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Let 𝐶 be a closed bounded convex subset of a real Banach space𝑋with 0 as its interior and 𝑝
𝐶
the Minkowski functional generated

by the set 𝐶. For a nonempty set 𝐺 in𝑋 and 𝑥 ∈ 𝑋, 𝑔
0
∈ 𝐺 is called the generalized best approximation to 𝑥 from 𝐺 if 𝑝

𝐶
(𝑔
0
− 𝑥) ≤

𝑝
𝐶
(𝑔 − 𝑥) for all 𝑔 ∈ 𝐺. In this paper, we will give a distance formula under 𝑝

𝐶
from a point to a closed hyperplane 𝐻(𝑥∗, 𝛼) in

𝑋 determined by a nonzero continuous linear functional 𝑥∗ in 𝑋 and a real number 𝛼, a representation of the generalized metric
projection onto𝐻(𝑥∗, 𝛼), and investigate the continuity of this generalized metric projection, extending corresponding results for
the case of norm.

1. Introduction

Throughout this paper, (𝑋, ‖ ⋅ ‖) is a real Banach space with
the closed unit ball 𝐵(𝑋), and 𝑋∗ is its the topological dual.
For a nonempty subset𝐴 of𝑋, as usual, int𝐴 and bd𝐴 stand
for the interior and the boundary of 𝐴, respectively. Let 𝐶 be
a bounded closed convex subset of 𝑋 with 0 ∈ int𝐶. Recall
that the Minkowski function 𝑝𝐶 : 𝑋 → R with respect to
the set 𝐶 is defined by

𝑝
𝐶 (𝑥) := inf {𝑡 > 0 : 𝑥 ∈ 𝑡𝐶} , ∀𝑥 ∈ 𝑋. (1)

Let 𝐺 be a nonempty subset of 𝑋 and 𝑥 ∈ 𝑋. If there exists
𝑔
0
∈ 𝐺 such that

𝑝
𝐶
(𝑔
0
− 𝑥) = 𝜏

𝐶 (𝑥, 𝐺) , (2)

where

𝜏
𝐶 (𝑥, 𝐺) := inf {𝑝

𝐶 (𝑔 − 𝑥) : 𝑔 ∈ 𝐺} (3)

is the distance from the point 𝑥 to the set 𝐺, then following
[1] 𝑔
0
is called the generalized best approximation to 𝑥 from

𝐺. The set of all generalized best approximations to 𝑥 from 𝐺
is denoted by 𝑃𝐶

𝐺
(𝑥); that is,

𝑃
𝐶

𝐺
(𝑥) = {𝑔0 ∈ 𝐺 : 𝑝𝐶 (𝑔0 − 𝑥) = 𝜏𝐶 (𝑥, 𝐺)} , (4)

which is called the generalized metric projection onto 𝐺.
When 𝑝

𝐶 is the norm of 𝑋, the generalized best approx-
imation is reduced to the classical best approximation,
which has been studied deeply and extensively since the
late 1950s; see [2–4] and references therein. Thus, natural
problems are that whether we can extend results in the
classical approximation theory to the setting of the general-
ized approximation. In this direction, some meaning results,
such as existences, characterizations, and well-posedness of
this kind of approximation, have been established recently;
see [1, 5–7]. In this paper, we will consider the problem
of representation of generalized metric projection 𝑃𝐶

𝐻(𝑥
∗
,𝛼)

onto a closed hyperplane 𝐻(𝑥∗, 𝛼) and one of continuity of
𝑃
𝐶

𝐻(𝑥
∗
,𝛼)
, where 0 ̸= 𝑥

∗
∈ 𝑋
∗, 𝛼 ∈ R, and

𝐻(𝑥
∗
, 𝛼) = {𝑥 ∈ 𝑋 : 𝑥

∗
(𝑥) = 𝛼} . (5)

When 𝑝
𝐶
is the norm of 𝑋 or, equivalently, 𝐶 is the closed

unit ball 𝐵(𝑋) of 𝑋, this problem has been studied by a
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few authors; see [8–12]. In particular, when 𝑋 is reflexive,
Wang and Yu have given in [10] the representation of 𝑃𝐵(𝑋)

𝐻(𝑥
∗
,𝛼)
,

which was further extended by Ni in [8] to the case of
nonreflexive Banach spaces.When𝑋 is nearly strictly convex,
Wang has shown in [11] that 𝑃𝐵(𝑋)

𝐻(𝑥
∗
,𝛼)

is norm-to-weak upper
semicontinuous on 𝑋, while, when 𝑋 is arbitrary Banach
space, Zhang and Shi have given in [12] the pointwise
continuity of 𝑃𝐵(𝑋)

𝐻(𝑥
∗
,𝛼)

under an additional condition.
It should be noted that, when one uses a nonnegative

convex function𝜑on the Euclidean spaceR𝑛 satisfying𝜑(0) =
0 and 𝜑(𝜆𝑥) = 𝜆𝜑(𝑥) for all 𝑥 ∈ R𝑛 and 𝜆 ≥ 0 as a
metric on R𝑛 (i.e., the distance from a point 𝑥 to a subset
𝐺 of R𝑛 is defined as 𝑑(𝑥, 𝐺) = inf𝑔∈𝐺𝜑(𝑔 − 𝑥)), Ferreia
and Nemeth have investigated in [13] the problem of the best
approximation inR𝑛 and, in particular, given some properties
of corresponding metric projections on a hyperplane in R𝑛.

The organization of the present paper is as follows. In
Section 2, we define the notions of near strict convexity and
weak near strict convexity for the underlying set 𝐶, which
are, respectively, natural extensions of corresponding notions
in norm context, and provide an example of a real Banach
space 𝑋 for which 𝐵(𝑋) is weakly nearly strictly convex
but not nearly strictly convex. In Section 3, under 𝑝

𝐶
, we

give a distance formula from a point in 𝑋 to a hyperplane
𝐻(𝑥
∗
, 𝛼) in𝑋 and a representation of the generalized metric

projection 𝑃𝐶
𝐻(𝑥
∗
,𝛼)

and consider the continuity of 𝑃𝐶
𝐻(𝑥
∗
,𝛼)
.

Results obtained in the present paper extend classical Ascoli
Theorem (i.e., the distance formula under the case of norm
from a point to a closed hyperplane in a Banach space) and
main results in [8, 10–12] from the setting of norm to that of
the Minkowski functional.

2. Preliminaries and an Example

Recall that (𝑋, ‖ ⋅‖) is a real Banach space with the topological
dual 𝑋∗, 𝐶 is be a closed bounded convex subset of 𝑋 with
0 ∈ int 𝐶, and 𝑝

𝐶
is the Minkowski function given by (1).

Define the polar 𝐶∘ of the set 𝐶 by

𝐶
∘
:= {𝑥
∗
∈ 𝑋
∗
: 𝑥
∗
(𝑥) ≤ 1, ∀𝑥 ∈ 𝐶} . (6)

Then𝐶∘ is a nonempty weakly∗ compact convex subset of𝑋∗
with 0 ∈ int𝐶∘.

We first list some useful properties of the Minkowski
function 𝑝

𝐶
which can be proved easily by the definition.

Proposition 1. Let 𝑥, 𝑦 ∈ 𝑋 and 𝑥∗ ∈ 𝑋∗. Then

(i) 𝑝
𝐶(𝑥) ≥ 0 and 𝑝𝐶(𝑥) = 0 ⇔ 𝑥 = 0;

(ii) 𝑥 ∈ 𝐶 ⇔ 𝑝
𝐶
(𝑥) ≤ 1 and 𝑥 ∈ bdC⇔ pC(x) = 1;

(iii) 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦) and 𝑝
𝐶
(𝑡𝑥) = 𝑡𝑝

𝐶
(𝑥) for each

𝑡 ≥ 0;
(iv) 𝑝

𝐶
(𝑥) = sup

𝑦
∗
∈𝐶
∘𝑦
∗
(𝑥) and 𝑝

𝐶
∘(𝑥
∗
) = sup

𝑥∈𝐶
𝑥
∗
(𝑥);

(v) 𝑥∗(𝑥) ≤ 𝑝𝐶(𝑥)𝑝𝐶∘(𝑥
∗
);

(vi) there exist positive numbers𝑚
1
and𝑚

2
such that

𝑚
1 ‖𝑥‖ ≤ 𝑝𝐶 (𝑥) ≤ 𝑚2 ‖𝑥‖ . (7)

We then give the following definitions which will be used
in the rest of this paper.

Definition 2. Let 𝑇 be a set-valued mapping from 𝑋 into 2𝑋,
where 2𝑋 is the set of all subsets of𝑋.

(i) Let 𝑥 ∈ 𝑋with𝑇(𝑥) ̸= 0.Then𝑇 is said to be norm-to-
norm (resp., norm-to-weak) upper semicontinuous at
𝑥 if, for each open set (resp., weakly open set) 𝑊 ⊇

𝑇(𝑥) there exists an open neighborhood 𝑉 of 𝑥 such
that 𝑇(𝑦) ⊆ 𝑊 whenever 𝑦 ∈ 𝑉.

(ii) 𝑇 is said to be norm-to-norm (resp., norm-to-weak)
upper semicontinuous on 𝑋 if, for each 𝑥 ∈ 𝑋,
𝑇(𝑥) ̸= 0 and 𝑇 is norm-to-norm (resp., norm-to-
weak) upper semicontinuous at 𝑥.

(iii) 𝑇 is said to be norm-to-norm continuous on𝑋 if, for
each 𝑥 ∈ 𝑋, 𝑇(𝑥) is single valued and 𝑇 is norm-to-
norm upper semicontinuous at 𝑥.

Definition 3. The set 𝐶 is said to be strictly convex (resp.,
nearly strictly convex and weakly nearly strictly convex) if
each convex subset of bd𝐶 is a singleton (resp., relatively
compact and relatively weakly compact).

Clearly, the notions of near strict convexity andweak near
strict convexity for the set 𝐶 are extensions of corresponding
notions for the unit ball𝐵(𝑋), whichwere, respectively, posed
by Banaś in [14] and byWang in [11]. In the following we will
provide an example to show that the near strict convexity for
𝐵(𝑋) is strictly stronger than the weak near strict convexity
for 𝐵(𝑋).

Example 4. Let 𝑋 = 𝑙
2
be the space of all square convergent

real sequences, endowed with the norm by

‖𝑥‖0 = max{‖𝑥‖2
√2

, ‖𝑥‖∞} , ∀𝑥 ∈ 𝑋, (8)

where ‖ ⋅ ‖
2
and ‖ ⋅ ‖

∞
are the 𝑙

2
-norm and the supremum

norm on 𝑋, respectively. Then ‖ ⋅ ‖
0
is equivalent to the 𝑙

2
-

norm on𝑋 because
‖𝑥‖2

√2
≤ ‖𝑥‖0 ≤ ‖𝑥‖2, ∀𝑥 ∈ 𝑋. (9)

Hence, (𝑋, ‖ ⋅ ‖
0
) is reflexive. It implies that each convex sub-

set of bd𝐵(𝑋) is relatively weakly compact, and consequently
𝐵(𝑋) is weakly nearly strictly convex. Below we show that
𝐵(𝑋) is not nearly strictly convex. To this end, let {𝑒

𝑛
} be the

natural basis of 𝑙2, where the 𝑛th coordinate of 𝑒
𝑛
is 1 and

the other coordinates are 0. Furthermore, let 𝑥1 = 𝑒1 and
𝑥𝑛 = 𝑒1 + 𝑒𝑛 for each 𝑛 ≥ 2. We claim that co{𝑥𝑛}𝑛≥1 ⊆
bd𝐵(𝑋). Indeed, let 𝑦 ∈ co{𝑥𝑛}𝑛≥1.Then there exist a positive
integer 𝑛 and a sequence {𝜆𝑖}

𝑛

𝑖=1
with {𝜆𝑖}

𝑛

𝑖=1
⊆ [0, 1] satisfying

∑
𝑛

𝑖=1
𝜆𝑖 = 1 such that 𝑦 = ∑𝑛

𝑖=1
𝜆𝑖𝑥𝑖. Since 𝑦 = 𝑒1 + ∑

𝑛

𝑖=2
𝜆𝑖𝑒𝑖,

one has that ‖𝑦‖
∞
= 1 and

𝑦
2 = (1 +

𝑛

∑

𝑖=2

𝜆
2

𝑖
)

1/2

≤ (1 + (

𝑛

∑

𝑖=2

𝜆
𝑖
)

2

)

1/2

= (1 + (1 − 𝜆1)
2
)
1/2

≤ √2.

(10)
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It follows that ‖𝑦‖
0
= 1 and the claim is proved. Since {𝑥

𝑛
}
∞

𝑛=1

has no convergent subsequences, one sees that co{𝑥
𝑛
}
𝑛≥1

is
not relatively compact. This shows that 𝐵(𝑋) is not nearly
strictly convex.

3. The Representation and Continuity of
Metric Projection onto a Hyperplane

Let 𝑥 ∈ 𝑋 and define

𝜎 (𝑥) := {𝑥
∗
∈ 𝑋
∗
: 𝑥
∗
(𝑥) = 𝑝𝐶 (𝑥) 𝑝𝐶∘ (𝑥

∗
)

= 𝑝𝐶(𝑥)
2
= 𝑝𝐶∘(𝑥

∗
)
2
} ,

(11)

which is analogous to the dual mapping in Banach spaces.
Then, for 𝑥∗ ∈ 𝑋

∗, one obtains from the definition that
𝜎
−1
(𝑥
∗
) = {𝑥 ∈ 𝑋 : 𝑥

∗
∈ 𝜎(𝑥)} and

𝜎
−1
(𝜆𝑥
∗
) = 𝜆𝜎

−1
(𝑥
∗
) , ∀𝜆 ∈ R. (12)

Hence, for 0 ̸= 𝑥
∗
∈ 𝑋
∗ and 𝑥 ∈ 𝑋 (noting that 𝑝

𝐶
∘(𝑥
∗
) ̸= 0),

one has that

𝑥 ∈ 𝜎
−1
(𝑥
∗
) ⇐⇒ 𝑥

∗
(𝑥) = 𝑝𝐶 (𝑥) 𝑝𝐶∘ (𝑥

∗
) = 𝑝
𝐶
∘(𝑥
∗
)
2

(13)

and so

𝑥 ∈ 𝜎
−1
(

𝑥
∗

𝑝
𝐶
∘ (𝑥∗)

) ⇐⇒
𝑥
∗
(𝑥)

𝑝
𝐶
∘ (𝑥∗)

= 𝑝
𝐶 (𝑥) = 1. (14)

Recall that the hyperplane 𝐻(𝑥∗, 𝛼) determined by 𝑥∗ ∈
𝑋
∗
\{0} and𝛼 ∈ R is given by (5) and also that 𝜏

𝐶
(𝑥,𝐻(𝑥

∗
, 𝛼))

is the distance from the point 𝑥 to 𝐻(𝑥∗, 𝛼) defined by (3).
The following result is an extension of the classical Ascoli
Theorem for the distance formula under the case of norm
from a pint to a hyperplane in a Banach space; see [3, Lemma
1.2, p. 24].

Proposition 5. Let 𝑥∗ ∈ 𝑋∗ \ {0}, 𝛼 ∈ R, and 𝑥 ∈ 𝑋. Then

𝜏
𝐶
(𝑥,𝐻 (𝑥

∗
, 𝛼)) =

𝛼 − 𝑥
∗
(𝑥)


𝑝
𝐶
∘ (𝑥∗)

sign (𝛼 − 𝑥∗ (𝑥)) . (15)

Proof. Without loss of generality, we assume that 𝛼 > 𝑥∗(𝑥).
Let 𝑦 ∈ 𝐻(𝑥∗, 𝛼). Then 𝑥∗(𝑦) = 𝛼; hence

𝛼 − 𝑥
∗
(𝑥) = 𝑥

∗
(𝑦 − 𝑥) ≤ 𝑝

𝐶
(𝑦 − 𝑥) 𝑝

𝐶
∘ (𝑥
∗
) (16)

by Proposition 1(v). This implies that (𝛼 − 𝑥∗(𝑥))/𝑝
𝐶
∘(𝑥
∗
) ≤

𝑝
𝐶
(𝑦 − 𝑥) (noting that 𝑝

𝐶
∘(𝑥
∗
) ̸= 0), and therefore

𝛼 − 𝑥
∗
(𝑥)

𝑝𝐶∘ (𝑥
∗)

≤ 𝜏
𝐶
(𝑥,𝐻 (𝑥

∗
, 𝛼)) (17)

because 𝑦 ∈ 𝐻(𝑥∗, 𝛼) is arbitrary.
To show the converse inequality, let 𝜖 ∈ (0, 𝑝

𝐶
∘(𝑥
∗
)).

Then, by Proposition 1(iv), there is 𝑧 ∈ 𝐶 such that

𝑥
∗
(𝑧) > 𝑝𝐶∘ (𝑥

∗
) − 𝜖. (18)

Multiplying two sides of (18) by (𝛼 − 𝑥∗(𝑥))/𝑥∗(𝑧)(𝑝
𝐶
∘(𝑥
∗
) −

𝜖), one has that

𝛼 − 𝑥
∗
(𝑥)

𝑝𝐶∘ (𝑥
∗) − 𝜖

>
𝛼 − 𝑥
∗
(𝑥)

𝑥∗ (𝑧)
. (19)

Now let 𝑦 = 𝑥 + ((𝛼 − 𝑥∗(𝑥))/𝑥∗(𝑧))𝑧. Then, 𝑦 ∈ 𝐻(𝑥∗, 𝛼),
and

𝑝
𝐶
(𝑦 − 𝑥) =

𝛼 − 𝑥
∗
(𝑥)

𝑥∗ (𝑧)
𝑝
𝐶 (𝑧) ≤

𝛼 − 𝑥
∗
(𝑥)

𝑥∗ (𝑧)
(20)

because 𝑝
𝐶
(𝑧) ≤ 1 by Proposition 1(ii) (noting that 𝑧 ∈ 𝐶). It

follows from (19) and (20) that (𝛼 − 𝑥∗(𝑥))/(𝑝
𝐶
∘(𝑥
∗
) − 𝜖) >

𝑝(𝑦−𝑥). Hence, (𝛼−𝑥∗(𝑥))/(𝑝
𝐶
∘(𝑥
∗
)−𝜖) > 𝜏

𝐶
(𝑥,𝐻(𝑥

∗
, 𝛼)).

Letting 𝜖 → 0 in this inequality gives

𝛼 − 𝑥
∗
(𝑥)

𝑝𝐶∘ (𝑥
∗)

≥ 𝜏
𝐶
(𝑥,𝐻 (𝑥

∗
, 𝛼)) . (21)

Thus the converse inequality of (17) follows. The proof is
complete.

The first main result of this section is as follows, which
gives a presentation of the generalizedmetric projection onto
a closed hyperplane in𝑋.

Theorem 6. Let 𝑥∗ ∈ 𝑋∗ \ {0}, 𝛼 ∈ R, and 𝑥 ∈ 𝑋. Then the
following assertion holds:

𝑃
𝐶

𝐻(𝑥
∗
,𝛼)
(𝑥)

=

{{{{{{

{{{{{{

{

𝑥 +
𝛼 − 𝑥
∗
(𝑥)

𝑝
𝐶
∘(𝑥∗)
2
𝜎
−1
(𝑥
∗
) , if 𝜎−1 (𝑥∗) ̸=0, 𝑥∗ (𝑥)<𝛼,

𝑥 +
𝑥
∗
(𝑥) − 𝛼

𝑝𝐶∘(𝑥
∗)
2
𝜎
−1
(−𝑥
∗
) , if 𝜎−1(−𝑥∗) ̸= 0, 𝑥∗(𝑥)>𝛼.

(22)

Proof. Similar to the proof of Proposition 5, we assume that
𝜎
−1
(𝑥
∗
) ̸= 0 and 𝑥∗(𝑥) < 𝛼. Let 𝑦 ∈ 𝜎−1(𝑥∗). Then 𝑥∗ ∈ 𝜎(𝑦);

hence

𝑥
∗
(𝑦) = 𝑝

𝐶
(𝑦) 𝑝
𝐶
∘ (𝑥
∗
) = 𝑝
𝐶
(𝑦)
2
= 𝑝
𝐶
∘(𝑥
∗
)
2
. (23)

Since 𝑝
𝐶
∘(𝑥
∗
) ̸= 0, one has that

𝑝
𝐶
(𝑦) = 𝑝

𝐶
∘ (𝑥
∗
) . (24)

Let 𝑧 = 𝑥 + ((𝛼 − 𝑥∗(𝑥))/𝑝
𝐶
∘(𝑥
∗
)
2
)𝑦. We then have from (23)

that 𝑧 ∈ 𝐻(𝑥∗, 𝛼) and from (24) and Proposition 5 that

𝑝
𝐶 (𝑧 − 𝑥) =

𝛼 − 𝑥
∗
(𝑥)

𝑝
𝐶
∘(𝑥∗)
2
𝑝
𝐶
(𝑦)

=
𝛼 − 𝑥
∗
(𝑥)

𝑝
𝐶
∘ (𝑥∗)

= 𝜏
𝐶
(𝑥,𝐻 (𝑥

∗
, 𝛼)) .

(25)

This implies that 𝑧 ∈ 𝑃𝐶
𝐻(𝑥
∗
,𝛼)
(𝑥), and further

𝑃
𝐶

𝐻(𝑥
∗
,𝛼)
(𝑥) ⊇ 𝑥 +

𝛼 − 𝑥
∗
(𝑥)

𝑝
𝐶
∘(𝑥∗)
2
𝜎
−1
(𝑥
∗
) . (26)
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To show the reverse inclusion, let 𝑧 ∈ 𝑃𝐶
𝐻(𝑥
∗
,𝛼)
(𝑥). Then,

𝑧 ∈ 𝐻(𝑥
∗
, 𝛼), and

𝑝
𝐶 (𝑧 − 𝑥) = 𝜏𝐶 (𝑥,𝐻 (𝑥

∗
, 𝛼)) =

𝛼 − 𝑥
∗
(𝑥)

𝑝
𝐶
∘ (𝑥∗)

(27)

thanks to Proposition 5. Noting that

𝛼 − 𝑥
∗
(𝑥)

𝑝𝐶∘ (𝑥
∗)

=
𝑥
∗
(𝑧 − 𝑥)

𝑝𝐶∘ (𝑥
∗)

≤ 𝑝
𝐶 (𝑧 − 𝑥) , (28)

we get from (27) that

𝛼 − 𝑥
∗
(𝑥) = 𝑥

∗
(𝑧 − 𝑥) = 𝑝𝐶 (𝑧 − 𝑥) 𝑝𝐶∘ (𝑥

∗
) . (29)

Now let 𝑦 = (𝑝
𝐶
∘(𝑥
∗
)
2
/(𝛼 − 𝑥

∗
(𝑥)))(𝑧 − 𝑥). It follows from

(29) that

𝑥
∗
(𝑦) =

𝑝
𝐶
∘(𝑥
∗
)
2

𝛼 − 𝑥∗ (𝑥)
𝑥
∗
(𝑧 − 𝑥) = 𝑝𝐶∘(𝑥

∗
)
2
,

𝑝
𝐶
(𝑦) =

𝑝
𝐶
∘(𝑥
∗
)
2

𝛼 − 𝑥∗ (𝑥)
𝑝
𝐶 (𝑧 − 𝑥) = 𝑝𝐶∘ (𝑥

∗
) .

(30)

Hence,

𝑥
∗
(𝑦) = 𝑝

𝐶
(𝑦) 𝑝
𝐶
∘ (𝑥
∗
) = 𝑝
𝐶
∘(𝑥
∗
)
2
. (31)

This means that 𝑦 ∈ 𝜎−1(𝑥∗) by (13), and so

𝑧 = 𝑥 +
𝛼 − 𝑥
∗
(𝑥)

𝑝𝐶∘(𝑥
∗)
2
𝑦 ∈ 𝑥 +

𝛼 − 𝑥
∗
(𝑥)

𝑝𝐶∘(𝑥
∗)
2
𝜎
−1
(𝑥
∗
) . (32)

Consequently, 𝑃𝐶
𝐻(𝑥
∗
,𝛼)
(𝑥) is contained in the right-hand side

of (26). The proof is complete.

The following result gives necessary and sufficient condi-
tions for 𝑃𝐶

𝐻(𝑥
∗
,𝛼)
(𝑥) ̸= 0.

Proposition 7. Let 𝑥∗ ∈ 𝑋
∗
\ {0}, 𝛼 ∈ R, and 𝑥 ∈ 𝑋

satisfy that 𝑥∗(𝑥) < 𝛼 (𝑟𝑒𝑠𝑝., 𝑥∗(𝑥) > 𝛼). Then 𝑃𝐶
𝐻(𝑥
∗
,𝛼)
(𝑥) ̸= 0

if and only if 𝑥∗(𝑟𝑒𝑠𝑝., −𝑥∗) attains its supremum 𝑝𝐶∘(𝑥
∗
)

(𝑟𝑒𝑠𝑝., 𝑝𝐶∘(−𝑥
∗
)) on bd𝐶.

Proof. Let 𝑥∗, 𝛼, and 𝑥 be as in Proposition 7, and let 𝑥∗(𝑥) <
𝛼. Suppose that 𝑃𝐶

𝐻(𝑥
∗
,𝛼)
(𝑥) ̸= 0. Take 𝑦 ∈ 𝑃𝐶

𝐻(𝑥
∗
,𝛼)
(𝑥). Then

𝑥
∗
(𝑦) = 𝛼 and 𝑝

𝐶
(𝑦 − 𝑥) = 𝜏

𝐶
(𝑥,𝐻(𝑥

∗
, 𝛼)). It follows from

Propositions 5 and 1(v) that

𝑝
𝐶
(𝑦 − 𝑥) =

𝛼 − 𝑥
∗
(𝑥)

𝑝𝐶∘ (𝑥
∗)

=
𝑥
∗
(𝑦 − 𝑥)

𝑝𝐶∘ (𝑥
∗)

≤ 𝑝
𝐶
(𝑦 − 𝑥) . (33)

Hence, 𝑥∗ attains its supremum 𝑝𝐶∘(𝑥
∗
) at (𝑦 − 𝑥)/(𝑝𝐶(𝑦 −

𝑥)) ∈ bd𝐶.
Conversely, suppose that 𝑥∗ attains its supremum𝑝𝐶∘(𝑥

∗
)

at 𝑥0 ∈ bd𝐶. Then 𝑥∗(𝑥0) = 𝑝𝐶∘(𝑥
∗
) and 𝑝𝐶(𝑥0) = 1; hence,

𝑥
∗
(𝑝𝐶∘ (𝑥

∗
) 𝑥0) = 𝑝𝐶∘(𝑥

∗
)
2
= 𝑝
𝐶 (𝑝𝐶∘ (𝑥

∗
) 𝑥0) 𝑝𝐶∘ (𝑥

∗
) .

(34)

This together with (13) implies that 𝑝
𝐶
∘(𝑥
∗
)𝑥0 ∈ 𝜎

−1
(𝑥
∗
),

and therefore 𝜎−1(𝑥∗) ̸= 0. By Theorem 6, one sees that
𝑃
𝐶

𝐻(𝑥
∗
,𝛼)
(𝑥) ̸= 0. Similarly, we can prove another assertion for

the case of 𝑥∗(𝑥) > 𝛼.

The secondmain result of this section is as follows, which
describes the continuity of the generalized metric projection
𝑃
𝐶

𝐻(𝑥
∗
,𝛼)

onto the hyperplane 𝐻(𝑥∗, 𝛼) under the condition
that the set 𝐶 is weakly nearly strictly convex.

Theorem8. Let the set𝐶 beweakly nearly strictly convex,𝑥∗ ∈
𝑋
∗
\ {0}, and 𝛼 ∈ R. Then the following assertions hold.

(i) Suppose that 𝑥 ∈ 𝑋 satisfies that 𝑥∗(𝑥) <

𝛼 (𝑟𝑒𝑠𝑝., 𝑥
∗
(𝑥) > 𝛼) and that 𝑥∗(𝑟𝑒𝑠𝑝., −𝑥∗) attains

its supremum on bd𝐶; then 𝑃𝐶
𝐻(𝑥
∗
,𝛼)

is norm-to-weak
upper semicontinuous at 𝑥.

(ii) If 𝑥∗ and −𝑥∗ attain their supremum on bd𝐶, then
𝑃
𝐶

𝐻(𝑥
∗
,𝛼)

is norm-to-weak upper semicontinuous on 𝑋.
Furthermore,𝑃𝐶

𝐻(𝑥
∗
,𝛼)

is norm-to-normupper semicon-
tinuous at each point of𝐻(𝑥∗, 𝛼).

Proof. (i)Without loss of generality, we assume that𝑥∗ ∈ 𝑋∗\
{0}, 𝑥 ∈ 𝑋, and 𝛼 ∈ R satisfy 𝑥∗(𝑥) < 𝛼 and that 𝑥∗ attains
its supremum on bd𝐶. We first show that 𝜎−1(𝑥∗) is convex.
To do this, let 𝑦

1
, 𝑦
2
∈ 𝜎
−1
(𝑥
∗
) and 𝜆 ∈ [0, 1]. Then we obtain

from (13) that

𝑥
∗
(𝑦
1
) = 𝑝
𝐶
(𝑦
1
) 𝑝
𝐶
∘ (𝑥
∗
) = 𝑝
𝐶
∘(𝑥
∗
)
2

= 𝑝
𝐶
(𝑦
2
) 𝑝
𝐶
∘ (𝑥
∗
) = 𝑥
∗
(𝑦
2
) .

(35)

This, together with Proposition 1(v) and (iii), implies that

𝑝𝐶∘(𝑥
∗
)
2
= 𝑥
∗
(𝜆𝑦1 + (1 − 𝜆) 𝑦2)

≤ 𝑝
𝐶
(𝜆𝑦
1
+ (1 − 𝜆) 𝑦2) 𝑝𝐶∘ (𝑥

∗
)

≤ (𝜆𝑝
𝐶
(𝑦
1
) + (1 − 𝜆) 𝑝𝐶 (𝑦2)) 𝑝𝐶∘ (𝑥

∗
)

= 𝑝
𝐶
∘(𝑥
∗
)
2
.

(36)

Hence, 𝜆𝑦
1
+ (1 − 𝜆)𝑦

2
∈ 𝜎
−1
(𝑥
∗
) by (13), and 𝜎−1(𝑥∗) is

convex.
We then show that 𝜎−1(𝑥∗) is weakly compact. Since

𝜎
−1
(𝑥
∗
/𝑝𝐶∘(𝑥

∗
)) ⊆ bd𝐶 by (14) and since 𝜎−1(𝑥∗/𝑝𝐶∘(𝑥

∗
)) =

(1/𝑝
𝐶
∘(𝑥
∗
))𝜎
−1
(𝑥
∗
) by (12), one sees that 𝜎−1(𝑥∗/𝑝

𝐶
∘(𝑥
∗
)) is

a convex subset of bd𝐶. It follows that 𝜎−1(𝑥∗/𝑝𝐶∘(𝑥
∗
)) is

relatively weakly compact because 𝐶 is weakly nearly strictly
convex; hence, 𝜎−1(𝑥∗) is relatively weakly compact. Thus, to
complete the proof, it suffices to show that 𝜎−1(𝑥∗) is weakly
closed. To do this, let {𝑥

𝛿} be a net in 𝜎−1(𝑥∗) convergent
weakly to some 𝑥 ∈ 𝑋. Since

𝑥
∗
(𝑥
𝛿
) = 𝑝
𝐶
(𝑥
𝛿
) 𝑝
𝐶
∘ (𝑥
∗
) = 𝑝
𝐶
∘(𝑥
∗
)
2
∀𝛿 (37)

and since𝑝
𝐶 is weakly lower semicontinuous by [15,Theorem

2.2.1, page 60], we have that

𝑝
𝐶
∘(𝑥
∗
)
2
= 𝑥
∗
(𝑥) = lim

𝛿

𝑥
∗
(𝑥
𝛿
) = lim
𝛿

𝑝
𝐶
(𝑥
𝛿
) 𝑝
𝐶
∘ (𝑥
∗
)

≥ 𝑝
𝐶 (𝑥) 𝑝𝐶∘ (𝑥

∗
) .

(38)
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Noting that 𝑥∗(𝑥) ≤ 𝑝
𝐶
(𝑥)𝑝
𝐶
∘(𝑥
∗
), we get that

𝑥
∗
(𝑥) = 𝑝𝐶 (𝑥) 𝑝𝐶∘ (𝑥

∗
) = 𝑝
𝐶
∘(𝑥
∗
)
2
. (39)

Hence, 𝑥 ∈ 𝜎
−1
(𝑥
∗
) by (13), and the weak closedness of

𝜎
−1
(𝑥
∗
) is proved.

Finally, we show that 𝑃𝐶
𝐻(𝑥
∗
,𝛼)

is norm-to-weak upper
semicontinuous at 𝑥. Otherwise, there exist a weakly open set

𝑊 ⊇ 𝑃
𝐶

𝐻(𝑥
∗
,𝛼)
(𝑥) (40)

and a sequence {𝑥
𝑛
} ⊆ 𝑋 with ‖𝑥

𝑛
− 𝑥‖ → 0 such that

𝑃
𝐶

𝐻(𝑥
∗
,𝛼)
(𝑥
𝑛
) ̸⊆ 𝑊. Since 𝑥∗(𝑥) < 𝛼 and ‖𝑥

𝑛
−𝑥‖ → 0, wemay

assume that each 𝑥∗(𝑥𝑛) < 𝛼. Now take 𝑦
𝑛
∈ 𝑃
𝐶

𝐻(𝑥
∗
,𝛼)
(𝑥
𝑛
) \𝑊

for each 𝑛. By Theorem 6, there exists 𝑧𝑛 ∈ 𝜎
−1
(𝑥
∗
) such that

𝑦𝑛 = 𝑥𝑛 + ((𝛼 − 𝑥
∗
(𝑥𝑛))/𝑝𝐶∘(𝑥

∗
))𝑧𝑛 for all 𝑛. Using the weak

compactness of 𝜎−1(𝑥∗), one has a subsequence {𝑧
𝑛
𝑘

} of {𝑧
𝑛
}

such that lim
𝑘
𝑧
𝑛
𝑘

= 𝑧weakly for some 𝑧 ∈ 𝜎−1(𝑥∗).Therefore,

weak − lim
𝑘

𝑦
𝑛
𝑘

= 𝑦 := 𝑥 +
𝛼 − 𝑥
∗
(𝑥)

𝑝
𝐶
∘ (𝑥∗)

𝑧 ∈ 𝑃
𝐶

𝐻(𝑥
∗
,𝛼)
(𝑥) .

(41)

This and (40) imply that 𝑦 ∈ 𝑊. Since𝑊 is weakly open, one
has that 𝑦𝑛

𝑘

∈ 𝑊 for sufficiently large 𝑘, which contradicts
the choice of 𝑦𝑛

𝑘

and the proof of assertion (i) is complete.
(ii) Let 𝑥 ∈ 𝐻(𝑥∗, 𝛼). Note that the norm-to-norm upper

semicontinuity of 𝑃𝐶
𝐻(𝑥
∗
,𝛼)

at 𝑥 implies the norm-to-weak
upper semicontinuity of 𝑃𝐶

𝐻(𝑥
∗
,𝛼)

at 𝑥. It suffices to verify that
𝑃
𝐶

𝐻(𝑥
∗
,𝛼)

is norm-to-norm upper semicontinuous at 𝑥. To this
end, let 𝑊 be an open neighborhood of 𝑃𝐶

𝐻(𝑥
∗
,𝛼)
(𝑥) = 𝑥.

Then there exists a positive number 𝛿0 such that 𝐵(𝑥, 𝛿
0
) ⊆

𝑊, where 𝐵(𝑥, 𝛿
0
) denotes the closed ball with center 𝑥 and

radius 𝛿
0
. Below we show that there is 𝛿 ∈ (0, 𝛿

0
] such that

𝑃
𝐶

𝐻(𝑥
∗
,𝛼)
(𝑦) ⊆ 𝐵(𝑥, 𝛿0) whenever ‖𝑦 − 𝑥‖ < 𝛿 or, equivalently

(noting that if 𝛿 ∈ (0, 𝛿
0
], one always has that 𝑃𝐶

𝐻(𝑥
∗
,𝛼)
(𝑦) =

𝑦 ∈ 𝐵(𝑥, 𝛿
0
) whenever 𝑦 ∈ 𝐻(𝑥∗, 𝛼) and 𝑦 ∈ 𝐵(𝑥, 𝛿)),

𝛼 − 𝑥
∗
(𝑥)

𝑝
𝐶
∘(𝑥∗)
2
‖𝑧‖ ≤ 𝛿0

for each 𝑧 ∈ 𝜎−1 (𝑥∗) if 𝑥∗ (𝑦) < 𝛼,
(42)

𝑥
∗
(𝑥) − 𝛼

𝑝
𝐶
∘(𝑥∗)
2
‖𝑧‖ ≤ 𝛿0

for each 𝑧 ∈ 𝜎−1 (−𝑥∗) if 𝑥∗ (𝑦) > 𝛼
(43)

whenever ‖𝑦 − 𝑥‖ < 𝛿 due toTheorem 6.
To proceed, we first verify

‖𝑧‖ ≤
𝑝
𝐶
∘ (𝑥
∗
)

𝑚
1

, ∀𝑧 ∈ 𝜎
−1
(𝑥
∗
) , (44)

where the positive number 𝑚
1
is as in Proposition 1(vi).

In fact, let 𝑧 ∈ 𝜎
−1
(𝑥
∗
). Then 𝑝

𝐶
(𝑧) = 𝑝

𝐶
∘(𝑥
∗
) by (13).

This, together with Proposition 1(vi), implies that ‖𝑧‖ ≤

(1/𝑚1)𝑝𝐶(𝑧) = (𝑝𝐶∘(𝑥
∗
)/𝑚1), and (44) is proved. Next, take

𝛿 = min{
𝑚1𝛿0

‖𝑥∗‖
𝑝
𝐶
∘ (𝑥
∗
) ,
𝑚1𝛿0

‖𝑥∗‖
𝑝
𝐶
∘ (−𝑥
∗
) , 𝛿0} . (45)

Then when ‖𝑦 − 𝑥‖ < 𝛿 and 𝑥∗(𝑦) < 𝛼, one has, for each
𝑧 ∈ 𝜎
−1
(𝑥
∗
), that

𝛼 − 𝑥
∗
(𝑥)

𝑝
𝐶
∘(𝑥∗)
2
‖𝑧‖ =

𝑥
∗
(𝑥 − 𝑦)

𝑝
𝐶
∘(𝑥∗)
2
‖𝑧‖ ≤

𝑥
∗
𝑥 − 𝑦



𝑝
𝐶
∘(𝑥∗)
2
‖𝑧‖

<

𝑥
∗ 𝛿

𝑝
𝐶
∘(𝑥∗)
2

𝑝
𝐶
∘ (𝑥
∗
)

𝑚
1

≤ 𝛿
0
;

(46)

hence, (42) holds. While when ‖𝑦 − 𝑥‖ < 𝛿 and 𝑥∗(𝑦) > 𝛼,
we can similarly show that (43) is true. Thus, the proof of (ii)
is complete.

A similar proof to that of Theorem 8 yields the following
result.

Theorem 9. Let the set 𝐶 be nearly strictly convex, 𝑥∗ ∈ 𝑋∗ \
{0}, and 𝛼 ∈ R. The the following assertions hold.

(i) Suppose that 𝑥 ∈ 𝑋 satisfies that 𝑥∗(𝑥) < 𝛼

(resp., 𝑥∗(𝑥) > 𝛼) and that 𝑥∗ (resp., −𝑥∗) attains
its supremum on bd𝐶; then 𝑃𝐶

𝐻(𝑥
∗
,𝛼)

is norm-to-norm
upper semicontinuous at 𝑥.

(ii) If 𝑥∗ and −𝑥∗ attain their supremum on bd𝐶, then
𝑃
𝐶

𝐻(𝑥
∗
,𝛼)

is norm-to-norm upper semicontinuous on𝑋.

Theorem 10. Suppose that the set 𝐶 is strictly convex and
that nonzero continuous linear functional 𝑥∗ and −𝑥∗ attain,
respectively, their supremum on bd𝐶. Then 𝑃𝐶

𝐻(𝑥
∗
,𝛼)

is norm-
to-norm continuous on𝑋.

Proof. Let 𝑦∗ ∈ 𝑋∗ \ {0}. We assert that 𝜎−1(𝑦∗) contains
at most one point under the hypothesis made upon the set
𝐶. To do this, let 𝑦

1
, 𝑦
2
∈ 𝜎
−1
(𝑦
∗
). Then, from the proof of

Theorem 8(i), one has that

𝑝
𝐶
(𝜆𝑦
1
+ (1 − 𝜆) 𝑦2)

= 𝑝
𝐶
(𝑦
1
) = 𝑝
𝐶
(𝑦
2
) = 𝑝
𝐶
∘ (𝑦
∗
) , ∀𝜆 ∈ [0, 1] ;

(47)

hence, [𝑦
1
/𝑝
𝐶
∘(𝑦
∗
), 𝑦
2
/𝑝
𝐶
∘(𝑦
∗
)] ⊆ bd 𝐶 by

Proposition 1(ii). It follows from the strict convexity of
𝐶 that 𝑦

1
/𝑝
𝐶
∘(𝑦
∗
) = 𝑦

2
/𝑝
𝐶
∘(𝑦
∗
), that is, 𝑦

1
= 𝑦
2
, and that

the assertion is proved. Applying this conclusion to 𝑥∗ and
−𝑥
∗ (noting that 𝜎−1(𝑥∗) and 𝜎−1(−𝑥∗) are nonempty by

(13) because 𝑥∗ and −𝑥∗ attain their supremum on bd𝐶),
one sees that both 𝜎−1(𝑥∗) and 𝜎−1(−𝑥∗) are a singleton.
Therefore, 𝑃𝐶

𝐻(𝑥
∗
,𝛼)
(𝑥) is single valued for each 𝑥 ∈ 𝑋 by

Theorem 6, and 𝑃𝐶
𝐻(𝑥
∗
,𝛼)

is norm-to-norm continuous on 𝑋
byTheorem 9, which completes the proof of Theorem 9.

Theorem 11. Suppose that 𝑋 is reflexive and that the set 𝐶 is
strictly convex. Then 𝑃𝐶

𝐻(𝑥
∗
,𝛼)

is norm-to-norm continuous on
𝑋 for each 𝑥∗ ∈ 𝑋∗ \ {0}.

Proof. Let 𝑥∗ ∈ 𝑋∗ \ {0} be arbitrary. Below we will show
that 𝑥∗ attains its supremum on bd𝐶. Granting this, the
conclusion follows from Theorem 10. To this end, we take a
sequence {𝑥

𝑛
} ⊆ 𝐶 such that lim

𝑛
𝑥
∗
(𝑥
𝑛
) = 𝑝

𝐶
∘(𝑥
∗
). Since
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the set 𝐶 is weakly compact (noting that𝑋 is reflexive), there
exists a subsequence of {𝑥

𝑛
}, denoted still by {𝑥

𝑛
}, such that

lim
𝑛
𝑥
𝑛
= 𝑥 weakly for some 𝑥 ∈ 𝐶. Thus,

𝑝
𝐶
∘ (𝑥
∗
) = 𝑥
∗
(𝑥) ≤ 𝑝𝐶 (𝑥) 𝑝𝐶∘ (𝑥

∗
) ≤ 𝑝𝐶∘ (𝑥

∗
) . (48)

Consequently, 𝑥 ∈ bd𝐶 because 𝑝𝐶(𝑥) = 1, and 𝑥
∗ attains its

supremum at 𝑥. The proof is complete.
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