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Human action recognition is an important area of human action recognition research. Focusing on the problem of self-occlusion
in the field of human action recognition, a new adaptive occlusion state behavior recognition approach was presented based on
Markov randomfield and probabilistic Latent Semantic Analysis (pLSA). Firstly, theMarkov randomfield was used to represent the
occlusion relationship between human body parts in terms an occlusion state variable by phase space obtained.Then, we proposed
a hierarchical area variety model. Finally, we use the topic model of pLSA to recognize the human behavior. Experiments were
performed on the KTH, Weizmann, and Humaneva dataset to test and evaluate the proposed method. The compared experiment
results showed that what the proposed method can achieve was more effective than the compared methods.

1. Introduction

Automatic recognition of human actions from video is
a challenging problem that has attracted the attention of
researchers in the recent decades. It has applications in
many areas such as entertainment, virtual reality, motion
capture, sport training [1], medical biomechanical analysis,
ergonomic analysis, human-computer interaction, surveil-
lance and security, environmental control and monitoring,
and patient monitoring systems.

Occlusion state recognition has been traditionally tackled
by applying statistical prediction and inference methods.
Unfortunately, basic numerical methods have proved to be
insufficient when dealing with complex occlusion scenarios
that present interactions between objects (e.g., occlusions,
unions, or separations), modifications of the objects (e.g.,
deformations), and changes in the scene (e.g., illumination).
These events are hard to manage and frequently result in
tracking errors, such as track discontinuity, inconsistent track
labeling.

The Pictorial structure method [2], which represents the
human body as a set of linked rectangular regions, does not
take occlusion into account. Sigal et al. [3] argue that the self-
occlusion problem can be reduced by an occlusion-sensitive
likelihood model. This works well if the occlusionstates (i.e.,
the depth ordering of parts) is known; for example, if it

is specified at the start of the motion and then does not
change over time. But, in practice, the depth order of object
parts—for example, right arm, torso. Estimating 2D human
pose is difficult because of image noises (e.g., illumination
and background clutter), self-occlusion, and the varieties of
human appearances (i.e., clothing, gender, and body shape)
[3–5]. Estimating and tracking 3D human pose is even more
challenging because of the large state space of the human
body in 3D and our indirect knowledge of 3D depth [6]. In
contrast, our approach focuses on self-occlusion. While all
of the above methods are modeled to estimate poses from
still images, there exists only limited research on the same
task in videos. Guo et al. [7] applied the BOW model with
human action recognition in video sequence. Niebles et al. [8]
successfully applied this model to classify the video sequence
of the human action. Wang and Mori [9] assigned each
frame of an image sequence to a visual word by analyzing
the motion of the person it contains. Sy et al. [10] applied
the CRF with a hidden state structure to predict the label
of the whole sequence of human gestures. Sigal et al. [3]
modeled self-occlusion handling in the PS framework as a
set of constraints on the occluded parts, which are extracted
after performing background subtraction which renders it
unsuitable for dynamic background scenes.

Our work follows literatures [3, 7, 9, 11] by producing
a framework for articulated pose estimate-on robust to
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cluttered backgrounds and self-occlusion without relying
on background subtraction models. The step of rectifying
occluded body parts via a GPR model is inspired by recent
work by Asthana et al. [12] who used GPR for modeling
parametric correspondences between facemodels of different
people. Our problem is more difficult because the human
body includes more parameters to be rectified and has more
degrees of freedom than faces.

In order to overcome the shortcomingsmentioned above,
we propose an adaptive self-occlusion state recognition
method that estimates not only everybody configuration but
also the occlusion states of body parts.

Firstly, theMarkov randomfieldwas used to represent the
occlusion relationship between human body parts in terms
of occlusion state variable by phase space obtained. Then,
we proposed a hierarchical area variety model. Finally, we
infered human behavior by pLSA. Experiments on Human
Eva data set were performed to test and evaluate the proposed
algorithm. The experiment results have shown that the
proposed method is effective in action recognition.

2. Human Trajectory Reconstruction

A tree structure movement of the human body skeleton
structure is used by creating visual invariant model [13], the
human body is divided into 15 key points; namely, 15 joint
point represents the human body structure, and the 15 joints
trajectory represents the human body behavior and then uses
Markov random field (MRF) by calculating the observation,
spatial relations, and the motion relationship and ultimately
determines the occlusion positions of the body joints and
restores themissing trajectory. Specific steps described below.

The Markov random field (MRF) was used with a state
variable representing the occlusion relationship between
body parts. Formally, theMRF was a graph𝐺 = (𝑉, 𝐸), where
𝑉 was the set of nodes and 𝐸 was the set of edges. The graph
nodes 𝑉 represented the state of a human body part and
graph edges 𝐸model the relationships between the parts [11].
The probability distribution over this graph was specified by
the set of potentials defined over the set of edges. The MRF
structural parameters are defined as follows: 𝑋
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where 𝑍 is a normalization constant.
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where𝑋𝑡 is𝑋 joint location at 𝑡 time.
The occluded relation among joints can be obtained by
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Theoccluded joints can be calculated byMRF at the entire
time of motion. In this paper, we connect missing data in
order to restore missing coordinate position.

3. Feature Representation

The human action can be recognized in terms of hierarchical
area model, relative velocity, and relative acceleration.

3.1. Hierarchical Area Model. For describing the human
motion pose (e.g., jogging, running, and walking), we make
use of hierarchical area model and extract human facial area
𝑆
𝐻, upper limbs area 𝑆𝑈and leg area 𝑆𝐿. To human facial area
𝑆
𝐻 are extracted in the following way.

(1) According to Canny algorithm, each of the facial
contour point set is extracted, and denoted as 𝐶𝑘,
where 𝑘 is the number of contour point.

(2) The face contour can be least square fitting by 𝐶𝑘,
which obtained in step 1.

(3) According to step 1 and step 2, if the body movement
to make the front, the face area is the largest, if

the human turned sideways, the face area will change.
Thus, face area in coordinate is
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(12)

where 𝑛 is the frames, 𝑆𝐻(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) is the set of face
contour in all frames, 𝛿(V(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)) is the set of
contour in all frames.

(4) By Repeat Steps 1∼3, the face area can be calculated in
all frames.

Calculating 𝑆𝑈and 𝑆𝐿 is similar to 𝑆𝐻.
Figure 1 shows that the curve for some area features of

pedestrian walking. Figure 1(a) is the area variation curve of
𝑆
𝐻. Figure 1(b) is the area variation curve of 𝑆𝑈. Figure 1(b) is
the area variation curve of 𝑆𝐿.

3.2. RelativeVelocity andRelativeAcceleration. Wecan get the
relative velocity and relative acceleration by the trajectory of
each joint.

Each point’ weight can be considered as the same, and
build statistical model to calculate the relative velocity and
relative acceleration among relativemotion joints (e.g., hands
and legs) in order to reason the initial state of motion.

Δ
𝑖,𝑗
=
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where Δ
𝑖,𝑗
is the relative velocity among 𝑖 and 𝑗.

The area-velocity goodness 𝑇
𝑗
is obtained as follow.

T1 : jogging,ΔV (the left knee, the right knee),ΔV (the left
foot, the right foot),ΔV (the right knee, the right foot),
ΔV (the left foot, the left ankle), ΔV (the right foot, the
right ankle) > 𝑡1, and Δ𝛼 (the left foot, the left knee)
> 𝑡2.

T2 : running,ΔV (the left foot, the left knee),ΔV (the right
foot, the right knee), ΔV (the left foot, the left ankle),
ΔV (the right foot, the right ankle) > 𝑡3, and Δ𝛼 (the
left foot, the left knee), Δ𝛼 (the left foot, the right
knee), and Δ𝛼 (the left foot, the right foot) > 𝑡4.

T3 :walking, ΔV (the left foot, the left knee), ΔV (the right
foot, the right knee), ΔV (the left foot, the left ankle),
and ΔV (the right foot, the right ankle) > 𝑡5.

T4 : jumping,ΔV (the left foot, the left knee),ΔV (the right
foot, the right knee), ΔV (the left foot, the left ankle),
ΔV (the right foot, the right ankle) > 𝑡6, and Δ𝛼 (the
left foot, the left ankle), and Δ𝛼 (the right foot, the
right ankle) > 𝑡7.
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(b) The area variation curve of 𝑆𝑈
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Figure 1: The curve for some area features of pedestrian walking.

T5 : boxing, ΔV (the left foot, the left knee), ΔV (the right
foot, the right knee), ΔV (the left foot, the left ankle),
ΔV (the right foot, the right ankle) > 𝑡8 and, Δ𝛼 (the
left hand, the left elbow),Δ𝛼 (the right hand, the right
elbow), Δ𝛼 (the left foot, the left ankle), and Δ𝛼 (the
right foot, the right ankle) > 𝑡9.

Thresholds (𝑡1, 𝑡2, . . . , 𝑡9) are determined empirically as
1.5, 40, 5.5, 60, 3.5, 5.0, 40, 7.0, and 30.

We cluster the extract feature, which meet the threshold
requirement, and extract the typical behavior of the action
dataset as a standard action: jogging, running, walking,
jumping and boxing. Above 5 kinds of common action
decomposition, we get relative velocity among joints, when
some action occurred. For example, an jogging operation, the
relative velocity of the left leg and the right leg and the relative
velocity of the left leg and the left knee are more than others
joints.

3.3. Codebook Formulation. In order to construct the code-
book, we use the 𝑘-means algorithm based on the Euclidean

distance to cluster all the features (hierarchical area model,
relative velocity and relative acceleration) extracted from the
training frames. The center of each cluster is defined as a
codeword. All the centers clustered from the training frames
produce the codebook for the pLSA model. A frame in the
training videos or in the test videos is assigned to a specific
codeword in the codebook which has the minimal Euclidean
distance to the frame. In the end, a video is encoded in a bag-
of-words way, that is, a video is represented using a histogram
of codewords, removing the temporal information.

4. pLSA-Based Human Action Recognition

pLSA is a statistical generative model that associates docu-
ments and words via the latent topic variables, which repre-
sents each documents as a mixture of topics. Our approach
uses the bag of words representation as in papers [14–16].
What’s difference is that we use the local spatial-temporal
maximum value of hierarchical area model, relative velocity
and relative acceleration as our features. We suppose that
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Figure 2: Graph model of pLSA.

the words are independent of the temporal order but related
to the spatial order, for the 𝑘-means clustering approach with
all of the features may lead to the mismatch of the words.
Similar local features appearing at different position may be
clustered together. When we calculate the frequency of the
words, the mismatch appears. And this phenomenon may
reduce the precision of the classify approach. In order to solve
the problem, we assign spatial information to each word. In
the classify approach, we use the pLSA models to learn and
recognize human action.

In the context of action categorization, the topic variable
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be obtained by marginalizing over all the topic variables 𝑧
𝑘
:

𝑝 (𝜔
𝑗
| 𝑑
𝑖
) = ∑

𝑘

𝑝 (𝑧
𝑘
| 𝑑
𝑖
) 𝑝 (𝜔

𝑗
| 𝑧
𝑘
) . (15)

Denote 𝑛(𝑑
𝑖
, 𝜔
𝑗
) as the occurrence of word 𝜔

𝑗
in video 𝑑

𝑖
, the

prior probability 𝑝(𝑑
𝑖
) can be modeled as

𝑝 (𝑑
𝑖
) ∝ ∑

𝑗
𝑛 (𝑑
𝑖
| 𝑤
𝑗
) . (16)

A maximum likelihood estimation of 𝑝(𝜔
𝑗

| 𝑧
𝑘
) and

𝑝(𝑧
𝑘
| 𝑑
𝑖
) is obtained by maximizing the function using the

Expectation Maximization (EM) algorithm, which the graph
model is shown in Figure 2.The objective likelihood function
of the EM algorithm is:

𝐿 = ∏

𝑖

∏

𝑗

𝑝(𝜔
𝑗
| 𝑑
𝑖
)
𝑛(𝑤𝑗 ,𝑑𝑖)

. (17)

The EM algorithm consists of two steps: an expectation (E)
step computes the posterior probability of the latent variables,
and a maximization (M) step maximizes the completed data
likelihood computed based on the posterior probabilities
obtained from E-step. Both steps of the EM algorithm for
pLSA parameter estimate are listed below.

E-step: given 𝑝(𝑤
𝑗
| 𝑧
𝑘
) and 𝑝(𝑧

𝑘
| 𝑑
𝑖
) estimate 𝑝(𝑧

𝑘
|

𝑑
𝑖
, 𝑤
𝑗
)

𝑝 (𝑧
𝑘
| 𝑑
𝑖
, 𝑤
𝑗
) ∝ 𝑝 (𝑤

𝑗
| 𝑧
𝑘
) 𝑝 (𝑧

𝑘
| 𝑑
𝑖
) . (18)

M-step: given the estimated 𝑝(𝑧
𝑘
| 𝑑
𝑖
, 𝑤
𝑗
) in E-step, and

𝑛(𝑑
𝑖
, 𝑤
𝑗
), estimate 𝑝(𝑤

𝑗
| 𝑧
𝑘
) and 𝑝(𝑧

𝑘
| 𝑑
𝑖
)

𝑝 (𝑤
𝑗
| 𝑧
𝑘
) ∝ ∑

𝑖

𝑛 (𝑑
𝑖
, 𝑤
𝑗
) 𝑝 (𝑧

𝑘
| 𝑑
𝑖
, 𝑤
𝑗
) ,

𝑝 (𝑧
𝑘
| 𝑑
𝑖
) ∝ ∑

𝑖

𝑛 (𝑑
𝑖
, 𝑤
𝑗
) 𝑝 (𝑧

𝑘
| 𝑑
𝑖
, 𝑤
𝑗
) .

(19)

For the task of human motion classification, our goal is
to classify a new video to a specific activity class. During
the inference stage, given a testing video test, the document
specific coefficients 𝑝(𝑧

𝑘
| 𝑑test).

We can treat each aspect in the pLSA model as one class
of activity. So, the activity categorization is determined by the
aspect corresponding to the highest 𝑝(𝑧

𝑘
| 𝑑test). The action

category 𝑘 of 𝑑test is determined as

𝑘 = argmax
𝑘

𝑝 (𝑧
𝑘
| 𝑑test) . (20)

In this paper, we treat each frame in a video as a single word
and a video as a document.Theprobability distribution𝑝(𝑧

𝑘
|

𝑑test) can be regarded as the probability of each class label
for a new video. The parameter in the training step defines
the probability of a word 𝑤

𝑗
drawing from an aspect 𝑧

𝑘
. The

aforementioned standard EM training procedure for pLSA is
to replace

𝑝 (𝑧
𝑘
| 𝑑
𝑖
, 𝑤
𝑗
) , 𝑝 (𝑤

𝑗
| 𝑧
𝑘
) , (21)

with their optimal possible values at each iteration.
For action recognitionwith large amount of training data,

this would result in long training time. This paper presents
an incremental version of EM to speed up the training of
PLSA without sacrificing performance accuracy. Assuming
the observed data are independent of each other, we propose
an incremental EM algorithm presented in Algorithm 1.

Algorithm 1. Incremental EMAlgorithm for PLSA Parameter
Estimation is as follows.

(1) Inputs;
(2) 𝐾—the number of action categories;
(3) 𝐷—the number of training videos;
(4) 𝑆—the number of videos in each subset;
(5) 𝑀—the size of the codebook of spatial-temporal

words;
(6) Outputs;
(7) 𝑈̂ = {𝑝(𝑧

𝑘
| 𝑑
𝑖
)}
𝑘,𝑖
;

(8) 𝑉̂ = {𝑝(𝑤
𝑗
| 𝑧
𝑘
)}
𝑗,𝑘
;

(9) E-Step;
for all 𝑘 and 𝑗, calculate

𝑝 (𝑤
𝑗
| 𝑧
𝑘
) =

𝑛
𝑗,𝑘

𝑛
𝑘

. (22)



6 Journal of Applied Mathematics

(a)

35
30
25
20
15
10

5
0
1

0.5
0 0 0.5 1 1.5

x

z

y

×10
15

−1.5
−1

−1
−0.5−0.5

(b)

0
0

0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0

0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0

1
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0

0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0

1
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0

0
0
0
0
0
0
0
0
0

0
0
0
0
0

0

0
0
0
0
0
0
0
0

0

0
0
0
0

0

0
0
0
0
0
0
0
0
0
0
0

0
0
0

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0

0

Torso(axis) Head Right
shoulder

Left
shoulder

Right
elbow

Left
elbow

Right
hand

Left
hand

Right
hip

Left
hip

Right
knee

Left
knee

Right
ankle

Left
ankle

Right
foot

Left
foot

Torso(axis)
Head
Right shoulder
Left shoulder
Right elbow
Left elbow
Right hand
Left hand
Right hip
Left hip
Right knee
Left knee
Right ankle
Left ankle
Right foot
Left foot

−1

−1
−1

−1
−1

−1

±1

(c)
Figure 3: Process of restoring missing coordinate position Remarks: Figure 3 the original picture, Figure 3 Reconstruction of knee motion
used the method of least squares data fitting in order to restore missing coordinate position, Figure 3 the occlusion diagram. In the diagram,
occlusion part pairs, occlusion state value −1 (red cell for occluded one) and 1 (green cell for occluder), ±1 (orange red cell for rigid body),
respectively. In this manner, every part pairs get corresponding occlusion state values.

For all (𝑑test, 𝑤𝑗) pairs and 𝑘 ∈ {1, . . . , 𝐾} calculate

𝑝 (𝑧
𝑘
| 𝑑test, 𝑤𝑗) =

𝑝 (𝑤
𝑗
| 𝑧
𝑘
) 𝑝 (𝑧
𝑘
| 𝑑test)

∑
𝐾

𝑖=1
𝑝 (𝑤
𝑗
| 𝑧
𝑖
) 𝑝 (𝑧
𝑖
| 𝑑test)

; (23)

M-Step: calculate the following:

𝑝 (𝑧
𝑘
| 𝑑test) =

∑
𝑁

𝑗=1
𝑛 (𝑑test, 𝑤𝑗) 𝑝 (𝑧𝑘 | 𝑑test, 𝑤𝑗)

𝑛 (𝑑test)
; (24)

(10) Repeat E-steps and M-step until the convergence
condition is met;

(11) Calculate activity class

𝑘 = argmax
𝑘

𝑝 (𝑧
𝑘
| 𝑑test) . (25)

5. Experimental Result

5.1. Datasets. We test our algorithm on two datasets: the
Weizmann human motion dataset [17], the KTH human
action dataset [18, 19], and the HumanEva dataset [3, 20]. All
the experiments are conducted on a Pentium 4 machine with
2GB of RAM, using the implementation on MATLAB. The
dataset and the related experimental results are presented in
the following sections.

KTH datasets is provided by Schuldt which contains 2391
video sequences with 25 actors showing six actions. Each
action is performed in 4 different scenarios.

The WEIZMANN datasets is provided by Blank which
contains 93 video sequences showing nine different peo-
ple, each performing ten actions, such as run, walk,
skip, jumping-jack, jump-forward-on-two-legs, jump-in-
place-on-two-legs, gallop sideways, wave-two-hands, wave-
one-hand and bend.
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The HumanEva dataset [3, 20] is used for evaluation. It
contains six different motions: Walking, Jogging, Gestures,
Boxing, and Combo.

In order to evaluate and fairly compare the performance,
we use the same experimental setting as in [21, 22]. For every
dataset, 12 video sequences taken by four subjects (out of the
five) are used for training, and the remaining three videos for
testing. The experiments are repeated five times.

The performance of different methods is shown using the
average recognition rate. We report the overall accuracy on
three datasets. In order to evaluate the performance of occlu-
sion state estimation and reconstruct missing coordinate
position, we hand-labeled the ground truth of the occlusion
states for test motions. Figure 3 shows how the ground truth
of occlusion state is specified.

5.2. Comparison. KTH Dataset. It contains six types of
human actions (walking, jogging, running, boxing, hand
waving, and hand clapping) performed several times by
25 subjects in four different scenarios: outdoors, outdoor-
swith scale variation, outdoors with different clothes, and
indoors. Representative frames of this dataset are shown in
Figure 4(a). After the process of restoring missing coordi-
nateposition, we use the proposed method, theclassification
results of KTH dataset obtained by this approach are shown
in Figure 5 and indicate quite a small number of videos
are misclassified, particularly, the actions, “running” and
“handclapping,” are more tended to be confused.

TheWeizmannDataset.TheWeizmann human action dataset
contains 83 video sequences showing nine different people,
andeach performing nine different actions: bending (a1),
jumping jack (a2), juming forward on two legs (a3), jumping
in place on two legs (a4), running (a5), galloping sideways
(a6), walking (a7), waving one hand (a8), waving two hands
(a9).

The figures were tracked and stabilized by using the
background subtraction masks that come with this data set.
Some sample frames are shown in Figure 4(b). The classified
results achieved by this approach are shown in Figure 6.

The HumanEva Dataset. The HumanEva dataset is used for
evaluation, which are shown in Figure 4(c). It contains five
different motions: Walking (a1), Jogging (a2), Gestures (a3),
Boxing (a4), and Combo (a5). Each motion is performed by
four subjects and recorded by seven cameras (three RGB and
four gray scale cameras) with the ground truth data of human
joints. The classified results achieved by this approach are
shown in Figure 7.

In this paper, we identify jogging, running, walking and
boxing and compare the proposed method with the four
state-of-the-art methods in the literature: Blank et al. [18], Lu
et al. [19], Sigal et al. [3], Chang et al. [20] and Juan Carlos
Niebles [21] in three dataset. As shown in the Tables 1, 2 and
3, the existingmethods, the low recognition accuracy because
these action are not only occlusion situation are complex,
but also the legs have complex beat, motion and other group
actions.The proposedmethod can overcome these problems,

Walking Jogging Running

Boxing Hand waving Hand clapping

(a)

(b)

(c)

Figure 4: Sample frames from our datasets. The action labels
in each dataset are as follows (a) KTH data set: walking (a1),
jogging (a2), running (a3), boxing (a4), and handclapping (a5);
(b) Weizmann data set: running, walking, jumping-jack, waving-
two-hands, waving-one-hand, and bending; (c) HumanEva dataset:
walking(a1), jogging (a2), gestures (a3), boxing (a4), and combo (a5).
Each motion is performed by four subjects and recorded by seven
cameras (three RGB and four gray scale cameras) with the ground
truth data of human joints.

a1 0.91 0.00 0.03 0.00 0.00

a2 0.00 1.00 0.00 0.00 0.00

a3 0.00 0.00 0.85 0.00 0.00

a4 0.00 0.00 0.00 1.00 0.00

a5 0.03 0.03 0.00 0.01 0.75

a1 a2 a3 a4 a5

Figure 5: Confusion matrix for KTH data set.



8 Journal of Applied Mathematics

a1 1.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

a2 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a3 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.00 0.00

a4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

a5 0.03 0.03 0.00 0.01 0.75 0.00 0.31 0.00 0.00

a6 0.00 0.00 0.00 0.00 0.05 0.92 0.04 0.00 0.00

a7 0.00 0.00 0.00 0.00 0.41 0.00 0.95 0.00 0.00

a8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

a9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

a1 a2 a3 a4 a5 a6 a7 a8 a9

Figure 6: Confusion matrix for Weizmann data set.

a1 0.92 0.00 0.03 0.00 0.00

a2 0.00 0.97 0.00 0.00 0.00

a3 0.00 0.00 0.85 0.00 0.00

a4 0.00 0.00 0.00 1.00 0.00

a5 0.03 0.03 0.00 0.01 0.86

a1 a2 a3 a4 a5

Figure 7: Confusion matrix for HumanEva data set.

Table 1: Compared with other approaches on KTH dataset.

Method Average recognition rate (%)
The proposed method 92.50
Lu et al. [19] and Blank et al. [18] 81.50
Chang et al. [20] and Sigal et al. [3] 91.20
Niebles et al. [21] 87.04

Table 2: Compared with other approaches on Weizmann dataset.

Method Average recognition rate (%)
The proposed method 90.10
Lu et al. [19] and Blank et al. [18] 89.30
Chang et al. [20] and Sigal et al. [3] 86.20
Niebles et al. [21] 88.6

and the recognition accuracy and average accuracy are higher
than the comparative method.

The experimental results show that the approach pro-
posed in the paper can get satisfactory results and signifi-
cantly performs better compared the average accuracy with
that in [3, 18–21], because of a practical method adopted in
the paper.

6. Conclusions and Future Work

In this paper, we proposed an adaptive occlusion state
estimation method for 3D human body movement.

Our method successfully recognize without assuming a
known and fixed depth order.The proposedmethod can infer

Table 3: Compared with other approaches on HumanEva dataset.

Method Average recognition rate (%)
The proposed method 91.40
Lu et al. [19] and Blank et al. [18] 88.70
Chang et al. [20] and Sigal et al. [3] 90.20
Niebles et al. [21] 90.6

state variables efficiently because it separates the estimation
procedure into body configuration estimation and occlusion
state estimation. More specifically, in the occlusion state
estimation step, at first, we reconstruct human trajectory
reconstructionwhich representing the 3Dhuman pose occlu-
sion relationship and detect body parts having an occlusion
relationship using the overlapping body parts by using a
Markov random field (MRF) with a state variable. Finally, we
use the topic model of pLSA to classify. Experimental results
showed that the proposed method successfully estimates the
occlusion states in the presence of self-occlusion and the
average accuracy is about 92.5%, 90.1%, and 91.4% on the
KTH dataset, Weizmann dataset, and HumanEva dataset
respectively, which is better than other approaches [3, 18–21].

We conjecture that the proposedmethod can be extended
for tracking poses from (two or more) interacting people.
Tracking poses of interacting people, however, will involve
more complex problems such as dealing with more variable
motion, inter-person occlusions, and possible appearance
similarity of different people.
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