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Considering the impact of the nonlinear stiffness, a 2-DOF vibration model with cubic terms was established according to the
structural feature and nonlinear behavior. Ignoring the impact of nonlinear terms, the system was linearly analyzed. In the case of
primary resonance and 1 : 1 internal resonance, amultiscalemethodwas used to obtain a first-order approximate solution. Taking the
parameters of one tracked ambulance for instance, the approximate solution was corroborated and the influence of the parameters
on damping effect was investigated. Finally, motion stability of the damping system was analyzed with singularity theory. The
theoretical bases for improving efficiency of the damping system were provided.

1. Introduction

The tracked ambulance can go through a variety of complex
terrain and perform first aid on the sick and wounded. To
achieve safe transfer and implement first aid on the way, it
is often necessary to demand goodmobility of tracked ambu-
lance and meet the special needs of the sick and wounded.
For the tracked ambulance that is refitted by crawler chassis,
the installation of the vehicle damping system becomes the
main way to improve the ride comfort of the sick and wound-
ed.

The tracked ambulance damping system is comprised of
the carriage, the stretcher base, the chassis, and the nonlinear
shock absorber. Therefore, it can be easily converted into a
multidegree-of-freedom nonlinear vibration system. The use
of the nonlinear vibration system presents numerous advan-
tages, such as better performance in inhibiting broadband
vibration, especially low-frequency vibration. However, com-
plex mechanical properties usually exist in a nonlinear vibra-
tion system such as chaos and bifurcation, which makes it
difficult to be analytically calculated and analyzed; therefore
approximate analytical algorithm are widely used. Lee and
Perkins [1] investigatesuspended, elastic cables driven by pla-
nar excitation with nearly commensurable natural frequen-
cies in a 2 : 1 ratio. The first-order analysis shows that there

are saturation and jump phenomena, and the cubic nonlin-
earity disrupts saturation. Li et al. [2] apply multiple scales
method and Runge-Kutta to study the nonlinear vibration
characteristics of the axial movement, multilayered cylindri-
cal shells made from composites.The results show some non-
linear properties of the system, such as the phenomenon of
internal resonance, and point out that the excitation ampli-
tude, damping, and velocity can affect the response ampli-
tude, range of internal resonance, and soft feature of the
system. Xin et al. [3] use the average method to analyze
piecewise nonlinear characteristics of the viscoelastic shocker
absorber and the relationship between amplitude-frequency
characteristics and system parameters. Xinye et al. [4] use the
averagemethod to study the possibility of delay feedback con-
trol over the gyroscope system under force. Inoue and Ishida
[5] investigate vibration phenomena of the one-degree-of-
freedom magnetically levitated system considering the effect
of the nonlinearity of the electromagnet, using a shooting
method. Moon and Kang [6] put forward an analytical
method for evaluation of the steady-state periodic behavior of
a nonlinear system.The method is based on the substructure
synthesis formulation and a multiple-scale procedure.

In this paper, the differential equations of the 2-DOF
tracked ambulance nonlinear damping system, including the
cubic nonlinear spring, were presented. In the case of primary
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Figure 1: Ambulance damping system: (1) carriage, (2) stretcher
base, (3) zero stiffness damper, (4) rubber damping shock absorber,
and (5) coach chassis.

resonance and 1 : 1 internal resonance, multiple-scale method
was used to obtain a first-order approximate solution of the
differential equations. Taking the parameters of the tracked
ambulance for instance, the accuracy of the approximate
solution was established compared with numerical results.
The impact of the parameters on damping effect and motion
stability was also investigated. Furthermore, the theoretical
bases for improving efficiency of the damping system were
put forward.

2. Damping System Physical Model

The tracked ambulance damping system is shown in Figure 1.
The damping system ismainly constituted of rubber damping
shock absorber and zero stiffness damper. The linear model
is used to describe the stiffness and damping of the rubber
damping shock absorber. For zero stiffness damper, the
damping is described by a linear model, and stiffness is
described by the positive and negative stiffness parallel model
[7], shown in Figure 2.

The stiffness, the original length, and the initial deforma-
tion of horizontal spring, in Figure 1, are defined as 𝑘,𝐿, and𝜆.
𝑘
0
stands for the stiffness of the vertical spring. The vertical

elastic restoring force of the model can be expressed in the
form

𝑓 (𝑥) = 𝑘
0
𝑥 − 𝑘

[
[

[

𝑥 −
𝐿 − 𝜆

√1 − (𝑥/𝐿)
2

𝑥

𝐿

]
]

]

. (1)

𝑚

𝑘𝑘

𝑘0

Figure 2: Positive and negative stiffness parallel model.

By using the Taylor series, a second-order expansion is
sought in the form

1

√1 − (𝑥/𝐿)
2

= 1 +
1

2
(
𝑥

𝐿
)
2

+
13

24
(
𝑥

𝐿
)
4

+ ⋅ ⋅ ⋅ . (2)

Substituting the first two terms into (1) results in

𝑓 (𝑥) = (𝑘
0
−
𝑘𝜆

𝐿
)𝑥 +

𝐿 − 𝜆

𝐿3
𝑘

2
𝑥
3
⋅ ⋅ ⋅ . (3)

Therefore, the restoring force of zero stiffness damper can
be expressed in the form

𝑓 (𝑧) = 𝐾
𝑠
𝑥 + 𝛽𝐾

𝑠
𝑥
3
⋅ ⋅ ⋅ , (4)

where 𝐾
𝑠
= (𝑘
0
− (𝑘𝜆/𝐿)), 𝛽𝐾

𝑠
= ((𝐿 − 𝜆)/𝐿3)(𝑘/2), and 𝛽 is

a small parameter.
According to the occupant of the vehicle ride (lying)

comfort evaluation standards, occupant comfort is mainly
affected by the vertical vibration acceleration. Neglecting the
other two directions of vibration, a 2-DOF model of the
tracked ambulance damping system is shown in Figure 3,
including the following:

𝑀
1
: the quality of stretcher and decubital body;

𝑀
2
: the quality of carriage;

𝐾
𝑠
: the stiffness of zero stiffness damper;

𝐶
1
: the damping of zero stiffness damper;

𝐾
2
: the stiffness of rubber damping shock absorber;

𝐶
2
: the damping of rubber damping shock absorber;

𝑥
1
, 𝑥
2
, and 𝑥

3
: stretcher base displacement, carriage

displacement, chassis displacement.

The differential equations describing the motion of the
damping system are
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(5)
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Figure 3: The 2-DOF damping system.

We rewrite (5) as
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where
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3. Linear Analysis

Ignoring the impact of nonlinear terms, the nonlinear equa-
tions (5) are changed into linear equations as follows:
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By making the substitution,
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Equations (8) become
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The steady-state amplitude from (11) is
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where
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Figure 4: Amplitude-frequency curves.

The amplitude-frequency curves are plotted with the
parameters of a tracked ambulance. The parameters of the
tracked ambulance are 𝑀

1
= 180 kg, 𝑀

2
= 2000 kg, 𝐾

𝑠
=

217582N/m, 𝐶
1
= 4200N⋅s/m, 𝑓 = 1500N, 𝛽 = 0.1,

𝐾
2
= 2200000N/m, and 𝐶

2
= 19540N⋅s/m. The amplitude-

frequency curves are shown in Figure 4. Although the model
is 2-DOF, there is only one resonance peak. This is because
𝜔
2

1
≈ 𝜔
2

2
.

4. Perturbation Analysis

Utilizingmultiscale method, the response of damping system
is solved. The new independent time scales

𝑇
𝑛
= 𝜀
𝑛
𝑡, 𝑛 = 0, 1, . . . (14)

are introduced, where 𝜀 represents a small positive parameter
and 𝑇

𝑛
, 𝑛 = 0, 1, . . . are “slow” time scales which capture

the response due to the nonlinearities, damping, and external
excitation. And we note that

𝑑
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where 𝐷
𝑛
= 𝜕/𝜕𝑇

𝑛
, 𝑛 = 0, 1, . . .. We expand the time-

dependent variables 𝑥
1
and 𝑥

2
in powers of 𝜀 as
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1
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Then we substitute (15)-(16) into (6) and obtain the
following equations.

Order (𝜀0):

𝐷
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0
𝑥
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+ 𝜔
2
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𝑥
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= 0,

𝐷
2

0
𝑥
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𝑥
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Order (𝜀1):
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3
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) .
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The solution of (17) can be expressed as

𝑥
11
= 𝐴
1
(𝑇
1
) exp (𝑖𝜔

1
𝑇
0
) + 𝑐𝑐,

𝑥
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2
(𝑇
1
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2
𝑇
0
) + 𝑐𝑐.

(19)

To express 1 : 1 internal resonance and the nearness of
the excitation frequency to the first-order natural frequency,
we introduce two detuning parameters 𝜎

1
and 𝜎

2
defined by

𝜔
2
= 𝜔
1
+ 𝜀𝜎
1
, Ω = 𝜔
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2
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1
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2
into (18) leads to secular terms.



Abstract and Applied Analysis 5

By eliminating these secular terms, the state equations are
obtained as follows:

− 2𝐴


1
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0
)

− 3𝑏
2
𝐴
2

2
𝐴
2
− 3𝑏
2
𝐴
2

1
𝐴
2
exp (−2𝑖𝜎𝑇
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where 𝐴
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parts result in the following four state equations:
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which provide the steady-state amplitudes and phases.

5. Simulation Analysis

The numerical simulation is to analyze the relationship
between the vibration amplitudes of the stretcher base
and carriage and the parameters of tracked ambulance. To
establish the accuracy of the average equations, simulation
analysis is performed for the parameters shown previously
[8]. For 𝜔

1
= 𝜔

2
= 34.8 rad/s, the 1 : 1 resonance

may occur. In Figure 5, we show the comparison between
numerical solutions, obtained by the Runge-Kutta method,
and perturbation solutions.

In Figure 5, the trend and resonance position of perturba-
tion solutions and numerical solutions are the same, but the
amplitudes are different.This is because we only use the first-
order approximation, and it does not affect our qualitative
analysis of the dynamic behavior of the system.The damping
system amplitude-frequency curve is similar to the linear
results, where jump phenomenon does not occur. Figures 6–
10 show the impact of the tracked ambulance’s parameters on
the damping effect, where 𝑎

1
and 𝑎

2
represent the vibrating

amplitudes of the carriage and the stretcher base.
As can be seen from Figure 6, when the amplitude of

the exciting force becomes bigger, the vibration amplitudes
of stretcher base and carriage all become bigger.

Figures 7 and 8 clearly show that the damping of zero
stiffness damper has a great impact on the vibration ampli-
tude of stretcher base, but little on the vibration amplitude of
carriage and the damping of rubber damping shock absorber
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Figure 5: Amplitude-frequency curve.

has a great impact on the vibration amplitudes of stretcher
base and carriage. The damping is greater and the amplitude
is smaller. Hence, increasing the damping of rubber damping
shock absorber, to some degree, is more effective reducing
vibration.

Figures 9 and 10 show that the stiffness of zero stiffness
damper only has a major impact on the vibration amplitude
of stretcher base, and the stiffness of rubber damping shock
absorber only has a major impact on the vibration amplitude
of carriage on the premise of meeting 1 : 1 internal resonance
roughly. However, both stiffness of zero stiffness damper
and rubber damping shock absorber affect the resonance
frequency. Increasing the stiffness of zero stiffness damper or
decreasing the stiffness of rubber damping shock absorber
can increase the resonance frequency, which is helpful in
decreasing vehicle vibration [9]. With comprehensive com-
parison of Figures 7–10, damping has a great influence on the
amplitude of vibration, and stiffness has a great impact on the
resonance frequency.

6. Stability Analysis

To analyze the stability of the system in the primary reso-
nance, we need to convert the average equations in polar
form into a rectangular form by introducing [10–14] 𝑝
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Figure 6: The influence of the exciting force.
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Figure 7: The influence of zero stiffness damper’s damping.
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Figure 8: The influence of rubber damping shock absorber’s damping.
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Figure 9: The influence of zero stiffness damper’s stiffness.
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Figure 10: The influence of rubber damping shock absorber’s stiffness.
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(27)

where the average equations become more complex and the
exact analytical solution cannot be obtained. At steady state,
�̇�
1
= 0, �̇�

2
= 0, ̇𝑞

1
= 0, and ̇𝑞

2
= 0, and we use the

Newton Method to calculate the value of the equilibrium
point of the average equations (22) by repeatedly changing
the initial value of the equilibrium point. There are three sets
of equilibrium points

𝜙
1
= {−3.9041, −1.2622, 2.0696, 1.8797} ,

𝜙
2
= {12.1124, 7.7186, −13.7048, −10.4106} ,

𝜙
3
= {−10.9811, −6.7073, 11.9741, 8.9831} .

(28)

The stability of the system at the equilibrium point is
governed by the eigenvalue of the Jacobian matrix of (27)
based on the singularity theory.The eigenvalues are obtained
as follows:
𝜆
1
= {−13.5988 + 22.7426𝑖, −13.5988 − 22.7426𝑖,

−4.0362 + 5.5237𝑖, −4.0362 − 5.5237𝑖} ,

𝜆
2
= {−31.75 + 120.17𝑖, 30.18, −31.75 − 120.17𝑖, −1.95} ,

𝜆
3
= {−28.95 + 103.88𝑖, −1.70, −28.95 − 103.88𝑖, 24.33} .

(29)

Equation (23) is the Jacobianmatrix of (22) at equilibrium
point, where the expressions of 𝑛

𝑖𝑗
(𝑖 = 1, . . . , 4, 𝑗 = 1, . . . , 4)

are given in the appendix:

𝐴 =
[
[
[

[

𝑛
11
𝑛
12
𝑛
13
𝑛
14

𝑛
21
𝑛
22
𝑛
23
𝑛
24

𝑛
31
𝑛
32
𝑛
33
𝑛
34

𝑛
41
𝑛
42
𝑛
43
𝑛
44

]
]
]

]

. (30)

After singularity analysis, the system is only stable in
the first equilibrium point. Since there is only one stable
equilibrium point, the jump phenomenon does not occur.
The Runge-Kutta method is used to validate the singularity
analysis. Figure 11 presents the final stable position of (22) at
three equilibrium points.
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Figure 11: System stability location.

Figure 11 clearly illustrates that the system is only sta-
ble in the first equilibrium point and diverges to infinity
(Figure 11(b)) or converges to the stable equilibrium point
(Figure 11(c)) at an unstable equilibrium point. Therefore,
the system is impossible to get a stable state in the unstable
equilibrium point.

7. Conclusion

This paper established the dynamicmodel of a tracked ambu-
lance damping system containing cubic nonlinear terms.
We utilized a multiscale method to investigate the dynamic
model and obtained the average equations. Average equations
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were corroborated with the actual parameters. The influence
of damping system parameters on the damping effect as well
as the stability of the damping systemwas analyzed.The result
explained the reasons why there is no jump phenomenon.
This analysis method is suitable for multidegree-of-freedom
bearing motion system, particularly suitable for vehicles.
The research results are valuable for the vehicle damping
systemdesign aswell as forecast the damping systemdynamic
behavior.
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