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We investigate a mathematical model introduced by Shikhmurzaev to remove singularities that arise when classical hydrodynamic
models are applied to certain physical phenomena. The model is described as a free boundary problem consisting of the Navier-
Stokes equations and a surface mass balance equation. We prove the local-in-time solvability in Hölder spaces.

1. Introduction

Let a time-dependent bounded domain Ω
𝑡
⊂ R3 with the

outer boundary Γ
𝑡
≡ 𝜕Ω

𝑡
be filled with an incompressible

viscous fluid, and let Γ
𝑡
represent the interface. In Ω

𝑡
,

we assume that the flow is governed by the Navier-Stokes
equations:

𝜕v
𝜕𝑡
+ (v ⋅ ∇) v + ∇𝑝 − ]Δv = 0, ∇ ⋅ v = 0, (1)

where v is the velocity, 𝑝 is the pressure, and ], which is
assumed to be a positive constant, is the kinematic viscosity.

On Γ
𝑡
, we assume the following equations:

ΠT (v, 𝑝)n = ∇𝜎, n ⋅ T (v, 𝑝)n = 𝜎𝐻, (2)

𝐷𝜌
𝑠

𝐷𝑡
+ 𝜌

𝑠
∇ ⋅ v𝑠 = 𝜌 (v − v𝑠) ⋅ n, (3)

(v − v𝑠) ⋅ n = −
𝜌
𝑠

𝑒
− 𝜌

𝑠

𝜌𝜏
, Π (v − v𝑠) = −𝜒∇𝜎, (4)

𝜎 = 𝛾 (𝜌 − 𝜌
𝑠
) . (5)

Here v𝑠 and 𝜌𝑠 are the velocity and the density of surface
layer, respectively. T(v, 𝑝) = ]D(v) − 𝑝𝐼 is the stress tensor,
where D(v) = ((𝜕V

𝑖
/𝜕𝑥

𝑗
) + (𝜕V

𝑖
/𝜕𝑥

𝑗
))
𝑖,𝑗=1,2,3

is the velocity
deformation tensor.𝐻 is the twicemean curvature of Γ

𝑡
at the

point 𝑥, which is negative ifΩ
𝑡
is convex in the neighborhood

of 𝑥. n is the unit outward normal to Γ
𝑡
at the point 𝑥. Π is

the projection operator onto the tangent plane at the point
𝑥 on Γ

𝑡
. 𝐷/𝐷𝑡 denotes the derivative along the trajectory of

particle on Γ
𝑡
. ∇ is the gradient restricted to the surface. 𝜌, 𝜌𝑠

𝑒
,

𝜏, 𝜒, 𝛾, 𝜌 are positive constants; in particular, 𝜌 is the density
of the bulk and 𝜏 is the characteristic time scale over which
the surface density 𝜌𝑠 relaxes to its equilibrium value 𝜌𝑠

𝑒
.

Finally, to complete the problem, we give the initial
conditions:

v|
𝑡=0
= v

0
on Ω ≡ Ω

0
, 𝜌

𝑠󵄨󵄨󵄨󵄨𝑡=0
= 𝜌

0
on Γ ≡ Γ

0
.

(6)

It is known that singularities arise when the the classical
hydrodynamic equations and modeling assumptions are
applied to certain physical phenomena. For example, the
application of the classical no-slip boundary condition to the
spreading of a drop on a plate gives rise to a nonintegrable
shear stress, and the application of the classical kinematic
condition at the free boundary to the formation of a cusp on
a free surface of a viscous fluid leads to an infinite energy
dissipation in the fluid (e.g., refer to [1] and the references
therein).

To remove the above mentioned singularities, we are
required to modify classical boundary conditions by tak-
ing into account molecular interaction near interfaces. The
molecule in the liquid region which is very close to another
phases experiences an asymmetric force due to the presence
of another materials. This gives rise to the variation in the
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density in the liquid region near to the adjacent phase, and
the surface tension occurs as a result of this variation in
density.The thin layer in the liquid region in which the above
mentioned density variation occurs is called the surface layer.

Through [1–4], Shikhmurzaev developed a theory to
remove the above mentioned singularities by introducing a
surface layer which is treated as a separate phase. In this
theory, the no-slip condition assumed in classical models
for dynamic wetting processes is modified as the Navier-
slip condition through thermodynamic considerations on
the surface layer (refer to [2, 3]). The formation of a free
surface cusp associated with fluid flow is also investigated
in [4]. In [4], the cusp formation is modeled as an interface
disappearance process. In this model, an internal surface
stretching from the cusp, which is referred to as “the surface-
tension-relaxation tail”, is introduced. The above mentioned
singularity associated with the modeling of cusp formation
arises owing to the absence of viscous stress at the cusp with
which the surface tension acting from the liquid surface is
balanced. In this model, the surface tension at the cusp can
be balanced by shear stresses acting on this tail.

The problem (1)–(6) is a model describing the behavior
of an isolated liquid drop in which the interface is modeled
as a surface layer based on Shikhmurzaev’s theory. The
dynamics of the liquid in this layer are governed by (3) which
represents conservation of mass. The right-hand side of (3)
represents the source consisting of a flow of molecules from
the bulk. Equations in (4) are conditions that minimize the
rate of entropy production in the surface layer. Equation (5)
represents a linearized state equation in the surface layer
(refer to [1] for details). In Shikhmurzaev’s theory, the surface
layer ismodeled as a sharp interface as a result of a continuum
approximation. Thus, in the above problem, the surface layer
is described by the equations given in (3)–(5) defined on a
geometric surface, and the behavior of the surface layer is
related to (1) in the bulk through the boundary conditions
given in (2).

In the present paper, we prove the local-in-time classi-
cal solvability of problem (1)–(6). As is mentioned above,
this model is important as a basic model to describe the
above mentioned physical phenomena; however, as far as
the author knows, any rigorous proofs on its solvability
have not been given. In the present paper, we consider the
case where the mass exchange between the interface and
the bulk does not occur. As is seen in Section 2, under
such an assumption, we can reformulate our problem as a
problem defined in a domain with a fixed known boundary
by introducing Lagrangian coordinates, and in Section 3, we
construct a unique solution of the reformulated problem
in Hölder spaces with the aid of the method of successive
approximations.

2. Reformulation of the Problem

In this section, we reformulate our problem in Lagrangian
coordinates. By Lagrangian coordinates we mean the initial
coordinates of the fluid particles. In the case where no
exchange of molecules occurs between the surface and the

bulk, (4)1 is reduced to v⋅n = v𝑠 ⋅n.This relation indicates that
the following kinematic condition at the interface is satisfied:
the interface consists of the particles located at the interface
at the initial time.This circumstance enables us to relate each
point 𝑥 ∈ Ω

𝑡
to its initial point 𝜉 ∈ Ω by relation (10) given

below.
Before reformulating our problem, we rewrite (3) as a

nonlinear parabolic equation on Γ
𝑡
with the time derivative

𝐷𝜌
𝑠
/𝐷𝑡, where 𝐷𝜌𝑠/𝐷𝑡 denotes the derivative along the

trajectory of particle on the interface with velocity v. Noting
the following relation (e.g., see [5]):

(
𝐷𝜌

𝑠

𝐷𝑡
)

𝑛

=
𝐷𝜌

𝑠

𝐷𝑡
− v𝑠 ⋅ ∇𝜌𝑠 =

𝐷𝜌
𝑠

𝐷𝑡
− v ⋅ ∇𝜌𝑠, (7)

where (𝐷𝜌𝑠/𝐷𝑡)
𝑛
represents the derivative along the trajec-

tory which is normal to the interface, (3) can be written as

𝐷𝜌
𝑠

𝐷𝑡
+ 𝜌

𝑠
∇ ⋅ v𝑠 = (v − v𝑠) ⋅ ∇𝜌𝑠. (8)

Then eliminating v𝑠 from the above equation with the aid of
the relation (4)2, we obtain the following equation:

𝐷𝜌
𝑠

𝐷𝑡
− 𝜒𝛾𝜌

𝑠

0
∇
2

𝜌
𝑠
= − 𝜌

𝑠
∇ ⋅ v

+ 𝜒𝛾 {(𝜌
𝑠
− 𝜌

𝑠

0
) ∇

2

𝜌
𝑠
+ ∇𝜌

𝑠
⋅ ∇𝜌

𝑠
} .

(9)

Now let us reformulate our problem.The Lagrangian and
Eulerian coordinates are related by

𝑥 = 𝑋
𝑢
(𝜉, 𝑡) ≡ 𝜉 + ∫

𝑡

0

u (𝜉, 𝜏) 𝑑𝜏, (10)

where u(𝜉, 𝜏) is the velocity at time 𝑡 of the particle which was
located at 𝜉 at 𝑡 = 0. By changing the variables from 𝑥 to 𝜉 by
relation (10), problem (1)–(6) is reformulated as the following
problem defined in the cylindrical domain Ω

0𝑇
= Ω × (0, 𝑇)

with the lateral boundary Γ
0𝑇
≡ Γ × (0, 𝑇):

𝜕u
𝜕𝑡
− ]∇2

𝑢
u + ∇

𝑢
𝑞 = 0, ∇

𝑢
⋅ u = 0 in Ω

0𝑇
, (11)

ΠΠ
𝑢
T
𝑢
(u, 𝑞)n

𝑢
= Π∇

Γ
𝑡

𝜃,

n ⋅ T
𝑢
(u, 𝑞)n

𝑢
= 𝜃∇

2

Γ
𝑡

𝑋
𝑢
(𝜉, 𝑡)

󵄨󵄨󵄨󵄨󵄨𝜉∈Γ
⋅ n + n ⋅ ∇

Γ
𝑡

𝜃,

𝜕𝑟
𝑠

𝜕𝑡
− 𝜒𝛾𝜌

𝑠

0
∇
2

Γ
𝑡

𝑟
𝑠

= −𝑟
𝑠
∇
Γ
𝑡

⋅ u + 𝜒𝛾 {(𝑟𝑠 − 𝜌𝑠
0
) ∇

2

Γ
𝑡

𝑟
𝑠
+ ∇

Γ
𝑡

𝑟
𝑠
⋅ ∇

Γ
𝑡

𝑟
𝑠
} ,

𝜃 = 𝛾 (𝜌 − 𝑟
𝑠
) on Γ

0𝑇
,

(12)

u|
𝑡=0
= v

0
on Ω, 𝑟

𝑠󵄨󵄨󵄨󵄨𝑡=0
= 𝜌

𝑠

0
on Γ. (13)

In (11)–(13), u, 𝑞 and 𝑟𝑠 are v(𝑋
𝑢
(𝜉, 𝑡), 𝑡), 𝑝(𝑋

𝑢
(𝜉, 𝑡), 𝑡), and

𝜌
𝑠
(𝑋

𝑢
(𝜉, 𝑡), 𝑡), respectively. Consider ∇

𝑢
= (J−1

𝑢
)
𝑡
∇ ≡ J∗

𝑢
∇;

hereJ
𝑢
denotes the Jacobian matrix of 𝑋

𝑢
, and the notation
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𝐴
𝑡 means the transpose of the matrix 𝐴. n is the outward

unit normal to Γ at the point 𝜉, n
𝑢
= J∗

𝑢
n/|J∗

𝑢
n|, and Π

and Π
𝑢
are the operators defined by Πf = f − (f ⋅ n)f and

Π
𝑢
f = f −(f ⋅n

𝑢
)f , respectively. T

𝑢
(u, 𝑞) is the tensor with the

elements ]∑3

𝑘=1
(𝐴

𝑗𝑘
(𝜕𝑢

𝑖
/𝜕𝜉

𝑘
) + 𝐴

𝑖𝑘
(𝜕𝑢

𝑗
/𝜕𝜉

𝑘
)) − 𝑝𝛿

𝑖𝑗
, where

𝐴
𝑖𝑗
is the (𝑖, 𝑗)-element ofJ∗

𝑢
, and 𝛿

𝑖𝑗
is Kronecker’s delta.The

operators ∇
Γ
𝑡

𝑓 and ∇
Γ
𝑡

⋅ A are defined by

∇
Γ
𝑡

𝑓 = ∑

𝛼,𝛽=1,2

𝑔
𝛼𝛽 𝜕𝑓

𝜕𝑠
𝛽

𝜕𝑋
𝑢
(𝑠)

𝜕𝑠
𝛼

,

∇
Γ
𝑡

⋅ A = 1

√𝑔
∑

𝛼=1,2

𝜕

𝜕𝑠
𝛼

√𝑔𝐴𝛼
,

(14)

where 𝑔 = det(𝑔
𝛼𝛽
)
𝛼,𝛽=1,2

, 𝑔
𝛼𝛽
= (𝜕𝑋

𝑢
(𝑠)/𝜕𝑠

𝛼
) ⋅ (𝜕𝑋

𝑢
(𝑠)/

𝜕𝑠
𝛽
), 𝑔𝛼𝛽 denote the components of the inverse matrix of

(𝑔
𝛼𝛽
)
𝛼,𝛽=1,2

, 𝑋
𝑢
(𝑠) = 𝑋

𝑢
(𝜉(𝑠), 𝑡), 𝑠 = (𝑠

1
, 𝑠

2
) denotes the

local coordinates on Γ, and 𝐴
𝛼
denotes the components of

the vector A with respect to the basis (𝜕𝑋
𝑢
(𝑠)/𝜕𝑠

𝛼
), 𝛼 = 1, 2.

Finally, the operator ∇2

Γ
𝑡

𝑓 is defined as

∇
2

Γ
𝑡

𝑓 = ∇
Γ
𝑡

⋅ ∇
Γ
𝑡

𝑓 =
1

√𝑔
∑

𝛼,𝛽=1,2

𝜕

𝜕𝑠
𝛼

√𝑔𝑔
𝛼𝛽 𝜕𝑓

𝜕𝑠
𝛽

. (15)

Note that in derivation of (12)2, we have used the formula
𝐻n = ∇

2

𝑥 ≡ ∇
2

𝑋
𝑢
(𝜉, 𝑡). Note also that although (12)1,2

are different from the following formulas which are obtained
directly from (2):

Π
𝑢
T
𝑢
(u, 𝑞)n

𝑢
= ∇

Γ
𝑡

𝜃,

n
𝑢
⋅ T

𝑢
(u, 𝑞)n

𝑢
= 𝜃∇

2

Γ
𝑡

𝑋
𝑢
(𝜉, 𝑡)

󵄨󵄨󵄨󵄨󵄨𝜉∈Γ
⋅ n

𝑢
,

(16)

problem (11)–(13) is equivalent to problem (1)–(6) as far as the
condition n ⋅ n

𝑢
> 0, which is valid for sufficiently small 𝑡, is

satisfied.
We now introduce some function spaces. Let 𝐷 be a

domain in R𝑛, let 𝑇 be a positive constant, let 𝐷
𝑇
be a

cylindrical domain𝐷 × (0, 𝑇), let 𝑙 be a nonnegative integer,
and let 𝛼, 𝛾 ∈ (0, 1).

By𝐶𝑙+𝛼
(𝐷), we define the space of functions 𝑓(𝑥), 𝑥 ∈ 𝐷,

with the norm
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

(𝑙+𝛼)

𝐷
≡ ∑

|𝑚|≤𝑙

󵄨󵄨󵄨󵄨𝜕
𝑚

𝑥
𝑓
󵄨󵄨󵄨󵄨𝐷
+ [𝑓]

(𝑙+𝛼)

𝐷
,

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨𝐷
≡ sup

𝑥∈𝐷

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ,

[𝑓]
(𝑙+𝛼)

𝐷
≡ ∑

|𝑚|=𝑙

[𝜕
𝑚

𝑥
𝑓]

(𝛼)

𝐷
≡ sup
𝑥,𝑦∈𝐷,𝑥 ̸= 𝑦

∑

𝑚=|𝑙|

󵄨󵄨󵄨󵄨󵄨
𝜕
𝑚

𝑥
𝑓 (𝑥) − 𝜕

𝑚

𝑦
𝑓 (𝑦)

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝛼
,

|𝑚| =

𝑛

∑

𝑖=1

𝑚
𝑖
, 𝜕

𝑚

𝑥
=

𝜕
|𝑚|

𝜕
𝑚
1

𝑥
1
⋅ ⋅ ⋅ 𝜕

𝑚
𝑛

𝑥
𝑛

,

(17)

for a multi-index𝑚 = (𝑚
𝑖
) (𝑚

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛).

By 𝐶𝑙+𝛼,((𝑙+𝛼)/2)
(𝐷

𝑇
) we denote an anisotropic Hölder

space of functions whose norm is defined by

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

(𝑙+𝛼,((𝑙+𝛼)/2))

𝐷
𝑇

≡

𝑙

∑

2𝑟+|𝑚|=0

󵄨󵄨󵄨󵄨𝜕
𝑟

𝑡
𝜕
𝑚

𝑥
𝑓
󵄨󵄨󵄨󵄨𝐷
𝑇

+ [𝑓]
(𝑙+𝛼,((𝑙+𝛼)/2))

𝐷
𝑇

, (18)

where
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨𝐷
𝑇

≡ sup
(𝑥,𝑡)∈𝐷

𝑇

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ,

[𝑓]
(𝑙+𝛼,((𝑙+𝛼)/2))

𝐷
𝑇

≡

𝑙

∑

2𝑟+|𝑚|=𝑙−1

[𝜕
𝑟

𝑡
𝜕
𝑚

𝑥
𝑓]

(0,((𝑙+𝛼−(2𝑟+|𝑚|))/2))

𝐷
𝑇

+ ∑

2𝑟+|𝑚|=𝑙

[𝜕
𝑟

𝑡
𝜕
𝑚

𝑥
𝑓]

(𝛼,0)

𝐷
𝑇

.

(19)

Here,

[𝑓]
(0,(𝛼/2))

𝐷
𝑇

≡ sup
(𝑥,𝑡),(𝑥,𝑡

󸀠
)∈𝐷
𝑇
,𝑡 ̸= 𝑡
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥, 𝑡) − 𝑓 (𝑥, 𝑡

󸀠
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑡 − 𝑡
󸀠󵄨󵄨󵄨󵄨

(𝛼/2)
,

[𝑓]
(𝛼,0)

𝐷
𝑇

≡ sup
(𝑥,𝑡),(𝑥

󸀠
,𝑡)∈𝐷

𝑇
,𝑥 ̸= 𝑥

󸀠

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥, 𝑡) − 𝑓 (𝑥

󸀠
, 𝑡)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥 − 𝑥
󸀠󵄨󵄨󵄨󵄨

𝛼
.

(20)

Finally, we introduce the function space 𝐶1+𝛼,𝛾
(𝐷

𝑇
)

equipped with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

(1+𝛼,𝛾)

𝐷
𝑇

≡
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨𝐷
𝑇

+
󵄨󵄨󵄨󵄨∇𝑓
󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

𝐷
𝑇

+
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

𝐷
𝑇

, (21)

where

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

𝐷
𝑇

≡ sup
𝜏,𝑡∈(0,𝑇),𝜏 ̸= 𝑡

󵄨󵄨󵄨󵄨𝑓 (⋅, 𝑡) − 𝑓 (⋅, 𝜏)
󵄨󵄨󵄨󵄨

(𝛾)

𝐷

|𝑡 − 𝜏|
((1+𝛼−𝛾)/2)

. (22)

Now, let us state our main result.

Theorem 1. Let 𝛼, 𝛾 be constants satisfying 0 < 𝛼, 𝛾 < 1.
Assume that

v
0
∈ 𝐶

2+𝛼
(Ω) , 𝜌

𝑠

0
∈ 𝐶

2+𝛼
(Γ) , Γ ∈ 𝐶

3+𝛼
. (23)

Assume that there exist positive constants Δ
1
and Δ

2
such that

𝜌 − 𝜌
𝑠

0
≥ Δ

1
> 0 and 𝜌𝑠

0
≥ Δ

2
> 0 on Γ. In addition, assume

that the following compatibility conditions are satisfied:

∇ ⋅ v
0
= 0, (]ΠD (v

0
)n + 𝛾∇

Γ
𝜌
𝑠

0
)
󵄨󵄨󵄨󵄨Γ
= 0, (24)

where ∇
Γ
is the operator corresponding to ∇

Γ
𝑡

with 𝑡 = 0;
namely, ∇

Γ
is given by the formula in (14) with𝑋

𝑢
(𝑠) = 𝜉(𝑠).

Then, for a positive constant 𝑇, problem (11)–(13) has a
unique solution (u, 𝑞, 𝑟𝑠) with the following smoothness:

u ∈ 𝐶2+𝛼,1+(𝛼/2)
(Ω

0𝑇
) ,

𝑞 ∈ 𝐶
1+𝛼,𝛾

(Ω
0𝑇
) ∩ 𝐶

1+𝛼,((1+𝛼)/2)
(Γ

0𝑇
) ,

𝑟
𝑠
∈ 𝐶

2+𝛼,1+(𝛼/2)
(Γ

0𝑇
) .

(25)

3. Proof of the Main Result

In this section, we will prove Theorem 1.
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We begin with preparing estimates of solutions to some
linear problems. For the following problem:

𝜕u
𝜕𝑡
− ]∇2

𝑤
u + ∇

𝑤
𝑞 = F

1
, ∇

𝑤
⋅ u = 𝐹

2
in Ω

0𝑇
,

]ΠΠ
𝑤
D

𝑤
(u)n

𝑤
= F

3
,

n ⋅ T
𝑤
(u, 𝑞)n

𝑤
− Θn ⋅ ∇2

Γ̃
𝑡

∫

𝑡

0

u𝑑𝜏 = 𝑏 + ∫
𝑡

0

𝐵𝑑𝜏 on Γ
0𝑇
,

u|
𝑡=0
= v

0
on Ω,

(26)

the following result is given in [6]. In (26), ∇
𝑤
, Π

𝑤
, T

𝑤
(u, 𝑞)

(= ]D
𝑤
(u) − 𝑞𝐼), n

𝑤
are defined for a given vector w in the

same manner as ∇
𝑢
, Π

𝑢
, T

𝑢
(u, 𝑞), n

𝑢
are defined, and ∇

Γ̃
𝑡

is
defined by (14) with𝑋

𝑢
= 𝑋

𝑤
.

Theorem 2. Let 𝑇 > 0, and let 𝛼, 𝛾 be positive constants
satisfying 0 < 𝛼, 𝛾 < 1. Assume that

Γ ∈ 𝐶
2+𝛼
, v

0
∈ 𝐶

2+𝛼
(Ω) ,

F
1
∈ 𝐶

𝛼,(𝛼/2)
(Ω

0𝑇
) , 𝐹

2
∈ 𝐶

1+𝛼,((1+𝛼)/2)
(Ω

0𝑇
) ,

F
3
∈ 𝐶

1+𝛼,((1+𝛼)/2)
(Γ

0𝑇
) , 𝑏 ∈ 𝐶

1+𝛼,((1+𝛼)/2)
(Γ

0𝑇
) ,

𝐵 ∈ 𝐶
𝛼,(𝛼/2)

(Γ
0𝑇
) , Θ ∈ 𝐶

𝛼
(Γ) .

(27)

Assume that there exists a positive constant Δ
1
such that

Θ ≥ Δ
1
> 0 on Γ. Assume that the following compatibility

conditions are satisfied:

∇ ⋅ v
0
= 𝐹

2
(𝜉, 0) , ]ΠD (v

0
)n󵄨󵄨󵄨󵄨Γ = F

3
(𝜉, 0) . (28)

Assume that there exist functions h ∈ 𝐶𝛼,(𝛼/2)
(Ω

0𝑇
), H

𝑘
, 𝑘 =

1, 2, 3, with a finite norm |H
𝑘
|
(1+𝛼,𝛾)

Ω
0𝑇

satisfying the relation

𝜕𝐹
2

𝜕𝑡
− ∇

𝑤
⋅ F

1
= ∇ ⋅ h, h =

3

∑

𝑘=1

𝜕
𝜉
𝑘

H
𝑘
, (29)

in the sense of distribution. Furthermore, assume that w ∈

𝐶
2+𝛼,1+(𝛼/2)

(Ω
0𝑇
) satisfies the inequality

(𝑇 + 𝑇
1/2
) |w|(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+ 𝑇
((1−𝛼+𝛾)/2)󵄨󵄨󵄨󵄨󵄨

𝜕
𝜉
w󵄨󵄨󵄨󵄨󵄨Ω
0𝑇

≤ 𝛿, (30)

for a sufficiently small positive constant 𝛿.

Then problem (26) has a unique solution (u, 𝑞) satisfying
the following inequality:

|u|(2+𝛼,1+(𝛼/2))
Ω
0𝑇

+
󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩

(1+𝛼,𝛾)

Ω
0𝑇

+
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Γ
0𝑇

≤ 𝐶
1
(𝑇){

󵄨󵄨󵄨󵄨F1
󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Ω
0𝑇

+
󵄨󵄨󵄨󵄨𝐹2
󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝑇

+
󵄨󵄨󵄨󵄨F3
󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Γ
0𝑇

+ |𝑏|
(1+𝛼,((1+𝛼)/2))

Γ
0𝑇

+ |𝐵|
(𝛼,(𝛼/2))

Γ
0𝑇

+
󵄨󵄨󵄨󵄨v0
󵄨󵄨󵄨󵄨

(2+𝛼)

Ω
+ |h|(𝛼,(𝛼/2))

Ω
0𝑇

+

3

∑

𝑘=1

󵄨󵄨󵄨󵄨H𝑘

󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

Ω
0𝑇

+𝑃
𝑇
(w) (󵄨󵄨󵄨󵄨v0

󵄨󵄨󵄨󵄨

(1)

Ω
+|𝑏 (⋅, 0)|

Γ
)} ,

(31)

where 𝑃
𝑇
(w) = 𝑇

((1−𝛼)/2)
|w|(1,0)

Ω
0𝑇

+ |𝜕
𝜉
w|(𝛼,(𝛼/2))

Ω
0𝑇

+

[𝜕
𝜉
w](0,((1+𝛼−𝛾)/2))

Ω
0𝑇

and 𝐶
1
(𝑇) is a nondecreasing function

of 𝑇.

For the following problem:

𝜕𝑟
𝑠

𝜕𝑡
− 𝜒𝛾𝜌

𝑠

0
∇
2

Γ̃
𝑡

𝑟
𝑠
= 𝐺 on Γ

0𝑇
,

𝑟
𝑠󵄨󵄨󵄨󵄨𝑡=0

= 𝜌
𝑠

0
on Γ,

(32)

we have the following theorem.The assertion of the theorem
immediately follows from the Hölder estimates for linear
parabolic equations (e.g., see [7]).

Theorem 3. Let 𝑇 > 0, and let 𝛼 be a positive constant
satisfying 0 < 𝛼 < 1. Assume that

Γ ∈ 𝐶
2+𝛼
, 𝜌

𝑠

0
∈ 𝐶

2+𝛼
(Γ) , 𝐺 ∈ 𝐶

𝛼,(𝛼/2)
(Γ

0𝑇
) . (33)

Assume that there exists a positive constant Δ
2
such that 𝜌𝑠

0
≥

Δ
2
> 0 on Γ. Further assume the same assumptions forw stated

in Theorem 2.
Then, problem (32) has a unique solution 𝑟𝑠 satisfying the

following inequality:

󵄨󵄨󵄨󵄨𝑟
𝑠󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇

≤ 𝐶
2
(𝑇) (|𝐺|

(𝛼,(𝛼/2))

Γ
0𝑇

+
󵄨󵄨󵄨󵄨𝜌

𝑠

0

󵄨󵄨󵄨󵄨

(2+𝛼)

Γ
) , (34)

where 𝐶
2
(𝑇) is a nondecreasing function of 𝑇.
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Combining the above results, we can easily obtain Theo-
rem 4 given below for the following problem:

𝜕u
𝜕𝑡
− ]∇2

𝑤
u + ∇

𝑤
𝑞 = F

1
, ∇

𝑤
⋅ u = 𝐹

2
in Ω

0𝑇
,

]ΠΠ
𝑤
D

𝑤
(u)n

𝑤
+ 𝛾Π∇

Γ̃
𝑡

𝑟
𝑠
= F

3
,

n ⋅ T
𝑤
(u, 𝑞)n

𝑤
− Θn ⋅ ∇2

Γ̃
𝑡

∫

𝑡

0

u𝑑𝜏 + 𝛾n ⋅ ∇
Γ̃
𝑡

𝑟
𝑠

= 𝑏 + ∫

𝑡

0

𝐵𝑑𝜏 on Γ
0𝑇
,

u|
𝑡=0
= v

0
on Ω,

𝜕𝑟
𝑠

𝜕𝑡
− 𝜒𝛾𝜌

𝑠

0
∇
2

Γ̃
𝑡

𝑟
𝑠
= 𝐺 on Γ

0𝑇
,

𝑟
𝑠󵄨󵄨󵄨󵄨𝑡=0

= 𝜌
𝑠

0
on Γ.

(35)

The estimate given in the theorem will be essentially used in
the later argument to proveTheorem 1.

Theorem 4. Under the same assumptions given in Theorem 2
where only compatibility condition is replaced by

∇ ⋅ v
0
= 𝐹

2
(𝜉, 0) , (]ΠD (v

0
)n + 𝛾Π∇

Γ
𝜌
𝑠

0
)
󵄨󵄨󵄨󵄨Γ
= F

3
(𝜉, 0) ,

(36)

and Theorem 3, problem (35) has a unique solution (u, 𝑞, 𝑟𝑠)
satisfying the following inequality:

|u|(2+𝛼,1+(𝛼/2))
Ω
0𝑇

+
󵄩󵄩󵄩󵄩𝑞
󵄩󵄩󵄩󵄩

(1+𝛼,𝛾)

Ω
0𝑇

+
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Γ
0𝑇

+
󵄨󵄨󵄨󵄨𝑟
𝑠󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇

≤ 𝐶
3
(𝑇) {

󵄨󵄨󵄨󵄨F1
󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Ω
0𝑇

+
󵄨󵄨󵄨󵄨𝐹2
󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝑇

+
󵄨󵄨󵄨󵄨F3
󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Γ
0𝑇

+ |𝑏|
(1+𝛼,((1+𝛼)/2))

Γ
0𝑇

+ |𝐵|
(𝛼,(𝛼/2))

Γ
0𝑇

+ |h|(𝛼,(𝛼/2))
Ω
0𝑇

+

3

∑

𝑘=1

󵄨󵄨󵄨󵄨H𝑘

󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

Ω
0𝑇

+
󵄨󵄨󵄨󵄨v0
󵄨󵄨󵄨󵄨

(2+𝛼)

Ω
+ |𝐺|

(𝛼,(𝛼/2))

Γ
0𝑇

+
󵄨󵄨󵄨󵄨𝜌

𝑠

0

󵄨󵄨󵄨󵄨

(2+𝛼)

Γ

+ 𝑃
𝑇
(w) (󵄨󵄨󵄨󵄨v0

󵄨󵄨󵄨󵄨

(1)

Ω
+ |𝑏 (⋅, 0)|

Γ
)} ,

(37)

where 𝐶
3
(𝑇) is a nondecreasing function of 𝑇.

In addition, we prepare estimates forJ∗

𝑢
, which are used

later.

Lemma 5. Let J
𝑢
and J

𝑢
󸀠 be the Jacobian matrices of the

mappings 𝑋
𝑢
and 𝑋

𝑢
󸀠 , respectively. Let us assume that u and

u󸀠 satisfy condition (30) for sufficiently small 𝛿 > 0. Then, the
following inequalities hold:

󵄨󵄨󵄨󵄨J
∗

𝑢

󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝑇

,
󵄨󵄨󵄨󵄨J

∗

𝑢

󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

Ω
0𝑇

≤ 𝐶, (38)

where 𝐶 is a positive constant independent of 𝛿, and

󵄨󵄨󵄨󵄨J
∗

𝑢
−J

∗

𝑢
󸀠

󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝑇

,
󵄨󵄨󵄨󵄨J

∗

𝑢
−J

∗

𝑢
󸀠

󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

Ω
0𝑇

≤ 𝜖
󵄨󵄨󵄨󵄨󵄨
u − u󸀠󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+ 𝐶 (𝜖) ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
u − u󸀠󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝜏

𝑑𝜏,

(39)

for arbitrary 0 < 𝜖 < 1, where 𝐶(𝜖) is a positive constant
depending only on 𝜖.

Proof. In the following proof, 𝑐
1
, 𝑐

2
, and 𝑐

3
are positive

constants independent of 𝛿 and 𝜖. Let 𝑎
𝑖𝑗

be the (𝑖, 𝑗)-
component ofJ

𝑢
.

Then, we have

𝛿
𝑖𝑗
−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝜕
𝜉
𝑗

𝑢
𝑖
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑎
𝑖𝑗
≤ 𝛿

𝑖𝑗
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝜕
𝜉
𝑗

𝑢
𝑖
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (40)

where 𝛿
𝑖𝑗
denotes Kronecker’s delta. Then, using the inequal-

ity

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝜕
𝜉
𝑗

𝑢
𝑖
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Ω
0𝑇

≤ 𝑇|u|(1,0)
Ω
0𝑇

≤ 𝛿, (41)

from (40), we have

𝛿
𝑖𝑗
− 𝛿 ≤

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨Ω
0𝑇

≤ 𝛿
𝑖𝑗
+ 𝛿. (42)

This inequality implies that detJ
𝑢
> 0 holds for sufficiently

small 𝛿 > 0.
Now, let 𝑎󸀠

𝑖𝑗
be the (𝑖, 𝑗)-components of J

𝑢
󸀠 , and let 𝐴

𝑖𝑗

and 𝐴󸀠

𝑖𝑗
be the cofactors of 𝑎

𝑖𝑗
and 𝑎󸀠

𝑖𝑗
, respectively.

Then from the inequalities

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝑇

,
󵄨󵄨󵄨󵄨󵄨
𝑎
󸀠

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝑇

≤ 𝑐
1
(1 + 𝛿) , (43)

we have

󵄨󵄨󵄨󵄨󵄨
𝐴

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝑇

,
󵄨󵄨󵄨󵄨󵄨
𝐴

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

Ω
0𝑇

≤ 𝑐
2
. (44)

On the other hand, from the inequality

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗
− 𝑎

󸀠

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝑇

≤ 𝜖
󵄨󵄨󵄨󵄨󵄨
u − u󸀠󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+ 𝑐
3
(1 + 𝜖

−((1+𝛼)/(2−𝛼))
)∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
u − u󸀠󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝜏

𝑑𝜏,

(45)
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which are obtained with the aid of the following inequality
which holds for arbitrary 0 < 𝜖 < 1:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝑓(𝜉, 𝜏)𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝑇

≤ ∫

𝑇

0

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

(1+𝛼,0)

Ω
0𝜏

𝑑𝜏

+ sup
|𝑡
󸀠
−𝑡
󸀠󸀠
|<𝜖
(2/(1−𝛼))

(
󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠
− 𝑡

󸀠󸀠󵄨󵄨󵄨󵄨󵄨

−((1+𝛼)/2)

∫

𝑡
󸀠

𝑡
󸀠󸀠

󵄨󵄨󵄨󵄨𝑓 (𝜉, 𝜏)
󵄨󵄨󵄨󵄨Ω
𝑑𝜏

+
󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠
− 𝑡

󸀠󸀠󵄨󵄨󵄨󵄨󵄨

−(𝛼/2)

∫

𝑡
󸀠

𝑡
󸀠󸀠

󵄨󵄨󵄨󵄨󵄨
𝜕
𝜉
𝑓 (𝜉, 𝜏)

󵄨󵄨󵄨󵄨󵄨Ω
𝑑𝜏)

+ sup
𝜖
(2/(1−𝛼))

<|𝑡
󸀠
−𝑡
󸀠󸀠
|≤𝑇

(
󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠
− 𝑡

󸀠󸀠󵄨󵄨󵄨󵄨󵄨

−((1+𝛼)/2)

∫

𝑡
󸀠

𝑡
󸀠󸀠

󵄨󵄨󵄨󵄨𝑓 (𝜉, 𝜏)
󵄨󵄨󵄨󵄨Ω
𝑑𝜏

+
󵄨󵄨󵄨󵄨󵄨
𝑡
󸀠
− 𝑡

󸀠󸀠󵄨󵄨󵄨󵄨󵄨

−(𝛼/2)

∫

𝑡
󸀠

𝑡
󸀠󸀠

󵄨󵄨󵄨󵄨󵄨
𝜕
𝜉
𝑓 (𝜉, 𝜏)

󵄨󵄨󵄨󵄨󵄨Ω
𝑑𝜏)

≤ 𝜖
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝑇

+ 𝑐
3
(1 + 𝜖

−((1+𝛼)/(1−𝛼))
)∫

𝑇

0

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝜏

𝑑𝜏,

(46)

we have

󵄨󵄨󵄨󵄨󵄨
𝐴

𝑖𝑗
− 𝐴

󸀠

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝑇

,
󵄨󵄨󵄨󵄨󵄨
𝐴

𝑖𝑗
− 𝐴

󸀠

𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

Ω
0𝑇

≤ 𝜖
󵄨󵄨󵄨󵄨󵄨
u − u󸀠󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+ 𝐶
1
(𝜖) ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
u − u󸀠󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝜏

𝑑𝜏,

(47)

where 𝐶
1
(𝜖) is a positive constant depending only on 𝜖. From

(44) and (47), estimates (38) and (39) immediately follow.
Thus, the proof is completed.

Now, let us prove Theorem 1 by the method of successive
approximations. We take (u

0
, 𝑞

0
, 𝑟

𝑠

0
) = (0, 0, 0), and, for

the known 𝑛th approximation, we define the (𝑛 + 1)th
approximation by the solutions of the following problem:

𝜕u
𝑛+1

𝜕𝑡
− ]∇2

𝑢
𝑛

u
𝑛+1
+ ∇

𝑢
𝑛

𝑞
𝑛+1
= 0,

∇
𝑢
𝑛

⋅ u
𝑛+1
= 0 in Ω

0𝑇
,

]ΠΠ
𝑢
𝑛

D
𝑢
𝑛

(u
𝑛+1
)n

𝑢
𝑛

+ 𝛾Π∇
Γ
𝑛,𝑡

𝑟
𝑠

𝑛+1
= 0,

n ⋅ T
𝑢
𝑛

(u
𝑛+1
, 𝑞

𝑛+1
)n

𝑢
𝑛

− Θn ⋅ ∇2

Γ
𝑛,𝑡

∫

𝑡

0

u
𝑛+1
𝑑𝜏

+ 𝛾n ⋅ ∇
Γ
𝑛,𝑡

𝑟
𝑠

𝑛+1

= 𝑏 (u
𝑛
, 𝑟

𝑠

𝑛
) + ∫

𝑡

0

𝐵 (u
𝑛
, 𝑟

𝑠

𝑛
) 𝑑𝜏 on Γ

0𝑇
,

u
𝑛+1

󵄨󵄨󵄨󵄨𝑡=0
= v

0
on Ω,

𝜕𝑟
𝑠

𝑛+1

𝜕𝑡
− 𝜒𝛾𝜌

𝑠

0
∇
2

Γ
𝑛,𝑡

𝑟
𝑠

𝑛+1
= 𝐺 (𝑟

𝑠

𝑛
, u

𝑛
) on Γ

0𝑇
,

𝑟
𝑠

𝑛+1

󵄨󵄨󵄨󵄨𝑡=0
= 𝜌

𝑠

0
on Γ,

(48)

where

𝑏 (u
𝑛
, 𝑟

𝑠

𝑛
) = 𝜃

𝑛
(𝐻

0
+ n ⋅ ∫

𝑡

0

(∇
2

Γ
𝑛,𝜏

)
𝜏

𝜉𝑑𝜏) ,

𝐻
0
= n ⋅ ∇2

Γ
𝜉

𝐵 (u
𝑛
, 𝑟

𝑠

𝑛
) = {

𝜕

𝜕𝜏
(𝜃

𝑛
− Θ)}n ⋅ ∇2

Γ
𝑛,𝜏

∫

𝜏

0

u
𝑛
(𝜉, 𝑠) 𝑑𝑠

+ (𝜃
𝑛
− Θ)n ⋅ (∇2

Γ
𝑛,𝜏

)
𝜏

∫

𝜏

0

u
𝑛
(𝜉, 𝑠) 𝑑𝑠

+ (𝜃
𝑛
− Θ)n ⋅ ∇2

Γ
𝑛,𝜏

u
𝑛
,

𝜃
𝑛
= 𝛾 (𝜌 − 𝑟

𝑠

𝑛
) , Θ = 𝛾 (𝜌 − 𝜌

𝑠

0
) ,

𝐺 (u
𝑛
, 𝑟

𝑠

𝑛
) ≡ − 𝑟

𝑠

𝑛
∇
Γ
𝑛,𝑡

⋅ u
𝑛

+ 𝜒𝛾 {(𝑟
𝑠

𝑛
− 𝜌

𝑠

0
) ∇

2

Γ
𝑛,𝑡

𝑟
𝑠

𝑛
+ ∇

Γ
𝑛,𝑡

𝑟
𝑠

𝑛
⋅ ∇

Γ
𝑛,𝑡

𝑟
𝑠

𝑛
} .

(49)

In the above formulas, ∇
Γ
𝑛,𝑡

is the operator corresponding to
∇
Γ
𝑡

with𝑋
𝑢
= 𝑋

𝑢
𝑛

, and (∇2

Γ
𝑛,𝜏

)
𝜏
denotes the operator obtained

by differentiating the coefficients of ∇2

Γ
𝑛,𝜏

with respect to 𝜏.
Now, let us verify that all terms of the sequence

{(u
𝑛
, 𝑞

𝑛
, 𝑟

𝑠

𝑛
)} are defined on some time interval independent

of 𝑛. We begin with the following lemma.

Lemma 6. Let 𝑇
𝑛
be a constant satisfying 0 < 𝑇

𝑛
≤ 1. Then

there exist positive constants 𝛿 and 𝛽 such that if u
𝑛
and 𝑟𝑠

𝑛

satisfy the following conditions:

(𝑇
𝑛
+ 𝑇

1/2

𝑛
)
󵄨󵄨󵄨󵄨u𝑛
󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇𝑛

+ 𝑇
((1−𝛼+𝛾)/2)

𝑛

󵄨󵄨󵄨󵄨󵄨
𝜕
𝜉
u
𝑛

󵄨󵄨󵄨󵄨󵄨Ω
0𝑇𝑛

≤ 𝛿,

(𝑇
𝑛
+ 𝑇

𝛽

𝑛
) (
󵄨󵄨󵄨󵄨u𝑛
󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇𝑛

+
󵄨󵄨󵄨󵄨𝑟
𝑠

𝑛

󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇𝑛

) ≤ 𝛿,

(50)

then the following inequality holds for a positive constant 𝐶
independent of u

𝑛
, 𝑟𝑠

𝑛
and 𝑇

𝑛
:

󵄨󵄨󵄨󵄨𝑏 (u𝑛, 𝑟
𝑠

𝑛
)
󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Γ
0𝑇𝑛

+
󵄨󵄨󵄨󵄨𝐵 (u𝑛, 𝑟

𝑠

𝑛
)
󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Γ
0𝑇𝑛

+
󵄨󵄨󵄨󵄨𝐺 (u𝑛, 𝑟

𝑠

𝑛
)
󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Γ
0𝑇𝑛

+ 𝑃
𝑇
𝑛

(u
𝑛
) ≤ 𝐶.

(51)

Proof. In the proof, 𝑐
1
, . . . , 𝑐

9
are positive constants indepen-

dent of u
𝑛
, 𝑟𝑠

𝑛
, and 𝑇

𝑛
.
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Choosing 𝑇((1−𝛼)/2𝛼)

𝑛
as 𝜖 in the following interpolation

inequality:
󵄨󵄨󵄨󵄨𝜃𝑛 − (𝜃𝑛

󵄨󵄨󵄨󵄨𝑡=0
)
󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Γ
0𝑇𝑛

≤ 𝜖
󵄨󵄨󵄨󵄨𝑟
𝑠

𝑛
− 𝜌

𝑠

0

󵄨󵄨󵄨󵄨

(2,1)

Γ
0𝑇𝑛

+ 𝑐
1
𝜖
−(𝛼/(1−𝛼))󵄨󵄨󵄨󵄨𝑟

𝑠

𝑛
− 𝜌

𝑠

0

󵄨󵄨󵄨󵄨Γ
0𝑇𝑛

≤ 𝜖
󵄨󵄨󵄨󵄨𝑟
𝑠

𝑛
− 𝜌

𝑠

0

󵄨󵄨󵄨󵄨

(2,1)

Γ
0𝑇𝑛

+ 𝑐
1
𝜖
−(𝛼/(1−𝛼))

∫

𝑇
𝑛

0

󵄨󵄨󵄨󵄨𝜕𝜏 (𝑟
𝑠

𝑛
− 𝜌

𝑠

0
)
󵄨󵄨󵄨󵄨Γ
0𝜏

𝑑𝜏,

(52)

we have the following estimate:
󵄨󵄨󵄨󵄨𝜃𝑛
󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Γ
0𝑇𝑛

≤ 𝑐
2
(
󵄨󵄨󵄨󵄨𝜌

𝑠

0

󵄨󵄨󵄨󵄨

(1+𝛼)

Γ
+
󵄨󵄨󵄨󵄨𝜃𝑛 − (𝜃𝑛

󵄨󵄨󵄨󵄨𝑡=0
)
󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Γ
0𝑇𝑛

)

≤ 𝑐
3
{
󵄨󵄨󵄨󵄨𝜌

𝑠

0

󵄨󵄨󵄨󵄨

(1+𝛼)

Γ
+ (𝑇

((1−𝛼)/2𝛼)

𝑛
+ 𝑇

(1/2)

𝑛
)
󵄨󵄨󵄨󵄨𝑟
𝑠

𝑛
− 𝜌

𝑠

0

󵄨󵄨󵄨󵄨

(2,1)

Γ
0𝑇𝑛

}

≤ 𝑐
4
(1 + 𝛿) .

(53)

With the aid of the above estimate, we can easily obtain the
desired estimate for 𝑏(u

𝑛
, 𝑟

𝑠

𝑛
).

𝐵(u
𝑛
, 𝑟

𝑠

𝑛
) is estimated as follows. With the aid of the

inequality

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

𝜕
2

𝜉
𝑓 (𝜉, 𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Γ
0𝑇

≤ 𝑐
5
(𝑇 + 𝑇

1−(𝛼/2)
)
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇

,

(54)

we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

{
𝜕

𝜕𝑡
(𝜃

𝑛
− Θ)}n ⋅ ∇2

Γ
𝑛,𝑡

∫

𝑡

0

u
𝑛
(𝜉, 𝜏) 𝑑𝜏

+ (𝜃
𝑛
− Θ)n ⋅ (∇2

Γ
𝑛,𝑡

)
𝑡

∫

𝑡

0

u
𝑛
(𝜉, 𝜏) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Γ
0𝑇𝑛

≤ 𝑐
6
(𝑇

𝑛
+ 𝑇

1−(𝛼/2)

𝑛
)
󵄨󵄨󵄨󵄨𝑟
𝑠

𝑛
− 𝜌

𝑠

0

󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇𝑛

󵄨󵄨󵄨󵄨u𝑛
󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇𝑛

≤ 𝑐
7
(1 + 𝛿

2
) .

(55)

On the other hand, with the aid of

󵄨󵄨󵄨󵄨󵄨
𝜃
𝑛
− Θ

󵄨󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Γ
0𝑇𝑛

≤ ∫

𝑇
𝑛

0

󵄨󵄨󵄨󵄨󵄨
𝜕
𝜏
(𝜃

𝑛
− Θ)

󵄨󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Γ
0𝜏

𝑑𝜏

≤ 𝑇
𝑛

󵄨󵄨󵄨󵄨𝑟
𝑠

𝑛
− 𝜌

𝑠

0

󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇𝑛

,

(56)

we have
󵄨󵄨󵄨󵄨󵄨󵄨
(𝜃

𝑛
− Θ)n ⋅ ∇2

Γ
𝑛,𝑡

u
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Γ
0𝑇𝑛

≤ 𝑐
8
𝑇
𝑛

󵄨󵄨󵄨󵄨𝑟
𝑠

𝑛
− 𝜌

𝑠

0

󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇𝑛

󵄨󵄨󵄨󵄨u𝑛
󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇𝑛

≤ 𝑐
9
(1 + 𝛿

2
) .

(57)

From (55) and (57), we have the desired estimate for𝐵(u
𝑛
, 𝑟

𝑛

𝑠
).

𝐺(u
𝑛
, 𝑟

𝑠

𝑛
) and𝑃

𝑇
𝑛

(u
𝑛
) are estimated in a similarmanner.Thus,

we have proved the lemma.

From this lemma, if u
𝑛
and 𝑟𝑠

𝑛
satisfy conditions (50), by

applying Theorem 4 to problem (3) we have the following
estimate of u

𝑛+1
and 𝑟𝑠

𝑛+1
:

󵄨󵄨󵄨󵄨u𝑛+1
󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇𝑛

+
󵄨󵄨󵄨󵄨𝑟
𝑠

𝑛+1

󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇𝑛

≤ 𝐶
3
(1) 𝐶, (58)

where 𝐶
3
(⋅) is the function given inTheorem 4.

Now, let us take 𝑇 satisfying the following conditions:

0 < 𝑇 ≤ 1, 𝐶
3
(1) 𝐶 (𝑇 + 𝑇

𝛽
) ≤ 𝛿. (59)

Here 𝛽 is assumed to be chosen, so that 𝛽 < 1/2 and 𝛽 <
(1−𝛼+𝛾)/2. Since (u

0
, 𝑟

𝑠

0
) = (0, 0), the zeroth approximation

(u
0
, 𝑟

𝑠

0
) obviously satisfies conditions (50) for the above 𝑇.

Hence, from (58), (u
1
, 𝑟

𝑠

1
) satisfies

󵄨󵄨󵄨󵄨u1
󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+
󵄨󵄨󵄨󵄨𝑟
𝑠

1

󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇

≤ 𝐶
3
(1) 𝐶. (60)

From (59), this inequality indicates that (u
1
, 𝑟

𝑠

1
) satisfies

conditions (50), and hence we can obtain the same estimate
as (60) for (u

2
, 𝑟

𝑠

2
). Thus, repeating this argument, we can

construct a sequence {(u
𝑛
, 𝑞

𝑛
, 𝑟

𝑠

𝑛
)} such that each term is

defined on (0, 𝑇).
Let us proceed to the proof of the convergence of the

sequence {(u
𝑛
, 𝑞

𝑛
, 𝑟

𝑠

𝑛
)}. In the following argument,𝐶

1
, . . . , 𝐶

10

denote positive constants independent of 𝑛 and 𝐶(𝜖) repre-
sents various positive constants depending only on 𝜖.

Let us set

𝑈
(𝑛+1)

≡ u
𝑛+1
− u

𝑛
,

𝑄
(𝑛+1)

≡ 𝑞
𝑛+1
− 𝑞

𝑛
, 𝑅

(𝑛+1)
≡ 𝑟

𝑠

𝑛+1
− 𝑟

𝑠

𝑛
.

(61)

Subtracting (3) with index 𝑛 from that with index 𝑛 + 1, we
have

𝜕𝑈
(𝑛+1)

𝜕𝑡
− ]∇2

𝑢
𝑛

𝑈
(𝑛+1)

+ ∇
𝑢
𝑛

𝑄
(𝑛+1)

= F
(𝑛)

1
,

∇
𝑢
𝑛

⋅ 𝑈
(𝑛+1)

= F
(𝑛)

2
in Ω

0𝑇
,

]ΠΠ
𝑢
𝑛

D
𝑢
𝑛

(𝑈
(𝑛+1)

)n
𝑢
𝑛

+ 𝛾Π∇
Γ
𝑛,𝑡

𝑅
(𝑛+1)

= F
(𝑛)

3
,

n ⋅ T
𝑢
𝑛

(𝑈
(𝑛+1)

, 𝑄
(𝑛+1)

)n
𝑢
𝑛

− Θn ⋅ ∇2

Γ
𝑛,𝑡

∫

𝑡

0

𝑈
(𝑛+1)

𝑑𝜏

+ 𝛾n ⋅ ∇
Γ
𝑛,𝑡

𝑅
(𝑛+1)

= 𝑏
(𝑛)
+ ∫

𝑡

0

B
(𝑛)
𝑑𝜏 on Γ

0𝑇
,
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𝑈
(𝑛+1)󵄨󵄨󵄨󵄨󵄨𝑡=0

= 0 on Ω,

𝜕𝑅
(𝑛+1)

𝜕𝑡
− 𝜒𝛾𝜌

𝑠

0
∇
2

Γ
𝑛,𝑡

𝑅
(𝑛+1)

= G
(𝑛) in Γ

0𝑇
,

𝑅
(𝑛+1)󵄨󵄨󵄨󵄨󵄨𝑡=0

= 0 on Γ,
(62)

where

F
(𝑛)

1
≡ ] (∇2

𝑢
𝑛

− ∇
2

𝑢
𝑛−1

) u
𝑛
− (∇

𝑢
𝑛

− ∇
𝑢
𝑛−1

) 𝑞
𝑛
,

F
(𝑛)

2
≡ − (∇

𝑢
𝑛

− ∇
𝑢
𝑛−1

) ⋅ u
𝑛
,

F
(𝑛)

3
≡ − ]Π{Π

𝑢
𝑛

D
𝑢
𝑛

(u
𝑛
)n

𝑢
𝑛

− Π
𝑢
𝑛−1

D
𝑢
𝑛−1

(u
𝑛
)n

𝑢
𝑛−1

}

− 𝛾Π (∇
Γ
𝑛,𝑡

− ∇
Γ
𝑛−1,𝑡

) 𝑟
𝑠

𝑛
,

𝑏
(𝑛)
≡ − n ⋅ {T

𝑢
𝑛

(u
𝑛
, 𝑞

𝑛
)n

𝑢
𝑛

− T
𝑢
𝑛−1

(u
𝑛
, 𝑞

𝑛
)n

𝑢
𝑛−1

}

− 𝛾n ⋅ (∇
Γ
𝑛,𝑡

− ∇
Γ
𝑛−1,𝑡

) 𝑟
𝑠

𝑛
+ 𝑏 (u

𝑛
, 𝑟

𝑠

𝑛
) − 𝑏 (u

𝑛−1
, 𝑟

𝑠

𝑛−1
) ,

B
(𝑛)
≡ Θn ⋅ (∇2

Γ
𝑛,𝜏

− ∇
2

Γ
𝑛−1,𝜏

)
𝜏

∫

𝜏

0

u
𝑛
(𝜉, 𝑠) 𝑑𝑠

+ Θn ⋅ (∇2

Γ
𝑛,𝜏

− ∇
2

Γ
𝑛−1,𝜏

) u
𝑛
+𝐵 (u

𝑛
, 𝑟

𝑠

𝑛
) −𝐵 (u

𝑛−1
, 𝑟

𝑠

𝑛−1
) ,

G
(𝑛)
≡ 𝜒𝛾𝜌

𝑠

0
(∇

2

Γ
𝑛,𝑡

− ∇
2

Γ
𝑛−1,𝑡

) 𝑟
𝑠

𝑛
+ 𝐺 (u

𝑛
, 𝑟

𝑠

𝑛
) − 𝐺 (u

𝑛−1
, 𝑟

𝑠

𝑛−1
) .

(63)

Now, noting that the relations ∑3

𝑗=1
𝜕
𝜉
𝑗

𝐴
𝑖𝑗
= 0 hold for

the cofactors𝐴
𝑖𝑗
of the Jacobianmatrix of any transformation

from 𝜉 to 𝑥, by direct calculations, we can verify that the
following relations hold:

𝜕F
(𝑛)

2

𝜕𝑡
− ∇

𝑢
𝑛

⋅F
(𝑛)

1
= ∇ ⋅ h(𝑛), h(𝑛) =

3

∑

𝑘=1

𝜕
𝜉
𝑘

H(𝑛)

𝑘
, (64)

where

H(𝑛)

𝑘
= − (J

−1

𝑢
𝑛

−J
−1

𝑢
𝑛−1

) L(𝑛)
𝑘
−J

−1

𝑢
𝑛

M(𝑛)

𝑘

+
1

4𝜋
𝜕
𝜉
𝑘

∫
Ω

N(𝑛)

𝑘
(𝜂, 𝑡)

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨

𝑑𝜂,

(65)

with

L(𝑛)
𝑘
≡ ]𝐴(𝑛−1)

𝑖𝑘
𝐴
(𝑛−1)

𝑖𝑙
𝜕
𝜉
𝑙

u
𝑛
−J

∗

𝑢
𝑛−1

e
𝑘
𝑞
𝑛
,

M(𝑛)

𝑘
≡ ] (𝐴(𝑛)

𝑖𝑘
𝐴
(𝑛)

𝑖𝑙
− 𝐴

(𝑛−1)

𝑖𝑘
𝐴
(𝑛−1)

𝑖𝑙
) 𝜕

𝜉
𝑙

u
𝑛

− (J
∗

𝑢
𝑛

−J
∗

𝑢
𝑛−1

) e
𝑘
𝑞
𝑛
,

N(𝑛)

𝑘
≡ {𝜕

𝑡
(J

−1

𝑢
𝑛

−J
−1

𝑢
𝑛−1

)}u
𝑛

− {𝜕
𝜂
𝑘

(J
−1

𝑢
𝑛

−J
−1

𝑢
𝑛−1

)} L(𝑛)
𝑘
− (𝜕

𝜂
𝑘

J
−1

𝑢
𝑛

)M(𝑛)

𝑘
.

(66)

In (66), the Einstein summation convention is used, 𝐴(𝑛)

𝑖𝑗

denotes the (𝑖, 𝑗)-component ofJ∗

𝑛
, and e

𝑘
, 𝑘 = 1, 2, 3, denote

fundamental unit vectors in R3.
For the terms in (63), h(𝑛), andH(𝑛)

𝑘
, we have the following

estimate for arbitrary 0 < 𝜖 < 1:

󵄨󵄨󵄨󵄨󵄨
F

(𝑛)

1

󵄨󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Ω
0𝑇

+
󵄨󵄨󵄨󵄨󵄨
F

(𝑛)

2

󵄨󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Ω
0𝑇

+
󵄨󵄨󵄨󵄨󵄨
F

(𝑛)

3

󵄨󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Γ
0𝑇

+
󵄨󵄨󵄨󵄨󵄨
𝑏
(𝑛)󵄨󵄨󵄨󵄨󵄨

(1+𝛼,((1+𝛼)/2))

Γ
0𝑇

+
󵄨󵄨󵄨󵄨󵄨
B

(𝑛)󵄨󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Γ
0𝑇

+
󵄨󵄨󵄨󵄨󵄨
h(𝑛)󵄨󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Ω
0𝑇

+

3

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
H(𝑛)

𝑘

󵄨󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

Ω
0𝑇

+
󵄨󵄨󵄨󵄨󵄨
G

(𝑛)󵄨󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Γ
0𝑇

≤ 𝐶
1
{𝜖 (

󵄨󵄨󵄨󵄨󵄨
𝑈

(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+
󵄨󵄨󵄨󵄨󵄨
𝑅
(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇

)

+ 𝐶 (𝜖) ∫

𝑇

0

(
󵄨󵄨󵄨󵄨󵄨
𝑈

(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝜏

+
󵄨󵄨󵄨󵄨󵄨
𝑅
(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝜏

)𝑑𝜏} .

(67)

We will derive here the estimate only of H(𝑛)

𝑘
because the

other terms can be estimated in a similar and simplermanner.
Noting that the following estimates hold for u

𝑛
and 𝑞

𝑛
:

󵄨󵄨󵄨󵄨u𝑛
󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+
󵄨󵄨󵄨󵄨𝑞𝑛
󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

Ω
0𝑇

≤ 𝐶
2
, (68)

and with the aid of estimates (38) and (39), we have

󵄨󵄨󵄨󵄨󵄨
(J

−1

𝑢
𝑛

−J
−1

𝑢
𝑛−1

) L(𝑛)
𝑘

󵄨󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

Ω
0𝑇

,
󵄨󵄨󵄨󵄨󵄨
J

−1

𝑢
𝑛

M(𝑛)

𝑘

󵄨󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

Ω
0𝑇

,
󵄨󵄨󵄨󵄨󵄨
N(𝑛)

𝑘

󵄨󵄨󵄨󵄨󵄨

(0,((1+𝛼)/2))

Ω
0𝑇

≤ 𝐶
3
(𝜖
󵄨󵄨󵄨󵄨󵄨
𝑈

(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+𝐶 (𝜖) ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑈

(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝜏

𝑑𝜏) .

(69)

Noting also the following inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝜉
𝑘

∫
Ω

N(𝑛)

𝑘
(𝜂, 𝑡)

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨

𝑑𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

Ω
0𝑇

≤ 𝐶
4

󵄨󵄨󵄨󵄨󵄨
N(𝑛)

𝑘

󵄨󵄨󵄨󵄨󵄨

(0,((1+𝛼−𝛾)/2))

Ω
0𝑇

, (70)

from estimate (69) for N(𝑛)

𝑘
, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝜉
𝑘

∫
Ω

N(𝑛)

𝑘
(𝜂, 𝑡)

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨

𝑑𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1+𝛼,𝛾)

Ω
0𝑇

≤ 𝐶
5
(𝜖
󵄨󵄨󵄨󵄨󵄨
𝑈

(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+ 𝐶 (𝜖) ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑈

(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝜏

𝑑𝜏) .

(71)

Thus, from estimates (69) and (71), we have the desired
estimate forH(𝑛)

𝑘
.



Abstract and Applied Analysis 9

Now, applying Theorem 4 to problem (62), we have the
following estimate:

󵄨󵄨󵄨󵄨󵄨
𝑈

(𝑛+1)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+
󵄩󵄩󵄩󵄩󵄩
𝑄

(𝑛+1)󵄩󵄩󵄩󵄩󵄩𝑇
+
󵄨󵄨󵄨󵄨󵄨
𝑅
(𝑛+1)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇

≤ 𝐶
6
{𝜖 (

󵄨󵄨󵄨󵄨󵄨
𝑈

(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+
󵄨󵄨󵄨󵄨󵄨
𝑅
(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝑇

)

+ 𝐶 (𝜖)∫

𝑇

0

(
󵄨󵄨󵄨󵄨󵄨
𝑈

(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝜏

+
󵄨󵄨󵄨󵄨󵄨
𝑅
(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Γ
0𝜏

)𝑑𝜏},

(72)

where the norm ‖𝑓‖
𝑇
is defined as ‖𝑓‖

𝑇
≡ |𝑓|

(1+𝛼,𝛾)

Ω
0𝑇

+

|∇𝑓|
(𝛼,(𝛼/2))

Ω
0𝑇

+ |𝑓|
(1+𝛼,((1+𝛼)/2))

Γ
0𝑇

. Fixing 𝜖 so that 𝐶
6
𝜖 ≤ 1/2 and

summing the above inequalities from 𝑛 = 1 to 𝑛 = 𝑚, we have

𝑆
𝑚
(𝑇) ≤ 𝐶

7
(𝑆

1
(𝑇) + ∫

𝑇

0

𝑆
𝑚
(𝜏) 𝑑𝜏) , (73)

where

𝑆
𝑚
(𝑇) ≡

𝑚

∑

𝑛=1

(
󵄨󵄨󵄨󵄨󵄨
𝑈

(𝑛)󵄨󵄨󵄨󵄨󵄨

(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+
󵄩󵄩󵄩󵄩󵄩
𝑄

(𝑛)󵄩󵄩󵄩󵄩󵄩𝑇
+
󵄨󵄨󵄨󵄨󵄨
𝑅
(𝑛)󵄨󵄨󵄨󵄨󵄨

(𝛼,(𝛼/2))

Γ
0𝑇

) .

(74)

Then, using Gronwall’s inequality, from the above inequality,
we have

𝑆
𝑚
(𝑇) ≤ 𝐶

8
(1 + 𝑇𝑒

𝐶
9
𝑇
) . (75)

Noting that the right-hand side in (75) is independent of
𝑚, we can conclude that the sequence {(u

𝑛
, 𝑞

𝑛
, 𝑟

𝑠

𝑛
)} is conver-

gent in𝐶2+𝛼,1+(𝛼/2)
(Ω

0𝑇
)×(𝐶

1+𝛼,𝛾
(Ω

0𝑇
)∩𝐶

1+𝛼,((1+𝛼)/2)
(Γ

0𝑇
))×

𝐶
2+𝛼,1+(𝛼/2)

(Γ
0𝑇
).

Now, let us prove Theorem 1. Taking the limit as 𝑛 tends
to infinity in problem (3), we can easily see that the limit of
the sequence {(u

𝑛
, 𝑞

𝑛
, 𝑟

𝑠

𝑛
)} is a solution of problem (11)–(13).

The uniqueness can be proved as follows. Let (u, 𝑞, 𝑟𝑠) and
(ũ, 𝑞, 𝑟𝑠) be two solutions of problem (11)–(13). By subtracting
one equation from the other, we obtain the equations for the
differences 𝑉 ≡ u − ũ, 𝑃 ≡ 𝑞 − 𝑞, and 𝑅 ≡ 𝑟𝑠 − 𝑟𝑠, the form of
which is similar to (62). Then, in a similar manner to obtain
(72), we can obtain the following estimate:

|𝑉|
(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+ |𝑅|
(2+𝛼,1+(𝛼/2))

Γ
0𝑇

≤ 𝐶
10
{𝜖 (|𝑉|

(2+𝛼,1+(𝛼/2))

Ω
0𝑇

+ |𝑅|
(2+𝛼,1+(𝛼/2))

Γ
0𝑇

)

+ 𝐶 (𝜖) ∫

𝑇

0

(|𝑉|
(2+𝛼,1+(𝛼/2))

Ω
0𝜏

+ |𝑅|
(2+𝛼,1+(𝛼/2))

Γ
0𝜏

) 𝑑𝜏} .

(76)

This inequality implies that 𝑉 = 0 and 𝑅 = 0, and as a
consequence, 𝑃 = 0 follows. Thus, the proof of Theorem 1
is completed.
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[7] O. A. Lady ženskaja, V. A. Solonnikov, andN.N.Ural’ceva, “Lin-
ear and quasi-linear equations of parabolic type,”Translations of
Mathematical Monographs, 1968.


