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This paper is concerned with the existence of mild and strong solutions on the interval [0, 𝑇] for some neutral partial differential
equations with nonlocal conditions. The linear part of the equations is assumed to generate a compact analytic semigroup of
bounded linear operators, whereas the nonlinear part satisfies the Carathëodory condition and is bounded by some suitable
functions. We first employ the Schauder fixed-point theorem to prove the existence of solution on the interval [𝛿, 𝑇] for 𝛿 > 0 that
is small enough, and, then, by letting 𝛿 → 0 and using a diagonal argument, we have the existence results on the interval [0, 𝑇].
This approach allows one to drop the compactness assumption on a nonlocal condition, which generalizes recent conclusions on
this topic. The obtained results will be applied to a class of functional partial differential equations with nonlocal conditions.

1. Introduction

Thepurpose of this paper is to study the existence ofmild and
strong solutions for the following neutral evolution problem
with nonlocal initial conditions:
𝑑

𝑑𝑡
[𝑢 (𝑡) + 𝐹 (𝑡, 𝑢 (𝑡))] = −𝐴𝑢 (𝑡) + 𝐺 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) + 𝑔 (𝑢) = 𝑢
0
,

(1)

in a Banach space (𝑋, ‖ ⋅ ‖), where 𝑇 > 0 and −𝐴 generates
an analytic compact semigroup 𝑇(⋅) on 𝑋. The functions 𝐹,
𝐺, and 𝑔 will be specified later. The Cauchy problem with the
nonlocal condition 𝑥(0) + 𝑔(𝑥) = 𝑥

0
was first considered by

Byszewski [1], and since it reflects physical phenomena more
precisely than the classical initial condition 𝑥(0) = 𝑥

0
does,

this issue has gained enormous attention in the past several
years. For more detailed information about the importance
of nonlocal initial conditions in applications, we refer to the
works of Byszewski [2], Byszewski and Lakshmikantham [3],
and to many other authors [4–7] and the references therein.

Equation (1) has been studied by many authors under
various assumptions on the linear part𝐴, the nonlinear terms
𝐹, 𝐺, and the nonlocal condition 𝑔 see, for example, [8–14].

A basic approach to this problem is to define the solution
operator Φ : 𝐶([0, 𝑇], 𝑋) → 𝐶([0, 𝑇], 𝑋) by

(Φ𝑢) (𝑡) = 𝑇 (𝑡) [𝑢0 + 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢)]

− 𝐹 (𝑡, 𝑢 (𝑡)) + ∫
𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

(2)

and to use various fixed-point theorems, including Schauder
fixed-point theorem, Banach contraction principle, Leray-
Schauder alternative, and Sadovskii fixed-point theorem, to
show that Φ has a fixed point, which is the mild solution of
(1). When using fixed-point theorems, it is necessary that the
semigroup𝑇(𝑡) generated by the linear part of (1) be compact;
that is, 𝑇(𝑡) is a compact operator, for all 𝑡 > 0, so that the
norm continuity of 𝑇(𝑡), for 𝑡 > 0, becomes a key point in the
study of the existence of mild solutions. Thus, because of the
absence of compactness of the solution operator at 𝑡 = 0,most
of the papers on the relevant topics (e.g., [8–10, 14]) assume
complete continuity on the nonlocal term 𝑔. However, it is
too restrictive in terms of applications.
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Recently, Liang et al. [15] observed the nonlocal Cauchy
problem [1, 3, 4, 6] that the nonlocal condition𝑔 is completely
determined on [𝛿, 𝑇], for some 𝛿 > 0; that is, such 𝑔 ignores
the fact that 𝑡 = 0; for instance, in [4, 6], the function 𝑔(𝑢) is
given by

𝑔 (𝑢) =

𝑝

∑
𝑖=0

𝑐
𝑖
𝑢 (𝑡

𝑖
) , (3)

where 𝑐
𝑖
’s are given constants, and in this case, we have

measurements at 𝑡 = 0 ≤ 𝑡
0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑝
≤ 𝑇 rather

than just at 𝑡 = 0. Thus, by assuming that there is a 𝛿 ∈ (0, 𝑇)
such that

𝑔 (𝜙) = 𝑔 (𝜓) , ∀𝜙, 𝜑 ∈ 𝑌
𝑟
:= {𝜑 ∈ 𝐶 ([0, 𝑇] , 𝑋) ;

𝜑 (𝑡)


≤ 𝑟, ∀𝑡 ∈ [0, 𝑇]} ,

with 𝜙 (𝑠) = 𝜓 (𝑠) , 𝑠 ∈ [𝛿, 𝑇] ,

(4)

the authors utilize fixed-point theorem twice to deduce the
existence results. More recently, Liu and Yuan [16] gave
existence results using Schauder fixed-point theorem and a
limiting process under the following hypothesis.

There is a 𝛿 ∈ (0, 𝑇) such that 𝐹(𝜙) = 𝐹(𝜓) and 𝑔(𝜙) =
𝑔(𝜓), for all 𝜙, 𝜑 ∈ 𝑌

𝑟
, with 𝜙(𝑠) = 𝜓(𝑠) and 𝑠 ∈ [𝛿, 𝑇],

with the nonlinear term 𝐹 being bounded by an integrable
function.

Motivated by the works in [15, 16], we drop the compact-
ness assumption on the nonlocal condition 𝑔 and discuss the
existence of solutions for (1). The obtained results generalize
recent conclusions on this topic.

The present work is organized as follows. Section 1
is devoted the introduction of the problem we studied.
Section 2, we explain some known notations and results we
will use. The basic hypotheses on (1) are also given in this
section. In Section 3, we study the existence of mild solutions
to (1) and in Section 4, we investigate some conditions for (1)
to come up with strong solutions. In Section 5, an example is
given to illustrate the existence results.

2. Preliminaries

Throughout this paper, 𝑇 > 0 will be a fixed real number, 𝑋
will be a Banach space with norm ‖ ⋅ ‖, and −𝐴 : 𝐷(𝐴) ⊂

𝑋 → 𝑋 is the infinitesimal generator of a compact analytic
semigroup of uniformly bounded linear operators 𝑇(⋅) such
that 0 ∈ 𝜌(𝐴). Then, there exists a constant𝑀 ≥ 1 such that
‖𝑇(𝑡)‖ ≤ 𝑀, for 𝑡 ≥ 0 and it is possible to define the fractional
power 𝐴𝛼, for 0 < 𝛼 ≤ 1, as a closed linear operator on its
domain𝐷(𝐴𝛼

)with inverse𝐴−𝛼 (see [17]).The followings are
the basic properties of 𝐴𝛼.

Theorem 1 (see [17], pages 69–75). The following assertions
hold:

(i) 𝐷(𝐴𝛼
) is a Banach space with the norm |𝑥|

𝛼
:= ‖𝐴

𝛼
𝑥‖,

for 𝑥 ∈ 𝐷(𝐴𝛼
).

(ii) 𝑇(𝑡) : 𝑋 → 𝐷(𝐴
𝛼
), for each 𝑡 > 0.

(iii) 𝐴𝛼
𝑇(𝑡)𝑥 = 𝑇(𝑡)𝐴

𝛼
𝑥 for each 𝑥 ∈ 𝐷(𝐴𝛼

) and 𝑡 ≥ 0.

(iv) For every 𝑡 > 0, 𝐴𝛼
𝑇(𝑡) is bounded on 𝑋, and there

exist𝑀
𝛼
> 0 and 𝛿 > 0 such that

𝐴
𝛼
𝑇 (𝑡)

 ≤
𝑀

𝛼

𝑡𝛼
𝑒
−𝛿𝑡

≤
𝑀

𝛼

𝑡𝛼
. (5)

(v) 𝐴−𝛼 is a bounded linear operator in 𝑋 with 𝐷(𝐴𝛼
) =

Im(𝐴−𝛼
).

(vi) If 0 < 𝛼 ≤ 𝛽, then𝐷(𝐴𝛽
) → 𝐷(𝐴

𝛼
).

Let 𝑋
𝛼
be the Banach space 𝐷(𝐴𝛼

) endowed with the
norm ‖ ⋅ ‖

𝛼
. Then, we denote by 𝐶

𝛼
the operator norm of

𝐴
−𝛼, that is, 𝐶

𝛼
:= ‖𝐴

−𝛼
‖, and let 𝐸 be the Banach space

𝐶([0, 𝑇], 𝑋) endowed with the supnorm given by

‖𝑢‖𝐸 := sup
0≤𝑡≤𝑇

|𝑢 (𝑡)| , for 𝑢 ∈ 𝐸, (6)

and, for any 𝛿 ∈ (0, 𝑇), set 𝐸
𝛿
:= 𝐶([𝛿, 𝑇], 𝑋). Moreover,

let 𝐸
𝛼
be the Banach space 𝐶([0, 𝑇], 𝑋

𝛼
) endowed with the

supnorm given by

‖𝑢‖𝐸
𝛼

:= sup
0≤𝑡≤𝑇

‖𝑥 (𝑡)‖𝛼 for 𝑢 ∈ 𝐸
𝛼
. (7)

The following hypotheses are the basic assumptions of this
paper.

(H1) There exist 𝛽 ∈ (0, 1) and 𝐿
1
> 0 such that the

function 𝐹 : [0, 𝑇] × 𝑋 → 𝑋
𝛽
satisfies


𝐴
𝛽
𝐹 (𝑡, 𝑥) − 𝐴

𝛽
𝐹 (𝑠, 𝑦)


≤ 𝐿

1
(|𝑡 − 𝑠| +

𝑥 − 𝑦
) , (8)

for all 𝑡, 𝑠 ∈ [0, 𝑇] and 𝑥, 𝑦 ∈ 𝑋.
(H2) The function 𝐺 : [0, 𝑇] × 𝑋 → 𝑋 satisfies the

following conditions.

(i) For each 𝑡 ∈ [0, 𝑇], the function 𝐺(𝑡, ⋅) : 𝑋 → 𝑋 is
continuous, and, for each 𝑥 ∈ 𝑋, the function𝐺(⋅, 𝑥) :
[0, 𝑇] → 𝑋 is strongly measurable.

(ii) For each 𝑘 ∈ N and 𝑡 ∈ [0, 𝑇], there exists a positive
function 𝑔

𝑘
∈ 𝐿

1
([0, 𝑇],R+

) such that

sup
‖𝑥‖≤𝑘

‖𝐺 (𝑡, 𝑥)‖ ≤ 𝑔𝑘 (𝑡) , (9)

and there is a 𝛾 ≥ 0 such that

lim inf
𝑘→∞

1

𝑘
∫
𝑇

0

𝑔
𝑘
(𝑠) 𝑑𝑠 = 𝛾 < ∞. (10)

(H3) The function 𝑔 : 𝐿1([0, 𝑇], 𝑋) → 𝑋 is continuous,
and there exist constants 𝐿

2
, 𝐿

3
> 0 such that

𝑔 (𝑢)
 ≤ 𝐿2‖𝑢‖𝐸 + 𝐿3, (11)

for 𝑢 ∈ 𝐸.
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3. Mild Solutions

Definition 2. A continuous function 𝑢 : [0, 𝑇] → 𝑋 is called
a mild solution of (1) on [0, 𝑇] if, for each 𝑡 ∈ [0, 𝑇], the
function 𝑠 → 𝐴𝑇(𝑡 − 𝑠)𝐹(𝑠, 𝑢(𝑠)) is integrable on [0, 𝑡), and
the following equation is satisfied:

𝑢 (𝑡) = 𝑇 (𝑡) [𝑢0 + 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢)]

− 𝐹 (𝑡, 𝑢 (𝑡)) + ∫
𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(12)

for all 𝑡 ∈ [0, 𝑇].
To see the existence of mild solution of nonlocal problem

(1), we will, in view of (12), locate the fixed point of amapping
Φ defined on 𝐸 by

(Φ𝑢) (𝑡) := 𝑇 (𝑡) [𝑢0 + 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢)]

− 𝐹 (𝑡, 𝑢 (𝑡)) + ∫
𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇.

(13)

For this, we first observe the following result, where for all
𝑘 ∈ N, we let 𝐵

𝑘
= {𝑢 ∈ 𝐸 : ‖𝑢(𝑡)‖ ≤ 𝑘, 𝑡 ∈ [0, 𝑇]}.

Lemma 3. Assume that hypotheses (H1)–(H3) are satisfied,
and, in addition, there holds the following inequality:

(H4)

𝑀(𝐿
2
+ 𝛾 + 𝐶

𝛽
𝐿
1
) + 𝐿

1
(𝐶

𝛽
+𝑀

1−𝛽

𝑇
𝛽

𝛽
) < 1. (14)

Then, Φ𝐵
𝑘
⊂ 𝐵

𝑘
, for some 𝑘 ∈ N.

Proof. Suppose, on the contrary, that, for each 𝑘 > 0, there
exist 𝑢

𝑘
∈ 𝐵

𝑘
and 𝑡

𝑘
∈ [0, 𝑇] such that ‖(Φ𝑢

𝑘
)(𝑡

𝑘
)‖ > 𝑘. Then,

we have

𝑘 <
(Φ𝑢𝑘) (𝑡𝑘)



≤
𝑇 (𝑡𝑘) [𝑢0 − 𝑔 (𝑢𝑘) + 𝐹 (0, 𝑢𝑘 (0))]



+
𝐹 (𝑡𝑘, 𝑢𝑘 (𝑡𝑘))



+ ∫
𝑡
𝑘

0

𝐴𝑇 (𝑡𝑘 − 𝑠) 𝐹 (𝑠, 𝑢𝑘 (𝑠))
 𝑑𝑠

+ ∫
𝑡
𝑘

0

𝑇 (𝑡𝑘 − 𝑠)𝐺 (𝑠, 𝑢𝑘 (𝑠))
 𝑑𝑠

≤
𝑇 (𝑡𝑘)



× (
𝑢0

 +
𝑔 (𝑢𝑘)

 +

𝐴
−𝛽
𝐴
𝛽
𝐹 (0, 𝑢

𝑘
(0))


)

+

𝐴
−𝛽
𝐴
𝛽
𝐹 (𝑡

𝑘
, 𝑢

𝑘
(𝑡
𝑘
))


+ ∫
𝑡
𝑘

0


𝐴
1−𝛽
𝑇 (𝑡

𝑘
− 𝑠)𝐴

𝛽
𝐹 (𝑠, 𝑢

𝑘 (𝑠))

𝑑𝑠

+ ∫
𝑡
𝑘

0

𝑇 (𝑡𝑘 − 𝑠)𝐺 (𝑠, 𝑢𝑘 (𝑠))
 𝑑𝑠

≤ 𝑀(
𝑢0

 + 𝐿2
𝑢𝑘

𝐸 + 𝐿3)

+ (𝐶
𝛽 (1 +𝑀) +𝑀1−𝛽

𝑇
𝛽

𝛽
)

× (𝐿
1
(
𝑢𝑘

𝐸 + 𝑇) +

𝐴
𝛽
𝐹 (0, 0)


)

+𝑀∫
𝑡
𝑘

0

𝑔
𝑘
(𝑠) 𝑑𝑠.

(15)

Dividing the two sides by 𝑘 and taking the lower limit as 𝑘 →
+∞, we have

𝑀(𝐿
2
+ 𝛾 + 𝐶

𝛽
𝐿
1
) + 𝐿

1
(𝐶

𝛽
+𝑀

1−𝛽

𝑇
𝛽

𝛽
) ≥ 1, (16)

which is a contradiction. This completes the proof.

By Lemma 3, we see that themappingΦ : 𝐸 → 𝐸 defined
by (13) maps 𝐵

𝑘
into itself. We will show that Φ has a fixed

point in 𝐵
𝑘
. To see this, note first that Φ is continuous by the

continuity of 𝐹, 𝐺 and 𝑔. We decompose Φ as Φ = Φ
1
+ Φ

2
,

where

(Φ
1
𝑢) (𝑡) = −𝐹 (𝑡, 𝑢 (𝑡)) + ∫

𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(Φ
2
𝑢) (𝑡) = 𝑇 (𝑡) [𝑢

0
+ 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢)]

+ ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠.

(17)

We show that Φ
1
is a contraction in 𝐵

𝑘
and Φ

2
is a compact

operator in 𝐵
𝑘
.

Lemma 4. Assume that hypotheses (H1)–(H4) are satisfied. If
𝑢
0
∈ 𝑋, then Φ

1
is a contraction in 𝐵

𝑘
.

Proof. Observe that, for 𝑡 ∈ [0, 𝑇] and 𝑢, V ∈ 𝐵
𝑘
, we have the

assumption (H1) as follows:
(Φ1

𝑢) (𝑡) − (Φ1
V) (𝑡)

≤ ‖𝐹 (𝑡, 𝑢 (𝑡)) − 𝐹 (𝑡, V (𝑡))‖

+ ∫
𝑡

0

‖𝐴𝑇 (𝑡 − 𝑠) [𝐹 (𝑠, 𝑢 (𝑠))

−𝐹 (𝑠, V (𝑠))]‖ 𝑑𝑠
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≤ 𝐶
𝛽
𝐿
1 ‖𝑢 (𝑡) − V (𝑡)‖

+ 𝐿
1
(∫

𝑡

0

𝑀
1−𝛽

(𝑡 − 𝑠)
1−𝛽

𝑑𝑠) sup
0≤𝑠≤𝑇

‖𝑢 (𝑠) − V (𝑠)‖

≤ 𝐿
1
(𝐶

𝛽
+𝑀

1−𝛽

𝑇
𝛽

𝛽
) sup
0≤𝑠≤𝑇

‖𝑢 (𝑠) − V (𝑠)‖ .

(18)
Hence,

Φ1
𝑢 − Φ

1
V𝐸 ≤ �̃�‖𝑢 − V‖𝐸, (19)

where �̃� := 𝐿
1
(𝐶

𝛽
+𝑀

1−𝛽
(𝑇

𝛽
/𝛽))which is, by (H4), less than

1. Thus, Φ
1
is a contraction.

Lemma 5. Assume that hypotheses (H1)–(H4) are satisfied,
and, in addition, the following is given.

(H5) There exists a 𝛿 ∈ (0, 𝑇) such that 𝐹(⋅, 𝑢(⋅)) =

𝐹(⋅, V(⋅)), 𝐺(⋅, 𝑢(⋅)) = 𝐺(⋅, V(⋅)) and 𝑔(𝑢) = 𝑔(V), for any
𝑢, V ∈ 𝐵

𝑘
, with 𝑢(𝑠) = V(𝑠) and 𝑠 ∈ [𝛿, 𝑇].

Then the problem (1) has at least one mild solution in 𝐵
𝑘

for some 𝑘 ∈ N.

Proof. Let 𝛿 be given by (H5), and let
𝐵
𝑘
(𝛿) := {𝑢 ∈ 𝐶 ([𝛿, 𝑇] , 𝑋) : ‖𝑢 (𝑡)‖ ≤ 𝑘, ∀𝑡 ∈ [𝛿, 𝑇]} .

(20)

For any 𝑢 ∈ 𝐵
𝑘
(𝛿), let 𝑢 ∈ 𝐵

𝑘
be defined by

𝑢 (𝑡) := {
𝑢 (𝑡) , 𝑡 ∈ [𝛿, 𝑇] ,

𝑢 (𝛿) , 𝑡 ∈ [0, 𝛿) .
(21)

Now, we define Φ
𝛿
on 𝐸

𝛿
by

(Φ
𝛿
𝑢) (𝑡) := 𝑇 (𝑡) [𝑢

0
+ 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢)]

− 𝐹 (𝑡, 𝑢 (𝑡))

+ ∫
𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝛿 ≤ 𝑡 ≤ 𝑇.

(22)

Then, by Lemma 3, we see that Φ
𝛿
𝐵
𝑘
(𝛿) ⊂ 𝐵

𝑘
(𝛿). Consider

Φ
𝛿
as the sum Φ

𝛿
= Φ

1,𝛿
+ Φ

2,𝛿
, where

(Φ
1,𝛿
𝑢) (𝑡) = −𝐹 (𝑡, 𝑢 (𝑡))

+ ∫
𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

∀𝑢 ∈ 𝐵
𝑘 (𝛿) , 𝑡 ∈ [𝛿, 𝑇] ,

(23)

and Φ
2,𝛿

is defined on 𝐵
𝑘
(𝛿) by

(Φ
2,𝛿
𝑢) (𝑡) := 𝑇 (𝑡) (𝑢

0
+ 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢))

+ ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑡 ∈ [𝛿, 𝑇] .

(24)

With a similar argument as in the proof of Lemma 4, one sees
thatΦ

1,𝛿
is a contraction on 𝐵

𝑘
(𝛿).

For the compactness of Φ
2,𝛿
, note first that Φ

2,𝛿
is

continuous by the continuity of 𝐺 and 𝑔. Now, to show
that the set {Φ

2,𝛿
𝑢 : 𝑢 ∈ 𝐵

𝑘
(𝛿)} is relatively compact in

𝐶([𝛿, 𝑇], 𝑋), we will prove that, for each 𝑡 ∈ [𝛿, 𝑇], the two
sets

{𝑇 (𝑡) (𝑢
0
+ 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢)) : 𝑢 ∈ 𝐵

𝑘
(𝛿)} ,

𝑉 (𝑡) := {∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 : 𝑢 ∈ 𝐵
𝑘
(𝛿)}

(25)

are relatively compact in𝑋 and that

{𝑇 (⋅) (𝑢
0
+ 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢)) : 𝑢 ∈ 𝐵

𝑘
(𝛿)} ,

{∫
⋅

0

𝑇 (⋅ − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 : 𝑢 ∈ 𝐵
𝑘
(𝛿)}

(26)

are equicontinuous families of functions on [𝛿, 𝑇]. In fact, it
follows from (H3) and the compactness of 𝑇(𝑡), for 𝑡 ∈ [𝛿, 𝑇]
that, for each 𝑡 ∈ [𝛿, 𝑇],

{𝑇 (𝑡) (𝑢0 + 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢)) : 𝑢 ∈ 𝐵𝑘 (𝛿)}

is relatively compact in 𝑋.
(27)

Moreover, since for each 𝑡 > 0, and 𝜖 ∈ (0, 𝑡), the set

{𝑇 (𝜀) ∫
𝑡−𝜀

0

𝑇 (𝑡 − 𝜀 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 : 𝑢 ∈ 𝐵
𝑘
(𝛿)} (28)

is relatively compact, then, in view of


∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

−𝑇 (𝜀) ∫
𝑡−𝜀

0

𝑇 (𝑡 − 𝜀 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠


≤ ∫
𝑡

𝑡−𝜖

‖𝑇(𝑡 − 𝑠)‖𝐿(𝑋) ‖𝐺 (𝑠, 𝑢 (𝑠))‖ 𝑑𝑠

≤ 𝑀∫
𝑡

𝑡−𝜖

𝑔
𝑘
(𝑠) 𝑑𝑠,

(29)

we see by (H2) that there are relative compact sets arbitrarily
close to𝑉(𝑡), and, hence,𝑉(𝑡) is also relatively compact in𝑋.
Now, by the norm continuity of 𝑇(𝑡), for 𝑡 > 0, we see that

[𝑇 (𝑡 + ℎ) − 𝑇 (𝑡)] (𝑢0 + 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢))
 → 0

as ℎ → 0
(30)
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independently of 𝑢 ∈ 𝐵
𝑘
, and, hence, {𝑇(⋅)(𝑢

0
+ 𝐹(0, 𝑢(0) −

𝑔(𝑢)) : 𝑢 ∈ 𝐵
𝑘
(𝛿)} is an equicontinuous family of functions

on [𝛿, 𝑇]. Finally, let 𝜖 > 0 be arbitrarily small, andwe see that


∫
𝑡+ℎ

0

𝑇 (𝑡 + ℎ − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

−∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠


≤ ∫
𝑡−𝜖

0

‖[𝑇 (𝑡 + ℎ − 𝑠)

−𝑇 (𝑡 − 𝑠)] 𝐺 (𝑠, 𝑢 (𝑠))‖ 𝑑𝑠

+ ∫
𝑡

𝑡−𝜖

‖[𝑇 (𝑡 + ℎ − 𝑠) − 𝑇 (𝑡 − 𝑠)]

× 𝐺 (𝑠, 𝑢 (𝑠))‖ 𝑑𝑠

+ ∫
𝑡+ℎ

𝑡

‖𝑇 (𝑡 + ℎ − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠))‖ 𝑑𝑠

≤ ∫
𝑡−𝜖

0

‖𝑇(𝑡 − 𝑠 + ℎ) − 𝑇(𝑡 − 𝑠)‖𝐿(𝑋)

× 𝑔
𝑘 (𝑠) 𝑑𝑠 + 2𝑀∫

𝑡

𝑡−𝜖

𝑔
𝑘 (𝑠) 𝑑𝑠

+𝑀∫
𝑡+ℎ

𝑡

𝑔
𝑘 (𝑠) 𝑑𝑠,

(31)

which is, by the norm continuity of 𝑇(𝑡), for 𝑡 > 0, arbitrarily
small and independent of 𝑢 ∈ 𝐵

𝑘
as ℎ → 0. Therefore,

{∫
⋅

0
𝑇(⋅ − 𝑠)𝐺(𝑠, 𝑢(𝑠))𝑑𝑠 : 𝑢 ∈ 𝐵

𝑘
(𝛿)} is an equicontinuous

family of functions on [𝛿, 𝑇] and so is {Φ
2,𝛿
𝑢 : 𝑢 ∈ 𝐵

𝑘
(𝛿)}. It

follows fromArzela-Ascoli’s theorem that {Φ
2,𝛿
𝑢 : 𝑢 ∈ 𝐵

𝑘
(𝛿)}

is relatively compact on 𝐸
𝛿
. Thus, the mapping Φ

2,𝛿
defined

by (24) is compact.
By the fixed-point theorem of Sadovskĭı [18], this shows

thatΦ
𝛿
has a fixed point in 𝐵

𝑘
(𝛿); that is, there is a 𝜑 ∈ 𝐵

𝑘
(𝛿)

such that

𝜑 (𝑡) := 𝑇 (𝑡) [𝑢
0
+ 𝐹 (0, 𝜑 (0)) − 𝑔 (𝜑)]

− 𝐹 (𝑡, 𝜑 (𝑡)) + ∫
𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, 𝜑 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝜑 (𝑠)) 𝑑𝑠, 𝛿 ≤ 𝑡 ≤ 𝑇.

(32)

Now, define a function 𝜓 on [0, 𝑇] by

𝜓 (𝑡) := 𝑇 (𝑡) [𝑢
0
+ 𝐹 (0, 𝜑 (0)) − 𝑔 (𝜑)]

− 𝐹 (𝑡, 𝜑 (𝑡)) + ∫
𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, 𝜑 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝜑 (𝑠)) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇.

(33)

Then, 𝜓 = 𝜑 on [𝛿, 𝑇], and 𝜓 ∈ 𝐵
𝑘
. Consequently, (H5)

guarantees that

𝜓 (𝑡) := 𝑇 (𝑡) [𝑢
0
+ 𝐹 (0, 𝜓 (0)) − 𝑔 (𝜓)]

− 𝐹 (𝑡, 𝜓 (𝑡)) + ∫
𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, 𝜓 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝜓 (𝑠)) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇.

(34)

That is, 𝜓 is a mild solution of (1).

For the main results in this section, we introduce a family
of nonlocal neutral problems as follows. Firstly, we define, for
each 𝛿 ∈ (0, 𝑇), an operatorB

𝛿
on 𝐸 by

(B
𝛿
𝑢) (𝑡) := {

𝑢 (𝛿) , 0 ≤ 𝑡 ≤ 𝛿,

𝑢 (𝑡) , 𝛿 < 𝑡 ≤ 𝑇,
(35)

for all 𝑢 ∈ 𝐸. It is clear that B
𝛿
is bounded on 𝐸 and

‖B
𝛿
‖
𝐿(𝐸)

≤ 1, and, hence, B
𝛿
𝐵
𝑘
⊂ 𝐵

𝑘
. Now, for each 𝛿 ∈

[0, 𝑇], we define 𝑔
𝛿
: 𝐸 → 𝑋 by

𝑔
𝛿
(𝑢) = 𝑔 (B

𝛿
𝑢) , ∀𝑢 ∈ 𝐸, (36)

𝐹
𝛿
: [0, 𝑇] × 𝑋 → 𝑋 by

𝐹
𝛿
(𝑡, 𝑢 (𝑡)) = 𝐹 (𝑡,B

𝛿
𝑢 (𝑡)) , ∀𝑢 ∈ 𝐸, (37)

and 𝐺
𝛿
: [0, 𝑇] × 𝑋 → 𝑋 by
𝐺
𝛿
(𝑡, 𝑢 (𝑡)) = 𝐺 (𝑡,B

𝛿
𝑢 (𝑡)) , ∀𝑢 ∈ 𝐸. (38)

Consider the following nonlocal neutral problem:

𝑢

(𝑡) + 𝐹

𝛿
(𝑡, 𝑢 (𝑡)) = 𝐴𝑢 (𝑡) + 𝐺

𝛿
(𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) + 𝑔 (𝑢) = 𝑢0 ∈ 𝑋.

(NNP
𝛿
)

In view of (35)–(38), the following result is an immediate
corollary of Lemmas 4 and 5.

Lemma 6. Suppose that (H1)–(H4) are satisfied.Then, for any
𝛿 ∈ (0, 𝑇], the problem (NNP

𝛿
) has at least one mild solution

in 𝐵
𝑘
.

Theorem 7. Suppose that, hypotheses (H1)–(H4) are satisfied.
Then, problem (1) has at least one mild solution in 𝐵

𝑘
for some

𝑘 ∈ N.

Proof. Choose a decreasing sequence {𝛿
𝑛
}
𝑛∈N ⊂ (0, 𝑇) so that

lim
𝑛→∞

𝛿
𝑛
= 0, and, then, by Lemma 6, we see that for each

𝑛 ∈ N, there is an 𝑢
𝑛
such that

𝑢
𝑛 (𝑡) := 𝑇 (𝑡) [𝑢0 + 𝐹 (0, (B𝛿

𝑛

𝑢
𝑛
) (0))

−𝑔 (B
𝛿
𝑛

𝑢
𝑛
) ] − 𝐹 (𝑡, (B

𝛿
𝑛

𝑢
𝑛
) (𝑡))

+ ∫
𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, (B𝛿
𝑛

𝑢
𝑛
) (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, (B
𝛿
𝑛

𝑢
𝑛
) (𝑠)) 𝑑𝑠,

0 ≤ 𝑡 ≤ 𝑇.

(39)
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Now, for each 𝑛 ∈ N, we define Φ
𝛿
𝑛

on 𝐵
𝑘
by

(Φ
𝛿
𝑛

𝑢) (𝑡) := 𝑇 (𝑡) [𝑢
0
+ 𝐹 (0, (B

𝛿
𝑛

𝑢) (0))

−𝑔
𝛿
𝑛

(𝑢) ]

− 𝐹 (𝑡, (B
𝛿
𝑛

𝑢) (𝑡))

+ ∫
𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, (B𝛿
𝑛

𝑢) (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, (B
𝛿
𝑛

𝑢) (𝑠)) 𝑑𝑠,

0 ≤ 𝑡 ≤ 𝑇.

(40)

Then, (39) implies that Φ
𝛿
𝑛

has a fixed point in 𝐵
𝑘
which is

a mild solution for the nonlocal Cauchy problem (NCP
𝛿
𝑛

).
DecomposeΦ

𝛿
𝑛

as Φ
𝛿
𝑛

= Φ
1,𝛿
𝑛

+ Φ
2,𝛿
𝑛

, where

(Φ
1,𝛿
𝑛

𝑢) (𝑡) = −𝐹 (𝑡, (B
𝛿
𝑛

𝑢) (𝑡))

+ ∫
𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, (B𝛿
𝑛

𝑢) (𝑠)) 𝑑𝑠,

0 ≤ 𝑡 ≤ 𝑇,

Φ
2,𝛿
𝑛

𝑢 (𝑡) = 𝑇 (𝑡) [𝑢0 + 𝐹 (0, (B𝛿
𝑛

𝑢) (0))

−𝑔
𝛿
𝑛

(𝑢) ]

+ ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, (B𝛿
𝑛

𝑢) (𝑠)) 𝑑𝑠,

0 ≤ 𝑡 ≤ 𝑇.

(41)

With the same argument as in the proof of Lemma 4, we have
that Φ

1,𝛿
𝑛

is a contraction. Furthermore, since the sequence
{B

𝛿
𝑛

𝑢
𝑛
}
𝑛∈N lies in 𝐵

𝑘
, then a similar argument as in the proof

of Lemma 5 (see (27)–(31)) shows that, for each 𝑡 ∈ [0, 𝑇], the
sets

{𝑇 (𝑡) (𝑢0 + 𝐹 (0, 𝑢 (0)) − 𝑔 (B𝛿
𝑛

𝑢
𝑛
))}

𝑛∈N
,

{∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, (B
𝛿
𝑛

𝑢
𝑛
) (𝑠)) 𝑑𝑠}

𝑛∈N

(42)

are both relatively compact in 𝑋 and that the sequence of
functions

{∫
⋅

0

𝑇 (⋅ − 𝑠) 𝐺 (𝑠, (B
𝛿
𝑛

𝑢
𝑛
) (𝑠)) 𝑑𝑠}

𝑛∈N

(43)

is equicontinuous on [0, 𝑇]. Hence, it follows from Ascoli-
Arzela theorem that

{∫
⋅

0

𝑇 (⋅ − 𝑠) 𝐺 (𝑠, (B
𝛿
𝑛

𝑢
𝑛
) (𝑠)) 𝑑𝑠}

𝑛∈N

is relatively compact on 𝐸.

(44)

Now, let {𝜖
𝑛
}
𝑛∈N ⊂ (0, 𝑇) be a decreasing sequence such that

lim
𝑛→∞

𝜖
𝑛
= 0, and let {𝑢

𝑛
0

}
𝑛
0
∈N be a subsequence of {𝑢

𝑛
}
𝑛∈N.

Then, a similar argument as in the proof of Lemma 5 insures
that {𝑇(⋅)(𝑢

0
+ 𝐹(0, 𝑢(0)) − 𝑔(B

𝛿
𝑛
0

𝑢
𝑛
0

))}
𝑛
0
∈N

is an equicon-
tinuous sequence of functions on [𝜖

1
, 𝑇]. Thus, Ascoli-Arzela

theorem guarantees that the sequence

{𝑇 (⋅) (𝑢
0
+ 𝐹 (0, 𝑢 (0)) − 𝑔 (B

𝛿
𝑛
0

𝑢
𝑛
0

))}
𝑛
0
∈N

is relatively compact in 𝐶 ([𝜖
1
, 𝑇] , 𝑋) .

(45)

Thus, by (44) and (45), we see that {𝑢
𝑛
0

}
𝑛
0
∈N is relatively com-

pact in 𝐶([𝜖
1
, 𝑇], 𝑋), and, hence, we can select a subsequence

of {𝑢
𝑛
0

}
𝑛
0
∈N denoted by {𝑢

𝑛
1

}
𝑛
1
∈N, which is a Cauchy sequence

in 𝐶([𝜖
1
, 𝑇], 𝑋). By a similar process, we can select a subse-

quence of {𝑢
𝑛
1

}
𝑛
1
∈N denoted by {𝑢

𝑛
2

}
𝑛
2
∈N, which is a Cauchy

sequence in 𝐶([𝜖
2
, 𝑇], 𝑋). Repeat the above argument, and

use a diagonal argument to obtain a subsequence of {𝑢
𝑛
0

}
𝑛
0
∈N

denoted by {V
𝑛
}
𝑛∈N. Then, for every 𝑡 ∈ (0, 𝑇], {V

𝑛
(𝑡)}

𝑛∈N is a
Cauchy sequence in 𝑋, and thus, we can define the function
V
∞

by

V
∞ (𝑡) = {

0, 𝑡 = 0,

lim
𝑛→∞

V
𝑛
(𝑡) , 0 < 𝑡 ≤ 𝑇.

(46)

It is clear that V
∞

is strongly measurable, V
∞
∈ 𝐵

𝑘
, and

∫
𝑇

0

V𝑛 (𝑡) − V
∞ (𝑡)

 𝑑𝑡 ≤ 2𝑇𝑘. (47)

It therefore follows from Lebesgue’s dominated convergence
theorem that there is a subsequence {𝜏

𝑛
}
𝑛∈N of {𝛿

𝑛
0

}
𝑛
0
∈N such

that

∫
𝑇

0


(B

𝜏
𝑛

V
𝑛
) (𝑡) − V

∞
(𝑡)

𝑑𝑡

≤ ∫
𝑇

0


(B

𝜏
𝑛

V
𝑛
) (𝑡) − V

𝑛
(𝑡)

𝑑𝑡

+ ∫
𝑇

0

V𝑛 (𝑡) − V
∞
(𝑡)
 𝑑𝑡 → 0

as 𝑛 → ∞.

(48)

This shows that the sequence {B
𝛿
𝑛

𝑢
𝑛
}
𝑛∈N is relatively com-

pact on 𝐸, and, hence, by the continuity of 𝑔, it follows that

{𝑇 (⋅) (𝑢
0
+ 𝐹 (0, 𝑢 (0)) − 𝑔 (B

𝛿
𝑛

𝑢
𝑛
))}

𝑛∈N

is relatively compact on 𝐸.

(49)

By (44) and (49), we see the relative compactness of {𝑢
𝑛
}
𝑛∈N

on 𝐸. Thus, there is a subsequence of {𝑢
𝑛
}
𝑛∈N denoted by

{𝑢]}]∈N and a function 𝑢
∞
∈ 𝐸 such that

lim
]→∞

𝑢] − 𝑢∞
𝐸 = 0. (50)
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It is clear that 𝑢
∞
∈ 𝐵

𝑘
. Since


B

𝛿]
𝑢] − 𝑢∞

𝐸
= sup

0≤𝑡≤𝑇


B

𝛿]
𝑢] (𝑡) − 𝑢∞ (𝑡)



≤ sup
0≤𝑡≤𝛿]

𝑢] (𝛿]) − 𝑢∞ (𝑡)


+ sup
𝛿]≤𝑡≤𝑇

𝑢] (𝑡) − 𝑢∞ (𝑡)


≤
𝑢] (𝛿]) − 𝑢∞ (𝛿])



+ sup
0≤𝑡≤𝛿]

𝑢∞ (𝛿]) − 𝑢∞ (𝑡)


+
𝑢] − 𝑢∞

𝐸

≤ 2
𝑢] − 𝑢∞

𝐸

+ sup
0≤𝑡≤𝛿]

𝑢∞ (𝛿]) − 𝑢∞ (𝑡)
 ,

(51)

then (50) and the uniform continuity of 𝑢
∞

imply that
lim]→∞

‖B
𝛿]
𝑢] − 𝑢∞‖𝐸

= 0. By taking limits in (39), we
see that 𝑢

∞
is a mild solution of (1) and this completes the

proof.

We will consider the case more generally; that is, the
nonlocal condition𝑔 is defined on𝐸 rather than𝐿1([0, 𝑇], 𝑋).

Theorem 8. Suppose that, hypotheses (H1) and (H2) are satis-
fied, and, in addition, there hold the following hypotheses.

(H6)The function 𝑔 : 𝐸 → 𝑋 is continuous, and inequal-
ity (11) also holds.

(H7) lim
𝜖→0

sup
𝜙∈𝐵
𝑘

‖𝑔(𝜙) − 𝑔(𝜙
𝜖
)‖
𝐸
= 0, where

𝜙
𝜖
(𝑡) = {

𝜙 (𝜖) , 0 ≤ 𝑡 ≤ 𝜖,

𝜙 (𝑡) , 𝜖 < 𝑡 ≤ 𝑇.
(52)

If inequality (H4) holds, then, problem (1) has at least one mild
solution in 𝐵

𝑘
, for some 𝑘 ∈ N.

Proof. Let {𝑢
𝑛
}
𝑛∈N and {𝜖

𝑛
}
𝑛∈N be the sequences defined as in

the proof of Theorem 7. With the same arguments as in the
proof of Lemma 4, we see that Φ𝐵

𝑘
⊂ 𝐵

𝑘
, for some 𝑘 ∈ N.

Moreover, it follows from the same arguments as in the proof
of Theorem 7 that (44), and (45) also hold, and, for every
subsequence {𝑢

𝑛
0

}
𝑛
0
∈N of {𝑢

𝑛
}
𝑛∈N, there exist a subsequence

{V
𝑛
}
∞

𝑛=1
and a function V

∞
: (0, 𝑇] → 𝑋 such that V

∞
is

continuous on (0, 𝑇] and, for every 𝜖
𝑘
,

lim
𝑛→∞

max
𝑡∈[𝜖
𝑘
,𝑇]

V𝑛 (𝑡) − V
∞
(𝑡)
 = 0,

or lim
𝑛→∞


B

𝜖
𝑘

[V
𝑛
− V

∞
]
𝐸
= 0.

(53)

Let 𝜀 > 0 be given. It follows from (H7) and (53) that there is
a 𝛿 > 0 such that

𝑔 (𝜙) − 𝑔 (𝜓)
 <

𝜀

4
whenever 𝜙 = 𝜓 on [𝛿, 𝑇] (54)

and that, for every 𝑘 ∈ N, there is an 𝑁
𝑘
such that 𝑛 > 𝑁

𝑘

implies that

𝑔 (B

𝜖
𝑘

[V
𝑛
− V

∞
])

<
𝜀

4
. (55)

Choose 𝐾 that is large enough so that 𝜖
𝐾
< 𝛿, and define

𝜑 : [0, 𝑇] → 𝑋 by

𝜑 (𝑡) = {
V
∞
(𝜖
𝐾
) , 0 ≤ 𝑡 ≤ 𝜖

𝐾
,

V
∞
(𝑡) , 𝜖

𝐾
≤ 𝑡 ≤ 𝑇.

(56)

Thus, (H7), (54), and (55) insure that
𝑔 (V𝑛) − 𝑔 (V𝑚)

 ≤

𝑔 (V

𝑛
) − 𝑔 (B

𝜖
𝐾

V
𝑛
)


+

𝑔 (B

𝜖
𝐾

V
𝑛
) − 𝑔 (𝜑)



+

𝑔 (𝜑) − 𝑔 (𝐵

𝜖
𝐾

V
𝑚
)


+

𝑔 (B

𝜖
𝐾

V
𝑚
) − 𝑔 (V

𝑚
)

< 𝜀.

(57)

And, hence, by the continuity of 𝑔 and the compactness of
𝑇(𝑡), for 𝑡 > 0, (49) is also valid in this case. Therefore,
a similar argument as in the last paragraph of the proof of
Theorem 7 shows the existence of a mild solution for (1).

4. Strong Solutions

Definition 9. Amild solution 𝑢 is called a strong solution if 𝑢
is continuously differentiable on (0, 𝑇]with 𝑢 ∈ 𝐿1([0, 𝑇], 𝑋)
and satisfies (1).

In the following, we establish a result of a strong solution
for (1).

Theorem 10. Let 𝑋 be a reflexive Banach space. Suppose that
there hold the following hypotheses.

(H8) The function 𝐹 : [0, 𝑇] × 𝑋 → 𝑋
1
is a continuous

function and there exists 𝐿
4
such that

𝐴𝐹 (𝑡, 𝑥) − 𝐴𝐹 (𝑠, 𝑦)
 ≤ 𝐿4 (|𝑡 − 𝑠| +

𝑥 − 𝑦
) , (58)

for all 𝑡, 𝑠 ∈ [0, 𝑇] and 𝑥, 𝑦 ∈ 𝑋.
(H9) 𝐺(⋅, ⋅) is Lipschitz continuous; that is, there exists a

constant 𝐿
0
> 0 such that

𝐺 (𝑡, 𝑥) − 𝐺 (𝑠, 𝑦)
 ≤ 𝐿0 (|𝑡 − 𝑠| +

𝑥 − 𝑦
) , (59)

for all (𝑡, 𝑥), (𝑠, 𝑦) ∈ [0, 𝑇] × 𝑋.
(H10) The function 𝑔 : 𝐿1([0, 𝑇], 𝑋) → 𝑋 is continuous,

𝑔(𝑢) ∈ 𝑋
1
, for all 𝑢 ∈ 𝐸, and

𝑔(𝑢)
1 ≤ 𝐿5‖𝑢‖𝐸 + 𝐿6, (60)

for some 𝐿
5
, 𝐿

6
> 0.

(H11)There holds the following inequality:

𝐿
4
(𝐶

1
+𝑀𝑇) + 2𝑀𝑇𝐿

0
< 1. (61)

If 𝑢
0
∈ 𝑋

1
and inequality (H4) also holds with 𝐿

1
, 𝐿

2
; 𝐶

𝛽
is

replaced by 𝐿
4
, 𝐿

5
; and 𝐶

1
:= ‖𝐴

−1
‖, respectively, then (1) has

a strong solution on [0, 𝑇].
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Proof. Let Φ be the operator defined by (13). By (H8), (H9)
and (H10), one can use a similar argument as in the proof of
Lemma 3 to deduce that there is a 𝑘 ∈ N such thatΦ𝐵

𝑘
⊂ 𝐵

𝑘
.

For this 𝑘, consider the set

𝐵 = {𝑢 ∈ 𝐸 : ‖𝑢‖𝐸 ≤ 𝑘, ‖𝑢 (𝑡) − 𝑢 (𝑠)‖

≤ 𝐿 |𝑡 − 𝑠| , ∀𝑡, 𝑠 ∈ [0, 𝑇] } ,
(62)

for some 𝑘 and 𝐿 that are large enough. It is clear that 𝐵 is
nonempty, convex, and closed. We will prove that Φ has a
fixed point on𝐵. Obviously, from the proofs of Lemmas 4 and
5 andTheorem 7, it is sufficient to show that, for any 𝑥 ∈ 𝐵,
(Φ𝑢) (𝑡2) − (Φ𝑢) (𝑡1)

 ≤ 𝐿
𝑡2 − 𝑡1

 , ∀𝑡
2
, 𝑡
1
∈ [0, 𝑇] .

(63)

We first fix an element 𝑤 ∈ 𝐵 and observe that, for any 𝑠 ∈
[0, 𝑇],

‖𝐴𝐹 (𝑠, 𝑢 (𝑠))‖

≤ ‖𝐴 [𝐹 (𝑠, 𝑢 (𝑠)) − 𝐹 (0, (0))]‖

+ ‖𝐴𝐹 (0, 𝑢 (0))‖

≤ 𝐿
4
(𝑠 + ‖𝑢 (𝑠) − 𝑢 (0)‖) + ‖𝐴𝐹 (0, 𝑢 (0))‖

≤ 𝐿
4
(𝑇 + 2𝑘) + 𝑘

0
,

‖𝐺 (𝑠, 𝑢 (𝑠))‖

≤ ‖𝐺 (𝑠, 𝑢 (𝑠)) − 𝐺 (𝑠, 𝑤 (𝑠))‖

+ ‖𝐺 (𝑠, 𝑤 (𝑠)) − 𝐺 (0, 𝑤 (0))‖

+ ‖𝐺 (0, 𝑤 (0))‖ ≤ 𝐿0 ‖𝑢 (𝑠) − 𝑤 (𝑠)‖

+ 𝐿
0
(1 + 𝐿) 𝑠 + ‖𝐺 (0, 𝑤 (0))‖

≤ 𝐿
0 [2𝑘 + (1 + 𝐿) 𝑇] + 𝑘1,

(64)

where 𝑘
0
:= ‖𝐴𝐹(0, 𝑤(0))‖ and 𝑘

1
:= ‖𝐺(0, 𝑤(0))‖. Now,

(Φ𝑢) (𝑡2) − (Φ𝑢) (𝑡1)


≤


∫
𝑡
2

𝑡
1

𝐴𝑇 (𝑠) [𝑢
0
+ 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢)] 𝑑𝑠



+
𝐹 (𝑡2, 𝑢 (𝑡2)) − 𝐹 (𝑡1, 𝑢 (𝑡1))



+

∫
𝑡
2

0

𝐴𝑇 (𝑡
2
− 𝑠) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

−∫
𝑡
1

0

𝐴𝑇 (𝑡
1
− 𝑠) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠



+

∫
𝑡
2

0

𝑇 (𝑡
2
− 𝑠)𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

−∫
𝑡
1

0

𝑇 (𝑡
1
− 𝑠)𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠



≤


∫
𝑡
2

𝑡
1

𝐴𝑇 (𝑠) 𝑢
0
𝑑𝑠

+ ∫
𝑡
2

𝑡
1

𝑇 (𝑠) 𝐴𝐹 (0, 𝑢 (0)) 𝑑𝑠

−∫
𝑡
2

𝑡
1

𝑇 (𝑠) 𝐴𝑔 (𝑢) 𝑑𝑠



+ 𝐶
1

𝐴 [𝐹 (𝑡2, 𝑢 (𝑡2)) − 𝐹 (𝑡1, 𝑢 (𝑡1))]


+

∫
𝑡
1

0

𝑇 (𝑠) 𝐴 [𝐹 (𝑡
2
− 𝑠, 𝑢 (𝑡

2
− 𝑠))

−𝐹 (𝑡
1
− 𝑠, 𝑢 (𝑡

1
− 𝑠))] 𝑑𝑠

+∫
𝑡
2

𝑡
1

𝑇 (𝑠) 𝐴𝐹 (𝑡
2
− 𝑠, 𝑢 (𝑡

2
− 𝑠)) 𝑑𝑠



+

∫
𝑡
1

0

𝑇 (𝑠) [𝐺 (𝑡2 − 𝑠, 𝑢 (𝑡2 − 𝑠))

−𝐺 (𝑡
1
− 𝑠, 𝑢 (𝑡

1
− 𝑠))] 𝑑𝑠

+∫
𝑡
2

𝑡
1

𝑇 (𝑡
2
− 𝑠)𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠


.

(65)

Thus, from (H8), (H9), and (H10), it follows that

(Φ𝑢) (𝑡2) − (Φ𝑢) (𝑡1)


≤ 𝑀
𝐴𝑢0


𝑡2 − 𝑡1



+ 𝑀‖𝐴𝐹 (0, 𝑢 (0))‖
𝑡2 − 𝑡1



+ 𝑀 (𝑘𝐿
5
+ 𝐿

6
)
𝑡2 − 𝑡1



+ 𝐶
1
𝐿
4
(1 + 𝐿)

𝑡2 − 𝑡1


+ 𝑀𝑇𝐿
4
(1 + 𝐿)

𝑡2 − 𝑡1


+ 𝑀 [𝐿
4
(𝑇 + 2𝑘) + 𝑘

0
]
𝑡2 − 𝑡1



+ 𝑀𝑇𝐿
0
(1 + 𝐿)

𝑡2 − 𝑡1


+ 𝑀 {𝐿
0 [2𝑘 + (1 + 𝐿) 𝑇] + 𝑘1}

𝑡2 − 𝑡1


≤ {𝐾
0
+ 𝐿 [(𝐶

1
+𝑀𝑇) 𝐿

4
+ 2𝑀𝑇𝐿

0
]}
𝑡2 − 𝑡1

 ,

(66)

where 𝐾
0
is a constant independent of 𝐿. Since (H11) implies

that

𝐾
∗
:= 𝐿

4
(𝐶

1
+𝑀𝑇) + 2𝑀𝑇𝐿

0
< 1, (67)

then

(Φ𝑢) (𝑡2) − (Φ𝑢) (𝑡1)
 ≤ 𝐿

𝑡2 − 𝑡1
 , ∀𝑡

1
, 𝑡
2
∈ [0, 𝑇] ,

(68)

whenever

𝐿 ≥
𝐾
0

1 − 𝐾∗
. (69)
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Therefore, Φ has a fixed point 𝑢 which is a mild solution of
(1). By the above calculation, we see that, for this 𝑢(⋅), all of
the functions

𝑝 (𝑡) = 𝐹 (𝑡, 𝑢 (𝑡)) ,

𝑞 (𝑡) = 𝑇 (𝑡) [𝑢
0
+ 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢)] ,

𝑥 (𝑡) = ∫
𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑦 (𝑡) = ∫
𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

(70)

are Lipschitz continuous, respectively. Since 𝑢 is Lipschitz
continuous on [0, 𝑇] and the space 𝑋 is reflexive, then a
result of [19] asserts that 𝑢(⋅) is a.e. differentiable on (0, 𝑇]
and 𝑢(⋅) ∈ 𝐿1([0, 𝑇], 𝑋). A similar argument shows that 𝑝(⋅),
𝑞(⋅), 𝑥(⋅), and 𝑦(⋅) also have this property. Furthermore, with
a standard argument as in [17] (Theorem 4.2.4), we have

𝑥

(𝑡) = 𝐴𝐹 (𝑡, 𝑢 (𝑡)) − 𝐴∫

𝑡

0

𝐴𝑇 (𝑡 − 𝑠) 𝐹 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

𝑦

(𝑡) = 𝐺 (𝑡, 𝑢 (𝑡)) − 𝐴∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑢 (𝑠)) 𝑑𝑠.

(71)

So the following holds, for almost all 𝑡 ∈ [0, 𝑇]:

𝑑

𝑑𝑡
[𝑢 (𝑡) + 𝐹 (𝑡, 𝑢 (𝑡))]

=
𝑑

𝑑𝑡
[𝑇 (𝑡) (𝑢

0
+ 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢))]

+ 𝑥

(𝑡) + 𝑦


(𝑡)

= −𝐴𝑇 (𝑡) (𝑥
0
+ 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢))

+ 𝐴𝐹 (𝑡, 𝑢 (𝑡)) − 𝐴𝑥 (𝑡) + 𝐺 (𝑡, 𝑢 (𝑡)) − 𝐴𝑦 (𝑡)

= −𝐴 [𝑇 (𝑡) (𝑢
0
+ 𝐹 (0, 𝑢 (0)) − 𝑔 (𝑢))

−𝐹 (𝑡, 𝑢 (𝑡)) + 𝑥 (𝑡) + 𝑦 (𝑡) ] + 𝐺 (𝑡, 𝑢 (𝑡))

= −𝐴𝑢 (𝑡) + 𝐺 (𝑡, 𝑢 (𝑡)) .

(72)

This shows that 𝑢(⋅) is also a strong solution to the nonlocal
Cauchy problem (1), and the proof is completed.

The following result is an immediate corollary of Theo-
rems 8 and 10.

Corollary 11. Suppose that the hypotheses (H7)–(H9), and
(H11) are satisfied, and in addition, there holds the following
hypotheses.

(H12)The function 𝑔 : 𝐸 → 𝑋 is continuous, 𝑔(𝑢) ∈ 𝑋
1
,

for all 𝑢 ∈ 𝐸, and inequality (60) sustains.
If 𝑢

0
∈ 𝑋

1
and inequality (H4) also holds with 𝐿

1
, 𝐿

2
; and

𝐶
𝛽
is replaced by 𝐿

4
, 𝐿

5
; 𝐶

1
:= ‖𝐴

−1
‖, respectively, then (1) has

a strong solution on [0, 𝑇].

5. An Example

In the last section, our existence results will be applied to solve
the following system:

𝜕

𝜕𝑡
[𝑢 (𝑡, 𝑥) + ∫

1

0

𝑏 (𝑥, 𝑠) 𝑢 (𝑡, 𝑠) 𝑑𝑠]

=
𝜕
2

𝜕𝑥2
𝑢 (𝑡, 𝑥) + ℎ(𝑡, 𝑥, ∫

1

0

𝑢 (𝑡, 𝑠) 𝑑𝑠) ,

0 ≤ 𝑡 ≤ 𝑇,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) = 0, 0 ≤ 𝑡 ≤ 𝑇,

𝑢 (0, 𝑥) + ∫
𝑇

0

𝑘
1
(𝑡, 𝑥) ∫

1

0

𝑘
2
(𝑟, 𝑢 (𝑡, 𝑟)) 𝑑𝑟𝑑𝑡 = 𝑢

0
(𝑥) ,

0 ≤ 𝑥 ≤ 1,

(73)

where 0 < 𝑇 ≤ 1 and 𝑢
0
∈ 𝑋 := 𝐿

2
([0, 1],R) equipped with

𝐿
2 norm ‖ ⋅ ‖.
The operator 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 defined by

𝐷 (𝐴) = {𝑓 ∈ 𝑋 : 𝑓, 𝑓

∈ 𝑋, 𝑓 (0) = 𝑓 (1) = 0} ,

𝐴𝑓 = −𝑓

.

(74)

Then, −𝐴 generates a compact, analytic semigroup 𝑇(⋅) of
uniformly bounded linear operators. It is well known that 0 ∈
𝜌(𝐴), and, thus, the fractional powers of 𝐴 are well-defined
where the eigenvalues of 𝐴 are 𝑛2𝜋2 and the corresponding
normalized eigenvectors are 𝑒

𝑛
(𝑥) = √2 sin(𝑛𝜋𝑥), 𝑛 =

1, 2, . . .. Moreover,

𝐴𝑧 =

∞

∑
𝑛=1

𝑛
2
𝜋
2
⟨𝑧, 𝑒

𝑛
⟩ 𝑒

𝑛
, ∀𝑧 ∈ 𝐷 (𝐴) ,

𝐴
−1/2

𝑧 =

∞

∑
𝑛=1

1

𝑛
⟨𝑧, 𝑒

𝑛
⟩ 𝑒

𝑛
, ∀𝑧 ∈ 𝑋,

(75)

with ‖𝐴−1/2
‖ = 1, and the operator 𝐴1/2 is given by

𝐴
1/2
𝑧 =

∞

∑
𝑛=1

𝑛 ⟨𝑧, 𝑒
𝑛
⟩ 𝑒

𝑛
, (76)

with domain𝐷(𝐴1/2
) := {𝑓 ∈ 𝑋 : ∑

∞

𝑛=1
𝑛⟨𝑓, 𝑒

𝑛
⟩𝑒
𝑛
∈ 𝑋}.

We need the following assumptions to solve (73) with our
results.

(A1) The function 𝑏 : [0, 1] × [0, 1] → R satisfies the
following conditions.

(a) (𝑥, 𝑦) → (𝜕/𝜕𝑥)𝑏(𝑥, 𝑦) is welldefined andmeasurable
with

𝐶 := ∫
1

0

∫
1

0

(
𝜕

𝜕𝑥
𝑏(𝑥, 𝑦))

2

𝑑𝑦𝑑𝑥 < ∞. (77)

(b) 𝑏(0, 𝑥) = 𝑏(1, 𝑥) = 0, for each 𝑥 ∈ [0, 1].
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(A2) The function ℎ : [0, 𝑇] × [0, 1] × R → R satisfies
the following conditions.

(a) For each (𝑥, 𝑦) ∈ [0, 1] × R, the function ℎ(⋅, 𝑥, 𝑦) is
measurable.

(b) For each (𝑡, 𝑦) ∈ [0, 𝑇] × R, the function ℎ(𝑡, ⋅, 𝑦) is
continuous.

(c) There is an 𝑙 ∈ R+ such that
ℎ (𝑡1, 𝑥, 𝑦1) − ℎ (𝑡2, 𝑥, 𝑦2)

 ≤ 𝑙 (
𝑡1 − 𝑡2

 +
𝑦1 − 𝑦2

) ,

∀𝑥 ∈ [0, 1] .
(78)

(A3) The functions 𝑘
1
and 𝑘

2
satisfy the following condi-

tions, respectively:

(a) 𝑘
1
∈ 𝐿

2
([0, 1] × [0, 𝑇]),

(b) 𝑘
2
∈ 𝐿

2
([0, 𝑇] ×R) and there is an 𝑙

0
such that

𝑘2 (𝑡, 𝑦) − 𝑘2 (𝑠, 𝑧)
 ≤ 𝑙0 (|𝑡 − 𝑠| +

𝑦 − 𝑧
) ,

∀𝑡, 𝑠 ∈ [0, 𝑇] , 𝑦, 𝑧 ∈ R.
(79)

Let 𝐸 be the Banach space 𝐶([0, 𝑇], 𝑋) equipped with
supnorm, let 𝐹 : [0, 𝑇] × 𝑋 → 𝑋 be defined by

(𝐹 (𝑡, 𝜑)) (𝑥) = ∫
1

0

𝑏 (𝑥, 𝑠) 𝜑 (𝑠) 𝑑𝑠

(𝑡, 𝜑) ∈ [0, 𝑇] × 𝑋, 𝑥 ∈ [0, 1] ,

(80)

and let 𝐺 : [0, 𝑇] × 𝑋 → 𝑋 be defined by

(𝐺 (𝑡, 𝜙)) (𝑥) = ℎ(𝑡, 𝑥, ∫
1

0

𝜙 (𝑠) 𝑑𝑠)

(𝑡, 𝜙) ∈ [0, 𝑇] × 𝑋, 𝑥 ∈ [0, 1] .

(81)

Moreover, if𝑢 : [0, 𝑇]×[0, 1] → R, we define𝑢 : [0, 𝑇] → 𝑋

by

𝑢 (𝑡) (⋅) = 𝑢 (𝑡, ⋅) . (82)

Assumptions (A1) and (A2) imply the following conclu-
sions.

Theorem 12. The functions 𝐹 and 𝐺 have the following
inequalities.

(a) 𝐹 satisfies hypothesis (H1) with 𝛽 = 1/2 and 𝐿
1
= 𝐶

that is,

𝐴
1/2
𝐹 (𝑡

1
, 𝜑

1
) − 𝐴

1/2
𝐹 (𝑡

2
, 𝜑

2
)

≤ 𝐶

𝜙1 − 𝜙2
 . (83)

(b) 𝐺 satisfies the hypothesis (H2) with 𝑔
𝑘
= 𝑙(𝑇 + 𝑘) +

‖𝐺(0, 0)‖ and 𝛾 = 𝑙; that is,
𝐺 (𝑡1, 𝜑1) − 𝐺 (𝑡2, 𝜑2)

 ≤ 𝑙 (
𝑡1 − 𝑡2

 +
𝜑1 − 𝜑2

) ,

sup
‖𝜙‖≤𝑘

𝐺 (𝑡, 𝜙)
 ≤ 𝑙 (𝑇 + 𝑘) + ‖𝐺 (0, 0)‖ .

(84)

Proof. (a) By the definition of 𝐹 and assumption (A1), we see
that 𝐹(⋅, ⋅) ∈ 𝐷(𝐴) and


𝐴
1/2
𝐹(𝑡

1
, 𝜑

1
) − 𝐴

1/2
𝐹(𝑡

2
, 𝜑

2
)


2

= ∫
1

0

∫
1

0

(
𝜕

𝜕𝑥
𝑏 (𝑥, 𝑠) (𝜑

1
(𝑦) − 𝜑

2
(𝑦)))

2

𝑑𝑦𝑑𝑥

≤ ∫
1

0

∫
1

0

(
𝜕

𝜕𝑥
𝑏(𝑥, 𝑦))

2

𝑑𝑦𝑑𝑥 ⋅
𝜙1 − 𝜙2


2

≤ 𝐶
𝜙1 − 𝜙2


2
,

(85)

for all (𝑡
1
, 𝜙

1
), (𝑡

2
, 𝜙

2
) ∈ [0, 𝑇] × 𝑋. Hence, 𝐹 satisfies

hypothesis (H1).
(b) By the part of (c) of assumption (A2) and Hölder’s

inequality, we have

𝐺 (𝑡1, 𝜑1) − 𝐺 (𝑡2, 𝜑2)


= (∫
1

0


ℎ (𝑡

1
, 𝑥, ∫

1

0

𝜑
1
(𝑠) 𝑑𝑠)

−ℎ(𝑡
2
, 𝑥, ∫

1

0

𝜑
2 (𝑠) 𝑑𝑠)



2

𝑑𝑥)

1/2

≤ (∫
1

0

(𝑙
2 𝑡1 − 𝑡2



+


∫
1

0

𝜑
1
(𝑠) 𝑑𝑠 − ∫

1

0

𝜑
2
(𝑠) 𝑑𝑠


)

2

𝑑𝑥)

1/2

≤ 𝑙 (
𝑡1 − 𝑡2

 + (∫
1

0

𝜑1 (𝑠) − 𝜑2 (𝑠)
 𝑑𝑠))

≤ 𝑙 (
𝑡1 − 𝑡2

 +
𝜑1 − 𝜑2

) .

(86)

So 𝐺(𝑡, ⋅) is a continuous function from 𝑋 into 𝑋, for each
𝑡 ∈ [0, 𝑇]. Moreover, let 𝑘 ∈ N be arbitrary, and it follows that

sup
‖𝜙‖≤𝑘

𝐺 (𝑡, 𝜙)


≤ sup
‖𝜙‖≤𝑘

(
𝐺 (𝑡, 𝜙) − 𝐺 (0, 0)

 + ‖𝐺 (0, 0)‖)

≤ sup
‖𝜙‖≤𝑘

(𝑙 (𝑡 +
𝜙
) + ‖𝐺 (0, 0)‖)

≤ 𝑙 (𝑇 + 𝑘) + ‖𝐺 (0, 0)‖ .

(87)

So 𝐺(⋅, ⋅) satisfies (H2).

Now, we define 𝑔 : 𝐸 → 𝑋 by

(𝑔 (𝑢)) (𝑥) = ∫
𝑇

0

∫
1

0

𝑘
1
(𝑡, 𝑥) 𝑘

2
(𝑟, 𝑢 (𝑡, 𝑟)) 𝑑𝑟𝑑𝑡,

∀𝑢 ∈ 𝐸, 0 ≤ 𝑥 ≤ 1.

(88)
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Theorem 13. 𝑔 satisfies the following properties.

(a) 𝑔 is a continuous function from 𝐸 into𝑋.

(b) ‖𝑔(𝑢)‖ ≤ 𝑙
0
‖𝑘

1
‖
𝐿
2
([0,1]×[0,𝑇])

‖𝑢‖
𝐸
+ ‖𝑔(0)‖.

(c) If𝜙 ∈ 𝐸, then lim
𝜖→0

sup
𝜙∈𝐵
𝑘

‖𝑔(𝜙)−𝑔(𝜙
𝜖
)‖ = 0, where

𝜙
𝜖
(𝑡) = {

𝜙 (𝜖) , 0 ≤ 𝑡 ≤ 𝜖,

𝜙 (𝑡) , 𝜖 < 𝑡 ≤ 𝑇.
(89)

Proof. (a) This follows since

𝑔 (𝑢) − 𝑔 (V)


= (∫
1

0

(∫
𝑇

0

∫
1

0

𝑘
1
(𝑡, 𝑥)

× [𝑘
2
(𝑟, 𝑢 (𝑡, 𝑟))

−𝑘
2 (𝑟, V (𝑡, 𝑟))] 𝑑𝑟 𝑑𝑡)

2

𝑑𝑥)

1/2

≤ (∫
1

0

(∫
𝑇

0

∫
1

0

𝑘
1 (𝑡, 𝑥)

× (𝑙
0 |𝑢 (𝑡, 𝑟) − V (𝑡, 𝑟)|) 𝑑𝑟 𝑑𝑡)

2

𝑑𝑥)

1/2

≤ (∫
1

0

(∫
𝑇

0

𝑘
1
(𝑡, 𝑥)

× (𝑙
0
sup
𝑡∈[0,𝑇]

∫
1

0

|𝑢 (𝑡, 𝑟) − V (𝑡, 𝑟)| 𝑑𝑟)

×𝑑𝑡)

2

𝑑𝑥)

1/2

≤ 𝑙
0‖𝑢 − V‖𝐸(∫

1

0

(∫
𝑇

0

𝑘
1
(𝑡, 𝑥)𝑑𝑡)

2

𝑑𝑥)

1/2

≤ 𝑙
0

𝑘1
𝐿2([0,1]×[0,𝑇])‖𝑢 − V‖𝐸.

(90)

(b) This is clear from the proof of part (a).
(c) Let 𝑘 ∈ N and 𝜂 > 0 be arbitrary. Since 𝜙 ∈ 𝐸, then 𝜙

is uniformly continuous on [0, 𝑇], and, hence, there is a 𝛿 > 0
such that ‖𝜙(𝑡) − 𝜙(𝜖)‖ < 𝜂, for all 𝑡 ∈ [0, 𝜖], whenever 0 <
𝜖 < 𝛿. Thus, 0 < 𝜖 < 𝛿 implies that ‖𝜙 − 𝜙𝜖‖

𝐸
< 𝜂. Since 𝑔

is continuous from 𝐸 into 𝑋 by the part of (a), the assertion
follows.

Theorem 13 show that 𝑔 satisfies the hypotheses (H6)
and (H7) with 𝐿

4
= 𝑙

0
‖𝑘

1
‖
𝐿
2
([0,1]×[0,𝑇])

and 𝐿
5
= ‖𝑔(0)‖

respectively. Consequently, since (73) is transformed into

𝑑

𝑑𝑡
(𝑢 (𝑡) + 𝐹 (𝑡, 𝑢 (𝑡))) = 𝐴𝑢 (𝑡) + 𝐺 (𝑡, 𝑢 (𝑡)) ,

𝑡 ∈ [0, 𝑇] ,

𝑢 (0) + 𝑔 (𝑢) = 𝑧
0
,

(91)

the following result is deduced byTheorem 8.

Theorem 14. If

(𝑙
0

𝑘1
𝐿2([0,1]×[0,𝑇]) + 𝑙) + 2𝐶 (1 +𝑀1/2

) < 1, (92)

then (73) has a mild solution.

Theorem 12 also shows that 𝐺 satisfies (H9) with 𝐿
0
= 𝑙.

If 𝑘
1
also satisfies.
(A4) 𝑘

1
(𝑥, 𝑦) is twice differentiable with respect to 𝑥,

(𝜕
2
/𝜕

2
𝑥)𝑘

1
(𝑥, 𝑦) ∈ 𝐿

2
([0, 1] × [0, 𝑇]), and

𝐶 := ∫
1

0

∫
1

0

(
𝜕
2

𝜕2𝑥
𝑏(𝑥, 𝑦))

2

𝑑𝑦𝑑𝑥 < ∞. (93)

then Corollary 11 indicates the following result.

Theorem15. Assume that assumptions (A2)–(A4) are satisfied
and the function

𝑢
0 (𝑥) := 𝑢 (0, 𝑥) ∈ 𝑊

2,2
([0, 𝑇]) . (94)

If inequalities (92) and 𝐶(1 + 𝑀) + 2𝑙 < 1 hold, then (73) has
a strong solution.
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