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By the critical point theory, infinitely many 4𝜎-periodic solutions are obtained for the system of delay differential equations �̇�(𝑡) =
−𝑓(𝑥(𝑡 − 𝜎)), where 𝜎 ∈ (0, +∞) and 𝑓 ∈ 𝐶(R𝑛, R𝑛

). It is shown that all the periodic solutions derived here are brought about by
the time delay.

1. Introduction

This paper is concerned with the existence of periodic
solutions to the system of delay differential equations

�̇� (𝑡) = −𝑓 (𝑥 (𝑡 − 𝜎)) , (1)

where 𝜎 ∈ (0, +∞) and 𝑓 ∈ 𝐶(R𝑛

,R𝑛

).
Delay differential equations have widely been applied

to describe the dynamics phenomena in both natural and
manmade processes such as chemistry, physics, engineering,
and economics. The existence of the periodic solutions for
delay differential equations has been extensively investigated
by using various methods, including fixed point theorems
[1–5], Hopf bifurcation theorems [6–8], variational methods
[9–14], the methods of differential inequalities [15–21], and
other effective approaches (e.g., see [22–24]). In [25–31], the
minimal periods of the periodic solutions to Lipschitzian
differential equations are estimated through the Lipschitz
constants (see Remark 4).

Theuse of variationalmethods in the study of 4𝜎-periodic
solutions of system (1) having a variational structure was
introduced in 2005 by Guo and Yu [9]. Assume that
(F

1
) 𝑓 is odd in 𝑥; that is, 𝑓(−𝑥) = −𝑓(𝑥), for all 𝑥 ∈ R𝑛;

(F
2
) there exists 𝐹 ∈ 𝐶

1

(R𝑛

,R) such that 𝐹
𝑥
(𝑥) = 𝑓(𝑥),

for all 𝑥 ∈ R𝑛, where 𝐹
𝑥
denotes the gradient of 𝐹.

In [9], the authors obtained the multiplicity results for
periodic solutions to (1) in the case that 𝑓 is asymptotically
linear. Later, the existence of the periodic solution of (1) was
investigated by using Morse theory and Galerkin methods
[10]. For the other relative investigations, we refer the reader
to [11–14].

Many practical problems, such as nonlinear population
growth models and control systems working with potentially
explosive chemical reactions, can be transformed into the
form of (1). For example, by the change of variables 𝑦 =

𝑎 tanh(𝑎𝑥), the following generalized food-limited popula-
tion model

̇𝑦 (𝑡) = −𝜃 sign (𝑦 (𝑡 − 1)) 

𝑦 (𝑡 − 1)






𝛾

(𝑎
2

− 𝑦
2

(𝑡)) (2)

is transformed equivalently into (1) with 𝑛 = 1, 𝑓(𝑥) =
𝜃𝑎

𝛾 sign(𝑥)| tanh(𝑎𝑥)|𝛾, and 𝜎 = 1, where 𝜃 and 𝑎 are positive
numbers. When 𝛾 = 1, 𝑓

(0) = 𝜃𝑎
2. It is known from [24]

that, with the slope 𝑓

(0) increasing and tending to infinity,
the number of the periodic solutions of (2) increases and
tends to infinity. Naturally, one would conjecture that when
0 < 𝛾 < 1, (2) possesses infinitely many periodic solutions,
since in this case lim

𝑥→0
𝑓



(𝑥) = +∞.
Motivated by the above observation, in this paper, we

study the existence of infinitely many periodic solutions to
the system (1) under the assumptions (F

1
), (F

2
), and
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(F
3
) there are 1 < 𝛼, 𝛽 < 2 and 𝑑

1
, 𝑟

0
> 0 such that

(i) 0 < (𝑓(𝑥), 𝑥) ⩽ 𝛼𝐹(𝑥), for all 𝑥 ∈ 𝐵
𝑟0
\ {0};

(ii) 𝑑
1
|𝑓(𝑥)|

𝛽


⩽ 𝐹(𝑥), for all 𝑥 ∈ 𝐵
𝑟0
,

where 1/𝛽 + 1/𝛽

= 1, 𝐵
𝑟0
= {𝑥 ∈ R𝑛

: |𝑥| ⩽ 𝑟
0
}.

Here and subsequently, (⋅, ⋅), | ⋅ | denote the inner product
and the standard norm in R𝑛, respectively, and the bold face
0 represents the coordinate origin of R𝑛. The main result of
this paper is stated as follows.

Theorem 1. Assume that (𝐹
1
)–(𝐹

3
) hold. Then (1) possesses a

sequence of nonconstant 4𝜎-periodic solutions {𝑥
𝑚
} satisfying

‖𝑥
𝑚
‖
∞
→ 0 as𝑚 → ∞.

Example 2. When 0 < 𝛾 < 1, it is easy to check that 𝑓(𝑥) =
𝜃𝑎 sign(𝑥)| tanh(𝑎𝑥)|𝛾 satisfies (F

1
)–(F

3
) with 𝛼 = 𝛽 = 1 + 𝛾;

then (2) has a sequence of nonconstant 4-periodic solutions
{𝑥

𝑚
} satisfying ‖𝑥

𝑚
‖
∞
→ 0 as𝑚 → ∞.

Remark 3. Let us compare the result here with that in the case
of ordinary differential equations (ODE). Without the time
delay, (1) reduces to the following system of ODE

𝑥


(𝑡) = 𝑓 (𝑥 (𝑡)) . (3)

Let 𝑥(𝑡) = 𝑥(𝑡; 𝑥
0
) be the solution of (3) satisfying the initial

condition 𝑥(0) = 𝑥
0
̸= 0. Then the derivative of the Lyapunov

function 𝑉(𝑥) = |𝑥|2 along 𝑥(𝑡) reads

𝑑𝑉

𝑑𝑡








(3)

= (−𝑓 (𝑥 (𝑡)) , 𝑥 (𝑡)) . (4)

From (F
3
)-(i), we see that 𝑑𝑉/𝑑𝑡|

(3)
< 0 for 0 < |𝑥| < 𝑟

0
,

which implies that there is no any periodic orbit of (3) across
𝐵
𝑟0
\ {0}; that is, the trivial solution is an isolated periodic

solution. However, by the above theorem, with the time delay,
the system (1) possesses infinitely many periodic solutions in
any neighborhood of the origin.

Remark 4. Consider the following system of 𝑚th order
functional differential equations:

𝑥
(𝑚)

(𝑡) = 𝑓 (𝑥 (𝜏 (𝑡))) , 𝑡 ∈ R, (5)

where 𝑓 : R𝑛

→ R𝑛 satisfies the Lipschitz condition and
𝜏 : R1

→ R1 is a measurable function. The lower bounds
for the periods of the periodic solutions to (5) and their
special forms are estimated in [25–31]. From this perspective,
Theorem 1 complements the information in the case of non-
Lipschitzian differential equations. For the unique solvability
of the periodic problems on functional differential equations,
we refer the reader to [1, 15–21].

The remainder of this paper is divided into two parts. In
the next section, we state the preliminaries on the variational
structure for (1). In the final section, the proof of Theorem 1
will be given via the Z

2
-genus theory, together with an

approximating argument.

2. Preliminaries

Let 𝐿2

(𝑆
1

,R𝑛

) denote the set of 𝑛-tuples of 2𝜋-periodic
functions which are square integrable. If 𝑥 ∈ 𝐿

2

(𝑆
1

,R𝑛

), it
has a Fourier expansion

𝑥 (𝑡) = 𝑎
0
+ ∑

𝑗∈N

(𝑎
𝑗
cos 𝑗𝑡 + 𝑏

𝑗
sin 𝑗𝑡) , (6)

where 𝑎
𝑖
, 𝑏

𝑗
∈ R𝑛 and the series converges in the space 𝐿2

(𝑆
1

,

R𝑛

). For 𝑥 ∈ 𝐿2

(𝑆
1

,R𝑛

) with its expansion (6), set𝐻 := {𝑥 ∈

𝐿
2

(𝑆
1

,R𝑛

) | ‖𝑥‖
𝐻
< ∞}, where

‖𝑥‖
𝐻
:=




𝑎
0






2

+ ∑

𝑗∈N

(1 + 𝑗) (






𝑎
𝑗







2

+






𝑏
𝑗







2

) . (7)

Then𝐻, equipped with the norm ‖ ⋅ ‖
𝐻
, is a Sobolev space.

On the other hand, for 𝑥 ∈ 𝐻 with its expansion (6), set

‖𝑥‖ :=




𝑎
0






2

+ ∑

𝑗∈N

𝑗 (






𝑎
𝑗







2

+






𝑏
𝑗







2

) . (8)

Then 𝐻 possesses another norm ‖ ⋅ ‖ which is equivalent to
‖ ⋅ ‖

𝐻
. In the following, we always employ ‖ ⋅ ‖ as the norm of

𝐻. The associated inner product with ‖ ⋅ ‖ is denoted by ⟨⋅, ⋅⟩.
Now set

𝐸 := {𝑥 ∈ 𝐻 | 𝑥 (⋅ + 𝜋) = −𝑥 (⋅)} . (9)

Then 𝐸 is a closed subspace of 𝐻 and the Fourier expansion
of 𝑥 ∈ 𝐸 reduces to

𝑥 (𝑡) =

∞

∑

𝑗=1

[𝑎
2𝑗−1

cos (2𝑗 − 1) 𝑡 + 𝑏
2𝑗−1

sin (2𝑗 − 1) 𝑡] . (10)

Thus with 𝑥
1
, 𝑥

2
∈ 𝐸 being expanded as

𝑥
𝑖
(𝑡) =

∞

∑

𝑗=1

[𝑎
(𝑖)

2𝑗−1
cos (2𝑗 − 1) 𝑡 + 𝑏(𝑖)

2𝑗−1
sin (2𝑗 − 1) 𝑡] ,

𝑖 = 1, 2,

(11)

we have

⟨𝑥
1
, 𝑥

2
⟩ =

∞

∑

𝑗=1

(2𝑗 − 1) {(𝑎
(1)

2𝑗−1
, 𝑎

(2)

2𝑗−1
) + (𝑏

(1)

2𝑗−1
, 𝑏

(2)

2𝑗−1
)} .

(12)

For 𝑥, 𝑦 ∈ 𝐸, we call 𝑦 a weak derivative of 𝑥 and denote
it by �̇� = 𝑦 if

∫

2𝜋

0

(𝑥 (𝑡) , 𝑧


(𝑡)) 𝑑𝑡 = −∫

2𝜋

0

(𝑦 (𝑡) , 𝑧 (𝑡)) 𝑑𝑡,

∀𝑧 ∈ 𝐶
∞

(𝑆
1

,R
𝑛

) .

(13)

Further, for 𝑥 ∈ 𝐶∞

(𝑆
1

,R𝑛

)∩𝐸with its expansion (10), define

𝐴 (𝑥) :=

1

2

∫

2𝜋

0

(�̇� (𝑡 +

𝜋

2

) , 𝑥 (𝑡)) 𝑑𝑡

=

1

2

∞

∑

𝑗=1

(−1)
𝑗

(2𝑗 − 1) (






𝑎
2𝑗−1







2

+






𝑏
2𝑗−1







2

) .

(14)
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Then it is easy to check that |𝐴(𝑥)| ⩽ ‖𝑥‖2 for 𝑥 ∈ 𝐶∞

(𝑆
1

,

R𝑛

) ∩ 𝐸. Therefore 𝐴 extends to all of 𝐸 as a continuous
quadratic form. This extension will still be denoted by 𝐴.

Let 𝐹 ∈ 𝐶1

(R𝑛

,R) and satisfy

𝐹 (−𝑥) = 𝐹 (𝑥) ,






𝐹 (𝑥)






⩽ 𝐶

1
+ 𝐶

2
|𝑥|

𝑠

, 𝑥 ∈ R
𝑛 (15)

for some 𝑠 ∈ [1,∞). Define

Φ (𝑥) := ∫

2𝜋

0

𝐹 (𝑥 (𝑡)) 𝑑𝑡, 𝑥 ∈ 𝐸 (16)

and 𝐼(𝑥) = 𝐴(𝑥) + Φ(𝑥), 𝑥 ∈ 𝐸. The following lemma is
derived from [9, Lemma 2.2].

Lemma 5 (see [9]). Let 𝐹 ∈ 𝐶1

(R𝑛

,R) and satisfy (15). Then
𝐼 ∈ 𝐶

1

(𝐸,R) and

𝐼


(𝑥) 𝑦 = 𝐴


(𝑥) 𝑦 + ∫

2𝜋

0

(𝐹
𝑥
(𝑥 (𝑡)) , 𝑦 (𝑡)) , 𝑦 ∈ 𝐸,

(17)

where

𝐴


(𝑥) 𝑦 = ∫

2𝜋

0

(�̇� (𝑡 +

𝜋

2

) , 𝑦 (𝑡)) 𝑑𝑡, 𝑦 ∈ 𝐸. (18)

Moreover, the existence of 2𝜋-periodic solutions 𝑥(𝑡) for

𝑥


(𝑡) = −𝐹
𝑥
(𝑥(𝑡 −

𝜋

2

)) (19)

satisfying 𝑥 ∈ 𝐸 is equivalent to the existence of critical points
of functional 𝐼.

Let {𝑒
1
, . . . , 𝑒

𝑛
} be the orthonormal basis ofR𝑛. For 𝑘 ∈ N,

set

𝐸
+
(𝑘) := span {cos [(4𝑘 − 1) 𝑡] 𝑒

𝑖
, sin [(4𝑘 − 1) 𝑡] 𝑒

𝑖
:

𝑖 = 1, 2, . . . , 𝑛} ,

𝐸
−
(𝑘) := span {cos [(4𝑘 − 3) 𝑡] 𝑒

𝑖
, sin [(4𝑘 − 3) 𝑡] 𝑒

𝑖
:

𝑖 = 1, 2, . . . , 𝑛} .

(20)

For 𝑙, 𝑚 ∈ N ∪ {+∞}, define

𝑉
±

𝑙
= ⊕

𝑙

𝑘=1
𝐸

±
(𝑘), 𝑉

𝑚

𝑙
= 𝑉

−

𝑙
⊕ 𝑉

+

𝑚
, (21)

where the closure is of 𝐸 sense. Set𝑉±

:= 𝑉
±

+∞
; then 𝐸 = 𝑉+

⊕

𝑉
−. In the rest of this paper, this decomposition will always

be referred to when a point 𝑥 ∈ 𝐸 is written as 𝑥 = 𝑥+

+ 𝑥
−,

where 𝑥±

∈ 𝑉
±.

Remark 6. In view of (12), (14), and (18), we see that

𝐴 (𝑥) =

1

2

(




𝑥
+




2

−




𝑥
−




2

) (22)

and that

𝐴


(𝑥) 𝑦 = ⟨𝑥
+

, 𝑦
+

⟩ − ⟨𝑥
−

, 𝑦
−

⟩ , 𝑥, 𝑦 ∈ 𝐸. (23)

The following lemma is derived from [32, Lemma 2.1].

Lemma 7 (see [32]). For each 𝑠 ∈ [1,∞) there is 𝛾
𝑠
> 0 such

that

‖𝑥‖
𝑠
⩽ 𝛾

𝑠
𝑚

−1/𝑠

‖𝑥‖ (24)

for all 𝑥 ∈ (𝑉𝑚−1

𝑚−1
)
⊥ with𝑚 ⩾ 2, the orthogonal complement in

𝐸, where (and below) ‖ ⋅ ‖
𝑠
denotes the usual 𝐿𝑠-norm.

3. Proof of Theorem 1

Without loss of generality we assume that 𝜎 = 𝜋/2 since,
under the change of variables 𝑦(𝑡) = 𝑥(2𝜎𝑡/𝜋), (1) can be
transformed into the system

̇𝑦 (𝑡) = −
̃
𝑓(𝑦(𝑡 −

𝜋

2

)) , (1


)

where ̃𝑓(𝑦) = (2𝜎/𝜋)𝑓(𝑦) still satisfies (F
1
–F

3
) with 𝑓 being

replaced by ̃𝑓.
Let 𝜒 ∈ 𝐶∞

(R, [0, 1]) be such that 𝜒(𝑠) = 0 for 𝑠 ⩽ 𝑟
0
/2,

𝜒(𝑠) = 1 for 𝑠 ⩾ 𝑟
0
, and 𝜒

(𝑠) > 0 for 𝑠 ∈ (𝑟
0
/2, 𝑟

0
). Define

𝐹 : R𝑛

→ R by

𝐹 (𝑥) := (1 − 𝜒 (|𝑥|)) 𝐹 (𝑥) + 𝜒 (|𝑥|)𝑀
0
|𝑥|

𝛼

, (25)

where𝑀
0
= inf{𝐹(𝑥)/𝑟𝛼

0
: 𝑟

0
/2 ⩽ |𝑥| ⩽ 𝑟

0
}.

Let 𝛼

> 0 be such that 1/𝛼 + 1/𝛼

= 1. By (F
3
) we get

0 < (𝐹
𝑥
(𝑥) , 𝑥) ⩽ 𝛼𝐹 (𝑥) , ∀𝑥 ∈ R

𝑛

, (26)

𝐹 (𝑥) ⩾

{

{

{

𝐶
1






𝐹
𝑥
(𝑥)







𝛽


, |𝑥| ⩽ 1,

𝐶
1






𝐹
𝑥
(𝑥)







𝛼


, |𝑥| > 1,

(27)

where (and below) 𝐶
𝑗
’s stand for positive constants.

Lemma 8. Let 𝐹 : R𝑛

→ R be defined by (25); then 1 < 𝛽 <
𝛼 < 2, 𝐹 ∈ 𝐶1

(R𝑛

,R), and

𝐶
2
|𝑥|

𝛼

⩽ 𝐹 (𝑥) ⩽ {

𝐶
3
|𝑥|

𝛽

, |𝑥| ⩽ 1,

𝐶
3
|𝑥|

𝛼

, |𝑥| > 1.

(28)

Proof. From (25), it is easy to see that 𝐹 ∈ 𝐶1

(R𝑛

,R). Nowwe
start to prove (28). Let𝑀 be such a constant that | ln𝐹(𝑥) −
𝛼 ln |𝑥|| ⩽ 𝑀 for 𝑥 ∈ 𝑆

1
≡ 𝜕𝐵

1
. For 𝑥 ∈ R𝑛, |𝑥| ⩽ 1, set

𝑥
0
= 𝑥/|𝑥|; then 𝑥

0
∈ 𝑆

1
. Define 𝑔(𝑡) = ln𝐹(𝑡𝑥

0
) − 𝛼 ln |𝑡𝑥

0
|,

𝑡 ∈ (0, 1]. Then, by (26),

𝑔


(𝑡) = (

𝐹
𝑥
(𝑡𝑥

0
)

𝐹 (𝑡𝑥
0
)

, 𝑥
0
) − 𝛼 ⩽ 0, (29)

which implies that 𝑔(|𝑥|) ⩾ 𝑔(1); that is,

ln𝐹 (𝑥) − 𝛼 ln |𝑥| ⩾ ln𝐹 (𝑥
0
) − 𝛼 ln 


𝑥
0





⩾ −𝑀. (30)

It follows that 𝐹(𝑥) ⩾ 𝑒−𝑀|𝑥|𝛼 for |𝑥| ⩽ 1, which, combining
with (25), leads to the inequality on the left hand of (28) with
𝐶

2
being chosen adequately.
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Again, for 𝑥 ∈ R𝑛, |𝑥| ⩽ 1, set 𝑥
0
= 𝑥/|𝑥| and define

ℎ(𝑡) = (𝐹(𝑡𝑥
0
))

1/𝛽

−𝑡|𝑥
0
|/(𝛽𝐶

1/𝛽


1
), 𝑡 ∈ [0, 1].Then by the first

inequality in (27),

ℎ


(𝑡) =

1

𝛽

(

(𝐹
𝑥
(𝑡𝑥

0
) , 𝑥

0
)

(𝐹 (𝑡𝑥
0
))

1/𝛽

−

1

𝐶
1/𝛽


1





𝑥
0





)

⩽





𝑥
0






𝛽

(






𝐹
𝑥
(𝑡𝑥

0
)







(𝐹 (𝑡𝑥
0
))

1/𝛽

−

1

𝐶
1/𝛽


1

) < 0.

(31)

Thus ℎ(|𝑥|) ⩽ ℎ(0) = 0, which leads to 𝐹(𝑥) ⩽ 𝐶


3
|𝑥|

𝛽,
where 𝐶

3
= 1/(𝛽𝐶

1/𝛽


1
)
𝛽. In the same way, from the second

inequality in (27), we can arrive at 𝐹(𝑥) ⩽ 𝐶

3
|𝑥|

𝛼 for |𝑥| >
1, where the constant 𝐶

3
only depends on 𝛼 and 𝐶

1
. With

𝐶
3
= max{𝐶

3
, 𝐶



3
}, the inequalities on the right hand of (28)

hold.Thuswe get (28), which implies that𝐶
2
|𝑥|

𝛼

⩽ 𝐶
3
|𝑥|

𝛽 for
|𝑥| ⩽ 1 and that 1 < 𝛽 < 𝛼 < 2. The proof is complete.

Now we consider the functional

𝐼 (𝑥) = 𝐴 (𝑥) + ∫

2𝜋

0

𝐹 (𝑥) 𝑑𝑡, 𝑥 ∈ 𝐸. (32)

Lemma 9. 𝐼 satisfies (𝑃𝑆) condition; that is, every sequence
{𝑥

𝑘
} ⊂ 𝐸 such that {𝐼(𝑥

𝑘
)} is bounded and 𝐼(𝑥

𝑘
) → 0 as

𝑘 → ∞ has a convergent subsequence.

Proof. By Lemma 5, for 𝑥 ∈ 𝐸, 𝐼(𝑥) is defined by

𝐼


(𝑥) 𝑦 = 𝐴


(𝑥) 𝑦 + ∫

2𝜋

0

(𝐹
𝑥
(𝑥) , 𝑦) 𝑑𝑡, ∀𝑦 ∈ 𝐸. (33)

To verify that 𝐼 satisfies (PS) condition, we suppose |𝐼(𝑥
𝑘
)| ⩽

𝐶
4
and 𝐼(𝑥

𝑘
) → 0 as 𝑘 → ∞. Note that, for large 𝑘,

|𝐼


(𝑥
𝑘
)𝑥| ⩽ ‖𝑥‖. Thus for large 𝑘 and 𝑥 = 𝑥

𝑘
, from (32) and

(33),

𝐶
4
+ ‖𝑥‖ ⩾ 𝐼 (𝑥) −

1

2

𝐼


(𝑥) 𝑥

= ∫

2𝜋

0

[𝐹 (𝑥) −

1

2

(𝐹
𝑥
(𝑥) , 𝑥)] 𝑑𝑡.

(34)

Noticing that 1 < 𝛽 < 𝛼 < 2, we see from (25) that, for all
𝑥 ∈ R𝑛,

(𝐹
𝑥
(𝑥) , 𝑥) ⩾ 𝐶

5
max {|𝑥|𝛼, |𝑥|𝛽} − 𝐶

6
, (35)

which, combining with (26) and (34), implies

𝐶
4
+ ‖𝑥‖ ⩾ (𝛼

−1

− 2
−1

)∫

2𝜋

0

(𝐹
𝑥
(𝑥) , 𝑥) 𝑑𝑡

⩾ 𝐶
7
max {‖𝑥‖𝛼

𝛼
, ‖𝑥‖

𝛽

𝛽
} − 𝐶

8
,

(36)

max {‖𝑥‖𝛼
𝛼
, ‖𝑥‖

𝛽

𝛽
} ⩽ 𝐶

9
(‖𝑥‖ + 1) . (37)

Next for large 𝑘, taking 𝑥 = 𝑥
𝑘
and 𝜍 = 𝑥+

𝑘
in











∫

2𝜋

0

(𝐹
𝑥
(𝑥) , 𝜍) 𝑑𝑡 + 𝐴



(𝑥) 𝜍











=






𝐼


(𝑥) 𝜍






⩽ ‖𝜍‖ (38)

and using (23), (27), and (28) and theHölder inequality (1/𝛼+
1/𝛼



= 1, 1/𝛽 + 1/𝛽

= 1), we get





𝑥
+




2

⩽











∫

2𝜋

0

(𝐹
𝑥
(𝑥) , 𝑥

+

) 𝑑𝑡











+




𝑥
+




⩽ 𝐶
10
(∫

|𝑥(𝑡)|>1

|𝑥|
𝛼/𝛼





𝑥
+



𝑑𝑡 + ∫

|𝑥(𝑡)|⩽1

|𝑥|
𝛽/𝛽





𝑥
+



𝑑𝑡)

+




𝑥
+




⩽ 𝐶
10
(‖𝑥‖

𝛼/𝛼


𝛼





𝑥
+


𝛼
+ ‖𝑥‖

𝛽/𝛽


𝛽





𝑥
+


𝛽
) +





𝑥
+




⩽ 𝐶
11
(‖𝑥‖

𝛼/𝛼


𝛼
+ ‖𝑥‖

𝛽/𝛽


𝛽
+ 1)





𝑥
+



,

(39)

where the last inequality holds since 𝐸 is compactly embed-
ded in 𝐿𝑠

(𝑆
1

,R𝑛

) for 𝑠 ⩾ 1. It follows from (36) that





𝑥
+



⩽ 𝐶

12
(‖𝑥‖

1/𝛼


+ ‖𝑥‖
1/𝛽


+ 1) . (40)

Similarly, (40) works with 𝑥+ being replaced by 𝑥−. Combin-
ing these inequalities shows

‖𝑥‖ ⩽ 𝐶
13
(‖𝑥‖

1/𝛼


+ ‖𝑥‖
1/𝛽


+ 1) , (41)

which implies that {𝑥
𝑘
} is bounded in 𝐸.

Let Φ be defined by (16). By [33, Proposition B.37],
{Φ



(𝑥
𝑘
)} is precompact in 𝐸. Moreover, from (23) and (33),

𝐼


(𝑥
𝑘
) = 𝑥

+

𝑘
− 𝑥

−

𝑘
+ Φ



(𝑥
𝑘
) . (42)

It follows that {𝑥
𝑘
} has a convergent subsequence. The proof

is complete.

Lemma 10. For each 𝑙 ∈ N, there are 𝜌
𝑙
> 0, 𝑎

𝑙
> 0, and

0 < 𝑏
𝑙
→ 0 such that

(a) 𝐼(𝑥) ⩾ 0, for all 𝑥 ∈ 𝐵
𝜌𝑙
∩𝑉

+∞

𝑙
and inf 𝐼(𝜕𝑆

𝜌𝑙
∩𝑉

+∞

𝑙
) ⩾

𝑎
𝑙
, where 𝐵

𝜌𝑙
= {𝑥 ∈ 𝐸 : ‖𝑥‖ ⩽ 𝜌

𝑙
};

(b) sup 𝐼((𝑉+∞

𝑙−1
)
⊥

) ⩽ 𝑏
𝑙
.

Proof. Noticing that 𝑉+∞

𝑙
= 𝑉

−

𝑙
⊕ 𝑉

+

+∞
and that dim(𝑉−

𝑙
) <

∞, we have, for 𝑥 ∈ 𝐵
𝜌𝑙
∩ 𝑉

+∞

𝑙
,

‖𝑥‖
𝛼
= sup {∫

𝑆
1

(𝑥 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡 | 𝑦 ∈ 𝐿
𝛼


(𝑆
1

,R
𝑛

) ,




𝑦



𝛼
 =1}

⩾ sup {∫
𝑆
1

(𝑥 (𝑡) , 𝑦 (𝑡)) 𝑑𝑡 | 𝑦 ∈ 𝑉
−

𝑙
,




𝑦



𝛼
 = 1}

= sup {∫
𝑆
1

(𝑥
−

(𝑡) , 𝑦 (𝑡)) 𝑑𝑡 | 𝑦 ∈ 𝑉
−

𝑙
,




𝑦



𝛼
 = 1}

=




𝑥
−


𝛼
⩾ 𝜂

𝑙





𝑥
−



,

(43)
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where 𝜂
𝑙
is a positive constant depending on 𝑙. It follows by

(28) that, for 𝑥 ∈ 𝐵
𝜌𝑙
∩ 𝑉

+∞

𝑙
,

𝐼 (𝑥) ⩾

1

2





𝑥
+




2

+ 𝐶
2
𝜂
𝑙





𝑥
−




𝛼

−

1

2





𝑥
−




2

=

1

2





𝑥
+




2

+ (𝐶
2
𝜂
𝑙
−

1

2





𝑥
−




2−𝛼

)




𝑥
−




𝛼

,

(44)

which implies (a) by setting 𝜌
𝑙
:= min{1, (𝐶

2
𝜂
𝑙
)
1/(2−𝛼)

} and
𝑎
𝑙
= 𝜌

2

𝑙
(1 + 𝐶

2
𝜂
𝑙
)/2.

Let 𝑥 ∈ (𝑉+∞

𝑙−1
)
⊥. By (28) and Lemma 7,

𝐼 (𝑥) ⩽ 𝐶
3
(‖𝑥‖

𝛼

𝛼
+ ‖𝑥‖

𝛽

𝛽
) −

1

2

‖𝑥‖
2

⩽ 𝐶
16
𝑙
−1

(‖𝑥‖
𝛼

+ ‖𝑥‖
𝛽

) −

1

2

‖𝑥‖
2

⩽ 𝑏
𝑙
:= sup

𝑠≥0

𝑔 (𝑠) ,

(45)

where 𝑔(𝑠) := 𝐶
16
𝑙
−1

(𝑠
𝛼

+ 𝑠
𝛽

) − 𝑠
2

/2. Noticing 1 < 𝛽 ⩽ 𝛼 < 2,
one can see that 𝑏

𝑙
→ 0 as 𝑙 → ∞ and (b) follows.The proof

is complete.

In the following, let Σ denote the family of closed (in 𝐸)
subsets of 𝐸 \ {0} symmetric with respect to the origin, and

𝛾 : Σ → N ∪ {0,∞} , (46)

the Z
2
-genus map (see [33]). For 𝑙, 𝑚 ∈ N, set

Σ
𝑚

𝑙
= {𝐴 ∈ Σ : 𝐴 ⊂ 𝑉

𝑚

+∞
, 𝛾 (𝐴) ⩾ 𝑛 (𝑙 + 𝑚)} , (47)

and define

𝑐
𝑙,𝑚
= sup

𝐴∈Σ
𝑚

𝑙

inf
𝑥∈𝐴

𝐼 (𝑢) . (48)

Lemma 11. For all 𝑙, 𝑚 ∈ N, 𝑐
𝑙,𝑚

is a critical value of 𝐼 and

𝑎
𝑙
⩽ 𝑐

𝑙,𝑚
⩽ 𝑏

𝑙
. (49)

Proof. Wefirst prove that (49) holds. For each𝑚 ∈ N, let 𝜌
𝑙
be

chosen as that in Lemma 10; then it follows by Lemma 10(a)
that inf 𝐼(𝜕𝑆

𝜌𝑙
∩ 𝑉

+∞

𝑙
) ⩾ 𝑎

𝑙
. Denote 𝐴 = 𝜕𝑆

𝜌𝑙
∩ 𝑉

𝑚

𝑙
; then

𝛾(𝐴) = 𝑛(𝑚 + 𝑙) and 𝐴 ∈ Σ𝑚

𝑙
. Since 𝐴 ⊂ 𝜕𝑆

𝜌𝑙
∩ 𝑉

+∞

𝑙
, we have

𝑐
𝑙,𝑚
⩾ inf

𝑥∈
̃
𝐴

𝐼 (𝑥) ⩾ inf 𝐼 (𝜕𝑆
𝜌𝑙
∩ 𝑉

+∞

𝑙
) ⩾ 𝑎

𝑙
. (50)

On the other hand, for every 𝐴 ∈ Σ𝑚

𝑙
, by the property of

genus, 𝐴 ∩ (𝑉+∞

𝑙−1
)
⊥

̸= ⌀, which, from Lemma 10(b), leads to
inf

𝑥∈𝐴
𝐼(𝑥) ⩽ 𝑏

𝑙
for every 𝐴 ∈ Σ

𝑚

𝑙
. Thus 𝑐

𝑙,𝑚
⩽ 𝑏

𝑙
and (49)

holds.
By (F

1
) and (25), 𝐹(𝑥) is even with respect to 𝑥, which

implies that 𝐼 is even. We claim that 𝑐 = 𝑐
𝑙,𝑚

is a critical point
of 𝐼. Otherwise, there exists 𝜖 > 0, such that there is no any
critical point in the interval (𝑐 − 𝜖, 𝑐 + 𝜖). By the definition of
𝑐
𝑙,𝑚
, there exists 𝐴 ∈ Σ𝑚

𝑙
, such that

inf
𝑥∈𝐴

𝐼 (𝑥) > 𝑐 − 𝜖. (51)

For 𝑎 ∈ R, denote 𝐼𝑎 = {𝑥 ∈ 𝐸 : 𝐼(𝑥) ⩾ 𝑎}. Use a positive
rather than a negative gradient flow [33, Remark A.17], we
get 𝜂 ∈ 𝐶([0, 1] × 𝐸, 𝐸) such that 𝜂(1, ⋅) is odd and

𝜂 (1, 𝐼
𝑐−𝜖

) ⊂ 𝐼
𝑐+𝜖

. (52)

Since 𝐴 ⊂ 𝐼𝑐−𝜖, we have 𝜂(1, 𝐴) ⊂ 𝐼𝑐+𝜖; that is,

inf
𝑥∈𝜂(1,𝐴)

𝐼 (𝑥) ⩾ 𝑐 + 𝜖. (53)

On the other hand, by the property of genus, we know
that 𝛾(𝜂(1, 𝐴)) ∈ Σ𝑚

𝑙
, which, by the definition of 𝑐, leads to

𝑐 ⩾ inf
𝑥∈𝜂(1,𝐴)

𝐼 (𝑥) ⩾ 𝑐 + 𝜖. (54)

This contradiction implies that 𝑐
𝑙,𝑚

is a critical value of 𝐼. The
proof is complete.

Now we are in a position to give the following proof.

Proof of Theorem 1. In view of Lemma 11, let 𝑥
𝑙,𝑚

∈ 𝑉
𝑚

+∞
be

such that

𝐼 (𝑥
𝑙,𝑚
) = 𝑐

𝑙,𝑚
, 𝐼



(𝑥
𝑙,𝑚
) = 0. (55)

Then by (PS) condition, along a subsequence as 𝑚 → ∞,
𝑥
𝑙,𝑚
→ 𝑥

𝑙
∈ 𝐸 such that

𝑎
𝑙
⩽ 𝐼 (𝑥

𝑙
) ⩽ 𝑏

𝑙
, 𝐼



(𝑥
𝑙
) = 0, (56)

which implies that 𝑥
𝑙
is nonzero. Moreover, by Lemma 5,

𝑥


𝑙
(𝑡) = −𝐹

𝑥
(𝑥

𝑙
(𝑡 −

𝜋

2

)) . (57)

We claim that, for sufficiently large 𝑙, 𝑥
𝑙
solves (1). In fact,

from (26) and (56)

𝑏
𝑙
⩾ 𝐼 (𝑥

𝑙
) = 𝐼 (𝑥

𝑙
) −

1

2

𝐼


(𝑥
𝑙
) 𝑥

𝑙

⩾ (1 −

𝛼

2

)∫

2𝜋

0

𝐹 (𝑥
𝑙
) 𝑑𝑡.

(58)

By (27), (58), and Hölder inequality





𝑥
+

𝑙






2

= ∫

2𝜋

0

(𝐹
𝑥
(𝑥

𝑙
) , 𝑥

+

𝑙
) 𝑑𝑡

⩽




𝑥
+

𝑙




𝛼
(∫

2𝜋

0






𝐹
𝑥
(𝑥

𝑙
)







𝛼


𝑑𝑡)

1/𝛼


+




𝑥
+

𝑙




𝛽
(∫

2𝜋

0






𝐹
𝑥
(𝑥

𝑙
)







𝛽


𝑑𝑡)

1/𝛽


⩽ 𝐶
17





𝑥
+

𝑙





(∫

2𝜋

0

𝐹 (𝑥
𝑙
) 𝑑𝑡)

1/𝛼


+ 𝐶
18





𝑥
+

𝑙





(∫

2𝜋

0

𝐹 (𝑥
𝑙
) 𝑑𝑡)

1/𝛽


⩽ (𝐶
17
𝑏
1/𝛼


𝑙
+ 𝐶

18
𝑏
1/𝛽


𝑙
)




𝑥
+



.

(59)
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Similarly, the above inequality works with 𝑥+

𝑙
replaced by 𝑥−

𝑙
.

These inequalities yield





𝑥
𝑙





≤ 𝐶

19
𝑏
1/𝛼


𝑙
+ 𝐶

20
𝑏
1/𝛽


𝑙
. (60)

Since 𝑏
𝑙
→ 0 as 𝑙 → ∞, it follows that





𝑥
𝑙





→ 0 as 𝑙 → ∞. (61)

Furthermore, from (27) and (57), we have

∫

2𝜋

0





�̇�
𝑙
(𝑡)





2

𝑑𝑡 = ∫

2𝜋

0






𝐹
𝑥
(𝑥

𝑙
)







2

𝑑𝑡

⩽ 𝐶
21
(∫

2𝜋

0

[𝐹 (𝑥
𝑙
)]

2/𝛽


𝑑𝑡 +∫

2𝜋

0

[𝐹 (𝑥
𝑙
)]

2/𝛼


𝑑𝑡) .

(62)

It follows from (58) that ‖�̇�
𝑙
‖
2
→ 0 as 𝑙 → ∞. Recalling

(61), we get




𝑥
𝑙




𝑊
1,2 → 0 as 𝑙 → ∞, (63)

which implies that ‖𝑥
𝑙
‖
∞

→ 0 as 𝑙 → 0. Thus for 𝑚
sufficiently large, ‖𝑥

𝑙
‖
∞
< 𝑟

0
/2 and therefor 𝐹

𝑥
(𝑥

𝑙
) = 𝐹

𝑥
(𝑥

𝑙
).

It follow from (57) that, for 𝑙 sufficiently large, 𝑥
𝑙
solves (1). In

addition, by (1) and (F
3
)(i), the only constant solution of (1)

is the trivial solution. Then (56) yields that 𝑥
𝑙
is nonconstant

and the proof of Theorem 1 is complete.
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