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The fundamental aspects of the Taylor-series expansion method of moment (TEMOM) model proposed to model the aerosol
population balance equation due to Brownian coagulation in the continuum regime is shown in this study, such as the choice of the
expansion point u, the relationship between asymptotic behavior and analytical solution, and the error of the high-order moment
equations. All these analyses will contribute to the buildup of the theoretical system of the TEMOMmodel.

1. Introduction

The population balance equations (PBE) are used to describe
the evolution process of aerosol particles in a wide range of
physical, chemical, and environmental subjects, such as nuc-
leation, coagulation, diffusion, convection, and so on. When
the Brownian coagulation plays a dominant role in such cases
where aerosol particles at a high concentration are concerned
or where suspended particles have evolved for a long time [1],
the PBE for a monovariants system can be written as [2]
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in which 𝑛(𝜐, 𝑡) is the number density concentrations of the
particles with volume from 𝜐 to 𝜐+𝑑𝜐 at time 𝑡, 𝛽(𝜐, 𝜐

1
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collision frequency function between particles with volumes
𝜐 and 𝜐

1
.

Because of its strong nonlinear partial integral-differe-
ntial structure, the direct solution is very complicated and
only a limited number of analytical solutions exist for simple

coagulation kernel [3]. So several methods are proposed to
solve this equation numerically, such as the sectional method
(SM) [4], the Monte Carlo method (MCM) [5], and the met-
hod of moment (MM) [6]. With lower computational cost
compared to the SM and MCM, the moment method has
been widely used and become a powerful tool for investi-
gating evolution processes of aerosol particles [7, 8].

By multiplying 𝜐𝑘 both the sides of (1) then integrating
over the entire particle size distribution (PSD) [9], the growth
rate of the particle moment can be obtained as follows:
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where the moment𝑀
𝑘
is defined as

𝑀
𝑘
= ∫

∞

0

𝜐
𝑘
𝑛 (𝜐) 𝑑𝜐. (3)

One main difficulty of the moment method is the closure of
the moment equations. There exist several methods to over-
come this bottleneck, including but not limited to the quadra-
ture method of moment (QMOM) [10], the direct quadrature
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method of moment (DQMOM) [11], and the Taylor-series
expansion method of moment (TEMOM) [3, 12].

It should be pointed out that the TEMOM has no prior
assumption for the PSD using the Taylor-series expansion to
achieve the closure and is considered as a promising appro-
ach to approximate the PBE for its relative simplicity of imple-
mentation and high accuracy [13]. Based on TEMOMmodel,
the important information about the PSD, namely, the par-
ticle number density, particle mass, and geometric standard
deviation, can be obtained for Brownian coagulation over the
entire size regimes, and its results have a great agreement
with other moment methods [3, 12–16]. But in these works,
some fundamental problems are not clarified, for example,
why the expansion point 𝑢 is set to be 𝑀

1
/𝑀
0
instead of

other formulas; why the Taylor-series are truncated just at
the first three terms; and what about the errors estimation of
the present TEMOMmodel. In the present study, mainly as a
methodological introduction, we would like to demonstrate
the theoretical analysis to answer these questions for Brown-
ian coagulation in the continuum regime.

2. Brief Review of TEMOM Model and
Its Solutions in the Continuum Regime

At the initial time, the particle size maybe small in the free
molecule regime. As time advances, the particle volume will
grow due to coagulation between particles, and the particle
size will transform to the near continuum regime via the tra-
nsition regime and finally will tend to the continuum regime
[17]. Therefore, the characteristic of particle evolution in the
continuum regime is important to understand the coagula-
tion mechanism. The collision frequency function 𝛽 in the
continuum regime is
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where the constant 𝐵
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𝐵
is the Boltzmann’s

constant,𝑇 is temperature, and 𝜇 is gas viscosity. Substituting
(4) into (2), a set of moment equations including integral and
fractional moments can be obtained. Using a Taylor-series
expansion at 𝜐 = 𝑢 = 𝑀
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for 𝜐𝑘, the fractional moments

can be approximated by the combination of integralmoments
as follows:
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then the closure of the moment equations will be achieved
automatically without any prior assumption about the par-
ticle size spectrum. The minimum number of moments for
closing the equations is the first three-order moments 𝑀
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, and𝑀

2
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particle number concentration, and the total particle mass

concentration, the total scattering light, respectively. Acco-
rding to the results derived by Yu et al. [3] and Xie and Wang
[18], the equations can be rearranged as follows:
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where the dimensionless moment𝑀
𝐶
is defined as
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It is clear that𝑀
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conservation requirement, and its initial conditions can be
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are a set of ordinary differential equations and can be solved
directly. The main process is described briefly as follows.
Because of the same structures of the first and the third equa-
tions in (6), the following relationship can be obtained:
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where 𝐶
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is the integration constant, and the dimensionless
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Then substituting (10) into the first formula in (6), the relati-
onship between𝑀

0
and 𝑡 can be obtained:
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in which 𝐶
2
is the integration constant. Then the second

moment𝑀
2
and dimensionless particle moment𝑀

𝐶
can be

calculated by (9) and (10), respectively. As time advances,𝑀
0

tends to zero due to coagulation; (11) can be simplified with
some limit operation as

lim
𝑀0→0
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169𝐵
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81
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which is consistent with the asymptotic analysis shown byXie
et al. [18, 19].
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3. The Choice of Expansion Point 𝑢

In the TEMOM model, the choice of the expansion point at
𝑢 = 𝑀

1
/𝑀
0
is not arbitrary. Some researchers think that

the expansion for the characteristic size should take account
of dispersion in the size spectrum and that is best done
by using the well-known log-normal based expression 𝑢 =
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The detailed derivation is provided in the appendix.The com-
parison of numerical results between (6) and (13) is shown in
Figure 1. And the initial conditions are selected as lognormal
distribution:𝑀

00
= 1;𝑀
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= 4/3. The results show

that the relative errors are small, and the two sets of equations
are equivalent approximately. However, this selection results
in more complicated moment equations. In fact, for any
expression, when it is operated using the Taylor expansion
technique, the selection of the expansion point is not unique.
In mathematics, we only need to make sure in the targeted
range than the Taylor-series expansion is convergent, and the
final constructed moment equations are simple in the form.
From this viewpoint, the selection of 𝑢 = 𝑀−3/2
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4. The High-Order Moment Equations

The accuracy of the TEMOM model largely depends on the
truncation errors of Taylor-series expansion. One method
to determine the truncated errors is comparing the results
of different TEMOM models, for example, the first three-
moment model, the first four-moment model, the first five-
moment model, and so forth. Similar to the derivation of the
first three moment equations, 𝜐𝑘 is expanded at 𝜐 = 𝑢 and
truncated at the first four terms as
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then the closed first four-moment equations can be obtained
as follows:
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with the same process, the closed first five-moment equations
are
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Figure 1: The comparison of numerical results among (6), (13), (15), and (16) with the initial condition𝑀
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The comparison of numerical results among (5), (14), and
(15) are also shown in Figure 1. The results show that the
relative errors are small, and the three sets of equations
can be considered equivalent nearly. Since the complexity
of moment equations increases rapidly with the increasing
number of reserved items but with little differences in the
numerical results, we usually prefer using the first three-
moment model proposed originally by Yu et al. [3].

5. Conclusion

Without a prior assumption for the shape of particle size
distribution, theTEMOMhas been considered as a promising
method tomodel the aerosol population balance equation. In
this study, the fundamental problems of the TEMOMmodel
in the continuum regime due to Brownian coagulation are
clarified, such as the choice of the expansion point 𝑢 and
the error of the high-order moment equations. It benefits the
understanding of PBE and TEMOMmodel.

Appendix

With the same process as Yu et al. [3] shown, we can get the
first three-moment equations as follows:
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Now replacing all the fractional moments by the integral
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1
, and 𝑀

2
) in (A.2) and substituting

𝑢 = 𝑀
2

1
/(𝑀
3/2

0
𝑀
1/2

2
) and𝑀

𝐶
= 𝑀
0
𝑀
2
/𝑀
2

1
into (A.1), (13)

is obtained.
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