐼
2
] 2𝐼
1
𝐼
2
= 0.

(31)

We see here that all the 𝑎’s are zero except 𝑎
6
. Therefore there

exists one symmetry which again is (30).
In fact similar to the free particle equation [13], there are

many one symmetry cases.

Case 3 (two symmetries). Here there are many cases as well.
We begin by utilizing the Lie table for the classification of the
two-dimensional algebras in the plane which are given, for
example, in [6]. They are

𝑌
1
=

𝜕

𝜕𝑦
, 𝑌

2
=

𝜕

𝜕𝑥
,

𝑌
1
=

𝜕

𝜕𝑦
, 𝑌

2
= 𝑥

𝜕

𝜕𝑦
,

𝑌
1
=

𝜕

𝜕𝑦
, 𝑌

2
= 𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
,

𝑌
1
=

𝜕

𝜕𝑦
, 𝑌

2
= 𝑦

𝜕

𝜕𝑦
.

(32)

These form subalgebras of the Lie algebra of symmetries of
(15) as can clearly be observed.

We take the first realization listed above. If 𝑎
1
is arbitrary

in (26), then 𝑋
1

= 𝜕/𝜕𝑦 implies that 𝐹 is independent of 𝐼
3
.

Further 𝑋
5

= 𝜕/𝜕𝑥 yields that 𝐹 does not depend on 𝐼
2
as

well. Since we require that 𝜕𝐹/𝜕𝐼
1

̸= 0, we have

2𝑎
3
+ 𝐼
1
(𝑎
4
− 𝑎
6
) − 2𝑎

7
𝐼
2
= 0, (33)

from which it follows that 𝑎
3

= 𝑎
7

= 0 and 𝑎
4

= 𝑎
6
. Thus

we end up with two more symmetries𝑋
2
and𝑋

4
+𝑋
6
. These

turn out to be the four symmetries of the integral 𝐼
1
given in

(18).
Likewise for the second realization we obtain (18) again.

For the third realization listed above we find the symmetries
of 𝐼
2
as in (19).
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Hence the first three realizations listed do not provide
maximal two symmetries for the first integrals of (15).

In fact the fourth realization results in a two symmetry
case as 𝑎

1
and 𝑎
4
are arbitrary and give rise to

𝜕𝐹

𝜕𝐼
3

= 0, 𝐼
1

𝜕𝐹

𝜕𝐼
1

+ 𝐼
2

𝜕𝐹

𝜕𝐼
2

= 0, (34)

which has the solution

𝐹 = 𝐻
𝐼
2

𝐼
1

. (35)

The further substitution of this form into the relation (26)
constrains all the 𝑎’s to be zero except for 𝑎

1
and 𝑎
4
.This result

prompts the following simple products and quotients that do
give two symmetries.

If 𝐹 = 𝐼
1
𝐼
2
, then relation (26) yields

[2𝑎
3
+ (𝑎
4
− 𝑎
6
) 𝐼
1
− 2𝑎
7
𝐼
2
] 𝐼
2

+ (−𝑎
2
+ 𝑎
4
𝐼
2
+ 𝑎
5
𝐼
1
− 2𝑎
7
𝐼
3
) 𝐼
1
= 0.

(36)

Here we observe that 𝑎
2
, 𝑎
3
, 𝑎
5
, and 𝑎

7
are zeros whereas 𝑎

1

is arbitrary and 𝑎
6

= 2𝑎
4
, and therefore we obtain the two

symmetries

𝑋
1
=

𝜕

𝜕𝑦
,

𝑌 = 2𝑥
𝜕

𝜕𝑥
+ 3𝑦

𝜕

𝜕𝑦
,

(37)

which form a two-dimensional algebra with

[𝑋
1
, 𝑌] = 3𝑋

1
. (38)

If we set 𝐹 = 𝐼
1
𝐼
3
, then we end up getting 𝑎

1
, 𝑎
3
, 𝑎
4
, 𝑎
5
, and

𝑎
7
equal to zero. Since 𝑎

2
and 𝑎
6
are arbitrary so they result in

two symmetries

𝑋
2
= 𝑥

𝜕

𝜕𝑦
,

𝑋
6
= 𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
,

(39)

with Lie bracket

[𝑋
2
, 𝑋
6
] = 0. (40)

If we take 𝐹 = 𝐼
2
𝐼
3
, then we see that 𝑎

3
is arbitrary and 𝑎

6
=

−2𝑎
4
which then give rise to the two symmetries

𝑋
3
= 𝑥
2 𝜕

𝜕𝑦
,

𝑌 = 2𝑥
𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
,

(41)

with

[𝑋
3
, 𝑌] = −3𝑋

3
. (42)

Consider now 𝐹 = 𝐼
3
/𝐼
1
. This shows that 𝑎

2
and 𝑎

4
are

arbitrary, and the resulting two symmetries are

𝑋
2
= 𝑥

𝜕

𝜕𝑦
,

𝑋
4
= 𝑦

𝜕

𝜕𝑦
,

(43)

with commutation relation

[𝑋
2
, 𝑋
4
] = 𝑋

2
. (44)

If we let 𝐹 = 𝐼
3
/𝐼
2
, then here 𝑎

3
and 𝑎

4
are arbitrary, and

therefore the two symmetries are

𝑋
3
= 𝑥
2 𝜕

𝜕𝑦
,

𝑋
4
= 𝑦

𝜕

𝜕𝑦
,

(45)

with

[𝑋
3
, 𝑋
4
] = 𝑋

3
. (46)

If 𝐽 = 𝐼
1
𝐼
3
− (1/2)𝐼

2

2
, 𝐼
1
= 𝑦
, and 𝐹 = 𝐽/𝐼

1
(cf. [12]), then we

have from the relation (26)

[2𝑎
3
+ (𝑎
4
− 𝑎
6
) 𝐼
1
− 2𝑎
7
𝐼
2
]
1

2
𝐼
2

2

+ [−𝑎
2
+ 𝑎
4
𝐼
2
+ 𝑎
5
𝐼
1
− 2𝑎
7
𝐼
3
] (−𝐼
1
𝐼
2
)

+ [𝑎
1
+ (𝑎
4
+ 𝑎
6
) 𝐼
3
+ 𝑎
5
𝐼
2
] 𝐼
2

1
= 0.

(47)

This results in 𝑎
1
, 𝑎
2
, 𝑎
3
, and 𝑎

7
being zero whereas 𝑎

5
is

arbitrary, and 𝑎
4
= −𝑎
6
, which give rise to the two symmetries

𝑋
5
=

𝜕

𝜕𝑥
,

𝑌 = 𝑥
𝜕

𝜕𝑥
,

(48)

with

[𝑋
5
, 𝑌] = 𝑋

5
. (49)

If 𝐽 = 𝐼
1
𝐼
3
− (1/2)𝐼

2

2
, 𝐼
3
= (1/2)𝑥

2
𝑦


− 𝑥𝑦

+ 𝑦, and 𝐹 = 𝐽/𝐼

3

(cf. [12]), then relation (26) yields

[2𝑎
3
+ (𝑎
4
− 𝑎
6
) 𝐼
1
− 2𝑎
7
𝐼
2
] 2𝐼
2

3

+ (−𝑎
2
+ 𝑎
4
𝐼
2
+ 𝑎
5
𝐼
1
− 2𝑎
7
𝐼
3
) (−2𝐼

3
𝐼
2
)

+ [𝑎
1
+ (𝑎
4
+ 𝑎
6
) 𝐼
3
+ 𝑎
5
𝐼
2
] 𝐼
2

2
= 0.

(50)

The above relation shows that 𝑎
1
, 𝑎
2
, 𝑎
3
, and 𝑎

5
are zeros, 𝑎

7
is

arbitrary, and 𝑎
4
= 𝑎
6
. This imply two symmetries

𝑋
7
= 𝑥
2 𝜕

𝜕𝑥
+ 2𝑥𝑦

𝜕

𝜕𝑦
,

𝑌 = 𝑥
𝜕

𝜕𝑥
+ 2𝑦

𝜕

𝜕𝑦
,

(51)
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together with

[𝑋
7
, 𝑌] = −𝑋

7
. (52)

There are thus many two symmetry cases. One could obtain
more. Also they could arise as different combinations of
the seven symmetries (16). So one concludes that the two-
dimensional algebra cases are not unique. We have seen the
occurrence of both Abelian and non-Abelian Lie algebras.

Case 4 (three symmetries). Here we use the three-dimen-
sional real realizations of Mahomed and Leach [7]. The nota-
tion used is that given in [4]. Since we adapt these realizations
as symmetries of third-order equations, the entries for the
first entry 𝐿

3;1
and the nonsolvable algebra 𝐿

I
3;8

are those
which are symmetries of such equations.

Note that for 𝐿
II
3;8
, 𝐿III
3;8
, and 𝐿

IV
3;8

one can use the realiza-
tions as given in Table 1 or the ones obtained by interchanging
𝑥 and 𝑦 in the realizations given. The reason for this is that
one still obtains third-order representative equations for the
latter realizations.

As 𝐿
3;1

is the first three-dimensional algebra in Table 1, we
start with that. We want this Abelian algebra to be admitted
by a first integral of (15). We utilize the classifying relation
(26). Therefore 𝑎

1
, 𝑎
2
, and 𝑎

3
are arbitrary which imply that

𝐹 is constant. Hence this algebra is not admitted by any first
integral of (15) although, if it is admitted by a nonlinear third-
order ODE, it implies linearization (see Mahomed and Leach
[6]).

It is not difficult to deduce that the same applies to the
algebras 𝐿

3;2
, 𝐿I
3;3
, 𝐿II
3;3
, 𝐿I
3;4
, 𝐿II
3;4
, 𝐿I
3;5
, 𝐿II
3;5
, and 𝐿

I
3;6

when
𝑎 ̸= 2 and 𝐿

II
3;6

when 𝑎 ̸= 1/2, −1. If 𝑎 = 2 for 𝐿
I
3;6
, then one

ends up with four symmetries of 𝐹 = 𝐹(𝐼
1
) which are (18).

The same applies to 𝐿
II
3;6
, 𝑎 = 1/2. For both these cases, the

algebras 𝐿
I
3;6
, 𝑎 = 2 and 𝐿

II
3;6
, 𝑎 = 1/2 are admitted by a first

integral 𝐹 = 𝐹(𝐼
1
) but these are not maximal and contained

in a four-dimensional algebra, spanned by operators (18).
Nowwe focus on the three symmetry casewhich is admit-

ted by 𝐹 = 𝐹(𝐼
2
). These three symmetries are given in (19).

The Lie algebra of the generators (19) has nonzero commuta-
tors

[𝑋
1
, 𝑋
3
] = 𝑋

1
, [𝑋

2
, 𝑋
3
] = −𝑋

2
, (53)

with the elements thus forming the Lie algebra 𝐿
II
3;6
, 𝑎 = −1.

In fact the transformation

𝑋 = 𝑥
2
, 𝑌 = 𝑥 + 𝑦, (54)

maps it to the canonical form of Table 1, namely,

𝑋
1
=

𝜕

𝜕𝑌
, 𝑋

2
= 𝑋

𝜕

𝜕𝑌
, 𝑋

3
= 2𝑋

𝜕

𝜕𝑋
+ 𝑌

𝜕

𝜕𝑌
.

(55)

Therefore the symmetries of 𝐹 = 𝐹(𝐼
2
) has the Lie algebra

𝐿
II
3;6
, 𝑎 = −1.
There is yet another three-dimensional algebra which is

admitted by a first integral of (15).This occurs for𝐿I
3;8
.We use

Table 1: Realizations of three-dimensional algebras in the real plane.

𝑝 = 𝜕/𝜕𝑥 and 𝑞 = 𝜕/𝜕𝑦

Algebra Realizations in (𝑥, 𝑦) plane
𝐿
3;1

𝑋
1
= 𝑞, 𝑋

2
= 𝑥𝑞, 𝑋

3
= 𝑥
2
𝑞

𝐿
3;2

𝑋
1
= 𝑞, 𝑋

2
= 𝑝, 𝑋

3
= 𝑥𝑞

𝐿
I
3;3

𝑋
1
= 𝑞, 𝑋

2
= 𝑝, 𝑋

3
= 𝑥𝑝 + (𝑥 + 𝑦)𝑞

𝐿
II
3;3

𝑋
1
= 𝑞, 𝑋

2
= 𝑥𝑞, 𝑋

3
= 𝑝 + 𝑦𝑞

𝐿
I
3;4

𝑋
1
= 𝑝, 𝑋

2
= 𝑞, 𝑋

3
= 𝑥𝑝

𝐿
II
3;4

𝑋
1
= 𝑞, 𝑋

2
= 𝑥𝑞, 𝑋

3
= 𝑥𝑝 + 𝑦𝑞

𝐿
I
3;5

𝑋
1
= 𝑝, 𝑋

2
= 𝑞, 𝑋

3
= 𝑥𝑝 + 𝑦𝑞

𝐿
II
3;5

𝑋
1
= 𝑞, 𝑋

2
= 𝑥𝑞, 𝑋

3
= 𝑦𝑞

𝐿
I
3;6

𝑋
1
= 𝑝, 𝑋

2
= 𝑞, 𝑋

3
= 𝑥𝑝 + 𝑎𝑦𝑞, 𝑎 ̸= 0, 1

𝐿
II
3;6

𝑋
1
= 𝑞, 𝑋

2
= 𝑥𝑞, 𝑋

3
= (1 − 𝑎)𝑥𝑝 + 𝑦𝑞, 𝑎 ̸= 0, 1

𝐿
I
3;7

𝑋
1
= 𝑝, 𝑋

2
= 𝑞, 𝑋

3
= (𝑏𝑥 + 𝑦)𝑝 + (𝑏𝑦 − 𝑥)𝑞

𝐿
II
3;7

𝑋
1
= 𝑥𝑞, 𝑋

2
= 𝑞, 𝑋

3
= (1 + 𝑥

2
)𝑝 + (𝑥 + 𝑏)𝑦𝑞

𝐿
I
3;8

𝑋
1
= 𝑝, 𝑋

2
= 𝑥𝑝 + 𝑦𝑞, 𝑋

3
= 𝑥
2
𝑝 + 2𝑥𝑦𝑞

𝐿
II
3;8

𝑋
1
= 𝑞, 𝑋

2
= 𝑥𝑝 + 𝑦𝑞, 𝑋

3
= 2𝑥𝑦𝑝 + (𝑦

2
− 𝑥
2
)𝑞

𝐿
III
3;8

𝑋
1
= 𝑞, 𝑋

2
= 𝑥𝑝 + 𝑦𝑞, 𝑋

3
= 2𝑥𝑦𝑝 + (𝑦

2
+ 𝑥
2
)𝑞

𝐿
IV
3;8

𝑋
1
= 𝑞, 𝑋

2
= 𝑦𝑞, 𝑋

3
= 𝑦
2
𝑞

𝐿
3;9

𝑋
1
= (1 + 𝑥

2
)𝑝 + 𝑥𝑦𝑞, 𝑋

2
= 𝑥𝑦𝑝 + (1 + 𝑦

2
)𝑞,

𝑋
3
= 𝑦𝑝 − 𝑥𝑞

the classifying relation (26). Here 𝑎
5
, 𝑎
6
, and 𝑎

7
are arbitrary.

Making these constants one at a time unity and the rest zero
yield is

𝐼
1

𝜕𝐹

𝜕𝐼
2

+ 𝐼
2

𝜕𝐹

𝜕𝐼
3

= 0,

−𝐼
1

𝜕𝐹

𝜕𝐼
1

+ 𝐼
3

𝜕𝐹

𝜕𝐼
3

= 0,

𝐼
2

𝜕𝐹

𝜕𝐼
1

+ 𝐼
3

𝜕𝐹

𝜕𝐼
2

= 0.

(56)

The solution to this system (56) yields

𝐹 = 𝐹(𝐼
1
𝐼
3
−

1

2
𝐼
2

2
) . (57)

Thus the basic first integral 𝐽 = 𝐼
1
𝐼
3
− (1/2)𝐼

2

2
has the algebra

𝐿
I
3;8
.
The Lie algebras 𝐿

II
3;8
, 𝐿III
3;8
, and 𝐿

IV
3;8

are not admitted by
any first integral of (15) as these are subalgebras of the max-
imal six-dimensional algebras (see Ibragimov and Mahomed
[3]) which are admitted by nonlinear third-order ODEs not
reducible to the simplest equation (15).

In the case of the algebra 𝐿
3;9

one has the situation that
this algebra is not a subalgebra of the seven-dimensional
algebra of (15) (Wafo Soh and Mahomed [15]).

In conclusion of this discussion, we have two three-
dimensional algebras admitted by a first integral of (15) which
are 𝐿

I
3;8

and 𝐿
II
3;6
, 𝑎 = −1.
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We state the following theorem.

Theorem 1. If a first integral of the simplest third-order ODE,
𝑦


= 0, admits a three-dimensional algebra, then it is one of
the two three-dimensional algebras 𝐿II

3;6
, 𝑎 = −1, or 𝐿

I
3;8
.

The proof follows from the previous discussions. Note
here that the three-dimensional algebra admitted is not uni-
que.

Case 5 (four symmetries). In the four symmetry case we have
that only 𝐼

1
and 𝐼
3
possess four symmetries. They are given

by (18) and (20). Both are similar by a point transformation
[10]. The Lie algebra of (18) is 𝐿I

4;9
(see [12]). This can be seen

by interchanging 𝑋
1
and 𝑋

2
in (18). Thus the nonzero com-

mutation relations are

[𝑋
2
, 𝑋
3
] = 𝑋

1
, [𝑋

1
, 𝑋
4
] = 2𝑋

1
,

[𝑋
2
, 𝑋
4
] = 𝑋

2
, [𝑋

3
, 𝑋
4
] = 𝑋

3
.

(58)

We have the following theorem.

Theorem 2. The maximum dimension of the Lie algebra
admitted by any first integral of the simplest third-order ODE,
𝑦


= 0, or any third-order ODE linearizable by point
transformation to the simplest ODE is 𝐿I

4;9
.

Proof. Any first integral of 𝑦


= 0 or third-order ODE
reducible to the simplest ODE by point transformation can-
not admit a maximal algebra of dimension greater than four
since the basic integrals 𝐼

1
and 𝐼
3
have the unique four dimen-

sion algebra 𝐿
I
4;9
. The other integrals have lower dimensional

Lie algebras in the classification obtained above.

Finally, we have the following counting theorem.

Theorem 3. A first integral of the simplest third-order ODE,
𝑦


= 0, or any linearizable third-order ODE by point
transformation to the simplest ODE can have 0, 1, 2, 3, or the
maximum 4 symmetries. The four symmetry case is unique.

3. Symmetry Properties of First Integrals of
Higher-Order ODEs: Some Remarks

In the case of symmetries of the simplest first-order ODE
𝑦


= 0 we have seen that the algebra of any first integral
constitutes a proper subalgebra of the equation itself. One
cannot generate the full algebra of 𝑦 = 0 via the algebras of
any integral. This result also applies to any scalar first-order
ODE due to equivalence of this with the simplest equation.

What occurs for scalar linear second-order ODEs is very
different to the first-order ODE case. Here as has been shown
in [11], the Lie algebra of𝑦 = 0which represents any linear or
linearizable second-orderODE can be generated by the three-
dimensional algebras of the triplets of the basic integrals and
their quotient which are isomorphic to each other. Thus in
this case one requires not only the basic integrals, say 𝐼

1
and

𝐼
2
, but also a functionally dependent quotient integral 𝐽 =

𝐼
2
/𝐼
1
.

Another important point to make is that the full Lie alge-
bra of the simplest third-order equation (15) is generated by
the four symmetries (18) as well as the three symmetries 𝐺

2
,

𝐺
3
, and𝐺

4
of (20).Hence one requires only the symmetries of

the basic integrals 𝐼
1
and 𝐼
3
to generate the full algebra of our

equation (15). One should contrast this withwhat happens for
𝑦


= 0 and 𝑦


= 0 discussed above. So one has the seven
symmetries of our equation (15) being generated by four
symmetries of 𝐼

1
together with three symmetries of 𝐼

3
. The

natural question then is as follows: what occurs for higher-
order ODEs of maximal symmetry? Patterns emerge, some
of which are discussed in the three propositions in the paper
of Flessas et al. [12]. We discuss another important property,
namely, that of generation of the full algebra via integrals now.

Consider the 𝑛th-order ODE of maximal symmetry

𝑦
(𝑛)

= 0, 𝑛 ≥ 3. (59)

This ODE (59) has 𝑛 + 4 symmetries as is well known. The 𝑛

first integrals of (59) are easily constructible and we focus on
the first and last which are

𝐼
1
= 𝑦
(𝑛−1)

, (60)

𝐼
𝑛
=

𝑛

∑

𝑖=1

(−1)
𝑖−1

(𝑛 − 𝑖)!
𝑥
𝑛−𝑖

𝑦
(𝑛−𝑖)

. (61)

The first integral (60) has 𝑛 + 1 symmetries which are

𝑋
𝑖
= 𝑥
𝑖−1 𝜕

𝜕𝑦
, 𝑖 = 1, . . . , 𝑛 − 1,

𝑋
𝑛
=

𝜕

𝜕𝑥
,

𝑋
𝑛+1

= 𝑥
𝜕

𝜕𝑥
+ (𝑛 − 1) 𝑦

𝜕

𝜕𝑦
.

(62)

This forms an 𝑛 + 1-dimensional subalgebra of (59). Now the
first integral (61) has symmetries

𝑌
𝑖
= 𝑥
𝑖 𝜕

𝜕𝑦
, 𝑖 = 1, . . . , 𝑛 − 1,

𝑌
𝑛
= 𝑥

𝜕

𝜕𝑥
,

𝑌
𝑛+1

= 𝑥
2 𝜕

𝜕𝑥
+ (𝑛 − 1) 𝑥𝑦

𝜕

𝜕𝑦
,

(63)

which one can see comes frommultiplying the symmetries of
(62) by 𝑥. We can observe from these two sets (62) and (63)
that the full Lie algebra of our equation (59) is generated from
the 𝑛+1 symmetries of (62) and 3 symmetries of (63), namely,
𝑌
𝑛−1

, 𝑌
𝑛
, and 𝑌

𝑛+1
. Further the two sets (62) and (63) are

equivalent to each other bymeans of the point transformation

𝑥 =
1

𝑥
, 𝑦 =

𝑦

𝑥𝑛−1
. (64)

This is an extension of the transformation given in [10] and
is for higher-order ODEs. In [10] it was given for third-order
ODEs.
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We have the following theorem, the proof of which is
evident from the above.

Theorem 4. The full Lie algebra of the 𝑛th-order ODE 𝑦
(𝑛)

=

0, 𝑛 ≥ 3, is generated by two subalgebras, namely, the 𝑛 + 1-
dimensional algebra ⟨𝑋

𝑗
: 𝑗 = 1, . . . , 𝑛 + 1⟩ of 𝐼

1
and the three-

dimensional subalgebra ⟨𝑌
𝑛−1

, 𝑌
𝑛
, 𝑌
𝑛+1

⟩ of 𝐼
𝑛
.

Hence the picture is quite distinct for the manner in
which the full Lie algebra is generated for the ODEs 𝑦


= 0,

𝑦


= 0 and, 𝑦(𝑛) = 0, 𝑛 ≥ 3. This is also consistent with the
properties of their symmetry algebra which are different (see,
e.g., [4]).
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