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Many control systems can be written as a first-order differential equation if the state space enlarged. Therefore, general conditions
on controllability, stated for the first-order differential equations, are too strong for these systems. For such systems partial
controllability concepts, which assume the original state space, are more suitable. In this paper, a sufficient condition for the partial
complete controllability of semilinear control system is proved. The result is demonstrated through examples.

1. Introduction

A concept of controllability, defined by Kalman [1] in 1960 for
finite dimensional control systems, is a property of attaining
every point in the state space from every initial state point
for a finite time. Further studies on this concept in infinite
dimensional spaces demonstrated that it is suitable to con-
sider its two versions: a stronger version of complete control-
lability and a weaker version of approximate controllability.
The reason for these versions was the fact that many infinite
dimensional control systems are not completely controllable
while they are approximately controllable (see Fattorini [2]
and Russell [3]). The necessary and sufficient conditions
for complete and approximate controllability concepts are
almost completely studied and presented in, for example,
Curtain and Zwart [4], Bensoussan [5], Bensoussan et al.
[6], Zabczyk [7], Bashirov [8], Klamka [9], and so forth for
linear systems; Balachandran and Dauer [10, 11], Klamka
[12], Mahmudov [13], Li and Yong [14], and so forth for
nonlinear systems; Sakthivel et al. [15–17], Yan [18], and so
forth for fractional differential systems; and Ren et al. [19] for
differential inclusions.

Recently, in Bashirov et al. [20, 21] the partial controlla-
bility concepts were initiated. The idea of these concepts is
that some control systems, including higher order differential
equations, wave equations, and delay equations, can be
written as a first-order differential equation only by enlarging
the dimension of the state space. Therefore, the theorems on

controllability, which are formulated for control systems in
the form of first-order differential equation, are too strong
for them because they involve the enlarged state space.
In such cases the partial controllability concepts became
preferable, which assume the original state space. The basic
controllability conditions for linear systems, including resol-
vent conditions from Bashirov and Mahmudov [22] and
Bashirov and Kerimov [23] (see also [24–26]), are extended
to partial controllability concepts by just a replacement of the
controllability operator by its partial version.

In this paper our aim is to study the partial complete con-
trollability of semilinear systems.The controllability concepts
for semilinear systems are intensively discussed in the litera-
ture (see Balachandran andDauer [10, 11], Klamka [12], Mah-
mudov [13], Sakthivel et al. [15, 17], and references therein).
A basic tool of study in these works is fixed point theorems.
In this paper, we also use one of the fixed point theorems, a
contractionmapping theorem, and find a sufficient condition
for the partial complete controllability of a semilinear control
system.

The rest of this paper is organised in the following way. In
Section 2we set the problem, give basic definitions, andmoti-
vate the partial controllability concepts by considering a
higher order differential equation, a wave equation, and a
delay equation. Section 3 contains the proof of the main
result. In Section 4, we demonstrate the main result in the
examples. Finally, Section 5 contains directions of further
research regarding partial controllability concepts.
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2. Setting the Problem and Motivation

Consider the basic semilinear control system

𝑥
󸀠

𝑡
= 𝐴𝑥
𝑡
+ 𝐵𝑢
𝑡
+ 𝑓 (𝑡, 𝑥

𝑡
, 𝑢
𝑡
) , 0 < 𝑡 ≤ 𝑇, 𝑥

0
∈ 𝑋, (1)

on the interval [0, 𝑇] with 𝑇 > 0, where 𝑥 and 𝑢 are state and
control processes. We assume that the following conditions
hold.

(A) 𝑋 and 𝑈 are separable Hilbert spaces, 𝐻 is a closed
subspace of 𝑋, and 𝐿 is a projection operator from 𝑋

to𝐻;
(B) 𝐴 is a densely defined closed linear operator on 𝑋,

generating a strongly continuous semigroup 𝑒
𝐴𝑡, 𝑡 ≥

0;
(C) 𝐵 is a bounded linear operator from 𝑈 to𝑋;
(D) 𝑓 is a nonlinear function from [0, 𝑇] × 𝑋 × 𝑈 to 𝑋,

satisfying that

(i) 𝑓 is continuous on [0, 𝑇] × 𝑋 × 𝑈;
(ii) 𝑓 is Lipschitz continuous with respect to 𝑥 and

𝑢 that is, for all 𝑡 ∈ [0, 𝑇], 𝑢, V ∈ 𝑈 and 𝑥, 𝑦 ∈ 𝑋,
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑥, 𝑢) − 𝑓 (𝑡, 𝑦, V)󵄩󵄩󵄩

󵄩
≤ 𝐾 (

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩
+ ‖𝑢 − V‖) (2)

for some𝐾 ≥ 0;

(E) 𝑈ad = 𝐶(0, 𝑇; 𝑈) is the space of all continuous fun-
ctions from [0, 𝑇] to 𝑈.
Define the controllability and 𝐿-partial controllability
operators 𝑄

𝑡
and 𝑄

𝑡
by

𝑄
𝑡
= ∫

𝑡

0

𝑒
𝐴𝑠
𝐵𝐵
∗
𝑒
𝐴
∗

𝑠
𝑑𝑠, 𝑄

𝑡
= 𝐿𝑄
𝑡
𝐿
∗
, (3)

where 𝐿∗ is the adjoint of 𝐿. The 𝐿-partial controlla-
bility operator becomes the controllability operator if
𝐿 = 𝐼 (the identity operator). We will also assume the
following condition;

(F) 𝑄
𝑇
is coercive; that is, there is 𝛾 > 0 such that

⟨𝑄
𝑇
ℎ, ℎ⟩ ≥ 𝛾‖ℎ‖

2 for all ℎ ∈ 𝐻.

Note that this condition implies the existence of 𝑄−1
𝑇

as a
bounded linear operator and ‖𝑄

−1

𝑇
‖ ≤ 1/𝛾. Respectively, the

linear system associated with (1) (the case when 𝑓 = 0) is
𝐿-partially complete controllable on the interval [0, 𝑇] (see,
Bashirov et al. [20, 21]).

The above conditions imply the existence of a unique
continuous solution of (1) in the mild sense for every 𝑢 ∈ 𝑈ad
and 𝑥

0
∈ 𝑋 (see Li and Yong [14] and Byszewski [27]); that is,

there is a unique continuous function 𝑥 from [0, 𝑇] to𝑋 such
that

𝑥
𝑡
= 𝑒
𝐴𝑡
𝑥
0
+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

(𝐵𝑢
𝑠
+ 𝑓 (𝑠, 𝑥

𝑠
, 𝑢
𝑠
)) 𝑑𝑠. (4)

Let

𝐷
𝑥
0

𝑇
= {ℎ ∈ 𝐻 : ∃𝑢 ∈ 𝑈ad such that ℎ = 𝐿𝑥

𝑇
} . (5)

Following Bashirov et al. [21], the semilinear control system
(1) is said to be 𝐿-partially complete controllable on 𝑈ad if
𝐷
𝑥
0

𝑇
= 𝐻 for all 𝑥

0
∈ 𝑋. Similarly, the semilinear system in

(1) is said to be 𝐿-partially approximate controllable on𝑈ad if
𝐷
𝑥
0

𝑇
= 𝐻 for all 𝑥

0
∈ 𝑋, where 𝐷𝑥0

𝑇
is the closure of 𝐷𝑥0

𝑇
. If

𝐻 = 𝑋, these are just well-known complete and approximate
controllability concepts, respectively. In this paper, we study
the concept of 𝐿-partial complete controllability.

The reason for studying 𝐿-partial controllability concepts
is that many systems can be written in the form of (1)
if the original state space is enlarged. Therefore, suitable
controllability concepts for such systems are the 𝐿-partial
controllability concepts with the operator 𝐿 projecting the
enlarged state space to the original one. Here are some
examples of such systems, which are discussed in Bashirov
[8], Section 3.1.1, in more details.

Example 1. Consider the system

𝑥
(𝑛)

𝑡
= 𝑓 (𝑡, 𝑥

𝑡
, 𝑥
󸀠

𝑡
, . . . , 𝑥

(𝑛−1)

𝑡
, 𝑢
𝑡
) , (6)

assuming that its state space is the one-dimensional space
R. The ordinary controllability concepts for this system are
the equality to or denseness in R of the respective attainable
set. We can write this system as the first-order differential
equation

𝑦
󸀠

𝑡
= 𝐴𝑦
𝑡
+ 𝐹 (𝑡, 𝑦

𝑡
, 𝑢
𝑡
) (7)

if

𝑦
𝑡
=

[

[

[

[

[

[

[

𝑥
𝑡

𝑥
󸀠

𝑡

...
𝑥
(𝑛−2)

𝑡

𝑥
(𝑛−1)

𝑡

]

]

]

]

]

]

]

, 𝐴 =

[

[

[

[

[

[

[

0 1 ⋅ ⋅ ⋅ 0 0

0 0 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 0 1

0 0 ⋅ ⋅ ⋅ 0 0

]

]

]

]

]

]

]

,

𝐹 (𝑡, 𝑦, 𝑢) =

[

[

[

[

[

[

[

0

0

...
0

𝑓 (𝑡, 𝑥, 𝑥
󸀠
, . . . , 𝑥

(𝑛−1)
, 𝑢)

]

]

]

]

]

]

]

.

(8)

The state space of this system is the 𝑛-dimensional Euclidean
space R𝑛 and, respectively, its attainable set is a subset of R𝑛.
Therefore, the controllability concepts of the system for 𝑦 are
stronger than those of the system for 𝑥. But if we define the
projection operator 𝐿 by

𝐿 = [1 0 ⋅ ⋅ ⋅ 0 0] : R
𝑛
󳨀→ R, (9)

then the 𝐿-partial controllability concepts of the system for 𝑦
become the same as the ordinary controllability concepts of
the system for 𝑥.

Example 2. Consider the nonlinear wave equation

𝜕
2
𝑥
𝑡,𝜃

𝜕𝑡
2

=

𝜕
2
𝑥
𝑡,𝜃

𝜕𝜃
2

+ 𝑓(𝑡, 𝑥
𝑡,𝜃
,

𝜕𝑥
𝑡,𝜃

𝜕𝑡

, 𝑢
𝑡
) , (10)
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where 𝑥 is a real-valued function of two variables 𝑡 ≥ 0 and
0 ≤ 𝜃 ≤ 1. The state space of this system is 𝐿

2
(0, 1) (the space

of square integrable functions on [0, 1]). This system can be
written as the first-order abstract differential equation

𝑦
󸀠

𝑡
= 𝐴𝑦
𝑡
+ 𝐹 (𝑡, 𝑦

𝑡
, 𝑢
𝑡
) (11)

if

𝑦
𝑡
=
[

[

𝑥
𝑡,𝜃

𝜕𝑥
𝑡,𝜃

𝜕𝑡

]

]

, 𝐴 =
[

[

0 𝐼

𝑑
2

𝑑𝜃
2

0

]

]

,

𝐹 (𝑡, 𝑦, 𝑢) = [

0

𝑓 (𝑡, 𝑦
1
, 𝑦
2
, 𝑢)

] ,

(12)

where 𝑦 ∈ 𝐿
2
(0, 1) × 𝐿

2
(0, 1). The state space 𝐿

2
(0, 1) ×

𝐿
2
(0, 1) of the system for 𝑦 is the enlargement of the state

space 𝐿
2
(0, 1) of the system for 𝑥. This is a cost that is

paid to bring the wave equation to the form of first-order
differential equation. The ordinary controllability concepts
for the system (11) are too strong for the system (10). If

𝐿 = [𝐼 0] : 𝐿
2
(0, 1) × 𝐿

2
(0, 1) 󳨀→ 𝐿

2
(0, 1) , (13)

then 𝐿-partially controllability concepts of the system for 𝑦
become ordinary controllability concepts of the system for 𝑥.

Example 3. Consider the system

𝑥
󸀠

𝑡
= 𝑓(𝑡, 𝑥

𝑡
, ∫

0

−𝜀

𝑥
𝑡+𝜃

𝑑𝜃, 𝑢
𝑡
) , (14)

which contains a simple distributed delay in the nonlinear
term, assuming that 𝑥 is a real-valued function. Then the
state space is R. To bring this system to a system without
delay, enlargeR toR × 𝐿

2
(−𝜀, 0) and define 𝐿

2
(−𝜀, 0)-valued

function

[𝑥
𝑡
]
𝜃
= 𝑥
𝑡+𝜃

, 𝑡 ≥ 0, −𝜀 ≤ 𝜃 ≤ 0. (15)

Then for

𝑦
𝑡
= [

𝑥
𝑡

𝑥
𝑡

] , 𝐴 =
[

[

0 0

0

𝑑

𝑑𝜃

]

]

,

𝐹 (𝑡, 𝑦, 𝑢) = [

𝑓 (𝑡, 𝑥, 𝑥, 𝑢)

0
] ,

(16)

the above system can be written as the abstract system

𝑦
󸀠

𝑡
= 𝐴𝑦
𝑡
+ 𝑓 (𝑡, 𝑦

𝑡
, 𝑢
𝑡
) . (17)

Similar to the previous examples, one can easily observe that
the ordinary controllability concepts for the system (17) are
too strong for the system (14), but the 𝐿-partial controllability
concepts of the system for 𝑦 with

𝐿 = [𝐼 0] : R × 𝐿
2
(0, 1) 󳨀→ R (18)

are exactly the ordinary controllability concepts of the system
for 𝑥.

These examples motivate a study of the partial control-
lability concepts. In this paper it is proved that under the
conditions (A)–(F), the system in (1) is 𝐿-partially complete
controllable.

3. Main Result

Denote𝑋 = 𝐶(0, 𝑇;𝑋). Then𝑋 × 𝑈ad is a Banach space with
the norm

‖(⋅, ⋅)‖
𝑋̃×𝑈ad

= ‖⋅‖
𝑋̃
+ ‖⋅‖
𝑈ad

. (19)

Lemma 4. Under the conditions (A), (B), and (C),
󵄩
󵄩
󵄩
󵄩
𝑄
𝑡

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑄
𝑇

󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑄
𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑄
𝑇

󵄩
󵄩
󵄩
󵄩
󵄩
, 0 ≤ 𝑡 ≤ 𝑇. (20)

Proof. It is easy to see that 𝑄
𝑡
= 𝑄
∗

𝑡
and ⟨𝑄

𝑡
𝑥, 𝑥⟩ ≥ 0 for all

𝑥 ∈ 𝑋. Hence,
󵄩
󵄩
󵄩
󵄩
𝑄
𝑡

󵄩
󵄩
󵄩
󵄩
= sup
‖𝑥‖=1

⟨𝑄
𝑡
𝑥, 𝑥⟩. (21)

Then

⟨𝑄
𝑇
𝑥, 𝑥⟩ = ∫

𝑇

0

⟨𝑒
𝐴𝑠
𝐵𝐵
∗
𝑒
𝐴
∗

𝑠
𝑥, 𝑥⟩𝑑𝑠

= ⟨𝑄
𝑡
𝑥, 𝑥⟩ + ∫

𝑇

𝑡

⟨𝑒
𝐴𝑠
𝐵𝐵
∗
𝑒
𝐴
∗

𝑠
𝑥, 𝑥⟩𝑑𝑠

= ⟨𝑄
𝑡
𝑥, 𝑥⟩ + ∫

𝑇

𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐵
∗
𝑒
𝐴
∗

𝑠
𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠

≥ ⟨𝑄
𝑡
𝑥, 𝑥⟩ .

(22)

This implies ‖𝑄
𝑡
‖ ≤ ‖𝑄

𝑇
‖. The conclusion of the lemma

regarding 𝑄
𝑇
follows from ⟨𝑄

𝑡
𝑥, 𝑥⟩ = ⟨𝑄

𝑡
𝐿
∗
𝑥, 𝐿
∗
𝑥⟩.

The proof of the following lemma appears in different
forms in several papers, for example, Mahmudov [13]. Our
proof is a minor modification of them.

Lemma 5. Assume that the conditions (A)–(F) hold and take
arbitrary ℎ ∈ 𝐻. Then for the operator 𝐺 : 𝑋 × 𝑈

𝑎𝑑
→ 𝑋 ×

𝑈
𝑎𝑑
, defined by

𝐺 (𝑦, V) (𝑡) = (𝑌 (𝑡) , 𝑉 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇, (23)

where

𝑌 (𝑡) = −𝑄
𝑡
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇
𝐿∫

𝑇

0

𝑒
𝐴(𝑇−𝑠)

𝑓 (𝑠, 𝑦
𝑠
, V
𝑠
) 𝑑𝑠

+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝑓 (𝑠, 𝑦
𝑠
, V
𝑠
) 𝑑𝑠,

𝑉 (𝑡) = 𝐵
∗
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇

× (ℎ − 𝐿𝑒
𝐴𝑇
𝑥
0
− 𝐿∫

𝑇

0

𝑒
𝐴(𝑇−𝑠)

𝑓 (𝑠, 𝑦
𝑠
, V
𝑠
) 𝑑𝑠) ,

(24)

the following inequality holds:

󵄩
󵄩
󵄩
󵄩
𝐺 (𝑦, V) − 𝐺 (𝑧, 𝑤)

󵄩
󵄩
󵄩
󵄩
≤ (1 +

󵄩
󵄩
󵄩
󵄩
𝑄
𝑇

󵄩
󵄩
󵄩
󵄩
𝑀

𝛾

+

‖𝐵‖𝑀

𝛾

)

×𝑀𝐾𝑇 (
󵄩
󵄩
󵄩
󵄩
𝑦 − 𝑧

󵄩
󵄩
󵄩
󵄩
+ ‖V − 𝑤‖) ,

(25)

where

𝑀 = sup
0≤𝑡≤𝑇

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝐴𝑡󵄩󵄩
󵄩
󵄩
󵄩
. (26)
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Proof. Let (𝑦, V) and (𝑧, 𝑤) be two functions in 𝑋 × 𝑈ad such
that 𝐺(𝑦, V) = (𝑌, 𝑉) and 𝐺(𝑧, 𝑤) = (𝑍,𝑊). Then,

󵄩
󵄩
󵄩
󵄩
𝐺(𝑦, V) − 𝐺(𝑧, 𝑤)

󵄩
󵄩
󵄩
󵄩𝑋̃×𝑈ad

= ‖𝑌 − 𝑍‖
𝑋̃
+ ‖𝑉 −𝑊‖

𝑈ad
. (27)

Here, ‖𝑌 − 𝑍‖
𝑋̃
can be estimated as follows:

‖𝑌 − 𝑍‖ = max
𝑡∈[0,𝑇]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

(𝑓 (𝑠, 𝑦
𝑠
, V
𝑠
) − 𝑓 (𝑠, 𝑧

𝑠
, 𝑤
𝑠
)) 𝑑𝑠

− 𝑄
𝑡
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇
𝐿

×∫

𝑇

0

𝑒
𝐴(𝑇−𝑠)

(𝑓 (𝑠, 𝑦
𝑠
, V
𝑠
)−𝑓 (𝑠, 𝑧

𝑠
, 𝑤
𝑠
)) 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ max
𝑡∈[0,𝑇]

(𝑀 +𝑀
2 󵄩
󵄩
󵄩
󵄩
𝑄
𝑡

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑄
−1

𝑇

󵄩
󵄩
󵄩
󵄩
󵄩
)

× ∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑠, 𝑦

𝑠
, V
𝑠
) − 𝑓 (𝑠, 𝑧

𝑠
, 𝑤
𝑠
)
󵄩
󵄩
󵄩
󵄩
𝑑𝑠

≤ 𝑀(1 +𝑀
󵄩
󵄩
󵄩
󵄩
𝑄
𝑇

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑄
−1

𝑇

󵄩
󵄩
󵄩
󵄩
󵄩
)

× ∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑠, 𝑦

𝑠
, V
𝑠
) − 𝑓 (𝑠, 𝑧

𝑠
, 𝑤
𝑠
)
󵄩
󵄩
󵄩
󵄩
𝑑𝑠

≤ (1 +

󵄩
󵄩
󵄩
󵄩
𝑄
𝑇

󵄩
󵄩
󵄩
󵄩
𝑀

𝛾

)𝑀𝐾∫

𝑇

0

(
󵄩
󵄩
󵄩
󵄩
𝑦
𝑠
− 𝑧
𝑠

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
V
𝑠
− 𝑤
𝑠

󵄩
󵄩
󵄩
󵄩
) 𝑑𝑠

≤ (1 +

󵄩
󵄩
󵄩
󵄩
𝑄
𝑇

󵄩
󵄩
󵄩
󵄩
𝑀

𝛾

)𝑀𝐾𝑇 (
󵄩
󵄩
󵄩
󵄩
𝑦 − 𝑧

󵄩
󵄩
󵄩
󵄩
+ ‖V − 𝑤‖) .

(28)

Similarly, for ‖𝑉 −𝑊‖
𝑈ad

, we have

‖𝑉 −𝑊‖ = max
𝑡∈[0,𝑇]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐵
∗
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇
𝐿

×∫

𝑇

0

𝑒
𝐴(𝑇−𝑠)

(𝑓 (𝑠, 𝑦
𝑠
, V
𝑠
)−𝑓 (𝑠, 𝑧

𝑠
, 𝑤
𝑠
)) 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝑀
2

‖𝐵‖

󵄩
󵄩
󵄩
󵄩
󵄩
𝑄
−1

𝑇

󵄩
󵄩
󵄩
󵄩
󵄩
∫

𝑇

0

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑠, 𝑦

𝑠
, V
𝑠
) − 𝑓 (𝑠, 𝑧

𝑠
, 𝑤
𝑠
)
󵄩
󵄩
󵄩
󵄩
𝑑𝑠

≤ 𝑀
2

‖𝐵‖

1

𝛾

𝐾∫

𝑇

0

(
󵄩
󵄩
󵄩
󵄩
𝑦
𝑠
− 𝑧
𝑠

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
V
𝑠
− 𝑤
𝑠

󵄩
󵄩
󵄩
󵄩
) 𝑑𝑠

≤

‖𝐵‖𝑀

𝛾

𝑀𝐾𝑇 (
󵄩
󵄩
󵄩
󵄩
𝑦 − 𝑧

󵄩
󵄩
󵄩
󵄩
+ ‖V − 𝑤‖) .

(29)

Combining (28) and (29), we obtain the demanded inequal-
ity.

Lemma 6. Under the conditions (A)–(F), if

(1 +

󵄩
󵄩
󵄩
󵄩
𝑄
𝑇

󵄩
󵄩
󵄩
󵄩
𝑀

𝛾

+

‖𝐵‖𝑀

𝛾

)𝑀𝐾𝑇 < 1, (30)

then the operator 𝐺, mapping 𝑋 × 𝑈
𝑎𝑑

into 𝑋 × 𝑈
𝑎𝑑
, has a

unique fixed point (𝑥, 𝑢) ∈ 𝑋 × 𝑈
𝑎𝑑
.

Proof. By Lemma 5, 𝐺 is a contraction mapping. Also, the
space𝑋 × 𝑈ad is complete. Hence, 𝐺 has a fixed point.

Theorem 7. Under the conditions (A)–(F) and (30), the semi-
linear system (1) is 𝐿-partially complete controllable on [0, 𝑇].

Proof. Take any 𝑥
0
∈ 𝑋 and ℎ ∈ 𝐻. Show that there is 𝑢 ∈ 𝑈ad

such that ℎ = 𝐿𝑥
𝑇
. To this end, consider 𝑢, defined as follows:

𝑢
𝑡
= 𝐵
∗
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇

× (ℎ − 𝐿𝑒
𝐴𝑇
𝑥
0
− 𝐿∫

𝑇

0

𝑒
𝐴(𝑇−𝑠)

𝑓 (𝑠, 𝑥
𝑠
, 𝑢
𝑠
) 𝑑𝑠) .

(31)

Substituting (31) in (4) and applying Fubini’s theorem (see
Bashirov [8], p. 45), we obtain

𝑥
𝑡
= 𝑒
𝐴𝑡
𝑥
0

+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵𝐵
∗
𝑒
𝐴
∗

(𝑡−𝑠)
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇
(ℎ − 𝐿𝑒

𝐴𝑇
𝑥
0
) 𝑑𝑠

− ∫

𝑡

0

∫

𝑇

0

𝑒
𝐴(𝑡−𝑠)

𝐵𝐵
∗
𝑒
𝐴
∗

(𝑡−𝑠)
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇
𝐿𝑒
𝐴(𝑇−𝑟)

× 𝑓 (𝑟, 𝑥
𝑟
, 𝑢
𝑟
) 𝑑𝑟 𝑑𝑠

+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝑓 (𝑠, 𝑥
𝑠
, 𝑢
𝑠
) 𝑑𝑠

= 𝑒
𝐴𝑡
𝑥
0
+ 𝑄
𝑡
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇
(ℎ − 𝐿𝑒

𝐴𝑇
𝑥
0
)

+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝑓 (𝑠, 𝑥
𝑠
, 𝑢
𝑠
) 𝑑𝑠

− ∫

𝑇

0

∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝐵𝐵
∗
𝑒
𝐴
∗

(𝑡−𝑠)
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇
𝐿𝑒
𝐴(𝑇−𝑟)

× 𝑓 (𝑟, 𝑥
𝑟
, 𝑢
𝑟
) 𝑑𝑠 𝑑𝑟
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= 𝑒
𝐴𝑡
𝑥
0
+ 𝑄
𝑡
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇
(ℎ − 𝐿𝑒

𝐴𝑇
𝑥
0
)

+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝑓 (𝑠, 𝑥
𝑠
, 𝑢
𝑠
) 𝑑𝑠

− ∫

𝑇

0

𝑄
𝑡
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇
𝐿𝑒
𝐴(𝑇−𝑟)

𝑓 (𝑟, 𝑥
𝑟
, 𝑢
𝑟
) 𝑑𝑟

= 𝑒
𝐴𝑡
𝑥
0
+ 𝑄
𝑡
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇
(ℎ − 𝐿𝑒

𝐴𝑇
𝑥
0
)

+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝑓 (𝑠, 𝑥
𝑠
, 𝑢
𝑠
) 𝑑𝑠

− 𝑄
𝑡
𝑒
𝐴
∗

(𝑇−𝑡)
𝐿
∗
𝑄
−1

𝑇
𝐿∫

𝑇

0

𝑒
𝐴(𝑇−𝑠)

𝑓 (𝑠, 𝑥
𝑠
, 𝑢
𝑠
) 𝑑𝑠.

(32)

According to Lemma 6, there is a unique pair (𝑥, 𝑢) ∈ 𝑋 ×

𝑈ad, satisfying (31) and (32). So, 𝑢 ∈ 𝑈ad. Furthermore, we
have

𝐿𝑥
𝑇
= 𝐿(𝑒

𝐴𝑇
𝑥
0
+ 𝑄
𝑇
𝐿
∗
𝑄
−1

𝑇
(ℎ − 𝐿𝑒

𝐴𝑇
𝑥
0
)

+ ∫

𝑇

0

𝑒
𝐴(𝑇−𝑠)

𝑓 (𝑠, 𝑥
𝑠
, 𝑢
𝑠
) 𝑑𝑠

− 𝑄
𝑇
𝐿
∗
𝑄
−1

𝑇
𝐿∫

𝑇

0

𝑒
𝐴(𝑇−𝑠)

𝑓 (𝑠, 𝑥
𝑠
, 𝑢
𝑠
) 𝑑𝑠)

= 𝐿𝑒
𝐴𝑇
𝑥
0
+ 𝐿𝑄
𝑇
𝐿
∗
𝑄
−1

𝑇
(ℎ − 𝐿𝑒

𝐴𝑇
𝑥
0
)

+ 𝐿∫

𝑇

0

𝑒
𝐴(𝑇−𝑠)

𝑓 (𝑠, 𝑥
𝑠
, 𝑢
𝑠
) 𝑑𝑠

− 𝐿𝑄
𝑇
𝐿
∗
𝑄
−1

𝑇
𝐿∫

𝑇

0

𝑒
𝐴(𝑇−𝑠)

𝑓 (𝑠, 𝑥
𝑠
, 𝑢
𝑠
) 𝑑𝑠 = ℎ.

(33)

Thus, there is𝑢 ∈ 𝑈ad which steers𝑥0 to𝑥𝑇with𝐿𝑥𝑇 = ℎ.This
means that the semilinear system (1) is 𝐿-partially complete
controllable on [0, 𝑇] as desired.

Remark 8. Decomposing 𝑄
𝑇
in the form

𝑄
𝑇
= [

𝑄
𝑇

𝑅
𝑇

𝑅
∗

𝑅
𝑃
𝑇

] , (34)

where 𝑅
𝑇
: 𝐻
⊥
→ 𝐻 and 𝑃

𝑇
: 𝐻
⊥
→ 𝐻
⊥ are other compo-

nents of𝑄
𝑇
besides𝑄

𝑇
and𝐻⊥ is an orthogonal complement

of𝐻 in𝑋, one can calculate

⟨𝑄
𝑇
ℎ, ℎ⟩ = ⟨𝑄

𝑇
ℎ
1
, ℎ
1
⟩ + 2⟨𝑅

𝑇
ℎ
2
, ℎ
1
⟩ + ⟨𝑃

𝑇
ℎ
2
, ℎ
2
⟩, (35)

where ℎ
1
= 𝐿ℎ ∈ 𝐻 and ℎ

2
= ℎ − 𝐿ℎ ∈ 𝐻

⊥. Therefore, the
coercivity of 𝑄

𝑇
implies the same of 𝑄

𝑇
. But, the converse

is not true. Theorem 7 is powerful in the cases when 𝑄
𝑇
is

coercive, but 𝑃
𝑇
is not.

Example 9. Theorem 7 establishes just sufficient condition
of 𝐿-partial complete controllability. In this example we will

demonstrate that this is not a necessary condition. We will
consider a simple case of 𝐿 = 𝐼 when 𝐿-partial complete
controllability reduces to complete controllability. Consider
the one-dimensional control system

𝑥
󸀠

𝑡
= 2𝑥
𝑡
+ 2𝑢
𝑡
, 𝑥
0
∈ R. (36)

This is a linear system, and the controllability operator of this
system is equal to

∫

𝑇

0

4𝑒
4𝑡
𝑑𝑡 = 𝑒

4𝑇
− 1 > 0 for every 𝑇 > 0. (37)

According to the theory of controllability for linear systems,
this system is controllable (completely) for every 𝑇 > 0.

Have another look at this system by writing it as

𝑥
󸀠

𝑡
= 𝑥
𝑡
+ 𝑢
𝑡
+ 𝑓 (𝑥

𝑡
, 𝑢
𝑡
) , 𝑥

0
∈ R, (38)

where

𝑓 (𝑥, 𝑢) = 𝑥 + 𝑢. (39)

Here, 𝑓 satisfies the Lipschitz condition with 𝐾 = 1. Also,
𝐴 = 𝐵 = 1, implying ‖𝐵‖ = 1 and 𝑀 = sup

[0,𝑇]
‖𝑒
𝐴𝑡
‖ = 𝑒
𝑇.

Furthermore,

𝑄
𝑇
= ∫

𝑇

0

𝑒
2𝑡
𝑑𝑡 =

𝑒
2𝑇

− 1

2

. (40)

So, ‖𝑄
𝑇
‖ = 𝛾 = (𝑒

2𝑇
−1)/2. Then the inequality (30) becomes

(1 + 𝑒
𝑇
+

2𝑒
𝑇

𝑒
𝑇
− 1

) 𝑒
𝑇
𝑇 < 1. (41)

The limit of the left-hand side in this inequality when 𝑇 →

∞ is equal to∞. This means that there is a sufficiently large
𝑇 such that the conditions of Theorem 7 do not hold for this
𝑇, although the system under consideration is completely
controllable. Thus, Theorem 7 states a sufficient condition
which is not a necessary condition.

4. Examples

We demonstrate the features of 𝐿-partial complete controlla-
bility in the following examples of control systems.

Example 1. Consider the system of differential equations

𝑥
󸀠

𝑡
= 𝑦
𝑡
+ 𝑏𝑢
𝑡
, 𝑥
0
∈ R,

𝑦
󸀠

𝑡
= 𝑓 (𝑡, 𝑥

𝑡
, 𝑦
𝑡
, 𝑢
𝑡
) , 𝑦

0
∈ R

(42)

on [0, 𝑇], where 𝑢 ∈ 𝑈ad = 𝐶(0, 𝑇;R). Besides the complete
controllability property, that is,

{(𝑥, 𝑦) ∈ R
2
: ∃𝑢 ∈ 𝑈ad such that (𝑥

𝑇
, 𝑦
𝑇
) = (𝑥, 𝑦)} = R

2
,

(43)

we can investigate the partial complete controllability prop-
erty, that is,

{𝑥 ∈ R : ∃𝑢 ∈ 𝑈ad such that 𝑥
𝑇
= 𝑥} = R. (44)
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We can write this system in R2 as the following semilinear
system:

𝑧
󸀠

𝑡
= 𝐴𝑧
𝑡
+ 𝐹 (𝑡, 𝑧

𝑡
, 𝑢
𝑡
) + 𝐵𝑢

𝑡
, (45)

where

𝑧
𝑡
= [

𝑥
𝑡

𝑦
𝑡

] , 𝐴 = [

0 1

0 0
] 𝐵 = [

𝑏

0
] ,

𝐹 (𝑡, 𝑧, 𝑢) = [

0

𝑓 (𝑡, 𝑥, 𝑦, 𝑢)
] ,

(46)

assuming that

𝑧 = [

𝑥

𝑦
] . (47)

It can be calculated that

𝑒
𝐴𝑡

= [

1 𝑡

0 1
] = [

1 0

0 1
] + [

0 𝑡

0 0
] . (48)

Hence,
󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝐴𝑡󵄩󵄩
󵄩
󵄩
󵄩
≤ 1 + 𝑡 ≤ 1 + 𝑇, 0 ≤ 𝑡 ≤ 𝑇. (49)

The controllability operator is

𝑄
𝑇
= ∫

𝑇

0

𝑒
𝐴𝑡
𝐵𝐵
∗
𝑒
𝐴
∗

𝑡
𝑑𝑡 = 𝑏

2
𝑇[

1 0

0 0
] . (50)

Hence, 𝑄
𝑇
is not coercive, and the conditions for complete

controllability, based on coercivity of𝑄
𝑇
, fail for this example.

Although system (42) can still be complete controllable for
properly selected functions 𝑓, we can investigate the partial
complete controllability for this system being interested in
just the first component 𝑥

𝑡
of 𝑧
𝑡
.

Let 𝐿 = [1 0]. Then

𝑄
𝑇
= 𝐿𝑄
𝑇
𝐿
∗
= 𝑏
2
𝑇 > 0. (51)

This means that the linear system associated with the semili-
near system (45) is𝐿-partially complete controllable. Further-
more, the inequality (30) becomes

(1 +

𝑏
2
𝑇 (1 + 𝑇)

𝑏
2
𝑇

+

𝑏 (1 + 𝑇)

𝑏
2
𝑇

) (1 + 𝑇) 𝑇𝐾 < 1, (52)

or, simplifying,

𝐾 <

𝑏

(1 + 𝑇) (1 + 𝑇 + 2𝑏𝑇 + 𝑏𝑇
2
)

. (53)

This establishes a relation between Lipschitz coefficient 𝐾
and terminal time moment 𝑇. Depending on 𝐾, 𝑇 must be
taken sufficiently large to satisfy (53). So, the system (42) is 𝐿-
partially complete controllable for the time 𝑇 if the Lipschitz
coefficient 𝐾, related to 𝑓, satisfies (53).

Example 2. Delay equations are typical for application of
partial controllability concepts. Consider a nonlinear delay
equation

𝑥
󸀠

𝑡
= 𝑎𝑥
𝑡
+ 𝑏𝑢
𝑡
+ 𝑓(𝑡, 𝑥

𝑡
, ∫

0

−𝜀

𝑥
𝑡+𝜃

𝑑𝜃, 𝑢
𝑡
) ,

𝑥
0
= 𝜉, 𝑥

𝜃
= 𝜂
𝜃
, −𝜀 ≤ 𝜃 ≤ 0,

(54)

on [0, 𝑇], where 0 < 𝜀 < 𝑇, 𝜂 ∈ 𝐿
2
(−𝜀, 0;R), and 𝑢 ∈ 𝑈ad =

𝐶(0, 𝑇;R).
Similar to Example 3, introduce the function𝑥 : [0, 𝑇] →

𝐿
2
(−𝜀, 0;R) by

[𝑥
𝑡
]
𝜃
= 𝑥
𝑡+𝜃

, 0 ≤ 𝑡 ≤ 𝑇, −𝜀 ≤ 𝜃 ≤ 0. (55)

This function satisfies

𝑥
󸀠

𝑡
= (

𝑑

𝑑𝜃

)𝑥
𝑡
, 𝑥

0
= 𝜂, 0 < 𝑡 ≤ 𝑇. (56)

Denote by T
𝑡
, 𝑡 ≥ 0, the semigroup generated by the

differential operator 𝑑/𝑑𝜃 and let Γ be the integral operator
from 𝐿

2
(−𝜀, 0;R) to R, defined by

Γℎ = ∫

0

−𝜀

ℎ
𝜃
𝑑𝜃, ℎ ∈ 𝐿

2
(−𝜀, 0;R) , (57)

noticing that ‖Γ‖ ≤ √𝜀. Then for

𝑦
𝑡
= [

𝑥
𝑡

𝑥
𝑡

] , 𝜁 = [

𝜉

𝜂
] ∈ R × 𝐿

2
(−𝜀, 0;R) , (58)

we can write system (54) as

𝑦
󸀠

𝑡
= 𝐴𝑦
𝑡
+ 𝐹 (𝑡, 𝑦

𝑡
, 𝑢
𝑡
) + 𝐵𝑢

𝑡
, 𝑦
0
= 𝜁, (59)

where

𝐴 =
[

[

𝑎 0

0

𝑑

𝑑𝜃

]

]

, 𝐹 (𝑡, 𝑦, 𝑢) = [

𝑓 (𝑡, 𝑥, Γ𝑥, 𝑢)

0
] ,

𝐵 = [

𝑏

0
] ,

(60)

assuming that

𝑦 = [

𝑥

𝑥
] ∈ R × 𝐿

2
(−𝜀, 0;R) . (61)

The semigroup, generated by 𝐴, has the form

𝑒
𝐴𝑡

= [
𝑒
𝑎𝑡

0

0 T
𝑡

] , 𝑡 ≥ 0. (62)

Therefore, the controllability operator for system (54) can be
calculated as

𝑄
𝑇
= ∫

𝑇

0

𝑒
𝐴𝑡
𝐵
∗
𝐵𝑒
𝐴
∗

𝑡
𝑑𝑡 = ∫

𝑇

0

[
𝑏
2
𝑒
2𝑎𝑡

0

0 0

] 𝑑𝑡

=
[

[

[

𝑏
2
(𝑒
2𝑎𝑇

− 1)

2𝑎

0

0 0

]

]

]

.

(63)

This is definitely not a coercive operator.
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Taking into account that the original system is given by
(54) and (59) is just representation of (54) in the standard
form, which enlarges the original state space R to R ×

𝐿
2
(−𝜀, 0;R), we observe that the complete controllability for

system (54) is in fact 𝐿-partial complete controllability for
system (59) if

𝐿 = [1 0] : R × 𝐿
2
(−𝜀, 0;R) 󳨀→ R. (64)

Calculating partial controllability operator, we obtain

𝑄
𝑇
= 𝐿𝑄
𝑇
𝐿
∗
=

𝑏
2
(𝑒
2𝑎𝑇

− 1)

2𝑎

> 0,
(65)

which is coercive.
Furthermore, using

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝐴𝑡󵄩󵄩
󵄩
󵄩
󵄩
≤ 1 + 𝑒

𝑎𝑇
,

󵄩
󵄩
󵄩
󵄩
𝑄
𝑇

󵄩
󵄩
󵄩
󵄩
= 𝛾 =

𝑏
2
(𝑒
2𝑎𝑇

− 1)

2𝑎

,
(66)

we write the inequality (30) in the form

(1 + 1 + 𝑒
𝑎𝑇

+

2𝑎

𝑏 (𝑒
𝑎𝑇

− 1)

) (1 + 𝑒
𝑎𝑇
) 𝑇𝐾 < 1. (67)

If the Lipschitz coefficient 𝐾 of the function 𝐹 and terminal
time moment 𝑇 satisfy this inequality, then system (54) is
completely controllable, which in turnmeans that system (59)
is 𝐿-partially complete controllable.

5. Conclusion

In this paper a sufficient condition for partial complete con-
trollability of a semilinear control system is proved. This is a
continuation of the pioneering research that has been done by
Bashirov et al. [20, 21] about partial controllability concepts.
A research in this way, concerning partial complete and
approximate controllability for semilinear deterministic and
stochastic systems, has already been done and awaiting
for publication. There are other kinds of systems which
besides semilinearity include other features, for example,
impulsiveness, fractional derivative issue, and so forth. The
result of this paper can be extended to these systems as well.
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