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Smoking subject is an interesting area to study. The aim of this paper is to derive and analyze a model taking into account light
smokers compartment, recovery compartment, and two relapses in the giving up smokingmodel. Stability of themodel is obtained.
Some numerical simulations are also provided to illustrate our analytical results and to show the effect of controlling the rate of
relapse on the giving up smoking model.

1. Introduction

As early as 1889, people have established a model for the
spread of infectious diseases. Then the spread rule and trend
of the model were studied by analying the stability of the
solutions ([1–4] and the references cited therein). De la
Sen and Alonso-Quesada [3] present several simple linear
vaccination-based control strategies for a SEIR propagation
diseasemodel and study the stability of this model. De La Sen
et al. [4] discuss a generalized time-varying SEIR propagation
disease model subject to delays which potentially involves
mixed regular and impulsive vaccination rules, and in this
paper the authors were using the good methods to study the
dynamic behavior of the model especially the positivity of
the model. There are many methods to discuss the stability,
one of the most powerful techniques for qualitative analysis
of a dynamical system is Direct Lyapunov Method [5]. This
method employs an appropriate auxiliary function, called
a Lyapunov function. For example, [6–8] use this method
to discuss the stability of the model. In addition, there are
a number of articles which use Routh-Hurwitz theory to
explore the stability, see for example [9, 10].

In recent years, many types of epidemic models are dis-
cussed, such as virus dynamics models [11, 12], tuberculosis
models [13, 14], and HIV models [15, 16].

Due to the increasing in the number of smokers, tobacco
use is also as a disease to be treated. In order to explore the
spread rule of smoking, quit smoking model is developed.

Castillo-Garsow et al. [17] proposed a simple mathematical
model for giving up smoking in the first time. In this model,
a total constant population was divided into three classes:
potential smokers, that is, people who do not smoke yet but
might become smokers in the future (𝑃𝑃), smokers (𝑆𝑆), and
quit smokers (𝑄𝑄). Zaman [18] extended the work of Castillo-
Garsow et al. [17] by adding the population of occasional
smokers in the model, and presented qualitative behavior of
the model. Zaman [19] presented the optimal campaigns in
the smoking dynamics. They consider two possible control
variables in the form of education and treatment campaigns
oriented to decrease the attitude towards smoking and first
showed the existence of an optimal control for the control
problem.

However, in real life, the usual quit smokers are only
temporary quit smokers. Some of them may relapse since
they contact with smokers again, and the others may become
permanent quit smokers. Statistics also show that 15% quit
smokers may relapse when they contact with smokers.
Enlightening by the previously mentioned cases, we present
a model, which extend the models in [17–19] by taking into
account the temporary quit smoker compartment (𝑅𝑅) and
two kinds of relapses, that is, once a smoker temporary quits
smoking he/she may become a light or occasion smoker or a
persistent smoker again. First, we derive the basic reproduc-
tive number, and discuss the positivity of the solution for the
giving up smoking model. Then, we analyze the stability of
equilibria by Lyapunov Method and Routh-Hurwitz theory.
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Finally, by estimating of parameter, we present the numerical
simulation. Moreover, the numerical simulation shows that
we can greatly improve the effect of quit smoking by using
some methods, such as treatment and education, controlling
the rate of relapse.

The organization of this paper is as follow: the model
is given under some assumption in Section 2. The basic
reproductive number, existence, and the stability of equilibria
are investigated in Section 3. Some numerical simulations
are given in Section 4. The paper ends with a discussion in
Section 5.

2. The Model Formulation

2.1. System Description. In this paper, we establish the giving
up smoking model as Figure 1. Table 1 presents the parame-
ters description of the model.

From Figure 1, the total population is divided into five
compartments, namely, the potential smokers compartment
(𝑃𝑃), light or occasion smokers compartment (𝐿𝐿), persistent
smokers compartment (𝑆𝑆), temporary quit smokers (𝑅𝑅) that
is the people who did some efforts to stop smoking, and quit
smokers forever group (𝑄𝑄). As we know that if you smoke
more, the harm of nicotine on the body will be greater. So the
death rate is also higher. Hence, we can further assume that
𝑑𝑑2 < 𝑑𝑑3. The total population size is𝑁𝑁𝑁𝑁𝑁𝑁, where

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑃𝑃 𝑁𝑁𝑁𝑁 + 𝐿𝐿 𝑁𝑁𝑁𝑁 + 𝑆𝑆 𝑁𝑁𝑁𝑁 + 𝑅𝑅 𝑁𝑁𝑁𝑁 + 𝑄𝑄 𝑁𝑁𝑁𝑁. (1)

The transfer diagram leads to the following system of
ordinary differential equations:

𝑑𝑑𝑃𝑃 𝑁𝑁𝑁𝑁
𝑑𝑑𝑁𝑁 = 𝑏𝑏 𝑏 𝑏𝑏1𝑃𝑃 𝑁𝑁𝑁𝑁 𝐿𝐿 𝑁𝑁𝑁𝑁 𝑏 (𝑑𝑑1 + 𝜇𝜇𝜇 𝑃𝑃 𝑁𝑁𝑁𝑁,

𝑑𝑑𝐿𝐿 𝑁𝑁𝑁𝑁
𝑑𝑑𝑁𝑁 = 𝑏𝑏1𝑃𝑃 𝑁𝑁𝑁𝑁 𝐿𝐿 𝑁𝑁𝑁𝑁 𝑏 𝑏𝑏2𝐿𝐿 𝑁𝑁𝑁𝑁 𝑆𝑆 𝑁𝑁𝑁𝑁 + 𝜌𝜌2𝐿𝐿 𝑁𝑁𝑁𝑁 𝑅𝑅 𝑁𝑁𝑁𝑁

𝑏 (𝑑𝑑2 + 𝜇𝜇𝜇 𝐿𝐿 𝑁𝑁𝑁𝑁,
𝑑𝑑𝑆𝑆 𝑁𝑁𝑁𝑁
𝑑𝑑𝑁𝑁 = 𝑏𝑏2𝐿𝐿 𝑁𝑁𝑁𝑁 𝑆𝑆 𝑁𝑁𝑁𝑁 + 𝜌𝜌1𝑆𝑆 𝑁𝑁𝑁𝑁 𝑅𝑅 𝑁𝑁𝑁𝑁 𝑏 (𝜔𝜔 + 𝑑𝑑3 + 𝜇𝜇𝜇 𝑆𝑆 𝑁𝑁𝑁𝑁,

𝑑𝑑𝑅𝑅 𝑁𝑁𝑁𝑁
𝑑𝑑𝑁𝑁 = 𝜔𝜔𝑆𝑆 𝑁𝑁𝑁𝑁 𝑏 𝜌𝜌1𝑆𝑆 𝑁𝑁𝑁𝑁 𝑅𝑅 𝑁𝑁𝑁𝑁 𝑏 𝜌𝜌2𝐿𝐿 𝑁𝑁𝑁𝑁 𝑅𝑅 𝑁𝑁𝑁𝑁

𝑏 (𝛾𝛾 + 𝑑𝑑4 + 𝜇𝜇𝜇 𝑅𝑅 𝑁𝑁𝑁𝑁,
𝑑𝑑𝑄𝑄 𝑁𝑁𝑁𝑁
𝑑𝑑𝑁𝑁 = 𝛾𝛾𝑅𝑅 𝑁𝑁𝑁𝑁 𝑏 (𝑑𝑑5 + 𝜇𝜇𝜇𝑄𝑄 𝑁𝑁𝑁𝑁.

(2)

2.2. Positivity and Boundedness of Solutions. For system (2),
to ensure that the solutions of the system with positive initial
conditions remain positive for all 𝑁𝑁 𝑡 𝑡, it is necessary to
prove that all the state variables are nonnegative. Similar to
the proof of [3, 4, 13], we have the following lemma.

Lemma 1. If 𝑃𝑃𝑁𝑡𝑁 𝑡 𝑡, 𝐿𝐿𝑁𝑡𝑁 𝑡 𝑡, 𝑆𝑆𝑁𝑡𝑁 𝑡 𝑡, 𝑅𝑅𝑁𝑡𝑁 𝑡 𝑡, 𝑄𝑄𝑁𝑡𝑁 𝑡
𝑡, the solutions 𝑃𝑃𝑁𝑁𝑁𝑁, 𝐿𝐿𝑁𝑁𝑁𝑁, 𝑆𝑆𝑁𝑁𝑁𝑁, 𝑅𝑅𝑁𝑁𝑁𝑁, 𝑄𝑄𝑁𝑁𝑁𝑁 of system (2) are
positive for all 𝑁𝑁 𝑡 𝑡.

Proof. If the conclusion does not hold, then at least one of
𝑃𝑃𝑁𝑁𝑁𝑁, 𝐿𝐿𝑁𝑁𝑁𝑁, 𝑆𝑆𝑁𝑁𝑁𝑁, 𝑅𝑅𝑁𝑁𝑁𝑁,𝑄𝑄𝑁𝑁𝑁𝑁 is not positive.Thus, we have one of
the following five cases.

(1) There exists a first time 𝑁𝑁1 such that

𝑃𝑃 (𝑁𝑁1𝜇 = 𝑡, 𝑃𝑃 (𝑁𝑁1𝜇 < 𝑡, 𝐿𝐿 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝑆𝑆 𝑁𝑁𝑁𝑁 ≥ 𝑡,
𝑅𝑅 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝑄𝑄 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝑡 ≤ 𝑁𝑁 ≤ 𝑁𝑁1.

(3)

(2) There exists a first time 𝑁𝑁2 such that

𝐿𝐿 (𝑁𝑁2𝜇 = 𝑡, 𝐿𝐿 (𝑁𝑁2𝜇 < 𝑡, 𝑃𝑃 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝑆𝑆 𝑁𝑁𝑁𝑁 ≥ 𝑡,
𝑅𝑅 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝑄𝑄 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝑡 ≤ 𝑁𝑁 ≤ 𝑁𝑁2.

(4)

(3) There exists a first time 𝑁𝑁3 such that

𝑆𝑆 (𝑁𝑁3𝜇 = 𝑡, 𝑆𝑆 (𝑁𝑁3𝜇 < 𝑡, 𝑃𝑃 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝐿𝐿 𝑁𝑁𝑁𝑁 ≥ 𝑡,
𝑅𝑅 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝑄𝑄 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝑡 ≤ 𝑁𝑁 ≤ 𝑁𝑁3.

(5)

(4) There exists a first time 𝑁𝑁4 such that

𝑅𝑅 (𝑁𝑁4𝜇 = 𝑡, 𝑅𝑅 (𝑁𝑁4𝜇 < 𝑡, 𝑃𝑃 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝐿𝐿 𝑁𝑁𝑁𝑁 ≥ 𝑡,
𝑆𝑆 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝑄𝑄 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝑡 ≤ 𝑁𝑁 ≤ 𝑁𝑁4.

(6)

(5) There exists a first time 𝑁𝑁5 such that

𝑄𝑄 (𝑁𝑁5𝜇 = 𝑡, 𝑄𝑄 (𝑁𝑁5𝜇 < 𝑡, 𝑃𝑃 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝐿𝐿 𝑁𝑁𝑁𝑁 ≥ 𝑡,
𝑆𝑆 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝑅𝑅 𝑁𝑁𝑁𝑁 ≥ 𝑡, 𝑡 ≤ 𝑁𝑁 ≤ 𝑁𝑁5.

(7)

In case (1), we have

𝑃𝑃 (𝑁𝑁1𝜇 = 𝑏𝑏 𝑡 𝑡, (8)

which is a contradiction to 𝑃𝑃𝑁𝑁𝑁1𝑁 < 𝑡.
In case (2), we have

𝐿𝐿 (𝑁𝑁2𝜇 = 𝑡, (9)

which is a contradiction to 𝐿𝐿𝑁𝑁𝑁2𝑁 < 𝑡.
In case (3), we have

𝑆𝑆 (𝑁𝑁3𝜇 = 𝑡, (10)

which is a contradiction to 𝑆𝑆𝑁𝑁𝑁3𝑁 < 𝑡.
In case (4), we have

𝑅𝑅 (𝑁𝑁4𝜇 = 𝜔𝜔𝑆𝑆 (𝑁𝑁4𝜇 𝑡 𝑡, (11)

which is a contradiction to 𝑅𝑅𝑁𝑁𝑁4𝑁 < 𝑡.
In case (5), we have

𝑄𝑄 (𝑁𝑁5𝜇 = 𝛾𝛾𝑅𝑅 (𝑁𝑁5𝜇 𝑡 𝑡, (12)

which is a contradiction to 𝑄𝑄𝑁𝑁𝑁5𝑁 < 𝑡.
Thus, the solutions𝑃𝑃𝑁𝑁𝑁𝑁, 𝐿𝐿𝑁𝑁𝑁𝑁, 𝑆𝑆𝑁𝑁𝑁𝑁,𝑅𝑅𝑁𝑁𝑁𝑁,𝑄𝑄𝑁𝑁𝑁𝑁 of system (2)

remain positive for all 𝑁𝑁 𝑡 𝑡.
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Figure 1: Transfer diagram for the dynamics of giving up smoking model.

Table 1: The parameters description of giving up smoking model.

Parameter Description
𝑏𝑏 The total recruitment number into this homogeneous social mixing community.

𝛽𝛽1 Transmission coefficient from the potential smokers compartment to the light or occasion smokers
compartment.

𝛽𝛽2 Transmission coefficient from the light or occasion smokers compartment to the persistent smokers
compartment.

𝜌𝜌1 The relapse rate of which temporary quit people contact with persistent smokers.
𝜌𝜌2 The relapse rate of which temporary quit people contact with light smokers.
𝜔𝜔 The temporary quit smoking rate.
𝛾𝛾 The permanent quit smoking rate.
𝜇𝜇 Naturally death rate.
𝑑𝑑𝑖𝑖, 𝑖𝑖 𝑖 𝑖, 𝑖 𝑖 𝑖 , 𝑖 The smoking-related death rate.

Lemma 2. All feasible solution of the system (2) are bounded
and enter the region

Ω 𝑖 {(𝑃𝑃, 𝑃𝑃, 𝑃𝑃, 𝑃𝑃, 𝑃𝑃) ∈ 𝑃𝑃5+ : 𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃 𝑃
𝑏𝑏
𝜇𝜇}𝑖 (13)

Proof. Let (𝑃𝑃, 𝑃𝑃, 𝑃𝑃, 𝑃𝑃, 𝑃𝑃) ∈ 𝑃𝑃5+ be any solution with nonneg-
ative initial condition: adding the first four equations of (2),
we have
𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃)

𝑖 𝑏𝑏 𝑏 𝑏𝑑𝑑1 𝑃 𝜇𝜇𝜇 𝑃𝑃 𝑏 𝑏𝑑𝑑2 𝑃 𝜇𝜇𝜇 𝑃𝑃 𝑏 𝑏𝑑𝑑3 𝑃 𝜇𝜇𝜇 𝑃𝑃
𝑏 𝑏𝑑𝑑4 𝑃 𝜇𝜇𝜇 𝑃𝑃 𝑏 𝑏𝑑𝑑5 𝑃 𝜇𝜇𝜇𝑃𝑃
𝑖 𝑏𝑏 𝑏 𝜇𝜇 (𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃)
𝑏 𝑏𝑑𝑑1𝑃𝑃 𝑃 𝑑𝑑2𝑃𝑃 𝑃 𝑑𝑑3𝑃𝑃 𝑃 𝑑𝑑4𝑃𝑃 𝑃 𝑑𝑑5𝑃𝑃𝜇
𝑃 𝑏𝑏 𝑏 𝜇𝜇𝑏𝑏𝑖

(14)

It follows that

0 𝑃 𝑏𝑏 (𝑑𝑑) 𝑃 𝑏𝑏𝜇𝜇 𝑃 𝑏𝑏 (0) 𝑒𝑒
−𝜇𝜇𝜇𝜇, (15)

where 𝑏𝑏(0) represents initial values of the total population.
Thus 0 𝑃 𝑏𝑏(𝑑𝑑) 𝑃 𝑏𝑏𝑁𝜇𝜇, as 𝑑𝑑 𝑡 𝑡. Therefore all feasible
solutions of system (2) enter the region

Ω 𝑖 {(𝑃𝑃, 𝑃𝑃, 𝑃𝑃, 𝑃𝑃, 𝑃𝑃) ∈ 𝑃𝑃5+ : 𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃 𝑃
𝑏𝑏
𝜇𝜇}𝑖 (16)

Hence,Ω is positively invariant, and it is sufficient to consider
solutions of system (2) in Ω. Existence, uniqueness, and
continuation results of system (2) hold in this region. It can
be shown that𝑏𝑏(𝑑𝑑) is bounded and all the solutions starting
inΩ approach enter or stay inΩ.

3. Analysis of the Model

In this section, we will analyze the existence of equilibria of
system (2).

3.1. The Existence of Equilibria and the Basic Reproduction
Number. The model (2) has a smoking-free equilibrium
given by (see Theorem 3 (1))

𝐸𝐸0 𝑖 ( 𝑏𝑏𝑑𝑑1 𝑃 𝜇𝜇
, 0, 0, 0, 0)𝑖 (17)

In the following, the basic reproduction number of
system (2) will be obtained by the next generation matrix
method formulated in [21].

Let 𝑥𝑥 𝑖 (𝑃𝑃, 𝑃𝑃, 𝑃𝑃, 𝑃𝑃, 𝑃𝑃)𝑇𝑇; then system (2) can be written as

𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑 𝑖 F (𝑥𝑥) 𝑏V (𝑥𝑥), (18)
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where

F (𝑥𝑥) = (

𝛽𝛽1𝑃𝑃𝑃𝑃
0
0
0
0

),

V (𝑥𝑥) =(

𝛽𝛽2𝑃𝑃𝐿𝐿 𝐿 𝐿𝐿𝐿2 𝐿 𝜇𝜇𝜇 𝑃𝑃 𝜇 𝜇𝜇2𝑃𝑃𝐿𝐿
𝜇𝛽𝛽2𝑃𝑃𝐿𝐿 𝜇 𝜇𝜇1𝐿𝐿𝐿𝐿 𝐿 𝐿𝑆𝑆 𝐿 𝐿𝐿3 𝐿 𝜇𝜇𝜇 𝐿𝐿
𝜇𝑆𝑆𝐿𝐿 𝐿 𝜇𝜇1𝐿𝐿𝐿𝐿 𝐿 𝜇𝜇2𝑃𝑃𝐿𝐿 𝐿 𝐿𝐿𝐿 𝐿 𝐿𝐿4 𝐿 𝜇𝜇𝜇 𝐿𝐿

𝜇𝐿𝐿𝐿𝐿 𝐿 𝐿𝐿𝐿5 𝐿 𝜇𝜇𝜇𝜇𝜇
𝜇𝑏𝑏 𝐿 𝛽𝛽1𝑃𝑃𝑃𝑃 𝐿 𝐿𝐿𝐿1 𝐿 𝜇𝜇𝜇 𝑃𝑃

).

(19)

The Jacobian matrices ofF(𝑥𝑥) andV(𝑥𝑥) at the smoking-free
equilibrium 𝐸𝐸0 are, respectively,

𝐷𝐷F 𝐿𝐸𝐸0𝜇 = (𝐹𝐹4 × 4 00 0),

𝐷𝐷V 𝐿𝐸𝐸0𝜇 = (
𝑉𝑉4 × 4 0
𝛽𝛽1𝑏𝑏
𝐿𝐿1 𝐿 𝜇𝜇

0 0 0 𝐿𝐿1 𝐿 𝜇𝜇),
(20)

where

𝐹𝐹4 × 4 =(

𝛽𝛽1𝑏𝑏
𝐿𝐿1 𝐿 𝜇𝜇

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

),

𝑉𝑉4 × 4 = (
𝐿𝐿2 𝐿 𝜇𝜇 0 0 0
0 𝑆𝑆 𝐿 𝐿𝐿3 𝐿 𝜇𝜇 0 0
0 𝜇𝑆𝑆 𝐿𝐿 𝐿 𝐿𝐿4 𝐿 𝜇𝜇 0
0 0 𝜇𝐿𝐿 𝐿𝐿5 𝐿 𝜇𝜇

).

(21)

In order to simplify the calculation, letting 𝑏𝑏1 = 𝐿𝐿2 𝐿 𝜇𝜇, 𝑏𝑏2 =
𝑆𝑆 𝐿 𝐿𝐿3 𝐿 𝜇𝜇, 𝑏𝑏3 = 𝐿𝐿 𝐿 𝐿𝐿4 𝐿 𝜇𝜇, 𝑏𝑏4 = 𝐿𝐿5 𝐿 𝜇𝜇, we obtain

𝑉𝑉−1 =
((((((

(

1
𝑏𝑏1

0 0 0
0 1

𝑏𝑏2
0 0

0 𝑆𝑆
𝐿𝑆𝑆 𝐿 𝑏𝑏2𝜇 𝐿𝐿𝐿 𝐿 𝑏𝑏3𝜇

1
𝐿𝐿 𝐿 𝑏𝑏3

0

0 𝑆𝑆𝐿𝐿
𝐿𝑆𝑆 𝐿 𝑏𝑏2𝜇 𝐿𝐿𝐿 𝐿 𝑏𝑏3𝜇 𝑏𝑏4

𝐿𝐿
𝐿𝐿𝐿 𝐿 𝑏𝑏3𝜇 𝑏𝑏4

1
𝑏𝑏4

))))))

)

.

(22)

The basic reproduction number, denoted by 𝐿𝐿0, is thus given
by

𝐿𝐿0 = 𝜇𝜇 𝜌𝐹𝐹𝑉𝑉−1) =
𝛽𝛽1𝑏𝑏
𝐿𝐿𝐿1 𝐿 𝜇𝜇𝜇 𝑏𝑏1

= 𝛽𝛽1𝑏𝑏
𝐿𝐿𝐿1 𝐿 𝜇𝜇𝜇 𝐿𝐿𝐿2 𝐿 𝜇𝜇𝜇

. (23)

Throughout this paper, we denote

𝛼𝛼3 = 𝐿𝑆𝑆 𝐿 𝐿𝐿3 𝐿 𝜇𝜇𝜇 , 𝛼𝛼4 = 𝐿𝐿𝐿 𝐿 𝐿𝐿4 𝐿 𝜇𝜇𝜇. (24)

Theorem 3. For the giving up smoking model (2), there exist
the following three types of equilibrium.

(1) For all parameter values, system (2) exists the smoking-
free equilibrium 𝐸𝐸0(𝑏𝑏𝑏(𝐿𝐿1 𝐿 𝜇𝜇), 0, 0, 0, 0).

(2) If𝐿𝐿0 > 1, there exists the occasion smoking equilibrium
𝐸𝐸𝐿𝐿((𝐿𝐿2 𝐿 𝜇𝜇)𝑏𝛽𝛽1, 𝑏𝑏𝑏(𝐿𝐿2 𝐿 𝜇𝜇) 𝜇 (𝐿𝐿1 𝐿 𝜇𝜇)𝑏𝛽𝛽1, 0, 0, 0), and
there exists no occasion smoking equilibrium if 𝐿𝐿0 ≤ 1.

(3) If 𝐿𝐿2 = 1𝑏𝐿𝐿0 𝐿 (𝐿𝐿2 𝐿 𝜇𝜇)𝛼𝛼3𝑏𝑏𝑏𝛽𝛽2 < 1, 𝐿𝐿3𝜇𝜇2 𝜇 𝐿𝐿2 <
0 and 𝜇𝜇2 > max{𝐿𝐿2𝜇𝜇1𝑆𝑆𝑏𝐿𝐿3𝛼𝛼3, 𝜇𝜇1𝑆𝑆𝑏𝛼𝛼3}, then sys-
tem (2) has positive smoking-present equilibrium
𝐸𝐸∗(𝑃𝑃∗, 𝑃𝑃∗, 𝐿𝐿∗, 𝐿𝐿∗, 𝜇𝜇∗) where 𝐿𝐿∗ ∈ (0, 𝑆𝑆𝑏𝜇𝜇1).

Moveover, 𝐸𝐸∗(𝑃𝑃∗, 𝑃𝑃∗, 𝐿𝐿∗, 𝐿𝐿∗, 𝜇𝜇∗) satisfies the following
equality:

𝑃𝑃∗ = 𝛼𝛼3 𝜇 𝜇𝜇1𝐿𝐿
∗

𝛽𝛽2
,

𝐿𝐿∗ = 𝜇𝜇1𝜇𝜇2𝐿𝐿
∗2 𝜇 𝛼𝛼4𝛽𝛽2𝐿𝐿∗ 𝜇 𝛼𝛼3𝜇𝜇2𝐿𝐿∗
𝛽𝛽2 𝐿𝜇𝜇1𝐿𝐿∗ 𝜇 𝑆𝑆𝜇

,

𝑃𝑃∗ = 1𝛽𝛽1
𝜇𝛼𝛼4𝛽𝛽2𝐿𝐿∗ 𝜇 𝐿𝐿𝐿3 𝐿 𝜇𝜇𝜇 𝜇𝜇2𝐿𝐿∗ 𝐿 𝐿𝜇𝜇1𝐿𝐿∗ 𝜇 𝑆𝑆𝜇 𝐿𝐿𝐿2 𝐿 𝜇𝜇𝜇

𝐿𝜇𝜇1𝐿𝐿∗ 𝜇 𝑆𝑆𝜇
,

𝜇𝜇∗ = 𝐿𝐿𝐿𝐿5 𝐿 𝜇𝜇
𝐿𝐿∗,

(25)

where 𝐿𝐿∗ is a positive solution of 𝑓𝑓(𝐿𝐿) = 0, where

𝑓𝑓 (𝐿𝐿) = 𝐿𝐿𝐿1 𝐿 𝜇𝜇𝜇
𝜇𝜇1𝜇𝜇2𝐿𝐿2 𝜇 𝛼𝛼4𝛽𝛽2𝐿𝐿 𝜇 𝛼𝛼3𝜇𝜇2𝐿𝐿
𝛽𝛽1 𝐿𝜇𝜇1𝐿𝐿 𝜇 𝑆𝑆𝜇

𝜇 𝐿𝐿𝐿1 𝐿 𝜇𝜇𝜇
𝜇𝜇2
𝛽𝛽1
𝐿𝐿 𝐿 𝐿𝐿𝐿1 𝐿 𝜇𝜇𝜇 𝐿𝐿𝐿2 𝐿 𝜇𝜇𝜇𝛽𝛽1

𝐿 𝐿𝐿𝐿2 𝐿 𝜇𝜇𝜇
𝛼𝛼3 𝜇 𝜇𝜇1𝑅𝑅
𝛽𝛽2

𝐿 𝐿𝐿𝐿3 𝐿 𝜇𝜇𝜇
𝜇𝜇1𝜇𝜇2𝐿𝐿2 𝜇 𝛼𝛼4𝛽𝛽2𝐿𝐿 𝜇 𝛼𝛼3𝜇𝜇2𝐿𝐿
𝛽𝛽2 𝐿𝜇𝜇1𝐿𝐿 𝜇 𝑆𝑆𝜇

𝐿 𝐿𝐿𝐿4 𝐿 𝜇𝜇𝜇 𝐿𝐿

𝐿 𝐿𝐿𝐿𝐿 𝜇 𝑏𝑏.
(26)

Proof . It follows from system (2) that

𝑏𝑏 𝜇 𝛽𝛽1𝑃𝑃 (𝑡𝑡) 𝑃𝑃 (𝑡𝑡) 𝜇 𝐿𝐿𝐿1 𝐿 𝜇𝜇𝜇 𝑃𝑃 (𝑡𝑡) = 0,

𝛽𝛽1𝑃𝑃 (𝑡𝑡) 𝑃𝑃 (𝑡𝑡) 𝜇 𝛽𝛽2𝑃𝑃 (𝑡𝑡) 𝐿𝐿 (𝑡𝑡) 𝐿 𝜇𝜇2𝑃𝑃 (𝑡𝑡) 𝐿𝐿 (𝑡𝑡)

𝜇 𝐿𝐿𝐿2 𝐿 𝜇𝜇𝜇 𝑃𝑃 (𝑡𝑡) = 0,
𝛽𝛽2𝑃𝑃 (𝑡𝑡) 𝐿𝐿 (𝑡𝑡) 𝐿 𝜇𝜇1𝐿𝐿 (𝑡𝑡) 𝐿𝐿 (𝑡𝑡) 𝜇 𝐿𝑆𝑆 𝐿 𝐿𝐿3 𝐿 𝜇𝜇𝜇 𝐿𝐿 (𝑡𝑡) = 0,

𝑆𝑆𝐿𝐿 (𝑡𝑡) 𝜇 𝜇𝜇1𝐿𝐿 (𝑡𝑡) 𝐿𝐿 (𝑡𝑡) 𝜇 𝜇𝜇2𝑃𝑃 (𝑡𝑡) 𝐿𝐿 (𝑡𝑡)

𝜇 𝐿𝐿𝐿 𝐿 𝐿𝐿4 𝐿 𝜇𝜇𝜇 𝐿𝐿 (𝑡𝑡) = 0,
𝐿𝐿𝐿𝐿 (𝑡𝑡) 𝜇 𝐿𝐿𝐿5 𝐿 𝜇𝜇𝜇𝜇𝜇 (𝑡𝑡) = 0.

(27)
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(1) Letting 𝐿𝐿 𝐿 𝐿𝐿 𝐿 𝐿𝐿 𝐿 𝐿𝐿 𝐿 𝐿 in (27), we can obtain the
smoking-free equilibrium 𝐸𝐸0(𝑏𝑏𝑏(𝑏𝑏1 + 𝜇𝜇𝜇𝜇 𝐿𝜇 𝐿𝜇 𝐿𝜇 𝐿𝜇.

(2) If 𝐿𝐿0 > 1, letting 𝐿𝐿 𝐿 𝐿𝐿 𝐿 𝐿𝐿 𝐿 𝐿 in (27), we can
obtain the occasion smoking equilibrium 𝐸𝐸𝐿𝐿((𝑏𝑏2 +
𝜇𝜇𝜇𝑏𝜇𝜇1𝜇 𝑏𝑏𝑏(𝑏𝑏2 + 𝜇𝜇𝜇 𝜇 (𝑏𝑏1 + 𝜇𝜇𝜇𝑏𝜇𝜇1𝜇 𝐿𝜇 𝐿𝜇 𝐿𝜇.

(3) From third equation of the system (27), we obtain

𝐿𝐿 𝐿 𝛼𝛼3 𝜇 𝜌𝜌1𝐿𝐿𝜇𝜇2
. (28)

By adding the third equation and the fourth equation, we get

𝜇𝜇2𝐿𝐿 (𝑡𝑡𝜇 𝐿𝐿 (𝑡𝑡𝜇 𝜇 (𝜔𝜔 + 𝑏𝑏3 + 𝜇𝜇𝜇 𝐿𝐿 (𝑡𝑡𝜇 + 𝜔𝜔𝐿𝐿 (𝑡𝑡𝜇
𝜇 (𝛾𝛾 + 𝑏𝑏4 + 𝜇𝜇𝜇 𝐿𝐿 (𝑡𝑡𝜇 𝜇 𝜌𝜌2𝐿𝐿 (𝑡𝑡𝜇 𝐿𝐿 (𝑡𝑡𝜇 𝐿 𝐿.

(29)

From this we have

𝐿𝐿 𝐿 𝜌𝜌1𝜌𝜌2𝐿𝐿
2 𝜇 𝛼𝛼4𝜇𝜇2𝐿𝐿 𝜇 𝛼𝛼3𝜌𝜌2𝐿𝐿
𝜇𝜇2 (𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇

. (30)

From the second equation of the system (27) we get

𝜇𝜇1𝑃𝑃 (𝑡𝑡𝜇 𝐿 𝜇𝜇2𝐿𝐿 (𝑡𝑡𝜇 𝜇 𝜌𝜌2𝐿𝐿 (𝑡𝑡𝜇 + (𝑏𝑏2 + 𝜇𝜇𝜇 . (31)

Substituting 𝐿𝐿 into (31), we get

𝑃𝑃 𝐿 𝜌𝜌1𝜌𝜌2𝐿𝐿
2 𝜇 𝛼𝛼4𝜇𝜇2𝐿𝐿 𝜇 𝛼𝛼3𝜌𝜌2𝐿𝐿
𝜇𝜇1 (𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇

𝜇 𝜌𝜌2𝜇𝜇1
𝐿𝐿 + 𝑏𝑏2 + 𝜇𝜇𝜇𝜇1

𝐿 1𝜇𝜇1
𝜇𝛼𝛼4𝜇𝜇2𝐿𝐿 𝜇 (𝑏𝑏3 + 𝜇𝜇𝜇 𝜌𝜌2𝐿𝐿 + (𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇 (𝑏𝑏2 + 𝜇𝜇𝜇

(𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇
.
(32)

It follows from the fifth equation that

𝐿𝐿 𝐿 𝛾𝛾𝑏𝑏5 + 𝜇𝜇
𝐿𝐿. (33)

Let

𝑓𝑓 (𝐿𝐿𝜇 𝐿 (𝑏𝑏1 + 𝜇𝜇𝜇 𝑃𝑃 + (𝑏𝑏2 + 𝜇𝜇𝜇 𝐿𝐿 + (𝑏𝑏3 + 𝜇𝜇𝜇 𝐿𝐿
+ (𝑏𝑏4 + 𝜇𝜇𝜇 𝐿𝐿 + (𝑏𝑏5 + 𝜇𝜇𝜇𝐿𝐿 𝜇 𝑏𝑏

𝐿 (𝑏𝑏1 + 𝜇𝜇𝜇
𝜌𝜌1𝜌𝜌2𝐿𝐿2 𝜇 𝛼𝛼4𝜇𝜇2𝐿𝐿 𝜇 𝛼𝛼3𝜌𝜌2𝐿𝐿
𝜇𝜇1 (𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇

𝜇 (𝑏𝑏1 + 𝜇𝜇𝜇
𝜌𝜌2
𝜇𝜇1
𝐿𝐿 + (𝑏𝑏1 + 𝜇𝜇𝜇 (𝑏𝑏2 + 𝜇𝜇𝜇𝜇𝜇1

+ (𝑏𝑏2 + 𝜇𝜇𝜇
𝛼𝛼3 𝜇 𝜌𝜌1𝑅𝑅
𝜇𝜇2

+ (𝑏𝑏3 + 𝜇𝜇𝜇
𝜌𝜌1𝜌𝜌2𝐿𝐿2 𝜇 𝛼𝛼4𝜇𝜇2𝐿𝐿 𝜇 𝛼𝛼3𝜌𝜌2𝐿𝐿
𝜇𝜇2 (𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇

+ (𝑏𝑏4 + 𝜇𝜇𝜇 𝐿𝐿 + 𝛾𝛾𝐿𝐿 𝜇 𝑏𝑏.

(34)

From (28) we can see that if 𝐿𝐿 𝑅 𝛼𝛼3𝑏𝜌𝜌1, then 𝐿𝐿 > 𝐿. From (30)
we can see that if 𝐿𝐿 𝑅 𝜔𝜔𝑏𝜌𝜌1, then 𝜌𝜌1𝐿𝐿𝜇𝜔𝜔 𝑅 𝐿𝜇 𝜌𝜌1𝜌𝜌2𝐿𝐿𝜇𝛼𝛼4𝜇𝜇2 𝜇

𝛼𝛼3𝜌𝜌2 𝑅 𝐿; these show that 𝐿𝐿 > 𝐿. From (32), we can see that if
𝐿𝐿 𝑅 𝜔𝜔𝑏𝜌𝜌1, then 𝑃𝑃 > 𝐿. Therefore, if 𝐿𝐿 𝑅 𝜔𝜔𝑏𝜌𝜌1, 𝑃𝑃 > 𝐿, 𝐿𝐿 > 𝐿,
𝐿𝐿 > 𝐿, 𝐿𝐿 > 𝐿. In the following, we prove that the existence of
positive solutions of 𝑓𝑓(𝐿𝐿𝜇 𝐿 𝐿. From (34), we know

lim
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1−
𝑓𝑓 (𝐿𝐿𝜇 𝐿 +∞. (35)

If (𝑏𝑏1 + 𝜇𝜇𝜇(𝑏𝑏2 + 𝜇𝜇𝜇𝑏𝜇𝜇1 + (𝑏𝑏2 + 𝜇𝜇𝜇𝛼𝛼3𝑏𝜇𝜇2 𝑅 𝑏𝑏, then

𝑓𝑓 (𝐿𝜇 𝐿 (𝑏𝑏1 + 𝜇𝜇𝜇 (𝑏𝑏2 + 𝜇𝜇𝜇𝜇𝜇1
+ (𝑏𝑏2 + 𝜇𝜇𝜇 𝛼𝛼3𝜇𝜇2

𝜇 𝑏𝑏 𝑅 𝐿𝜇

𝑓𝑓 (𝐿𝐿𝜇 𝐿 (𝑏𝑏1 + 𝜇𝜇𝜇𝜇𝜇1
𝑔𝑔 (𝐿𝐿𝜇
(𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇2

𝜇 (𝑏𝑏1 + 𝜇𝜇𝜇
𝜌𝜌2
𝜇𝜇1
𝜇 (𝑏𝑏2 + 𝜇𝜇𝜇

𝜌𝜌1
𝜇𝜇2

+ (𝑏𝑏3 + 𝜇𝜇𝜇𝜇𝜇2
𝑔𝑔 (𝐿𝐿𝜇
(𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇2

+ (𝑏𝑏4 + 𝜇𝜇𝜇 + 𝛾𝛾𝜇
(36)

where

𝑔𝑔 (𝐿𝐿𝜇 𝐿 𝜌𝜌21𝜌𝜌2𝐿𝐿2 𝜇 2𝜌𝜌1𝜌𝜌2𝜔𝜔𝐿𝐿 + 𝛼𝛼4𝜇𝜇2𝜔𝜔 + 𝛼𝛼3𝜌𝜌2𝜔𝜔. (37)

Clearly, 𝐿𝐿 𝐿 𝜔𝜔𝑏𝜌𝜌1 is the minimum point of 𝑔𝑔(𝐿𝐿𝜇. For 𝐿𝐿 𝑅
(𝐿𝜇 𝜔𝜔𝑏𝜌𝜌1𝜇, we have

𝑔𝑔 (𝐿𝐿𝜇 ≥ 𝑔𝑔𝑔 𝜔𝜔𝜌𝜌1
) 𝐿 (𝜇𝜌𝜌2𝜔𝜔 + 𝛼𝛼4𝜇𝜇2 + 𝛼𝛼3𝜌𝜌2𝜇 𝜔𝜔 > 𝐿. (38)

Hence,

𝑓𝑓 (𝐿𝐿𝜇 𝐿 (𝑏𝑏1 + 𝜇𝜇𝜇𝜇𝜇1
𝛼𝛼4𝜇𝜇2𝜔𝜔 + 𝛼𝛼3𝜌𝜌2𝜔𝜔 𝜇 𝜌𝜌2𝜔𝜔2
(𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇2

+ ℎ (𝐿𝐿𝜇
𝜇𝜇2(𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇2

+ (𝑏𝑏4 + 𝜇𝜇𝜇 + 𝛾𝛾𝜇
(39)

where

ℎ (𝐿𝐿𝜇 𝐿 𝑏𝑏3𝜌𝜌21𝜌𝜌2𝐿𝐿2 𝜇 2𝑏𝑏3𝜌𝜌1𝜌𝜌2𝜔𝜔𝐿𝐿 + 𝑏𝑏3𝜔𝜔𝛼𝛼4𝜇𝜇2 + 𝑏𝑏3𝜔𝜔𝛼𝛼3𝜌𝜌2
+ 𝜇𝜇𝜌𝜌21𝜌𝜌2𝐿𝐿2 𝜇 2𝜇𝜇𝜌𝜌1𝜌𝜌2𝜔𝜔𝐿𝐿 + 𝜇𝜇𝜔𝜔𝛼𝛼4𝜇𝜇2 + 𝜇𝜇𝜔𝜔𝛼𝛼3𝜌𝜌2
𝜇 𝑏𝑏2𝜌𝜌31𝐿𝐿2 + 2𝑏𝑏2𝜌𝜌21𝜔𝜔𝐿𝐿 𝜇 𝑏𝑏2𝜌𝜌1𝜔𝜔2

𝜇 𝜇𝜇𝜌𝜌31𝐿𝐿2 + 2𝜇𝜇𝜌𝜌21𝜔𝜔𝐿𝐿 𝜇 𝜇𝜇𝜌𝜌1𝜔𝜔2.

(40)

Then

ℎ (𝐿𝐿𝜇 𝐿 2𝑏𝑏3𝜌𝜌1𝜌𝜌2 (𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇 + 2𝜇𝜇𝜌𝜌1𝜌𝜌2 (𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇
𝜇 2𝑏𝑏2𝜌𝜌1 (𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇 𝜇 2𝜇𝜇 (𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇
𝐿 2𝜌𝜌1 (𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇 (𝑏𝑏3𝜌𝜌2 𝜇 𝑏𝑏2𝜇
+ 2𝜇𝜇𝜌𝜌1 (𝜌𝜌1𝐿𝐿 𝜇 𝜔𝜔𝜇 (𝜌𝜌2 𝜇 1𝜇 𝜇

(41)

as we know that 𝜌𝜌2 𝑅 1 and 𝜌𝜌1𝐿𝐿𝜇𝜔𝜔 𝑅 𝐿. If 𝑏𝑏3𝜌𝜌2𝜇𝑏𝑏2 𝑅 𝐿, then
for any 𝐿𝐿 𝑅 (𝐿𝜇 𝜔𝜔𝑏𝜌𝜌1𝜇, we have ℎ(𝐿𝐿𝜇 > 𝐿, so ℎ(𝐿𝐿𝜇 is a strictly
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monotone increasing function on (0, 𝜔𝜔𝜔𝜔𝜔1). As we know that
𝜔𝜔2 > max{𝑑𝑑2𝜔𝜔1𝜔𝜔𝜔𝑑𝑑3𝛼𝛼3, 𝜔𝜔1𝜔𝜔𝜔𝛼𝛼3}, 𝑑𝑑3 > 𝑑𝑑2 and 𝛼𝛼3 > 𝜔𝜔, so

ℎ (0) = 𝑑𝑑3𝜔𝜔𝛼𝛼4𝛽𝛽2 + 𝑑𝑑3𝜔𝜔𝛼𝛼3𝜔𝜔2 + 𝜇𝜇𝜔𝜔𝛼𝛼4𝛽𝛽2
+ 𝜇𝜇𝜔𝜔𝛼𝛼3𝜔𝜔2 − 𝑑𝑑2𝜔𝜔1𝜔𝜔2 − 𝜇𝜇𝜔𝜔1𝜔𝜔2

= 𝑑𝑑3𝜔𝜔𝛼𝛼4𝛽𝛽2 + 𝜇𝜇𝜔𝜔𝛼𝛼4𝛽𝛽2 + 𝜔𝜔 𝜔𝑑𝑑3𝛼𝛼3𝜔𝜔2 − 𝑑𝑑2𝜔𝜔1𝜔𝜔𝜔
× 𝜇𝜇𝜔𝜔 𝜔𝛼𝛼3𝜔𝜔2 − 𝜔𝜔1𝜔𝜔𝜔 > 0𝜔

(42)

Hence, ℎ(𝑅𝑅) > 0 for any 𝑅𝑅 𝑅 (0, 𝜔𝜔𝜔𝜔𝜔1), so 𝑓𝑓(𝑅𝑅) > 0; that is,
𝑓𝑓(𝑅𝑅) is a strictly monotone increasing function on (0, 𝜔𝜔𝜔𝜔𝜔1).
Therefore, 𝑓𝑓(𝑅𝑅) = 0 has an unique positive solutions on
(0, 𝜔𝜔𝜔𝜔𝜔1). The proof is completed.

3.2. Qualitative Analysis. In this part we will discuss the
qualitative behavior of the giving up smoking model (2).

3.2.1. Stability of the Smoking-Free Equilibrium.

Theorem 4. If 𝑅𝑅0 ≤ 1, the smoking-free equilibrium 𝐸𝐸0 is
globally asymptotically stable.

Proof. We introduce the following Lyapunov function:

𝑉𝑉 (𝑃𝑃 (𝑡𝑡) , 𝐿𝐿 (𝑡𝑡) , 𝑆𝑆 (𝑡𝑡) , 𝑅𝑅 (𝑡𝑡) , 𝑄𝑄 (𝑡𝑡))

= 𝑃𝑃0 ( 𝑃𝑃𝑃𝑃0
− ln 𝑃𝑃𝑃𝑃0
) + 𝐿𝐿 + 𝑆𝑆 + 𝑅𝑅 + 𝑄𝑄𝜔

(43)

The derivative of 𝑉𝑉 is given by

𝑉𝑉 = 𝑃𝑃 − 𝑃𝑃0𝑃𝑃 𝑃𝑃
 + 𝐿𝐿 + 𝑆𝑆 + 𝑅𝑅 + 𝑄𝑄

= 𝑏𝑏 − 𝛽𝛽1𝑃𝑃𝐿𝐿 − 𝜔𝑑𝑑1 + 𝜇𝜇𝜔 𝑃𝑃 −
𝑏𝑏𝜔 𝜔𝑑𝑑1 + 𝜇𝜇𝜔
𝑃𝑃

× 𝜔𝑏𝑏 − 𝛽𝛽1𝑃𝑃𝐿𝐿 − 𝜔𝑑𝑑1 + 𝜇𝜇𝜔 𝑃𝑃𝜔 + 𝛽𝛽1𝑃𝑃𝐿𝐿 − 𝛽𝛽2𝐿𝐿𝑆𝑆
+ 𝜔𝜔2𝐿𝐿𝑅𝑅 − 𝜔𝑑𝑑2 + 𝜇𝜇𝜔 𝐿𝐿 + 𝛽𝛽2𝐿𝐿𝑆𝑆 + 𝜔𝜔1𝑆𝑆𝑅𝑅
− 𝜔𝜔𝜔 + 𝑑𝑑3 + 𝜇𝜇𝜔 𝑆𝑆 + 𝜔𝜔𝑆𝑆 − 𝜔𝜔1𝑆𝑆𝑅𝑅
− 𝜔𝜔2𝐿𝐿𝑅𝑅 − 𝜔𝐿𝐿 + 𝑑𝑑4 + 𝜇𝜇𝜔 𝑅𝑅 + 𝐿𝐿𝑅𝑅 − 𝜔𝑑𝑑5 + 𝜇𝜇𝜔𝑄𝑄

= 2𝑏𝑏 − 𝑏𝑏2
𝜔𝑑𝑑1 + 𝜇𝜇𝜔 𝑃𝑃

− 𝜔𝑑𝑑1 + 𝜇𝜇𝜔 𝑃𝑃 +
𝛽𝛽1𝑏𝑏
𝑑𝑑1 + 𝜇𝜇
𝐿𝐿

− 𝜔𝑑𝑑2 + 𝜇𝜇𝜔 𝐿𝐿 − 𝜔𝑑𝑑3 + 𝜇𝜇𝜔 𝑆𝑆 − 𝜔𝑑𝑑4 + 𝜇𝜇𝜔 𝑅𝑅 − 𝜔𝑑𝑑5 + 𝜇𝜇𝜔𝑄𝑄

= [2 − 𝑏𝑏
𝜔𝑑𝑑1 + 𝜇𝜇𝜔 𝑃𝑃

− 𝜔𝑑𝑑1 + 𝜇𝜇𝜔 𝑃𝑃𝑏𝑏 ] 𝑏𝑏

+ ( 𝛽𝛽1𝑏𝑏𝑑𝑑1 + 𝜇𝜇
− 𝑑𝑑2 − 𝜇𝜇)𝐿𝐿 − 𝜔𝑑𝑑3 + 𝜇𝜇𝜔 𝑆𝑆

− 𝜔𝑑𝑑4 + 𝜇𝜇𝜔 𝑅𝑅 − 𝜔𝑑𝑑5 + 𝜇𝜇𝜔𝑄𝑄

= [2 − 𝑏𝑏
𝜔𝑑𝑑1 + 𝜇𝜇𝜔 𝑃𝑃

− 𝜔𝑑𝑑1 + 𝜇𝜇𝜔 𝑃𝑃𝑏𝑏 ] 𝑏𝑏

+ 𝛽𝛽1𝑏𝑏 − 𝜔𝑑𝑑1 + 𝜇𝜇𝜔 𝜔𝑑𝑑2 + 𝜇𝜇𝜔𝑑𝑑1 + 𝜇𝜇
𝐿𝐿 − 𝜔𝑑𝑑3 + 𝜇𝜇𝜔 𝑆𝑆 − 𝜔𝑑𝑑4 + 𝜇𝜇𝜔 𝑅𝑅

− 𝜔𝑑𝑑5 + 𝜇𝜇𝜔𝑄𝑄𝜔
(44)

If 𝑅𝑅0 ≤ 1, then 𝛽𝛽1𝑏𝑏 ≤ (𝑑𝑑1 + 𝜇𝜇)(𝑑𝑑2 + 𝜇𝜇), so we get (𝛽𝛽1𝑏𝑏 − (𝑑𝑑1 +
𝜇𝜇)(𝑑𝑑2 + 𝜇𝜇)𝜔(𝑑𝑑1 + 𝜇𝜇)) 𝐿𝐿 ≤ 0.

As we know, 2 − 𝑏𝑏𝜔(𝑑𝑑1 + 𝜇𝜇)𝑃𝑃 − (𝑑𝑑1 + 𝜇𝜇)𝑃𝑃𝜔𝑏𝑏 ≤ 0, so we
obtain 𝑉𝑉 ≤ 0 with equality only if 2 − 𝑏𝑏𝜔(𝑑𝑑1 + 𝜇𝜇)𝑃𝑃 − (𝑑𝑑1 +
𝜇𝜇)𝑃𝑃𝜔𝑏𝑏 = 0, 𝑅𝑅0 = 1 and 𝑆𝑆 = 𝑅𝑅 = 𝑄𝑄 = 0. By LaSalle invariance
principle [20, 22], 𝐸𝐸0 is globally asymptotically stable. Thus,
for system (2), the smoking-free equilibrium 𝐸𝐸0 is globally
asymptotically stable if 𝑅𝑅0 ≤ 1.

3.2.2. Stability of the Occasion Smoking Equilibrium. In this
part, we will consider an occasional smoking equilibrium
𝐸𝐸𝐿𝐿((𝑑𝑑2 + 𝜇𝜇)𝜔𝛽𝛽1, 𝑏𝑏𝜔(𝑑𝑑2 + 𝜇𝜇) − (𝑑𝑑1 + 𝜇𝜇)𝜔𝛽𝛽1, 0, 0, 0); that is, only
potential smokers and occasionally smokers are not zero, and
the other compartments are zero.

Theorem 5. If 𝑅𝑅0 > 1, the occasion smoking equilibrium 𝐸𝐸𝐿𝐿 is
locally asymptotically stable.

Proof. The Jacobian matrix of the giving up smoking model
(2) around 𝐸𝐸𝐿𝐿 is given by

𝐽𝐽𝐸𝐸𝐿𝐿 = (
− 𝛽𝛽1𝑏𝑏𝑑𝑑2 + 𝜇𝜇

−𝑑𝑑2 − 𝜇𝜇
𝛽𝛽1𝑏𝑏
𝑑𝑑2 + 𝜇𝜇
− 𝜔𝑑𝑑1 + 𝜇𝜇𝜔 0

) 𝜔 (45)

The characteristic polynomial is 𝜓𝜓(𝜓𝜓) = 𝜓𝜓2 + 𝑐𝑐1𝜓𝜓 + 𝑐𝑐2, where
𝑐𝑐1 = 𝛽𝛽1𝑏𝑏𝜔(𝑑𝑑2 + 𝜇𝜇) and 𝑐𝑐2 = 𝛽𝛽1𝑏𝑏 − (𝑑𝑑1 + 𝜇𝜇)(𝑑𝑑2 + 𝜇𝜇).
Therefore by Routh-Hurwitz criteria we deduce that the roots
of the polynomial 𝜓𝜓(𝜓𝜓) have negative real part when 𝛽𝛽1𝑏𝑏 >
(𝑑𝑑1 + 𝜇𝜇)(𝑑𝑑2 + 𝜇𝜇), which shows that the system is locally
asymptotically stable if 𝑅𝑅0 > 1.
Theorem 6. If 𝑅𝑅0 > 1 and 𝑅𝑅1 = 𝑏𝑏𝛽𝛽2𝜔(𝑑𝑑2 + 𝜇𝜇)(𝑑𝑑3 + 𝜇𝜇) − (𝑑𝑑1 +
𝜇𝜇)𝛽𝛽2𝜔𝛽𝛽1(𝑑𝑑3 + 𝜇𝜇) ≤ 1, the occasion smoking equilibrium 𝐸𝐸𝐿𝐿 is
globally asymptotically stable.
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Proof. We introduce the following Lyapunov function:

𝑉𝑉 (𝑃𝑃 (𝑡𝑡) , 𝐿𝐿 (𝑡𝑡) , 𝑆𝑆 (𝑡𝑡) , 𝑅𝑅 (𝑡𝑡) , 𝑄𝑄 (𝑡𝑡))

= 𝑃𝑃𝐿𝐿 ( 𝑃𝑃𝑃𝑃𝐿𝐿
− ln 𝑃𝑃𝑃𝑃𝐿𝐿
) + 𝐿𝐿( 𝐿𝐿𝐿𝐿𝐿𝐿

− ln 𝐿𝐿𝐿𝐿𝐿𝐿
)

+ 𝑆𝑆 + 𝑅𝑅 + 𝑄𝑄𝑆

(46)

The derivative of 𝑉𝑉 is given by

𝑉𝑉 = 𝑃𝑃 − 𝑃𝑃𝐿𝐿𝑃𝑃 𝑃𝑃
 + 𝐿𝐿 − 𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿

 + 𝑆𝑆 + 𝑅𝑅 + 𝑄𝑄

= 2𝑏𝑏 − (𝑑𝑑2 + 𝜇𝜇𝜇 𝑏𝑏𝛽𝛽1𝑃𝑃
− 𝛽𝛽1𝑃𝑃𝑏𝑏𝑑𝑑2 + 𝜇𝜇

+ [( 𝑏𝑏𝑑𝑑2 + 𝜇𝜇
− 𝑑𝑑1 + 𝜇𝜇𝛽𝛽1

)𝛽𝛽2 − (𝑑𝑑3 + 𝜇𝜇𝜇𝜇 𝑆𝑆

− ( 𝑏𝑏𝑑𝑑2 + 𝜇𝜇
− 𝑑𝑑1 + 𝜇𝜇𝛽𝛽1

)𝜌𝜌2𝑅𝑅

− (𝑑𝑑4 + 𝜇𝜇𝜇 𝑅𝑅 − (𝑑𝑑5 + 𝜇𝜇𝜇𝑄𝑄

= (2 − 𝑑𝑑2 + 𝜇𝜇𝛽𝛽1𝑃𝑃
− 𝛽𝛽1𝑃𝑃𝑑𝑑2 + 𝜇𝜇

) 𝑏𝑏

+ [( 𝑏𝑏𝑑𝑑2 + 𝜇𝜇
− 𝑑𝑑1 + 𝜇𝜇𝛽𝛽1

)𝛽𝛽2 − (𝑑𝑑3 + 𝜇𝜇𝜇𝜇 𝑆𝑆

− ( 𝑏𝑏𝑑𝑑2 + 𝜇𝜇
− 𝑑𝑑1 + 𝜇𝜇𝛽𝛽1

)𝜌𝜌2𝑅𝑅

− (𝑑𝑑4 + 𝜇𝜇𝜇 𝑅𝑅 − (𝑑𝑑5 + 𝜇𝜇𝜇𝑄𝑄𝑆

(47)

If 𝑅𝑅0 > 1, we can obtain 𝑏𝑏𝑏(𝑑𝑑2 + 𝜇𝜇) − (𝑑𝑑1 + 𝜇𝜇)𝑏𝛽𝛽1 > 0. As we
know 2 − (𝑑𝑑2 + 𝜇𝜇)𝑏𝛽𝛽1𝑃𝑃 − 𝛽𝛽1𝑃𝑃𝑏(𝑑𝑑2 + 𝜇𝜇) 𝜇 0, if (𝑏𝑏𝑏(𝑑𝑑2 + 𝜇𝜇) −
(𝑑𝑑1 + 𝜇𝜇)𝑏𝛽𝛽1)𝛽𝛽2 𝜇 𝑑𝑑3 + 𝜇𝜇, so we obtain 𝑉𝑉 𝜇 0 with equality
only if 𝑅𝑅1 = 1 and 𝑅𝑅 = 𝑄𝑄 = 0. By LaSalle invariance principle
[20, 22], 𝐸𝐸𝐿𝐿 is globally asymptotically stable. This completes
the proof.

3.2.3. Stability of the Smoking-Present Equilibrium

Theorem 7. Under the condition (3) of the Theorem 3, if
𝑆𝑆𝑏𝑆𝑆∗, 𝑅𝑅𝑏𝑅𝑅∗ , 𝑄𝑄𝑏𝑄𝑄∗ satisfy one of four relations as follows:

𝑅𝑅
𝑅𝑅∗ < 1,

𝑄𝑄
𝑄𝑄∗ < 1,

𝑆𝑆
𝑆𝑆∗ ≥
𝑅𝑅
𝑅𝑅∗ ≥
𝑄𝑄
𝑄𝑄∗ ,

𝑅𝑅
𝑅𝑅∗ > 1,

𝑄𝑄
𝑄𝑄∗ > 1,

𝑆𝑆
𝑆𝑆∗ 𝜇
𝑅𝑅
𝑅𝑅∗ 𝜇
𝑄𝑄
𝑄𝑄∗ ,

𝑅𝑅
𝑅𝑅∗ > 1,

𝑄𝑄
𝑄𝑄∗ < 1,

𝑆𝑆
𝑆𝑆∗ 𝜇
𝑅𝑅
𝑅𝑅∗ ,

𝑅𝑅
𝑅𝑅∗ ≥
𝑄𝑄
𝑄𝑄∗ ,

𝑅𝑅
𝑅𝑅∗ < 1,

𝑄𝑄
𝑄𝑄∗ > 1,

𝑆𝑆
𝑆𝑆∗ ≥
𝑅𝑅
𝑅𝑅∗ ,

𝑅𝑅
𝑅𝑅∗ 𝜇
𝑄𝑄
𝑄𝑄∗ 𝑆

(48)

Then smoking-present equilibrium 𝐸𝐸∗(𝑃𝑃∗, 𝐿𝐿∗, 𝑆𝑆∗, 𝑅𝑅∗, 𝑄𝑄∗) is
globally asymptotically stable.

Proof. At the equilibrium point, the expressions on the right-
hand side of system (2) give us following relations:

(𝑑𝑑1 + 𝜇𝜇𝜇 = 𝑏𝑏𝑃𝑃∗ − 𝛽𝛽1𝐿𝐿
∗,

(𝑑𝑑2 + 𝜇𝜇𝜇 = 𝛽𝛽1𝑃𝑃∗ − 𝛽𝛽2𝑆𝑆∗ + 𝜌𝜌2𝑅𝑅∗,

(𝜔𝜔 + 𝑑𝑑3 + 𝜇𝜇𝜇 = 𝛽𝛽2𝐿𝐿∗ + 𝜌𝜌1𝑅𝑅∗,

(𝛾𝛾 + 𝑑𝑑4 + 𝜇𝜇𝜇 = 𝜔𝜔 𝑆𝑆
∗

𝑅𝑅∗ − 𝜌𝜌1𝑆𝑆
∗ − 𝜌𝜌2𝐿𝐿∗,

(𝑑𝑑5 + 𝜇𝜇𝜇 = 𝛾𝛾𝑅𝑅
∗

𝑄𝑄∗ 𝑆

(49)

We now consider a candidate Lyapunov function𝑉𝑉 such that

𝑉𝑉 = 𝑉𝑃𝑃 − 𝑃𝑃∗ − 𝑃𝑃∗ ln 𝑃𝑃𝑃𝑃∗ ) + 𝑉𝐿𝐿 − 𝐿𝐿
∗ − 𝐿𝐿∗ ln 𝐿𝐿𝐿𝐿∗ )

+ 𝑉𝑆𝑆 − 𝑆𝑆∗ − 𝑆𝑆∗ ln 𝑆𝑆𝑆𝑆∗ ) + 𝑉𝑅𝑅 − 𝑅𝑅
∗ − 𝑅𝑅∗ ln 𝑅𝑅𝑅𝑅∗ )

+ (𝑄𝑄 − 𝑄𝑄∗ − 𝑄𝑄∗ ln 𝑄𝑄𝑄𝑄∗) 𝑆

(50)

Then 𝑉𝑉 > 0 and the derivative of 𝑉𝑉 are given by

𝑉𝑉 = (1 − 𝑃𝑃
∗

𝑃𝑃 )𝑃𝑃
 + (1 − 𝐿𝐿

∗

𝐿𝐿 )𝐿𝐿
 + (1 − 𝑆𝑆

∗

𝑆𝑆 ) 𝑆𝑆


+ (1 − 𝑅𝑅
∗

𝑅𝑅 )𝑅𝑅
 + (1 − 𝑄𝑄

∗

𝑄𝑄 )𝑄𝑄


= (1 − 𝑃𝑃
∗

𝑃𝑃 ) [𝑏𝑏 − 𝛽𝛽1𝐿𝐿𝑃𝑃 − (𝑑𝑑1 + 𝜇𝜇𝜇 𝑃𝑃𝜇

+ (1 − 𝐿𝐿
∗

𝐿𝐿 ) [𝛽𝛽1𝐿𝐿𝑃𝑃 − 𝛽𝛽2𝐿𝐿𝑆𝑆 + 𝜌𝜌2𝑅𝑅𝐿𝐿 − (𝑑𝑑2 + 𝜇𝜇𝜇 𝐿𝐿𝜇

+ (1 − 𝑆𝑆
∗

𝑆𝑆 ) [𝛽𝛽2𝐿𝐿𝑆𝑆 + 𝜌𝜌1𝑅𝑅𝑆𝑆 − (𝜔𝜔 + 𝑑𝑑3 + 𝜇𝜇𝜇 𝑆𝑆𝜇

+ (1 − 𝑅𝑅
∗

𝑅𝑅 ) [𝜔𝜔𝑆𝑆 − 𝜌𝜌1𝑅𝑅𝑆𝑆 − 𝜌𝜌2𝑅𝑅𝐿𝐿 − (𝛾𝛾 + 𝑑𝑑4 + 𝜇𝜇𝜇 𝑅𝑅𝜇

+ (1 − 𝑄𝑄
∗

𝑄𝑄 ) [𝛾𝛾𝑅𝑅 − (𝑑𝑑5 + 𝜇𝜇𝜇𝑄𝑄𝜇 𝑆
(51)
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Using the relations in (49) we have

𝑉𝑉 = (1 − 𝑃𝑃
∗

𝑃𝑃 )[𝑏𝑏 − 𝑏𝑏1𝐿𝐿𝑃𝑃 −
𝑃𝑃∗
𝑃𝑃 𝑏𝑏 𝑏 𝑏𝑏1𝑃𝑃𝐿𝐿

∗]

𝑏 (1 − 𝐿𝐿
∗

𝐿𝐿 ) [𝑏𝑏1𝐿𝐿𝑃𝑃 − 𝑏𝑏2𝐿𝐿𝐿𝐿 𝑏 𝐿𝐿2𝑅𝑅𝐿𝐿 − 𝑏𝑏1𝑃𝑃
∗𝐿𝐿

𝑏𝑏𝑏2𝐿𝐿𝐿𝐿∗ − 𝐿𝐿2𝑅𝑅∗𝐿𝐿𝐿

𝑏 (1 − 𝐿𝐿
∗

𝐿𝐿 ) [𝑏𝑏2𝐿𝐿𝐿𝐿 𝑏 𝐿𝐿1𝑅𝑅𝐿𝐿 − 𝑏𝑏2𝐿𝐿
∗𝐿𝐿 − 𝐿𝐿1𝑅𝑅∗𝐿𝐿𝐿

𝑏 (1 − 𝑅𝑅
∗

𝑅𝑅 ) [𝜔𝜔𝐿𝐿 − 𝐿𝐿1𝑅𝑅𝐿𝐿 − 𝐿𝐿2𝑅𝑅𝐿𝐿 − 𝜔𝜔
𝑅𝑅
𝑅𝑅∗ 𝐿𝐿
∗

𝑏𝐿𝐿1𝑅𝑅𝐿𝐿∗ 𝑏 𝐿𝐿2𝑅𝑅𝐿𝐿∗]

𝑏 (1 − 𝑄𝑄
∗

𝑄𝑄 )[𝛾𝛾𝑅𝑅 − 𝛾𝛾
𝑄𝑄
𝑄𝑄∗𝑅𝑅
∗] .

(52)

We consider the following variable substitutions by letting

𝑃𝑃
𝑃𝑃∗ = 𝑥𝑥𝑥

𝐿𝐿
𝐿𝐿∗ = 𝑦𝑦𝑥

𝐿𝐿
𝐿𝐿∗ = 𝑧𝑧𝑥

𝑅𝑅
𝑅𝑅∗ = 𝑢𝑢𝑥

𝑄𝑄
𝑄𝑄∗ = 𝑣𝑣.

(53)

The derivative of 𝑉𝑉 reduces to

𝑉𝑉 = (1 − 1𝑥𝑥) (𝑏𝑏 − 𝑥𝑥𝑦𝑦𝑏𝑏1𝑃𝑃
∗𝐿𝐿∗ − 𝑥𝑥𝑏𝑏 𝑏 𝑥𝑥𝑏𝑏1𝑃𝑃∗𝐿𝐿∗)

𝑏 (1 − 1𝑦𝑦) (𝑥𝑥𝑦𝑦𝑏𝑏1𝑃𝑃
∗𝐿𝐿∗ 𝑏 𝑦𝑦𝑢𝑢𝐿𝐿2𝑅𝑅∗𝐿𝐿∗ − 𝑦𝑦𝑧𝑧𝑏𝑏2𝐿𝐿∗𝐿𝐿∗

−𝑦𝑦𝑏𝑏1𝑃𝑃∗𝐿𝐿∗ 𝑏 𝑦𝑦𝑏𝑏2𝐿𝐿∗𝐿𝐿∗ − 𝑦𝑦𝐿𝐿2𝑅𝑅∗𝐿𝐿∗)

𝑏 (1 − 1𝑧𝑧) (𝑦𝑦𝑧𝑧𝑏𝑏2𝐿𝐿
∗𝐿𝐿∗ 𝑏 𝑧𝑧𝑢𝑢𝐿𝐿1𝑅𝑅∗𝐿𝐿∗

−𝑧𝑧𝑏𝑏2𝐿𝐿∗𝐿𝐿∗ − 𝑧𝑧𝐿𝐿1𝑅𝑅∗𝐿𝐿∗)

𝑏 (1 − 1𝑢𝑢) (𝑧𝑧𝜔𝜔𝐿𝐿
∗ − 𝑧𝑧𝑢𝑢𝐿𝐿1𝑅𝑅∗𝐿𝐿∗ − 𝑦𝑦𝑢𝑢𝐿𝐿2𝑅𝑅∗𝐿𝐿∗

−𝑢𝑢𝜔𝜔𝐿𝐿∗ 𝑏 𝑢𝑢𝐿𝐿1𝑅𝑅∗𝐿𝐿∗ 𝑏 𝑢𝑢𝐿𝐿2𝑅𝑅∗𝐿𝐿∗)

𝑏 (1 − 1𝑣𝑣) (𝑢𝑢𝛾𝛾𝑅𝑅
∗ − 𝑣𝑣𝛾𝛾𝑅𝑅∗)

= (2 − 𝑥𝑥 − 1𝑥𝑥) 𝑏𝑏 𝑏 [(1 −
1
𝑥𝑥) (𝑥𝑥 − 𝑥𝑥𝑦𝑦)

𝑏(1 − 1𝑦𝑦) (𝑥𝑥𝑦𝑦 − 𝑦𝑦)] 𝑏𝑏1𝑃𝑃
∗𝐿𝐿∗

𝑏 [(1 − 1𝑦𝑦) (𝑦𝑦𝑢𝑢 − 𝑦𝑦) 𝑏 (1 −
1
𝑢𝑢) (𝑢𝑢 − 𝑦𝑦𝑢𝑢)] 𝐿𝐿2𝑅𝑅

∗𝐿𝐿∗

𝑏 [(1 − 1𝑦𝑦) (𝑦𝑦 − 𝑦𝑦𝑧𝑧) 𝑏 (1 −
1
𝑧𝑧) (𝑦𝑦𝑧𝑧 − 𝑧𝑧)] 𝑏𝑏2𝐿𝐿

∗𝐿𝐿∗

𝑏 [(1 − 1𝑧𝑧) (𝑧𝑧𝑢𝑢 − 𝑧𝑧) 𝑏 (1 −
1
𝑢𝑢) (𝑢𝑢 − 𝑧𝑧𝑢𝑢)] 𝐿𝐿1𝑅𝑅

∗𝐿𝐿∗

𝑏 (1 − 1𝑢𝑢) (𝑧𝑧 − 𝑢𝑢) 𝜔𝜔𝐿𝐿
∗

𝑏 (1 − 1𝑣𝑣) (𝑢𝑢 − 𝑣𝑣) 𝛾𝛾𝑅𝑅
∗

= (2 − 𝑥𝑥 − 1𝑥𝑥) 𝑏𝑏 𝑏 (1 −
1
𝑢𝑢) (𝑧𝑧 − 𝑢𝑢) 𝜔𝜔𝐿𝐿

∗

𝑏 (1 − 1𝑣𝑣) (𝑢𝑢 − 𝑣𝑣) 𝛾𝛾𝑅𝑅
∗𝑥

(54)

as we know that (2 − 𝑥𝑥 − 1𝑥𝑥𝑥) 𝑥 𝑥, when 𝑧𝑧𝑥 𝑢𝑢𝑥 𝑣𝑣 satisfy one of
four relations as follows:

𝑢𝑢 𝑢 1𝑥 𝑣𝑣 𝑢 1𝑥 𝑧𝑧 𝑢 𝑢𝑢 𝑢 𝑣𝑣𝑥
𝑢𝑢 𝑢 1𝑥 𝑣𝑣 𝑢 1𝑥 𝑧𝑧 𝑥 𝑢𝑢 𝑥 𝑣𝑣𝑥
𝑢𝑢 𝑢 1𝑥 𝑣𝑣 𝑢 1𝑥 𝑧𝑧 𝑥 𝑢𝑢𝑥 𝑢𝑢 𝑢 𝑣𝑣𝑥
𝑢𝑢 𝑢 1𝑥 𝑣𝑣 𝑢 1𝑥 𝑧𝑧 𝑢 𝑢𝑢𝑥 𝑢𝑢 𝑥 𝑣𝑣.

(55)

This implies that 𝑉𝑉 𝑥 𝑥 with equality only if 𝑃𝑃 = 𝑃𝑃∗ and
𝐿𝐿∗𝑥𝐿𝐿 = 𝑅𝑅∗𝑥𝑅𝑅 = 𝑄𝑄∗𝑥𝑄𝑄𝑥 that is𝑥 𝑥𝑥 = 1, 𝑧𝑧 = 𝑢𝑢 = 𝑣𝑣. By LaSalle
invariance principle [20, 22], 𝐸𝐸∗ is globally asymptotically
stable. This completes the proof.

Remark 8. It is possible for condition (48) to fail, in which
case the global stability of the interior equilibrium of system
(2) has not been established. Figure 2, however, seems to
support the idea that the interior equilibrium of system (2)
is still globally asymptotically stable even in this case.

4. Numerical Simulation

In this section, some numerical results of system (2) are pre-
sented for supporting the analytic results obtained previously.
Our data are taken from [18], we also consider the data from
Statistical Yearbook of the World Health [23] and Report of
the Global Tobacco Epidemic [24]. Now, we give the data in
Table 2.

According to the survey, the world population over the
age of 15 is about 5.5 billion; this population is recorded as
potential smokers, the smoking rate was 34%. Hence, we will
consider 5.5 billion, 2.2 billion, 1.87 billion, 0.058 billion, and
0.01 billion as the initial values of the five compartments.

Using the data in Table 2 we can get images in Figure 2.
The data in Table 2 satisfy the condition (3) ofTheorem 3;

we can see that the smoking-present equilibrium 𝐸𝐸∗ is
globally asymptotically stable.
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Figure 2: The smoking-present equilibrium 𝐸𝐸∗ is globally asymp-
totically stable.
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Figure 3:When 𝑅𝑅0 < 1, the smoking-free equilibrium 𝐸𝐸0 is globally
asymptotically stable.

For appropriate adjustment parameters, we choose 𝛽𝛽1 =
0.0038, then the smoking-free equilibrium 𝐸𝐸0 is globally
asymptotically stable (Figure 3).

If we choose 𝛽𝛽1 = 0.4, 𝛽𝛽2 = 0.5, 𝜇𝜇 = 0.1, 𝜇𝜇1 = 0.1, 𝜇𝜇2 =
0.2, 𝜇𝜇3 = 0.23, numerical simulation gives 𝑅𝑅0 > 1 and
𝑅𝑅1 < 1; the occasion smoking equilibrium 𝐸𝐸𝐿𝐿 is globally
asymptotically stable (Figure 4).

At last, we choose 𝛽𝛽1 = 0.000078125, 𝑏𝑏 = 0.02, 𝜇𝜇 𝑏 𝜇𝜇1 =
0.01, 𝜇𝜇 𝑏 𝜇𝜇2 = 0.01, numerical simulation gives 𝑅𝑅0 = 1; then
the smoking-free equilibrium 𝐸𝐸0 is globally asymptotically
stable (Figure 5).

5. Discussion

We have formulated a giving up smoking model with relapse
and investigate their dynamical behaviors. By means of the
next generation matrix, we obtain their basic reproduction
number, 𝑅𝑅0, which plays a crucial role. By constructing
Lyapunov function, we prove the global stability of their
equilibria: when the basic reproduction number is less than
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Figure 4: When 𝑅𝑅0 > 1 and 𝑅𝑅1 < 1, the occasion smoking equi-
librium 𝐸𝐸𝐿𝐿 is globally asymptotically stable.
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Figure 5:When 𝑅𝑅0 = 1, the smoking-free equilibrium 𝐸𝐸0 is globally
asymptotically stable.

or equal to one, all solutions converge to the smoking-free
equilibrium; that is, the smoking dies out eventually; when
the basic reproduction number exceeds one, the occasion
smoking equilibrium is stable; that is, the smokingwill persist
in the population, and the number of infected individuals
tends to a positive constant.

In this paper, we consider two relapses. One is relapsed
into light smokers and the other is relapsed into persistent
smokers. If we employ some ways, such as medical care or
education, to reduce the relapse rate, then, the number of the
quit smokers will increase. We choose 𝜌𝜌1 = 𝜌𝜌2 = 0.003, we
can get images in Figure 6.

Comparison of Figures 2 and 6, we can see the difference
between them. In Figure 6, the number of recovery and quit
smokers is increasing obviously. 𝑃𝑃𝑃𝑃𝑃𝑃, 𝐿𝐿𝑃𝑃𝑃𝑃, 𝑆𝑆𝑃𝑃𝑃𝑃, 𝑅𝑅𝑃𝑃𝑃𝑃 and
𝑄𝑄𝑃𝑃𝑃𝑃 are approaching the stable state earlier than the case of
Figure 2.

Through numerical simulation, we clearly recognize that
if we control the rate of relapse, then the efficiency of giving
up smoking will be greatly improved.
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Table 2: The parameter values of giving up smoking model.

Parameter Data estimated Data sources
𝑏𝑏 0.2 year−1 Estimate
𝛽𝛽1 0.038 year−1 Estimate
𝛽𝛽2 0.0411 year−1 Estimate
𝜌𝜌1 0.081 year−1 Estimate
𝜌𝜌2 0.06 year−1 Estimate
𝜔𝜔 0.041 year−1 Estimate
𝛾𝛾 0.0169 year−1 Estimate
𝜇𝜇 0.0111 year−1 Reference [20]
𝑑𝑑1 0.0019 year−1 Reference [16]
𝑑𝑑2 0.0021 year−1 Reference [16]
𝑑𝑑3 0.0037 year−1 Reference [16]
𝑑𝑑4 0.0012 year−1 Reference [16]
𝑑𝑑5 0.0001 year−1 Estimate
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Figure 6: When 𝜌𝜌1 = 𝜌𝜌2 = 0.003, the smoking-present equilibrium
𝐸𝐸∗ is globally asymptotically stable.

For system (2), 𝑏𝑏 reflects recruitment number, 𝛽𝛽1 reflects
the contact rate between potential smokers and occasion
smokers, and 𝑑𝑑1 denotes the deaths rate of potential smokers.
𝑑𝑑2 denotes the deaths rate of light or occasion smokers.These
four parameters will directly affect the values of the basic
reproductive number. Furthermore, when 𝑏𝑏 and 𝛽𝛽1 increase,
the number smokers will increase, that is,𝑅𝑅0 increases.When
we reduce the mortality caused by medical treatment, the
number of permanent quit smokers will increase. Hence, 𝑅𝑅0
will decrease. Figure 7 shows the relation between the basic
reproduction number 𝑅𝑅0 and 𝑑𝑑1, Figure 8 shows the relation
between the basic reproduction number 𝑅𝑅0 and 𝑑𝑑2, Figure 9
shows the relation between the basic reproduction number
𝑅𝑅0 and 𝑏𝑏, Figure 10 shows the relation between the basic
reproduction number 𝑅𝑅0 and 𝛽𝛽1. From Figures 11, 12, and
13, we can also see that if 𝑑𝑑1 and 𝑑𝑑2 increase, then 𝑅𝑅0 will
decrease. And if 𝑏𝑏 and 𝛽𝛽1 increase, then 𝑅𝑅0 will increase.
Biologically, this means that to reduce the relapse rate and the
deaths rate of nicotine by medical treatment, education and
legal constraints are very important.
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Figure 7: The relationship between 𝑅𝑅0 and 𝑑𝑑1.
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Figure 8: The relationship between 𝑅𝑅0 and 𝑑𝑑2.

Compared with [18], in this paper we add two bilinear
relapse rates. Hence, our model is more closer to real life. In
[18], the author only discussed the local asymptotic stability
of occasional smoking equilibrium. In this paper, we give
the proof of the global asymptotic stability of occasional
smoking equilibrium, adding two bilinear relapse rates based
on [18], our model becomes more complex. This brought
difficulties to the discussion of the existence and stability of
the endemic equilibrium. From (3) of Theorem 3, we know
that if 𝑅𝑅2 = 1/𝑅𝑅0 + (𝑑𝑑2 + 𝜇𝜇𝜇𝜇𝜇3/𝑏𝑏𝛽𝛽2 < 1, 𝑑𝑑3𝜌𝜌2 − 𝑑𝑑2 < 0
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Figure 9: The relationship between 𝑅𝑅0 and 𝑏𝑏.
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Figure 10: The relationship between 𝑅𝑅0 and 𝛽𝛽1.
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Figure 11: The relationship between 𝑅𝑅0, 𝑑𝑑1, and 𝑑𝑑2.
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Figure 12: The relationship between 𝑅𝑅0, 𝑏𝑏, and 𝑑𝑑1.

and 𝜌𝜌2 > max{𝑑𝑑2𝜌𝜌1𝜔𝜔𝜔𝑑𝑑3𝛼𝛼3, 𝜌𝜌1𝜔𝜔𝜔𝛼𝛼3}, then system (2) has
positive smoking-present equilibrium 𝐸𝐸∗(𝑃𝑃∗, 𝐿𝐿∗, 𝑆𝑆∗, 𝑅𝑅∗, 𝑄𝑄∗)
where 𝑅𝑅∗ ∈ (0, 𝜔𝜔𝜔𝜌𝜌1). Hence, the numerical values of 𝜌𝜌1 and
𝜌𝜌2 are playing an important role in the existence of 𝐸𝐸∗. Next,
we simulate the relationship between 𝜌𝜌1 and 𝜌𝜌2 under the
conditions 𝑅𝑅2 = 1𝜔𝑅𝑅0 + (𝑑𝑑2 + 𝜇𝜇)𝛼𝛼3𝜔𝑏𝑏𝛽𝛽2 < 1, 𝑑𝑑3𝜌𝜌2 − 𝑑𝑑2 < 0.

0 0.2 0.4 0.6 0.8 1

0
0.2

0.4
0.6

0.8
1
0
50
100
150
200

300
250

R
0

d2 b

Figure 13: The relationship between 𝑅𝑅0, 𝑏𝑏, and 𝑑𝑑2.
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Figure 14: If 𝑑𝑑2𝜌𝜌1𝜔𝜔𝜔𝑑𝑑3𝛼𝛼3 > 𝜌𝜌1𝜔𝜔𝜔𝛼𝛼3, the relationship between 𝜌𝜌1
and 𝜌𝜌2.
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Figure 15: If 𝑑𝑑2𝜌𝜌1𝜔𝜔𝜔𝑑𝑑3𝛼𝛼3 < 𝜌𝜌1𝜔𝜔𝜔𝛼𝛼3, the relationship between 𝜌𝜌1
and 𝜌𝜌2.

If 𝑑𝑑2𝜌𝜌1𝜔𝜔𝜔𝑑𝑑3𝛼𝛼3 > 𝜌𝜌1𝜔𝜔𝜔𝛼𝛼3, we plot the relationship between
𝜌𝜌1 and 𝜌𝜌2 in Figure 14. If 𝑑𝑑2𝜌𝜌1𝜔𝜔𝜔𝑑𝑑3𝛼𝛼3 < 𝜌𝜌1𝜔𝜔𝜔𝛼𝛼3, we plot the
relationship between 𝜌𝜌1 and 𝜌𝜌2 in Figure 15. From Figures 14
and 15, we can know that the point which locates above the
line is the positive smoking-present equilibrium.
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