
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 490689, 4 pages
http://dx.doi.org/10.1155/2013/490689

Research Article
Numerical Solution for IVP in Volterra Type Linear
Integrodifferential Equations System

F. Ghomanjani,1 A. KJlJçman,2 and S. Effati1

1 Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
2Department of Mathematics, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Correspondence should be addressed to A. Kılıçman; kilicman@yahoo.com
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Amethod is proposed to determine the numerical solution of system of linear Volterra integrodifferential equations (IDEs) by using
Bezier curves. The Bezier curves are chosen as piecewise polynomials of degree n, and Bezier curves are determined on [𝑡

0
, 𝑡
𝑓
] by

𝑛 + 1 control points. The efficiency and applicability of the presented method are illustrated by some numerical examples.

1. Introduction

Integrodifferential equations (IDEs) have been found to
describe various kinds of phenomena, such as glass forming
process, dropwise condensation, nanohydrodynamics, and
wind ripple in the desert (see [1, 2]).

There are several numerical and analytical methods for
solving IDEs. Some different methods are presented to
solve integral and IDEs in [3, 4]. Maleknejad et al. [5]
used rationalized Haar functions method to solve the linear
IDEs system. Linear IDEs system has been solved by using
Galerkin methods with the hybrid Legendre and block-
Pulse functions on interval [0, 1) (see [6]). Yusufoğlu [7]
presented an application of He’s homotopy perturbation
(HPM) method to solve the IDEs system. He’s variational
iteration method has been used for solving two systems of
Volterra integrodifferential equations (see [8]). Arikoglu and
Ozkol [9] presented differential transformmethod (DTM) for
integrodifferential and integral equation systems. He’s homo-
topy perturbation (HPM)methodwas proposed for systemof
integrodifferential equations (see [10]). A numerical method
based on interpolation of unknown functions at distinct
interpolation points has been introduced for solving linear
IDEs system with initial values (see [11]). Recently, Biazar
introduced a new modification of homotopy perturbation
method (NHPM) to obtain the solution of linear IDEs system
(see [12]). Taylor expansionmethod has been used for solving

IDEs (see [13, 14]). Rashidinia and Tahmasebi developed and
modified Taylor series method (TSM) introduced in [15] to
solve the system of linear Volterra IDEs.

In the present work, we suggest a technique similar to the
one which was used in [16] for solving the system of linear
Volterra IDEs in the following form:
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where 𝑦
(𝑗)

𝑖
(𝑡) stands for 𝑗th-order derivative of 𝑦

𝑖
(𝑡). 𝑓
𝑚
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(𝑡, 𝑥), and 𝑝
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(𝑡) are known functions (𝑚, 𝑖 = 1, 2, . . .,

𝑛; 𝑗 = 0, 1, . . . , 𝛼
𝑚𝑖
), and 𝑡
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, 𝑡
𝑓
, and 𝑐
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(𝑖 = 1, 2, . . . , 𝑛; 𝑗 =
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− 1) are appropriate constants.
The current paper is organized as follows. In Section 2,

function approximationwill be introduced.Numerical exam-
ples will be stated in Section 3. Finally, Section 4 will give a
conclusion briefly.
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Figure 1: The graph of approximated 𝑦
1
(𝑡) for Example 1.

2. Function Approximation

Our strategy is to use Bezier curves to approximate the
solutions 𝑦

𝑖
(𝑡), for 1 ≤ 𝑖 ≤ 𝑛, which are given below.

Define the Bezier polynomials of degree𝑁 that approximate,
respectively, the actions of 𝑦

𝑖
(𝑡) over the interval [𝑡

0
, 𝑡
𝑓
] as

follows:
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is the Bernstein polynomial of degree 𝑁 over the interval
[𝑡
0
, 𝑡
𝑓
] (see [17]). By substituting (3) in (2), 𝑅
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where (2) is satisfied. The convergence was proved in the
approximation with Bezier curves when the degree of the
approximate solution,𝑁, tends to infinity (see [18]).

Now, the residual function is defined over the interval
[𝑡
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, 𝑡
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] as follows:
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Figure 2: The graph of approximated 𝑦
2
(𝑡) for Example 1.

where ‖ ⋅ ‖ is the Euclidean norm. Our aim is to solve the
following problem over the interval [𝑡

0
, 𝑡
𝑓
]:

min 𝑅 (𝑡)
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0
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𝑖(𝛼
𝑚
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−1)
.

(7)

The mathematical programming problem (7) can be
solved by many subroutine algorithms, and we used Maple
12 to solve this optimization problem.

Remark 1. In Chapter 1 of [19], it was proved that𝑁 satisfies

𝑁 >
𝑆

𝛿2𝜖
, (8)

where 𝑆 = ‖𝑦
𝑖
(𝑡)‖, and because of this reason that 𝑦

𝑖
(𝑡) is

uniformly continuous on [𝑡
0
, 𝑡
𝑓
], we have 𝑠, 𝑡 ∈ [𝑡

0
, 𝑡
𝑓
] that

|𝑡 − 𝑠| < 𝛿 and −(𝜖/2) < 𝑦
𝑖
(𝑡) − 𝑦

𝑖
(𝑠) < 𝜖/2, for more details

see [19].

3. Applications and Numerical Results

Consider the following examples which can be solved by
using the presented method.

Example 1. Consider a system of third-order linear Volterra
IDEs on the interval [0, 1] (see [4]):
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Table 1: Computed errors for Example 1.

𝑡 Absolute error for 𝑦
1
(𝑡) Absolute error for 𝑦

2
(𝑡)

0.0 0.000000 0.0000000000
0.2 1.4801 × 10

−10
2.2475 × 10

−11

0.4 0.162735585 × 10
−5

3.12780502 × 10
−7

0.6 0.251133963 × 10
−5

0.1536077787 × 10
−5

0.8 1.8337 × 10
−10

0.8864238659 × 10
−5

1.0 4.5905 × 10
−10

7.897 × 10
−12

Table 2: Computed errors for Example 2.

t Absolute error for 𝑦
1
(𝑡) Absolute error for 𝑦

2
(𝑡)

0.0 0.000000 0.0000000000
0.2 3.840 × 10

−11
1.5360 × 10

−11

0.4 0.5791064832 × 10
−3

0.156041748480 × 10
−3

0.6 0.17373195072 × 10
−2

0.156041748480 × 10
−3

0.8 0.69492781056 × 10
−2

1.5360 × 10
−11

1.0 0.000 0.000

with the initial conditions𝑦
1
(0) = 𝑦
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1
(0) = 1, 𝑦
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2
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𝑡
(1 + 4𝑡

2
+ 4𝑡
3
) + 𝑡 − 1.

(10)

The exact solution of this system is 𝑦
1
(𝑡) = 𝑒

𝑡, 𝑦
2
(𝑡) =

sin(𝑡).
With 𝑁 = 5, the approximated solutions for 𝑦

1
(𝑡) and

𝑦
2
(𝑡) are shown, respectively, in Figures 1 and 2, and the

computed errors are shown in Table 1 which show the high
accuracy of the proposed method.

Example 2. Consider the following system of linear Volterra
IDEs equations as follows (see [4]):
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under the conditions𝑦
1
(0) = 0 and𝑦

2
(0) = −1, with the exact

solution 𝑦
1
(𝑡) = 4𝑡

3
− 3𝑡, 𝑦

2
(𝑡) = 2𝑡

2
− 1.

With 𝑁 = 5, the computed errors are shown in Table 2
which show the high accuracy of the proposed method.

4. Conclusions

In this paper, Bernstein’s approximation is used to approx-
imate the solution of linear Volterra IDEs. In this method,
we approximate our unknown function with Bernstein’s
approximation. The present results show that Bernstein’s
approximation method for solving linear Volterra IDEs is
very effective and simple, and the answers are trusty, and
their accuracy is high, and we can execute this method in a
computer simply.The numerical examples support this claim.
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