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We investigate a mathematical model introduced by Shikhmurzaev to remove singularities that arise when classical hydrodynamic
models are applied to certain physical phenomena. The model is described as a free boundary problem consisting of the Navier-
Stokes equations and a surface mass balance equation. We prove the local-in-time solvability in Holder spaces.

1. Introduction

Let a time-dependent bounded domain Q, ¢ R’ with the
outer boundary I, = 0€, be filled with an incompressible
viscous fluid, and let T, represent the interface. In Q,,
we assume that the flow is governed by the Navier-Stokes
equations:

a—v+(v-V)v+Vp—vAv:0,

.V = 1
o V-v=0, ¢Y)

where v is the velocity, p is the pressure, and v, which is
assumed to be a positive constant, is the kinematic viscosity.
On I}, we assume the following equations:

IT(v,p)n=Vo, n-T(v,p)n=o0H, (2)

Dp’ —
TV = p (V) n ®)
(v-v)-n= PP M(v-v')=-xVo, (4)
pT
o=y(p-p)- ®)

Here v* and p° are the velocity and the density of surface
layer, respectively. T(v, p) = vD(v) — pI is the stress tensor,
where D(v) = ((av,./axj) + (avi/axj))i,j=1,2,3 is the velocity
deformation tensor. H is the twice mean curvature of I, at the
point x, which is negative if Q, is convex in the neighborhood

of x. n is the unit outward normal to I, at the point x. IT is
the projection operator onto the tangent plane at the point
x on I,. D/Dt denotes the derivative along the trajectory of
particle on I}. V is the gradient restricted to the surface. p, p;,
T, X> J»> P are positive constants; in particular, p is the density
of the bulk and 7 is the characteristic time scale over which
the surface density p° relaxes to its equilibrium value p.

Finally, to complete the problem, we give the initial
conditions:

on Q=Q,, on I' =T,

(6)

It is known that singularities arise when the the classical
hydrodynamic equations and modeling assumptions are
applied to certain physical phenomena. For example, the
application of the classical no-slip boundary condition to the
spreading of a drop on a plate gives rise to a nonintegrable
shear stress, and the application of the classical kinematic
condition at the free boundary to the formation of a cusp on
a free surface of a viscous fluid leads to an infinite energy
dissipation in the fluid (e.g., refer to [1] and the references
therein).

To remove the above mentioned singularities, we are
required to modify classical boundary conditions by tak-
ing into account molecular interaction near interfaces. The
molecule in the liquid region which is very close to another
phases experiences an asymmetric force due to the presence
of another materials. This gives rise to the variation in the

S
P |t:0 =Po

Vli—o = Vo



density in the liquid region near to the adjacent phase, and
the surface tension occurs as a result of this variation in
density. The thin layer in the liquid region in which the above
mentioned density variation occurs is called the surface layer.

Through [1-4], Shikhmurzaev developed a theory to
remove the above mentioned singularities by introducing a
surface layer which is treated as a separate phase. In this
theory, the no-slip condition assumed in classical models
for dynamic wetting processes is modified as the Navier-
slip condition through thermodynamic considerations on
the surface layer (refer to [2, 3]). The formation of a free
surface cusp associated with fluid flow is also investigated
in [4]. In [4], the cusp formation is modeled as an interface
disappearance process. In this model, an internal surface
stretching from the cusp, which is referred to as “the surface-
tension-relaxation tail’, is introduced. The above mentioned
singularity associated with the modeling of cusp formation
arises owing to the absence of viscous stress at the cusp with
which the surface tension acting from the liquid surface is
balanced. In this model, the surface tension at the cusp can
be balanced by shear stresses acting on this tail.

The problem (1)-(6) is a model describing the behavior
of an isolated liquid drop in which the interface is modeled
as a surface layer based on Shikhmurzaev’s theory. The
dynamics of the liquid in this layer are governed by (3) which
represents conservation of mass. The right-hand side of (3)
represents the source consisting of a flow of molecules from
the bulk. Equations in (4) are conditions that minimize the
rate of entropy production in the surface layer. Equation (5)
represents a linearized state equation in the surface layer
(refer to [1] for details). In Shikhmurzaev’s theory, the surface
layer is modeled as a sharp interface as a result of a continuum
approximation. Thus, in the above problem, the surface layer
is described by the equations given in (3)-(5) defined on a
geometric surface, and the behavior of the surface layer is
related to (1) in the bulk through the boundary conditions
given in (2).

In the present paper, we prove the local-in-time classi-
cal solvability of problem (1)-(6). As is mentioned above,
this model is important as a basic model to describe the
above mentioned physical phenomena; however, as far as
the author knows, any rigorous proofs on its solvability
have not been given. In the present paper, we consider the
case where the mass exchange between the interface and
the bulk does not occur. As is seen in Section 2, under
such an assumption, we can reformulate our problem as a
problem defined in a domain with a fixed known boundary
by introducing Lagrangian coordinates, and in Section 3, we
construct a unique solution of the reformulated problem
in Holder spaces with the aid of the method of successive
approximations.

2. Reformulation of the Problem

In this section, we reformulate our problem in Lagrangian
coordinates. By Lagrangian coordinates we mean the initial
coordinates of the fluid particles. In the case where no
exchange of molecules occurs between the surface and the
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bulk, (4)" is reduced to v-n = v*-n. This relation indicates that
the following kinematic condition at the interface is satisfied:
the interface consists of the particles located at the interface
at the initial time. This circumstance enables us to relate each
point x € Q, to its initial point & € Q by relation (10) given
below.

Before reformulating our problem, we rewrite (3) as a
nonlinear parabolic equation on I, with the time derivative
Dp®/Dt, where Dp°/Dt denotes the derivative along the
trajectory of particle on the interface with velocity v. Noting
the following relation (e.g., see [5]):

Dp'\ _Dp' . o. Dp o
= v .Vp' = -v-Vp’, 7
( Dt ) o VYV s v O

where (Dp*/Dt), represents the derivative along the trajec-
tory which is normal to the interface, (3) can be written as
ﬁps S S S .S
1 p'V-V = (v-V)-Vp' 8)
= P (v=v)-Vp

Then eliminating v* from the above equation with the aid of
the relation (4)%, we obtain the following equation:

Eps 552 s s
By —XYpVp = —pVev
)

{0 =)V P+ Ve V)

Now let us reformulate our problem. The Lagrangian and
Eulerian coordinates are related by

t
X=X, Er)=E+ L u(&7)dr, (10)

where u(&, 7) is the velocity at time ¢ of the particle which was
located at £ at t = 0. By changing the variables from x to & by
relation (10), problem (1)-(6) is reformulated as the following
problem defined in the cylindrical domain Qu = Q x (0, T)
with the lateral boundary Iy = T x (0, T):

d
& Wu+v,q=0,

V,-u=0
ot “

in Q()T; (11)
11, T, (u,g)n, = IV, 0,
n-T,(uq)n, = GVéXu &, t)lzer ‘n+n-V0,

or’ se2 s
A (12)

=’V -u+ xy {(rs - ) Vérs + V7’ Vrtrs} ,
0=v(p-r)

on (),

on Iy,

rs|t:0 =p, onT. (13)

In (11)-(13), u, g and r° are v(X,(&,1),1), p(X,(&,1),t), and
P (X, (& 1),1), respectively. Consider V,, = (f;l)tv = 7V
here 7, denotes the Jacobian matrix of X,,, and the notation

ul,_ =V,
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A" means the transpose of the matrix A. n is the outward
unit normal to T at the point &, n, = 7 n/|#.n|, and II
and II,, are the operators defined by IIf = f — (f - n)f and
IT,f = f—(f-n,)f, respectively. T, (u, q) is the tensor with the
elements vzk 1(A]k(au [0&;) + Alk(au [0&;)) — p8,], where

jis the (i, j)-element of 7, and §;; ijis Kroneckers delta. The
operators Vr, f and Vp, - A are defined by

z gaﬁiaxu (S)
Osg  0sg

>

Vr,f =

a,f=1,2

g a21:2
where g = det(gaﬁ)a,ﬁ=1,2’ goc,B = (aXu(S)/aSa) . (aXu(S)/
Osp), g"* denote the components of the inverse matrix of
(Gaplap-ro Xuls) = X,(&(s),t), s = (s;,s,) denotes the
local coordinates on I, and A, denotes the components of
the vector A with respect to the basis (0X,,(s)/0s,), &« = 1,2.
Finally, the operator Vﬁ f is defined as

(14)
ViAa

1 o
%Zasx/_gﬁf @15)

a,B=1,2

Vr, f= Vi Vr, f=

Note that in derivation of (12)?, we have used the formula
Hn = Vx = szu(f, t). Note also that although (12)"*
are different from the following formulas which are obtained
directly from (2):

HuTu (ll, Q) n, = VI}G’
(16)

u

n,-T,(u,g)n, = GVEXH &, t)|§er n

problem (11)-(13) is equivalent to problem (1)-(6) as far as the
condition n - n, > 0, which is valid for sufficiently small ¢, is
satisfied.

We now introduce some function spaces. Let D be a
domain in R”, let T be a positive constant, let Dy be a
cylindrical domain D x (0, T), let ] be a nonnegative integer,
andlet«, y € (0, 1).

By C*%(D), we define the space of functions f(x), x € D,
with the norm

5= Y o+ 15 Iflp=suplf ol
|ml|<l xeD
“ ) |07 f () -3 f ()]
(A5 =Y [ f]y) = sup s
P |r;=z P %YEDX# Y 1| |x - J’|
n alml
= . s A A—
|T’I’I| Zﬂ’lz x a;ril . a;r:,
(17)
for a multi-indexm = (m;) (m; > 0,i=1,...,n).

By C*(("9)/2(p_ ) we denote an anisotropic Holder
space of functions whose norm is defined by

!
|f| (4o, (( l+¢x)/2)) Z |atramf|D (l+o< ((l+o¢)/2)), (18)

2r+|m|=0

3
where
|f|D = sup |f (x, t)|
(x,t)eDy
I
(o ((I+)/2)) ram 100,((+a—2r+|ml))/2))
[/] [0 £ 19
Pr 2r+|mZ|:l 1 ( )
+ aram (DCO)
2r+|ZV:n| =l
Here,
!
[F]02) |f )= f(xt)]
br (o)t Dt £t |t - t'|(0‘/2)
(20)
!
[f]((x,O)= 'f(-x)t)_f<x ,t)|
Dy = |x ~ x’|a .

(x.0),(x" t)eDrx # x'

Finally, we introduce the function space C'**¥(D;)
equipped with the norm

Ay

flo, + IVFIS @2+ £, @

where

If 6= £ (|

22
It — Tl( (1+a-y)/2) (22)

flor =

7,t€(0,T),7 #¢
Now, let us state our main result.

Theorem 1. Let o, y be constants satisfying 0 < «, y < 1.
Assume that

v eC?(Q),  peC M), TeC™.  (23)

Assume that there exist positive constants A | and A, such that
P—py=A;>0andpy > A, > 0onT. In addition, assume
that the following compatibility conditions are satisfied:

Vv, =0, (vIID (vo) n + yVppp)|; = 0, (24)
where Vy is the operator corresponding to Vp with t = 0;
namely, V. is given by the formula in (14) with X, (s) = &(s).
Then, for a positive constant T, problem (11)-(13) has a
unique solution (u, q, r*) with the following smoothness:

uce C2+o¢,1+(oc/2) (QoT) ,
q c Clﬂx,y (Q()T) n C1+xx,((1+o¢)/2) (FOT) , (25)

rs c C2+a,1+(a/2) (FOT) .

3. Proof of the Main Result

In this section, we will prove Theorem 1.



We begin with preparing estimates of solutions to some
linear problems. For the following problem:

a—u—vV u+V,g=F,

V, - u=F
at w 2

in Qgr,

yIII1, D, (w)n, = F;,

t t
n-Tw(u,q)nw—@n-VfZJ udr=b+J Bdr on Iy,
“Jo 0

u,,=v, on Q,
(26)

the following result is given in [6]. In (26), V,,, IT,, T, (u,q)
(= vD,(u) — gI), n,, are defined for a given vector w in the
same manner as V,, IT,, T, (u,q), n, are defined, and V. is
defined by (14) with X, = X,..

Theorem 2. Let T > 0, and let o, y be positive constants
satisfying 0 < «, y < 1. Assume that

FeC™,  v,eC™(Q),

FocCP(0y), B e CRNMOR (g,
(27)
Fy e CU () pe @Dy,

BecC®“(r,), @®ecC*(T).

Assume that there exists a positive constant A such that

® = A, > 0onT. Assume that the following compatibility
conditions are satisfied:

V-vo=F(0),  ID(vy)n|. =F;(£0). (28)

Assume that there exist functions h e C*2(Qy;), Hy, k =

1,2, 3, with a finite norm |Hk|Q rooy) satisfying the relation

or;

3
= — Vw . Fl =V-h, h= Zangk, (29)

k=1

in the sense of distribution. Furthermore, assume that w €
CElr @2 () Y satisfies the inequality

(T+T1/2) |w|(2+al+(a/2) T((l—oc+y)/2)|aEw|Q <4, (30)
0T

for a sufficiently small positive constant J.
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Then problem (26) has a unique solution (u, q) satisfying
the following inequality:

(+o,1+(a/2)) (1+ay) (1+o,((1+a)/2))
lug + llallg,, ™ + laly,,
(a,(t/2)) (1+a,((1+)/2))
<C,(T) {lF +|Byfgr

(1+ L((1+ )/2)) 1+e,((1 2
|F o (1+a |b|§0;r“ ((1+a)/2))

2)) (2+a) ()2

+ 1B 1 v [ + U

+Z|Hk|“+”)+PT w) (vl +|b(-,0)|r)} ,
(1)

where Pp(w) = T/ |w| i |afw|§;’;’i"‘/2)) +

(0w g( WeN2) ond © (T) is a nondecreasing function
of T.

For the following problem:

or’

at Xyp0V~r =G on [,

(32)

s s
r|t:0_P0 on I,

we have the following theorem. The assertion of the theorem
immediately follows from the Hoélder estimates for linear
parabolic equations (e.g., see [7]).

Theorem 3. Let T > 0, and let « be a positive constant
satisfying 0 < o < 1. Assume that

TeC™, peC™M), GeC”(I,). (33)

Assume that there exists a positive constant A, such that p; >
A, > 0onT. Further assume the same assumptions for w stated
in Theorem 2.

Then, problem (32) has a unique solution r* satisfying the
following inequality:

2+a,1+(a/2 2
|7’S ;O;ra +(at/2)) < Cz (T) (|G|r L(@/2)) |P0 (2+a )) (34)

where C,(T) is a nondecreasing function of T.
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Combining the above results, we can easily obtain Theo-
rem 4 given below for the following problem:

ou _

= Wou+V,q=F, V,-u=F

in Qyr,

VI, Dy, (W) n, + yIIV;r* = F;,
_ t
n-T,(u,q)n, - On-V; J udr +yn - Vi r®
t 0 t

t
=b+ J Bdt on T, (35)
0

ul,o=v, on Q,

or’

2
ot X)’Pévftrs =G on Lo

S S
Pl =p onT.
The estimate given in the theorem will be essentially used in
the later argument to prove Theorem 1.

Theorem 4. Under the same assumptions given in Theorem 2

where only compatibility condition is replaced by

V-v, =F, (£0), (vIID (vo) n + yIIVpp;)| . = F5 (£,0),
(36)

and Theorem 3, problem (35) has a unique solution (u, g, r*)
satisfying the following inequality:

(2+a,1+(a/2))

(1+oc,y) | |(1+(x( (1+)/2)) |1"S o

+ lal,,

(2+a,1+(a/2))
|u|QoT rOT

< C3 (T) {lF (o (ex/2)) |F2 g;a,((1+a)/2))

(1+o¢ ((1+«)/2))

+ |F |b|§(l);—a( 1+a)/2))
( ( /2) (o (e/2)) : (1+ay)
o,(af2)) o, (/2 +a,y.
+ B 4 | SO kZ|Hk|QOT
(2+a) 2 (2+a)
+[volg ™ +IGIEE) 4 |l

+ Prw) (ol + 16 GOl )}
(37)

where C4(T) is a nondecreasing function of T.

In addition, we prepare estimates for .7, which are used
later.

Lemma 5. Let 7, and J, be the Jacobian matrices of the
mappings X,, and X, respectively. Let us assume that u and
' satisfy condition (30) for sufficiently small 8 > 0. Then, the
following inequalities hold:

|le(é;oc,((l+vc)/2)), |f |g;a 7) <C, (38)

5
where C is a positive constant independent of 8, and
(L+a,((1+a)/2)) (I+ay)
7= Talon” AT Tl
T
(2+a,1+(a/2)) (2+a,1+(a/2))
Se|u—u'| o +C(€)J |u—u’ o dr,
QOT 0 QUT
(39)

for arbitrary 0 < € < 1, where C(€) is a positive constant
depending only on e.

Proof. In the following proof, ¢, ¢,, and ¢; are positive
constants independent of § and e. Let a; be the (i, j)-
component of 7 ,,.

Then, we have

8,-j— <a; <6 + (40)

1] -

t
or udr|,
Jo &

t
O: udr
Jo &

where §;; denotes Kronecker’s delta. Then, using the inequal-
ity

t
L agjuid‘r < T|u|8(’)g) <4, (41)
0T
from (40), we have
S -0< |a,.j|QOT <8, +9. (42)

This inequality implies that det #,, > 0 holds for sufficiently
small § > 0.

Now, let a' be the (i, j)- components of 7, and let A
and A be the cofactors of a;; and a; j» respectively.

Then from the 1nequa11t1es

(1+a,((1+a)/2)) 7 1A+ ((1+a)/2))

o Jaglo. <q(1+9),  (43)

'“ij
we have

(T+a,((1+a)/2))
Qqr

(1+a,y)

Oy (44)

ij

|A

|43
On the other hand, from the inequality

1 1 (4o, ((1+a)/2))
jai = |
T1Qr

11Q2+o,1+(e/2))
Wia,, (45)

Se|u—

112+a,1+(a/2))

b (14 e /) JT Ju-
Qe

0

dr,




which are obtained with the aid of the following inequality
which holds for arbitrary 0 < € < 1:

(I+o,((1+a)/2))

Jot fE& ndr

Qqr

T (1+¢,0)
< | 1lgar

o (KTl
|t =" | <2/ (1)
+p't|“”j|@f@1ﬂdg
—_ t/
b sup Qw4q“”“ﬁnvmﬂbw
/1= g|¢l gt <T t

N |t, 3 tu|—(rx/2) J:j, |agf &, T)|QdT)

(e ((1+0)/2))
= €|f|QOT

+ (1 + ¢ (Fe)/(-a)) )J |f|(1+“’((1+“)/2))dr,

QO-r

(46)

we have
(14a,((14a)/2)) 1 ((1+ay)
[y -l A Ay,
T
11C+a,1+(a/2)) 11Q2+0,1+(ex/2))
<¢clu-u +C, (e u- dr,
ju- (@] Ju-wl
(47)

where C, (€) is a positive constant depending only on €. From
(44) and (47), estimates (38) and (39) immediately follow.
Thus, the proof is completed. O

Now, let us prove Theorem 1 by the method of successive
approximations. We take (uy,gy,7;) = (0,0,0), and, for
the known mth approximation, we define the (n + 1)th
approximation by the solutions of the following problem:

aun+1

2
ot - 7/Vunum—l + Vu,,qn+l =0,

Vun W = 0 in QOT’

VL, D, (w,,,)n, + IV =0,

t n+1

t
n'Tu,, (un+1’qn+1) - 6n- V J;) n+1dT

S
+yn-Vp

t
=b(u,r)+ J B(u,r)dr on Ty,
0
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un+1|t:o =V, on Q,

S

or,
at+1 XYPO Lo n+1 =G (1’;, un) on 1—‘OT’

folo=py onT
n+1t:0_P0 >

(48)

where

t
b(u,r) =6, <H0+n-J (v )&ir),
0 nt/ T
Hy=n- Vi

B(u,r) = {aa—_[ (0,, —@)} n- Vrzm LT u, (& s)ds

+ (Qn - @) n- (Vrzm)r JOT u, (& s)ds (49)
+ (Gn - @) n- ngun,

On =Y (ﬁ - r:z) >
G(u,r)= -1V -u,

0=y(p-p)>

+Xy{(r —pO)V r +Vr, 1 WV rs}

In the above formulas, Vy = is the operator corresponding to
Vr, with X, = X, ,and (V2 ); denotes the operator obtained

by differentiating the coeﬂiaents of V with respect to 7.

Now, let us verify that all terms of the sequence
{(u,,q,,7,)} are defined on some time interval independent
of n. We begin with the following lemma.

Lemma 6. Let T, be a constant satisfying 0 < T,, < 1. Then
there exist positive constants 8 and 3 such that if u, and r;
satisfy the following conditions:

(Tn +T2/2)| Ié{;« 1+(a/2)) T(l at+y)/2) 'a,gu 'QOT <6,

B (2+a,1+(x/2)) s1(2+a,14(/2))
(Tn + Tn) (|un Or, +|r Ly, <9,

(50)

then the following inequality holds for a positive constant C
independent of w,,, r; and T,,:

)| (1+a,((1+2)/2)) )l(rx L(a/2))

| n’ n |B (un’ n

(.(/2)) = )
+|G (u,, n)lr?;n“ +Pr (u,) <C.

Proof. In the proof, ¢, ...
dent of u,, 7,,and T,

, Gy are positive constants indepen-
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Choosing T{"""?* a5 ¢ in the following interpolation
inequality:
(14 ((1+0)/2)
|6 N (9 |t 0)|r0Tn
512 ) —(a/(1-ax))
<éelr; _Po + e _Polrm

T'l
<elr; - Po (2 Dy cle_(“/(l_“)) L |o; (r; - P3)|r0,d7’
(52)
we have the following estimate:

I@ (1+a,((1+e)/2))

Ly,

(lpo (1+a) |6 _ (0 |t O)I (T+o,((1+a) /2)))

1—‘OT
<c {|Po (1+a) (Tr(l(l—rx)/Za) . Tr(tl/Z)) |r; _ Pgl(rj;)}

<¢(1+0).
(53)

With the aid of the above estimate, we can easily obtain the
desired estimate for b(u,,, ;).

B(u,,r;) is estimated as follows. With the aid of the
inequality
(0(ax/2))

a7 Endn

Tor (54)
(T n T1 («/2) ) |f| (2+a,1+(x/2))

1-‘OT

we have

{5t [uena

(ev,(a/2))

t
+ (en - @) n- (V?m)t J u, (& 1)dr
' 0 Lor,,
< G (T + Tl*((X/Z)) |7’S _ p8|(2+lx,l+(zx/2))|u

n r()T,,
<¢ (1 +62).

On the other hand, with the aid of

Bl T
F:Tn“ s J-o (6 - )

s s1(2+a,1+(x/2))
< Tn|rn - PO Loz,

(2+a,1+(/2))
Iy,

(55)

(e,(@/2))

0, - dr
I‘()-r

(56)

>

we have

(6,-8)n-v2 u, """

Lor,,

+at, 1+(o¢/2))| (+a,1+(/2)) (57)

S
<qT, |rn - nlry,

0|r0

Sc9(1+62).

From (55) and (57), we have the desired estimate for B(u,,, 7).
G(u,, ;) and Py, (u,,) are estimated in a similar manner. Thus,
we have proved the lemma. O

From this lemma, if u,, and r; satisfy conditions (50), by
applying Theorem 4 to problem (3) we have the following
estimate of u,,; and 1, ,

(2+a,1+(x/2))

(240, 1+( oc/2))
| Wi |QOT

| n+l1 |F0Tn

<C;()C  (58)

where 63(-) is the function given in Theorem 4.
Now, let us take T satisfying the following conditions:

0<T<1, C)C(T+T1F)<é. (59)

Here f3 is assumed to be chosen, so that § < 1/2 and 3 <
(1-a+y)/2. Since (uy, ry) = (0,0), the zeroth approximation
(uy, ;) obviously satisfies conditions (50) for the above T.
Hence, from (58), (u,, r7) satisfies

| l2+o¢1+(¢x/2)) |s|(2+a,1+(o</2))
1 1

Oy <C;(1)C. (60)

Tor

From (59), this inequality indicates that (u,r]) satisfies
conditions (50), and hence we can obtain the same estimate
as (60) for (u,,r;). Thus, repeating this argument, we can
construct a sequence {(u,,q,,7;)} such that each term is
defined on (0, T).

Let us proceed to the proof of the convergence of the
sequence {(u,, g, ;,)}. In the following argument, C,, ..., C,,
denote positive constants independent of n and C(e) repre-
sents various positive constants depending only on e.

Let us set

U(n+1) =0, —u,
(61)
R(n+1) = rs

s
n+l rn'

(n+1) _
Qn+ ) = 9nr1 — 9o

Subtracting (3) with index # from that with index n + 1, we
have

aU(rl+1)
ot
\%

u,

~ w2 U™ 4y, QMY = F,

(n+1) _ n) .
-U =, in Qg

n

VML, D, (U"™)n, +yIvy R™Y = F 7,

t
n- Tun (U(”+1),Q(n+l)) n, - On - VI%M L U™ gr

+ Yn R(n+1

t
() (n)
=b" +J-099”d1 on [y,
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U(”+1)| =0 on Q
t=0
aR(nH)
= Ve R =87 in Ty,
R(”+l)| =0 on I,
t=0
(62)
where

F = (e, = Vi) o= (i, = V)
73 == (V= V) e

gg") = I {HunDun (un) n, - Hun,lDun,l (un) nun,l}

S

- YH (Vrn,t - Vrn—l,t) T

b(n) =-n: {Tun (un’ qn) n, - Tun,l (un’ qn) nun,l}

—yn (Ve =V Y+ b(u,r) = b(u, 7 ),

B =0n-(V; -V

nt n-1,71

)T LT u, (& s)ds

+@n'(vl% _vlg,1 )un+B( w7, ) B( W, l)’
" = v (i, - Vi )+ Guury) =G (u,pry ).
(63)
Now, noting that the relations Z;zl anAlj = 0 hold for
the cofactors A;; of the Jacobian matrix of any transformation
from & to x, by direct calculations, we can verify that the
following relations hold:

ag;(n) 3
SV, F =Voh W =R o HE,  (64)
t k=1
where

(n) _ -1 -1 () ~1nr(n)
Hkn - _(ju,, _jun,l)Lkn _juann

ia J Nl(cn) (1 t)d’% (65)
€ -7l
with
LY = vAG T AG 0w, - 7 ed,
MY = (ARAY - Al g,
- (70 - Fu ) & (66)
N =0 (7 ) e

- {aﬂk (j':: - j;:—l)} L;CH) - (aflkj;:)Ml(cn)'
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In (66), the Einstein summation convention is used, A(l.';)
denotes the (i, j)-component ofj;, and e, k = 1,2, 3, denote
fundamental unit vectors in R>.

For the terms in (63), h™, and H,((”), we have the following
estimate for arbitrary 0 < € < 1:

(a,(a/2)) (1+a,((1+a)/2)) (1+a,((1+a)/2))
g(n) g(") g("
F e 17, |7,
+ |b(n) (I+a,((1+a)/2)) "%(n ' a,(a/2)) + |h(n)|(lx,((x/2))
Tor Lor Qor
(n) (1+e,y) (n) (o, (/2))
+ Z'H QT |§‘g Tor
(67)
(2+a,1+(et/2)) (2+a,1+(t/2))
<C {e <|U(”) TR T )
Qqr Lor

+Ce) J' ('U n)|(2+oc J1+(a/2))

2+a,1+(et/2))
e >dr}.

+ |R(” -
[\

We will derive here the estimate only of H](:’) because the
other terms can be estimated in a similar and simpler manner.
Noting that the following estimates hold for u, and g,,:

| (2+a,1+(a/2)) |

(I+ay)
n1Qgr + qn Qor < C2’ (68)

and with the aid of estimates (38) and (39), we have

-1 -1 (I+e,y) _1 n) (1+a,y) () (0,((1+e)/2))
(7 = 7 DB, Ml NS,
(n) (2+a,1+(a/2))

<, (ol

2+, 1+(a/2))
+C(e)J |U(") e dT).
QUT
(69)

Noting also the following inequality:

(I+e,y)
(0,((1+a—y)/2))

< C4'N(”)| . (70)

J N (1,1) NS (e)

E-al

from estimate (69) for N,(:’), we have

(I+e,y)

N (1.1)
o, T

( |U(”)

+ C(e) J 'U(”

(2+a,1+(a/2)) (71)

(2+a,1+(a/2))
0, dT> .

Thus, from estimates (69) and (71), we have the desired
estimate for H,((")
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Now, applying Theorem 4 to problem (62), we have the
following estimate:

2+a,1+(ex/2))

(n+1) (n+1) (n+1) | (2ol +(@/2)
Ul QT R

(2+0a,1+(et/2)) (2+0,1+(et/2))

§C6{ ( o, 1+(a +'R(n)ro¢ « )

or
(2+a,1+(e/2)) (2+a,1+(x/2))
+C(€)j <'Un) a1+ | (n)r al+(a )dr}

ot

(72)

where the norm || f| is defined as | fll;, = |f|(1+“y

(on(a/2)) (140 ((1+)/2) pigs
IVleOT + |f|r0T . Fixing € so that C4e < 1/2 and
summing the above inequalities from n = 1 to n = m, we have

T
S, (T) <C, (s1 (T) + L S, (1) dT) , (73)

where

s, (T) s§<|U

(2+0c 1+(a/2))

o QR

(lx,(oc/Z))>
Tor ’

(74)

Then, using Gronwall’s inequality, from the above inequality,
we have

S (T) < Cy (1+TeT). (75)

Noting that the right-hand side in (75) is independent of
m, we can conclude that the sequence {(u,, g,,,7;,)} is conver-
gent in C2+oc,1+(oc/2)(QOT) % (CH(X)Y(QOT) nCl+o¢,((1+o¢)/2)(F0T)) %
C2+o¢,1+(oc/2)(1—~0T)'

Now, let us prove Theorem 1. Taking the limit as n tends
to infinity in problem (3), we can easily see that the limit of
the sequence {(u,,q,,,7;)} is a solution of problem (11)-(13).
The uniqueness can be proved as follows. Let (u,g,7°) and
(4, g, 7°) be two solutions of problem (11)-(13). By subtracting
one equation from the other, we obtain the equations for the
differencesV =u—1, P =g - g,and R = v’ — 7, the form of
which is similar to (62). Then, in a similar manner to obtain
(72), we can obtain the following estimate:

|V|(2+a J1+(a/2)) |R|(2+a,1+(a/2))

I‘(]T

< C10 { (|V| (2+a, 1+(a/2)) + |R|(2+oc,1+(oc/2)))

l-‘OT

+C(€)J (|V|(2+a1+(a/2)) |R|(r§:“’1+(“/2)))dT}-
(76)

This inequality implies that V' = 0 and R = 0, and as a
consequence, P = 0 follows. Thus, the proof of Theorem 1
is completed.
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