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The bifurcation properties of a predator prey system with refuge and constant harvesting are investigated. The number of the
equilibria and the properties of the system will change due to refuge and harvesting, which leads to the occurrence of several
kinds bifurcation phenomena, for example, the saddle-node bifurcation, Bogdanov-Takens bifurcation, Hopf bifurcation, backward
bifurcation, separatrix connecting a saddle-node and a saddle bifurcation and heteroclinic bifurcation, and so forth. Our main
results reveal much richer dynamics of the system compared to the system with no refuge and harvesting.

1. Introduction

TheHolling-Tanner predator-prey system has attractedmuch
attentions from both theoretical andmathematical biologists,
especially, in [1] the authors considered the ratio-dependent
system of the form

�̇� = 𝑟𝑥 (1 −

𝑥

𝐾

) −

𝛼𝑥𝑦

𝐴𝑦 + 𝑥

,

�̇� = 𝑠𝑦 (1 −

𝑏𝑦

𝑥

) ,

(1)

where 𝑥 and 𝑦 stand for prey and predator population (or
densities) at time 𝑡, respectively. The predator growth is of
logistic type with growth rate 𝑟 and carrying capacity 𝐾 in
the absence of predation; 𝛼 and 𝐴 stand for the predator
capturing rate and half saturation constant, respectively; 𝑠

is the intrinsic growth rate of predator; however, carrying
capacity 𝑥/𝑏 (𝑏 is the conversion rate of prey into predators) is
the function on the population size of prey. They studied the
global properties and the existence and uniqueness of limit
cycle for system (1).

Generally speaking, from the views of the optimal man-
agement and exploitation of bioeconomic resources, it is nec-
essary andmeaningful to consider the refuge or harvesting of

populations in some bioeconomicmodels; one can see [2–11],
and the references therein.

In this paper we will analyze the system (1) with refuge
and harvesting of the form

�̇� = 𝑟𝑥 (1 −

𝑥

𝐾

) −

𝛼𝑦 (𝑥 − 𝑚)

𝐴𝑦 + 𝑥 − 𝑚

− ℎ,

�̇� = 𝑠𝑦 (1 −

𝑏𝑦

𝑥 − 𝑚

) ,

(2)

where 𝑟, 𝐾, 𝛼, 𝐴, 𝑚, ℎ, 𝑠, and 𝑏 are positive constants. 𝑚 is
a constant number of prey using refuges, and ℎ is the rate of
prey harvesting.

For simplicity, we first rescale the system (2).
Let 𝑋 = 𝑥 − 𝑚, 𝑌 = 𝑦; system (2) can be written as (still

denote 𝑋, 𝑌 as 𝑥, 𝑦)

�̇� = 𝑟 (𝑥 + 𝑚) (1 −

𝑥 + 𝑚

𝐾

) −

𝛼𝑥𝑦

𝐴𝑦 + 𝑥

− ℎ,

�̇� = 𝑠𝑦 (1 −

𝑏𝑦

𝑥

) .

(3)
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Next, let 𝜏 = 𝑟𝑡, 𝑋 = 𝑥/𝐾, and 𝑌 = 𝛼𝑦/𝑟𝐾, then system
(3) takes the form (still denote 𝑋, 𝑌, and 𝜏 as 𝑥, 𝑦, 𝑡)

�̇� = (𝑥 + 𝑚) (1 − 𝑥 − 𝑚) −

𝑥𝑦

𝑎𝑦 + 𝑥

− ℎ = 𝑃 (𝑥, 𝑦) ,

�̇� = 𝛿𝑦 (𝛽 −

𝑦

𝑥

) = 𝑄 (𝑥, 𝑦) ,

(4)

where 𝑚 = 𝑚/𝐾, 𝑎 = 𝐴𝑟/𝛼, 𝛿 = 𝑠ℎ/𝛼, 𝛽 = 𝛼/𝑏𝑟, and ℎ = ℎ/𝑟.
From the view of biology, we are only interested in the

dynamics of the system (4) in the first quadrant.
The organization of this paper is as follows. In Section 2,

we discuss the existence and properties of the equilibria of
system (4). In Section 3, all possible bifurcation phenomena
of the model in terms of the five parameters are presented,
and the numerical simulations about every bifurcation phe-
nomena are exhibited.

2. Qualitative Analysis of Equilibria

To obtain the boundary equilibria the following equation can
be obtained

𝑥

2
+ (2𝑚 − 1) 𝑥 + ℎ − 𝑚 (1 − 𝑚) = 0. (5)

Its discriminant is Δ

0
= 1 − 4ℎ.

Obviously, Δ
0

≥ 0 if 0 < ℎ ≤ 1/4 and Δ

0
< 0 if ℎ > 1/4.

Hence, (5) has two distinct positive solutions 𝑥

01
= (1 −

2𝑚 +

√

1 − 4ℎ)/2, 𝑥

02
= (1 − 2𝑚 −

√

1 − 4ℎ)/2 if 0 < 𝑚 <

1/2, 𝑚(1 − 𝑚) < ℎ < 1/4, a positive solution 𝑥

01
if 0 < 𝑚 <

1, 0 < ℎ < 𝑚(1 − 𝑚), a double solution 𝑥 = (1 − 2𝑚)/2 > 0

if 0 < 𝑚 < 1/2, ℎ = 1/4, and a solution 𝑥

03
= 1 − 2𝑚 when

ℎ = 𝑚(1 − 𝑚) and 0 < 𝑚 < 1/2.
One can obtain the positive equilibrium of (4) by solving

the equation

𝑥

2
+ (

𝛽

𝑎𝛽 + 1

+ 2𝑚 − 1) 𝑥 + ℎ + 𝑚 (𝑚 − 1) = 0. (6)

We can derive that system (4) has two positive equilibria
𝑃

1
= (𝑥

1
, 𝑦

1
) and 𝑃

2
= (𝑥

2
, 𝑦

2
) if

0 < 𝑚 <

1

2

(1 −

𝛽

𝑎𝛽 + 1

) ,

𝑚 (1 − 𝑚) < ℎ <

1

4

(

𝛽

𝑎𝛽 + 1

− 1)

2

+

𝑚𝛽

𝑎𝛽 + 1

,

(7)

where

𝑥

𝑖
= −

1

2

(

𝛽

𝑎𝛽 + 1

+ 2𝑚 − 1)

+ (−1)

𝑖+1
√

Δ

2

, 𝑦

𝑖
= 𝛽𝑥

𝑖
, 𝑖 = 1, 2,

Δ = (

𝛽

𝑎𝛽 + 1

− 1)

2

+

4𝑚𝛽

𝑎𝛽 + 1

− 4ℎ.

(8)

Moreover, we can show that system (4) just exists one positive
equilibrium 𝑃

1
if 0 < ℎ < 𝑚(1 − 𝑚) and 0 < 𝑚 < 1.

The positive equilibrium 𝑃

3
= (𝑥

3
, 𝑦

3
) (𝑃
∗

= (𝑥

∗
, 𝑦

∗
))

of system (4) exists if 0 < 𝑚 < (1/2)(1 − 𝛽/(𝑎𝛽 + 1)),
and ℎ = 𝑚(1 − 𝑚)(0 < 𝑚 < (1/2)(1 − 𝛽/(𝑎𝛽 + 1)), ℎ =
(1/4)(𝛽/(𝑎𝛽 + 1) − 1)

2 + 𝑚𝛽/(𝑎𝛽 + 1)), where 𝑥

3
= 1 − 2𝑚 −

𝛽/(𝑎𝛽 + 1), 𝑦
3
= 𝛽𝑥

3
, 𝑥
∗
= −(1/2)(𝛽/(𝑎𝛽 + 1) + 2𝑚 − 1), and

𝑦

∗
= 𝛽𝑥

∗
.

Summarizing the previous discussion, the number and
location of equilibria of system (4) can be described by the
following lemmas.

Lemma 1. Let 1/2 ≤ 𝑚 < 1.

(i) System (4) has no equilibria when ℎ ≥ 𝑚(1 − 𝑚);
(ii) System (4) exist two equilibria 𝐸

1
= (𝑥

01
, 0) and 𝑃

1

when 0 < ℎ < 𝑚(1 − 𝑚).

Lemma 2. Let 0 < (1/2)(1 − 𝛽/(𝑎𝛽 + 1)) ≤ 𝑚 < 1/2.

(i) System (4) has no equilibria when ℎ > 1/4.
(ii) System (4) has a unique equilibrium 𝐸 = (𝑥, 0) when

ℎ = 1/4.
(iii) System (4) has two equilibria 𝐸

1
= (𝑥

01
, 0) and 𝐸

2
=

(𝑥

02
, 0) when 𝑚(1 − 𝑚) < ℎ < 1/4.

(iv) System (4) has an equilibrium 𝐸

3
= (𝑥

03
, 0) when ℎ =

𝑚(1 − 𝑚).
(v) System (4) has two equilibria 𝐸

1
and 𝑃

1
when 0 < ℎ <

𝑚(1 − 𝑚).

Lemma 3. Let 0 < 𝑚 < (1/2)(1 − 𝛽/(𝑎𝛽 + 1)) and ̃

ℎ =

(1/4)(𝛽/(𝑎𝛽 + 1) − 1)

2
+ 𝑚𝛽/(𝑎𝛽 + 1).

(i) System (4) has no equilibria when ℎ > 1/4.
(ii) System (4) has a unique equilibrium 𝐸 = (𝑥, 0) when

ℎ = 1/4.
(iii) System (4) has two equilibria 𝐸

1
and 𝐸

2
when ̃

ℎ < ℎ <

1/4.
(iv) System (4) has three equilibria𝐸

1
,𝐸
2
, and𝑃

∗
when ℎ =

̃

ℎ.
(v) System (4) has four equilibria 𝐸

1
, 𝐸

2
, 𝑃

1
, and 𝑃

2
when

𝑚(1 − 𝑚) < ℎ <

̃

ℎ.
(vi) System (4) has two equilibria 𝐸

1
and 𝑃

1
when 0 < ℎ <

𝑚(1 − 𝑚).
(vii) System (4) has two equilibria 𝐸

3
and 𝑃

3
when ℎ =

𝑚(1 − 𝑚).

Next we discuss the dynamics of system (4) in the
neighborhood of each feasible equilibria. Firstly, the Jacobian
matrix of system (4) at 𝐸

1
is

𝑀

𝐸
1

= [

−

√

1 − 4ℎ −1

0 𝛿𝛽

] . (9)

It is easy to see that 𝐸

1
, if exists, is a hyperbolic saddle.

Secondly, the Jacobian matrix of system (4) at 𝐸

2
is

𝑀

𝐸
2

= [

√

1 − 4ℎ −1

0 𝛿𝛽

] . (10)
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One can see that boundary equilibrium 𝐸

2
, if exists, is an

unstable hyperbolic node.
The Jacobian matrix of system (4) at 𝐸

3
is

𝑀

𝐸
3

= [

2𝑚 − 1 −1

0 𝛿𝛽

] . (11)

Hence, 𝐸
3
, if exists, is a saddle.

Similarly, we assume boundary equilibrium 𝐸 exists, and
the Jacobian matrix of system (4) at 𝐸 is obtained as follows:

𝑀

𝐸
= [

0 −1

0 𝛿𝛽

] . (12)

Hence, 𝐸 is a saddle node.
The previous discussion can be summarized as follows.

Theorem 4. If the equilibria 𝐸

1
, 𝐸
2
, and 𝐸

3
exist, then 𝐸

1
and

𝐸

3
are hyperbolic saddle, and 𝐸

2
is a hyperbolic unstable node.

Moreover, 𝐸
1
and 𝐸

2
merge into a saddle node 𝐸 = (𝑥, 0) when

ℎ = 1/4.

Remark 5. Note that if ℎ = 1/4, then �̇� = −(𝑥 + 𝑚 − 1/2)

2
−

𝑥𝑦/(𝑥 + 𝑎𝑦) < 0, if ℎ > 1/4, then �̇� ≤ 1/4 − ℎ < 0. Thus,
the prey species may go extinct as time increases for some
initial values when ℎ ≥ 1/4.That is, biological over harvesting
occurs.

In the following, we will discuss the properties of interior
equilibria of system (4).

2.1. The Properties of Interior Equilibria. The Jacobian matrix
of system (4) at 𝑃

1
is

𝑀

𝑃
1

=

[

[

[

𝛽

(𝑎𝛽 + 1)

2
−

√

Δ −

1

(𝑎𝛽 + 1)

2

𝛿𝛽

2
−𝛿𝛽

]

]

]

. (13)

The characteristic equation is 𝜆

2
+ 𝐴

1
𝜆 + 𝐴

2
= 0, where

𝐴

1
=

√

Δ −

𝛽

(1 + 𝑎𝛽)

2
+ 𝛿𝛽, 𝐴

2
= 𝛿𝛽

√

Δ > 0. (14)

Denote that

𝐴

2

1
− 4𝐴

2
= 𝛽

2
𝛿

2
− 2 (

√

Δ +

𝛽

(1 + 𝑎𝛽)

2
) 𝛽𝛿

+ (

√

Δ −

𝛽

(1 + 𝑎𝛽)

2
)

2

:= 𝐹 (𝛿) .

(15)

The discriminant of 𝐹(𝛿) = 0 is Δ

1
= 16𝛽

3
√

Δ/(1 + 𝑎𝛽)

2
> 0,

then 𝐹(𝛿) = 0 has two distinct solutions 𝛿

1
and 𝛿

2
denoted by

𝛿

1
= (

√

√
Δ

𝛽

−

1

1 + 𝑎𝛽

)

2

, 𝛿

2
= (

√

√
Δ

𝛽

+

1

1 + 𝑎𝛽

)

2

.

(16)

If √
Δ ̸= 𝛽/(1 + 𝑎𝛽)

2, it is easy to see that 𝑃

1
is a node if 0 <

𝛿 < 𝛿

1
or 𝛿 > 𝛿

2
, a degenerate node if 𝛿 = 𝛿

1
or 𝛿 = 𝛿

2
, and a

focus or a center type nonhyperbolic if 𝛿

1
< 𝛿 < 𝛿

2
.

If √
Δ = 𝛽/(1 + 𝑎𝛽)

2
, 𝑃

1
is a node if 𝛿 > 𝛿

2
, and a

degenerate node if 𝛿 = 𝛿

2
, and a focus or a center-type

nonhyperbolic if 0 < 𝛿 < 𝛿

2
.

To discuss the stability of 𝑃

1
, we need to determine the

sign of 𝐴

1
. Define ̃

𝛿 = 1/(1 + 𝑎𝛽)

2
− (1/𝛽)

√
Δ, then 𝐴

1
=

𝛽(𝛿 −

̃

𝛿).
Clearly, if 𝛽/(1 + 𝑎𝛽)

2
≤

√
Δ then 𝐴

1
> 0 for all 𝛿; if

𝛽/(1 + 𝑎𝛽)

2
>

√
Δ, then 𝐴

1
> 0 when 𝛿 >

̃

𝛿, 𝐴

1
≤ 0 when

0 < 𝛿 ≤

̃

𝛿; by simple computation, one can obtain 𝐹(

̃

𝛿) =

4
√

Δ(
√

Δ − 𝛽/(𝑎𝛽 + 1)

2
) < 0, hence 𝛿

1
<

̃

𝛿 < 𝛿

2
.

The Jacobian matrix of system (4) at 𝑃

2
is

𝑀

𝑃
2

=

[

[

[

𝛽

(𝑎𝛽 + 1)

2
+

√
Δ −

1

(𝑎𝛽 + 1)

2

𝛿𝛽

2
−𝛿𝛽

]

]

]

. (17)

Its determinant is det𝑀

𝑃
2

= −𝛿𝛽
√

Δ < 0.
Through the previous discussion, about the stability of 𝑃

1

and 𝑃

2
, we have the following theorem.

Theorem 6. Equilibrium 𝑃

2
, if exists, must be a hyperbolic

saddle. Equilibrium 𝑃

1
, if exists, may be a node or a focus when

𝛽/(1 + 𝑎𝛽)

2
≤

√
Δ. Andwhen𝛽/(1 + 𝑎𝛽)

2
>

√
Δ,𝑃
1
is a stable

focus for 𝛿

2
> 𝛿 >

̃

𝛿, a stable degenerate node for 𝛿 = 𝛿

2
,

a stable node for 𝛿 > 𝛿

2
, an unstable node for 0 < 𝛿 < 𝛿

1
,

an unstable degenerate node for 𝛿 = 𝛿

1
, an unstable focus for

𝛿

1
< 𝛿 <

̃

𝛿, and a weak focus or a center for 𝛿 =

̃

𝛿.

The Jacobian matrix of system (4) at 𝑃

3
is

𝑀

𝑃
3

=

[

[

[

2𝑚 − 1 +

𝛽 (𝑎𝛽 + 2)

(𝑎𝛽 + 1)

2
−

1

(𝑎𝛽 + 1)

2

𝛿𝛽

2
−𝛿𝛽

]

]

]

. (18)

then by the existence condition of 𝑃

3
, det𝑀

𝑃
3

= −𝛽𝛿(2𝑚 −

1 + 𝛽/(𝑎𝛽 + 1)) > 0, tr 𝑀

𝑃
3

= 2𝑚 − 1 − 𝛿𝛽 + 𝛽/(1 +

𝑎𝛽) + 𝛽/(1 + 𝑎𝛽)

2. Then by taking similar methods used
in estimating the properties of 𝑃

1
, we have the following

theorem.

Theorem 7. Let ℎ = 𝑚(1 − 𝑚), 𝛿 = (1/𝛽)(2𝑚 − 1 + 𝛽/(1 +

𝑎𝛽) + 𝛽/(1 + 𝑎𝛽)

2
). Then,

(i) assume 0 < 𝑚 ≤ (1/2)(1 − 𝛽/(1 + 𝑎𝛽) − 𝛽/(1 + 𝑎𝛽)

2
),

then 𝑃

3
is stable;

(ii) assume (1/2)(1 − 𝛽/(1 + 𝑎𝛽) − 𝛽/(1 + 𝑎𝛽)

2
) < 𝑚 <

(1/2)(1 − 𝛽/(1 + 𝑎𝛽)), then 𝑃

3
is stable if 𝛿 > 𝛿, is

unstable if 0 < 𝛿 < 𝛿, and is a weak focus or a center if
𝛿 = 𝛿.

The Jacobian matrix of system (4) at 𝑃

∗
is

𝑀

𝑃
∗

=

[

[

[

𝛽

(𝑎𝛽 + 1)

2
−

1

(𝑎𝛽 + 1)

2

𝛿𝛽

2
−𝛿𝛽

]

]

]

. (19)
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One can see that det𝑀

𝑃
∗

= 0, which indicates that
𝑃

∗
is a degenerate singularity and maybe has complicated

properties, see the following theorem.

Theorem 8. Let 0 < 𝑚 < (1/2)(1 − 𝛽/(𝑎𝛽 + 1)), ℎ =

̃

ℎ.
Then system (4) has three equilibria, where 𝐸

1
is a hyperbolic

saddle, 𝐸
2
is a hyperbolic unstable node, and 𝑃

∗
is a degenerate

singularity. More precisely,

1

∘ if 𝛿 ̸= 1/(𝑎𝛽 + 1)

2, then 𝑃

∗
is a saddle node;

2

∘ if 𝛿 = 1/(𝑎𝛽 + 1)

2, then 𝑃

∗
is a cusp of codimension 2.

Proof. In order to discuss the properties of system (4) in the
neighborhood of the equilibrium 𝑃

∗
= (𝑥

∗
, 𝑦

∗
), we first take

𝑥 = 𝑥 − 𝑥

∗
, 𝑦 = 𝑦 − 𝑦

∗
, then 𝑃

∗
is translated to (0, 0), and

system (4) becomes (still denote 𝑥, 𝑦 as 𝑥, 𝑦)

�̇� =

𝛽

(𝑎𝛽 + 1)

2
𝑥 −

1

(𝑎𝛽 + 1)

2
𝑦 − 𝑔

1
𝑥

2

+ 𝑔

2
𝑥𝑦 − 𝑔

3
𝑦

2
+ 𝑂 (









𝑥, 𝑦









3

) ,

�̇� = 𝛿𝛽

2
𝑥 − 𝛿𝛽𝑦 + 𝑔

4
𝑥

2
− 𝑔

5
𝑥𝑦 + 𝑔

6
𝑦

2
+ 𝑂 (









𝑥, 𝑦









3

) ,

(20)

where

𝑔

1
=

2𝑎𝛽

2

(𝑎𝛽 + 1)

2

((2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽)

+ 1,

𝑔

2
=

4𝑎𝛽

(𝑎𝛽 + 1)

2

((2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽)

,

𝑔

3
=

2𝑎

(𝑎𝛽 + 1)

2

((2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽)

,

𝑔

4
=

2𝛿𝛽

2
(𝑎𝛽 + 1)

(2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽

,

𝑔

5
=

4𝛿𝛽 (𝑎𝛽 + 1)

(2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽

,

𝑔

6
=

2𝛿 (𝑎𝛽 + 1)

(2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽

.

(21)

Clearly, if 𝛿 ̸= 1/(𝑎𝛽 + 1)

2 , then tr(𝑀
𝑃
∗

) ̸= 0. 𝑃

∗
= (𝑥

∗
, 𝑦

∗
) is

a saddle-node. We finish the proof of the part 1∘.
When 𝛿 = 1/(𝑎𝛽 + 1)

2 , tr𝑀

𝑃
∗

= 0, which implies
that both eigenvalues of the matrix 𝑀

𝑃
∗

are zero. We rewrite
system (20) as

�̇� =

𝛽

(𝑎𝛽 + 1)

2
𝑥 −

1

(𝑎𝛽 + 1)

2
𝑦 − 𝑞

1
𝑥

2

+ 𝑞

2
𝑥𝑦 − 𝑞

3
𝑦

2
+ 𝑂 (









𝑥, 𝑦









3

) ,

�̇� =

𝛽

2

(𝑎𝛽 + 1)

2
𝑥 −

𝛽

(𝑎𝛽 + 1)

2
𝑦 + 𝑞

4
𝑥

2

− 𝑞

5
𝑥𝑦 + 𝑞

6
𝑦

2
+ 𝑂 (









𝑥, 𝑦









3

) ,

(22)

where

𝑞

1
= 𝑔

1
, 𝑞

2
= 𝑔

2
, 𝑞

3
= 𝑔

3
,

𝑞

4
=

2𝛽

2

(𝑎𝛽 + 1)

2

((2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽)

,

𝑞

5
=

4𝛽

(𝑎𝛽 + 1)

2

((2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽)

,

𝑞

6
=

2

(𝑎𝛽 + 1)

2

((2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽)

.

(23)

By introducing variable 𝜏 = (𝛽/(𝑎𝛽 + 1)

2
)𝑡 into previous

system and rewriting 𝜏 as 𝑡 for simplicity, then we obtain that

�̇� = 𝑥 −

1

𝛽

𝑦 − 𝜔

1
𝑥

2
+ 𝜔

2
𝑥𝑦 − 𝜔

3
𝑦

2
+ 𝑂 (









𝑥, 𝑦









3

) ,

�̇� = 𝛽𝑥 − 𝑦 + 𝜔

4
𝑥

2
− 𝜔

5
𝑥𝑦 + 𝜔

6
𝑦

2
+ 𝑂 (









𝑥, 𝑦









3

) ,

(24)

where

𝜔

1
=

2𝑎𝛽

(2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽

+

(𝑎𝛽 + 1)

2

𝛽

,

𝜔

2
=

4𝑎

(2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽

,

𝜔

3
=

2𝑎

𝛽 ((2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽)

,

𝜔

4
=

2𝛽

(2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽

,

𝜔

5
=

4

(2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽

,

𝜔

6
=

2

𝛽 ((2𝑚 − 1) (𝑎𝛽 + 1) + 𝛽)

.

(25)

We take transformation 𝑋

0
= 𝑥, 𝑌

0
= 𝑥 − (1/𝛽)𝑦 into

(24), then system (24) is transformed to

̇

𝑋

0
= 𝑌

0
+ 𝜂

1
𝑋

2

0
+ 𝜂

2
𝑋

0
𝑌

0
− 𝜔

3
𝛽

2
𝑌

2

0
+ 𝑂 (









𝑋

0
, 𝑌

0









3

) ,

̇

𝑌

0
= 𝜂

3
𝑋

2

0
+ 𝜂

4
𝑋

0
𝑌

0
− 𝜂

5
𝑌

2

0
+ 𝑂 (









𝑋

0
, 𝑌

0









3

) ,

(26)

where

𝜂

1
= − 𝜔

3
𝛽

2
− 𝜔

1
+ 𝜔

2
𝛽,

𝜂

2
= 2𝜔

3
𝛽

2
− 𝜔

2
𝛽,

𝜂

3
= −

𝜔

1
𝛽 − 𝜔

2
𝛽

2
+ 𝜔

3
𝛽

3
+ 𝜔

4
− 𝜔

5
𝛽 + 𝜔

6
𝛽

2

𝛽

,

𝜂

4
= 2𝜔

3
𝛽

2
− 𝜔

2
𝛽 − 𝜔

5
+ 2𝜔

6
𝛽,

𝜂

5
= 𝛽 (𝜔

3
𝛽 + 𝜔

6
) .

(27)
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In order to obtain the canonical normal forms of system (26),
we will perform a series of 𝐶

∞ transformations of variables
for system (26) in a small neighborhood of (0, 0)

T.
Firstly, performing the transformation by taking 𝑋

1
=

𝑋

0
, 𝑌
1

= 𝑌

0
− 𝜔

3
𝛽

2
𝑌

2

0
, then (26) becomes

̇

𝑋

1
= 𝑌

1
+ 𝜂

1
𝑋

2

1
+ 𝜂

2
𝑋

1
𝑌

1
+ 𝑂 (









𝑋

1
, 𝑌

1









3

) ,

̇

𝑌

1
= 𝜂

3
𝑋

2

1
+ 𝜂

4
𝑋

1
𝑌

1
− 𝜂

5
𝑌

2

1
+ 𝑂 (









𝑋

1
, 𝑌

1









3

) .

(28)

Secondly, performing the transformation by taking 𝑋

2
=

𝑋

1
, 𝑌
2

= 𝑌

1
+ 𝜂

5
𝑋

1
𝑌

1
, then (28) becomes

̇

𝑋

2
= 𝑌

2
+ 𝜂

1
𝑋

2

2
+ (𝜂

2
− 𝜂

5
) 𝑋

2
𝑌

2
+ 𝑂 (









𝑋

2
, 𝑌

2









3

) ,

̇

𝑌

2
= 𝜂

3
𝑋

2

2
+ 𝜂

4
𝑋

2
𝑌

2
+ 𝑂 (









𝑋

2
, 𝑌

2









3

) .

(29)

We perform the final transformation of variables by

𝑋 = 𝑋

2
−

𝜂

2
− 𝜂

5

2

𝑋

2

2
, 𝑌 = 𝑌

2
+ 𝜂

1
𝑋

2

2
+ 𝑂 (









𝑋

2
, 𝑌

2









3

) .

(30)

Then, we obtain

̇

𝑋 = 𝑌,

̇

𝑌 = 𝜂

3
𝑋

2
+ (2𝜂

1
+ 𝜂

4
) 𝑋𝑌 + 𝑂 (|𝑋, 𝑌|

3
) .

(31)

Note that

𝜂

3
= −

(𝑎𝛽 + 1)

2

𝛽

̸= 0, 2𝜂

1
+ 𝜂

4
= −

2(𝑎𝛽 + 1)

2

𝛽

̸= 0,

(32)

which indicates that the origin (0, 0) of (31) is a cusp of
codimension 2. We complete the proof.

3. Bifurcation Analysis

From previous analysis, we can see the equilibria of system
(4) may be hyperbolic or degenerate singularities under
appropriate conditions, which indicate that some bifurcations
may occur for system (4). It is interesting to investigate what
kinds of bifurcations system (4) can undergowith the original
parameters varying.

3.1. Hopf Bifurcation. Theorem 6 shows that 𝑃

1
, if exists, is a

weak focus or a center when

𝑉 = { (𝑎, 𝑚, 𝛽, 𝛿, ℎ) : 0 < 𝑚 < �̃�, 𝑚 (1 − 𝑚)

< ℎ <

̃

ℎ,

𝛽

(1 + 𝑎𝛽)

2
>

√

Δ, 𝛿 =

̃

𝛿} ,

(33)

where �̃� = (1/2)(1 − 𝛽/(𝑎𝛽 + 1)).
To determine the direction of Hopf bifurcation and

stability of 𝑃

1
in this case, we need to compute the Liapunov

coefficients of the equilibrium 𝑃

1
. Let 𝛿 =

̃

𝛿 and by the
variable 𝑢 = 𝑥 − 𝑥

1
, V = 𝑦 − 𝑦

1
. Then we rewrite system

(4) (still denote 𝑢, V as 𝑥, 𝑦) as follows:

�̇� =

̃

𝛿𝛽𝑥 −

1

(𝑎𝛽 + 1)

2
𝑦 + 𝑓

1
(𝑥, 𝑦) ,

�̇� =

̃

𝛿𝛽

2
𝑥 −

̃

𝛿𝛽𝑦 + 𝑓

2
(𝑥, 𝑦) .

(34)

We perform the transformations

𝑋 = 𝑥, 𝑌 =

̃

𝛿𝛽𝑥 −

1

(𝑎𝛽 + 1)

2
𝑦,

𝑢 = 𝑋, V =

(𝑎𝛽 + 1) 𝑌

𝛽
√

̃

𝛿 (1 −

̃

𝛿(𝑎𝛽 + 1)

2

)

(35)

and rewrite 𝑢, V as 𝑥, 𝑦. Then the previous system can be
transformed to

�̇� = 𝑘

1
𝑦 + 𝑎

20
𝑥

2
+ 𝑎

11
𝑥𝑦 + 𝑎

02
𝑦

2

+ 𝑎

30
𝑥

3
+ 𝑎

21
𝑥

2
𝑦 + 𝑎

12
𝑥𝑦

2
+ 𝑎

03
𝑦

3
+ 𝑂 (









(𝑥, 𝑦)









4

) ,

�̇� = − 𝑘

1
𝑥 + 𝑑

11
𝑥𝑦 + 𝑏

20
𝑥

2
+ 𝑏

11
𝑥𝑦 + 𝑏

02
𝑦

2

+ 𝑏

30
𝑥

3
+ 𝑏

21
𝑥

2
𝑦 + 𝑏

12
𝑥𝑦

2
+ 𝑏

03
𝑦

3
+ 𝑂 (









(𝑥, 𝑦)









4

) ,

(36)

where the expressions of 𝑎

20
, 𝑎

11
, 𝑎

02
, 𝑎

30
, 𝑎

21
, 𝑎

12
,

𝑎

03
, 𝑏

20
, 𝑏

11
, 𝑏

02
, 𝑏

30
, 𝑏

21
, 𝑏

12
, and 𝑏

03
depend

on the parameters 𝑎, 𝛽, 𝛿, ℎ, and 𝑚, and 𝑘

1
=

𝛽

√
̃

𝛿(1 −

̃

𝛿(𝑎𝛽 + 1)

2
)/(𝑎𝛽 + 1) > 0.

Using the formula, the first Liapunov number is

𝜎 = −

1

8𝛽𝑘

1

(

2(𝑎𝛽 + 1)

2

̃

𝛿(𝑎𝛽 + 1)

2

− 1

+

2𝛽 (2𝑎𝛽 + 1)

(𝑎𝛽 + 1) 𝑥

1

+

𝑎𝛽

3
(2𝑎𝛽 − 1) [

̃

𝛿(𝑎𝛽 + 1)

2

− 1]

𝑥

2

1
(𝑎𝛽 + 1)

4
) .

(37)

Therefore, there exists a surface 𝐻

𝑏
(𝐻
𝑝
) in the parameter

space (𝑎, 𝑚, 𝛽, 𝛿, ℎ) which satisfies

𝐻

𝑏
= {(𝑎, 𝑚, 𝛽, 𝛿, ℎ) : 𝜎 > 0, (𝑎, 𝑚, 𝛽, 𝛿, ℎ) ∈ 𝑉} ,

(𝐻

𝑝
= {(𝑎, 𝑚, 𝛽, 𝛿, ℎ) : 𝜎 < 0, (𝑎, 𝑚, 𝛽, 𝛿, ℎ) ∈ 𝑉}) .

(38)

Hence, when the parameter (𝑎, 𝑚, 𝛽, 𝛿, ℎ) is in 𝐻

𝑏
(𝐻
𝑝
),

the equilibrium𝑃

1
of system (4) is a weak focus ofmultiplicity

1 and is unstable (stable) (see [8]). 𝐻

𝑏
(𝐻
𝑝
) is called the

subcritical (supercritical) Hopf bifurcation surface of system
(4).

FromTheorem 6,we know that𝑃
1
is a stable focus for𝛿

2
>

𝛿 >

̃

𝛿 and (𝑎, 𝑚, 𝛽, 𝛿, ℎ) ∈ 𝑉, an unstable focus for 𝛿

1
< 𝛿 <

̃

𝛿 and (𝑎, 𝑚, 𝛽, 𝛿, ℎ) ∈ 𝑉.
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0.35

0.36

0.37

0.38

𝑦

0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22
𝑥

(a)

0.34

0.36

0.38

0.4

0.42

0.44

𝑦

0.1 0.15 0.2 0.25 0.3 0.35
𝑥

(b)

Figure 1: (a) System (4) shows an unstable limit cycle when 𝑎 = 1.6, 𝛽 = 2, 𝑚 = 0.13095, and ℎ = 0.128. 𝛿

2
≈ 0.2220 > 𝛿 = 0.00249 >

̃

𝛿 ≈

0.00235; (b) System (4) shows a stable limit cycle when 𝑎 = 1.2, 𝛽 = 2, 𝑚 = 0.08235, and ℎ = 0.08396. 𝛿
1

≈ 0.0000391 < 𝛿 = 0.002919 <

̃

𝛿 ≈

0.003639.

0.1

0.2

0.3

0.4

𝑥

0.8 1 1.2 1.4 1.6 1.8
𝑅

Figure 2: The figure of prey 𝑥 at equilibria versus 𝑅 when 𝑎 = 1.6,
𝛽 = 2, 𝑚 = 0.1309, and ℎ = 0.13, which displays a backward
bifurcation at 𝑅 = 1.

Theorem 9. (i) System (4) has at least one unstable limit cycle
if (𝑎, 𝑚, 𝛽, 𝛿, ℎ) ∈ 𝐻

𝑏
, 𝛿
2

> 𝛿 >

̃

𝛿, |𝛿 −

̃

𝛿| ≪ 1.
(ii) System (4) has at least one stable limit cycle if

(𝑎, 𝑚, 𝛽, 𝛿, ℎ) ∈ 𝐻

𝑝
, 𝛿
1

< 𝛿 <

̃

𝛿, |𝛿 −

̃

𝛿| ≪ 1.

Remark 10. When 𝜎 = 0 system (4) maybe undergoes
degenerate Hopf bifurcation for some parameter values; since
the expression of𝜎 is complicated, we do not discuss this case.

−0.02 −0.01 0 0.01 0.02

𝜇1

−0.1

−0.08

−0.06

−0.04

−0.02

𝜇2

𝑆𝑁

𝐻

𝜀2 = 0

𝐻𝐿

Figure 3: Bifurcation diagram of system (4) near 𝑃

∗
in the plane of

𝜇

1
and 𝜇

2
.

Note that by Theorem 7, if 𝑃

3
is a weak focus or a center,

then we can obtain that its first Lyapunov number is

𝜎

1
=

3𝑎𝛽

8𝑘

1
(1 + 𝑎𝛽) (2𝑚𝑎𝛽 − 𝑎𝛽 + 𝛽 + 2𝑚 − 1)

< 0, (39)

therefore, 𝑃
3
is a stable weak focus.

By numerical calculation, we give the parameter values
(𝑎, 𝛽, 𝑚, ℎ) = (1.6, 2.0, 0.13095, 0.128), then ̃

𝛿 = 0.00235,
𝛿

2
= 0.2220 and 𝑘

1
𝜎 = 0.31085 > 0, and the existence

condition of subcritical Hopf bifurcation is satisfied. If we
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0.1

0.2

0.3

0.4

𝑦

0.05 0.1 0.15 0.2 0.25
𝑥

(a)

0.2

0.22

0.24

0.26

0.28

0.3

0.32

𝑦

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17
𝑥

(b)

Figure 4: (a) System (4) shows a cusp of codimension 2 when 𝑎 = 1.6, 𝛽 = 2, 𝑚 = (1/4)(1 − 𝛽/(𝑎𝛽 + 1)), ℎ = (1/4)(𝛽/(𝑎𝛽 + 1) − 1)

2
+

𝑚𝛽/(𝑎𝛽 + 1), 𝛿 = 1/(𝑎𝛽 + 1)

2, and 𝜇

1
= 0, 𝜇

2
= 0; (b) the cusp of codimension 2 break into an unstable focus ̂

𝐸

1
and a hyperbolic saddle ̂

𝐸

2

when 𝜇

1
= −0.0132, 𝜇

2
= −0.02.

0.2

0.22

0.24

0.26

0.28

0.3

0.32

𝑦

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17
𝑥

(a)

0.2

0.22

0.24

0.26

0.28

0.3

0.32

𝑦

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17
𝑥

(b)

Figure 5: (a)The cusp of codimension 2 breaks into a stable focus ̂

𝐸

1
and a hyperbolic saddle ̂

𝐸

2
when 𝜇

1
= −0.0098, 𝜇

2
= −0.02. The change

of stability of the focus yields an unstable limit cycle. (b) The unstable limit cycle is broken when 𝜇

1
≈ −0.0081768, 𝜇

2
= −0.02, reachs the

manifold of the saddle ̂

𝐸

2
, and leads to a homoclinic loop occur.

keep 𝑎, 𝛽, 𝑚, ℎ fixed and choose 𝛿 = 0.00249, then a unstable
limit cycle can be shown in Figure 1(a).

When taking (𝑎, 𝛽, 𝑚, ℎ) = (1.2, 2.0, 0.08235, 0.08396),
then ̃

𝛿 = 0.003639, 𝛿
1

= 0.0000391, and 𝑘

1
𝜎 = −0.1741543 <

0 which satisfy the existence condition of supercritical Hopf
bifurcation. Furthermore,we choose𝛿 = 0.002919; according

to Theorem 9, there exists a stable limit cycle, which can be
shown in Figure 1(b).

3.2. Backward Bifurcation. Define 𝑅 = 𝑚(1 − 𝑚)/ℎ, 𝑅

∗
=

𝑚(1 − 𝑚)/

̃

ℎ.
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Lemmas 2–3 and Theorems 6–8 illustrate that when the
parameterℎ varies in the range of (0, 𝑚(1−𝑚)], system (4) just
has only one positive equilibrium𝑃

1
which is stable. However,

when ℎ varies in the range (𝑚(𝑚 − 1),

̃

ℎ), system (4) has
two distinct positive equilibria 𝑃

1
and 𝑃

2
, where 𝑃

1
is a stable

node or focus and 𝑃

2
is a saddle. Furthermore, when ℎ =

̃

ℎ,
system (4) has unique positive equilibrium 𝑃

∗
. The previous

discussion indicates the possibility of a backward bifurcation,
which can be summarized as follows.

Theorem 11. Let 0 < 𝑚 < (1/2)(1 − 𝛽/(𝑎𝛽 + 1)), 𝛿 > 𝛿

2
. Then

system (4) has a unique positive equilibrium 𝑃

∗
when 𝑅 = 𝑅

∗
,

has two distinct positive equilibria 𝑃

1
and 𝑃

2
when 𝑅

∗
< 𝑅 <

1, where 𝑃

1
is a stable node and 𝑃

2
is a saddle, and has one

positive equilibrium 𝑃

1
or 𝑃

3
when 𝑅 ≥ 1. Therefore, system (4)

undergoes a backward bifurcation when 𝑅 = 1.

We give a numerical example in Figure 2 which displays
that system (4) has a backward bifurcation at 𝑅 = 1.

3.3. Saddle-Node Bifurcations. From Lemmas 2–3 and
Theorem 4, we see that when 0 < 𝑚 < 1/2, ℎ = 1/4, 𝐸

1
and

𝐸

2
degenerate into a saddle-node 𝐸 = (𝑥, 0). This indicates

that there is a saddle node bifurcation surface which takes
the form

SN
1

= {(𝑚, 𝑎, 𝛽, ℎ, 𝛿) : 0 < 𝑚 <

1

2

, ℎ =

1

4

, 𝛿 > 0,

𝛽 > 0, 𝑎 > 0} .

(40)

Similarly, fromLemma 3 and the part 1

∘ ofTheorem 8, we
know that when 0 < 𝑚 < (1/2)(1 − 𝛽/(𝑎𝛽 + 1)) and ℎ =

̃

ℎ,
inR+
2
, system (4) admits the double point 𝑃

∗
= (𝑥

∗
, 𝑦

∗
). And

𝑃

∗
is a saddle node if 𝛿 ̸= 1/(𝑎𝛽 + 1)

2.
One also can see that when the parameter ℎ varies in the

range of (𝑚(𝑚 − 1),

̃

ℎ), system (4) has two distinct positive
equilibria 𝑃

1
and 𝑃

2
. FromTheorem 6, we know that 𝑃

1
may

be a stable node, or a focus, and 𝑃

2
is a saddle. These imply

that system (4) undergoes another saddle-node bifurcation
of codimension 1. That is, there is a second saddle-node
bifurcation surface SN

2
which is defined by

SN
2

= { (𝑚, 𝑎, 𝛽, ℎ, 𝛿) : 0 < 𝑚 <

1

2

(1 −

𝛽

𝑎𝛽 + 1

) ,

ℎ =

̃

ℎ, 𝛿 ̸=

1

(𝑎𝛽 + 1)

2
} .

(41)

3.4. Bogdanov-Takens Bifurcation. From the part 2

∘ of
Theorem 8, we can see that system (4) exists a cusp of
codimension 2, which implies that there may exist the

Bogdanov-Takens bifurcation in system (4). Clearly, there
exists a parameter space

BT = { (𝑚, 𝑎, 𝛽, ℎ, 𝛿) :

0 < 𝑚 <

1

2

−

𝛽

2 (𝑎𝛽 + 1)

, 𝛿 =

1

(𝑎𝛽 + 1)

2
,

ℎ =

1

4

(

𝛽

𝑎𝛽 + 1

− 1)

2

+

𝑚𝛽

𝑎𝛽 + 1

} ,

(42)

such that system (4) has a cusp of codimension 2 when
(𝑚, 𝑎, 𝛽, ℎ, 𝛿) ∈ BT.

To show that system (4) undergoes the Bogdanov-Takens
bifurcation we choose 𝛿 and 𝛽 as bifurcation, parameters. We
need to find the universal unfolding of 𝑃

∗
.

Let (𝑚, 𝑎, 𝛽, ℎ, 𝛿) ∈ BT, and consider the following unfold
system

�̇� = (𝑥 + 𝑚) (1 − 𝑥 − 𝑚) −

𝑦𝑥

𝑎𝑦 + 𝑥

− ℎ,

�̇� = (𝛿 + 𝜇

1
) 𝑦 (𝛽 + 𝜇

2
−

𝑦

𝑥

) ,

(43)

where 𝜇

1
and 𝜇

2
are small parameters and vary in the

neighborhood of the origin.
Translating 𝑃

∗
to (0, 0) by the transformation 𝑋 = 𝑥 − 𝑥

∗

and 𝑌 = 𝑦 − 𝑦

∗
. Then system (43) is rewritten as

̇

𝑋 = 𝛼

1
𝑋 − 𝛼

2
𝑌 − 𝛼

3
𝑋

2
+ 𝛼

4
𝑋𝑌 − 𝛼

5
𝑌

2
+ 𝑊

1
(𝑋, 𝑌) ,

̇

𝑌 = 𝑙

1
+ 𝑙

2
𝑋 + 𝑙

3
𝑌 + 𝑙

4
𝑋

2
+ 𝑙

5
𝑋𝑌 + 𝑙

6
𝑌

2
+ 𝑊

2
(𝑋, 𝑌) ,

(44)

where 𝑊

1
and 𝑊

2
are smooth functions of 𝑋, 𝑌 at least of the

third order. And

𝛼

1
=

𝛽

(𝑎𝛽 + 1)

2
, 𝛼

2
=

1

(𝑎𝛽 + 1)

2
,

𝛼

3
=

(𝑎𝛽 + 1)

2

[(𝑎𝛽 + 1) (2𝑚 − 1) + 𝛽] + 2𝑎𝛽

2

(𝑎𝛽 + 1)

2

[(𝑎𝛽 + 1) (2𝑚 − 1) + 𝛽]

,

𝛼

4
=

4𝑎𝛽

(𝑎𝛽 + 1)

2

[(𝑎𝛽 + 1) (2𝑚 − 1) + 𝛽]

,

𝛼

5
=

2𝑎

(𝑎𝛽 + 1)

2

[(𝑎𝛽 + 1) (2𝑚 − 1) + 𝛽]

,

𝑙

1
= −

[1 + 𝜇

1
(𝑎𝛽 + 1)

2

] [(𝑎𝛽 + 1) (2𝑚 − 1) + 𝛽] 𝛽𝜇

2

2(𝑎𝛽 + 1)

3
,
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𝑙

2
=

(1 + 𝜇

1
(𝑎𝛽 + 1)

2

) 𝛽

2

(𝑎𝛽 + 1)

2
,

𝑙

3
= −

(1 + 𝜇

1
(𝑎𝛽 + 1)

2

) (𝛽 − 𝜇

2
)

(𝑎𝛽 + 1)

2
,

𝑙

4
=

2𝛽

2
(1 + 𝜇

1
(𝑎𝛽 + 1)

2

)

(𝑎𝛽 + 1) [(𝑎𝛽 + 1) (2𝑚 − 1) + 𝛽]

,

𝑙

5
= −

4𝛽 (1 + 𝜇

1
(𝑎𝛽 + 1)

2

)

(𝑎𝛽 + 1) [(𝑎𝛽 + 1) (2𝑚 − 1) + 𝛽]

,

𝑙

6
=

2 (1 + 𝜇

1
(𝑎𝛽 + 1)

2

)

(𝑎𝛽 + 1) [(𝑎𝛽 + 1) (2𝑚 − 1) + 𝛽]

.

(45)

Taking the change of variables 𝑋 = 𝑋, 𝑌 = 𝛼

1
𝑋 − 𝛼

2
𝑌 −

𝛼

3
𝑋

2
+ 𝛼

4
𝑋𝑌 − 𝛼

5
𝑌

2
+ 𝑊

1
(𝑋, 𝑌) and rewriting 𝑋, 𝑌 as 𝑋, 𝑌,

we obtain

̇

𝑋 = 𝑌,

̇

𝑌 = 𝑛

1
+ 𝑛

2
𝑋 + 𝑛

3
𝑌 + 𝑛

4
𝑋

2
+ 𝑛

5
𝑋𝑌 + 𝑛

6
𝑌

2
+ 𝑊

3
(𝑋, 𝑌, 𝜇) ,

(46)

where

𝑛

1
= − 𝛼

2
𝑙

1
→ 0,

𝑛

2
= 𝛼

4
𝑙

1
− 𝛼

2
𝑙

2
− 𝑙

3
𝛼

1
−

2𝛼

5
𝛼

1
𝑙

1

𝛼

2

→ 0,

𝑛

3
= 𝑙

3
+ 𝛼

1
+

2𝛼

5
𝑙

1

𝛼

2

→ 0,

𝑛

4
= − 𝑙

4
𝛼

2
− 𝑙

5
𝛼

1
+ 𝑙

3
𝛼

3
+ 𝛼

4
𝑙

2

+

−2𝛼

5
𝛼

1
𝑙

2
+ 2𝛼

5
𝑙

1
𝛼

3
− 𝑙

6
𝛼

2

1

𝛼

2

−

2𝛼

5
𝑙

1
𝛼

4
𝛼

1
+ 𝑙

3
𝛼

5
𝛼

2

1

𝛼

2

2

+ 2

𝛼

2

5
𝑙

1
𝛼

2

1

𝛼

3

2

→ −

𝛽

(𝑎𝛽 + 1)

2
,

𝑛

5
= 𝑙

5
− 2𝛼

3
+

2𝛼

5
𝑙

2
+ 𝛼

4
𝛼

1
+ 2 𝑙

6
𝛼

1

𝛼

2

+

2𝛼

5
𝛼

1
𝑙

3
+ 2𝛼

5
𝑙

1
𝛼

4

𝛼

2

2

− 4

𝛼

2

5
𝑙

1
𝛼

1

𝛼

3

2

→ −2,

𝑛

6
= −

𝑙

6

𝛼

2

−

𝛼

4

𝛼

2

−

𝑙

3
𝛼

5

𝛼

2

2

+ 2

𝛼

2

5
𝑙

1

𝛼

3

2

→ −

2 (𝑎𝛽 + 1)

(𝑎𝛽 + 1) (2𝑚 − 1) + 𝛽

,

(47)

with 𝜇

1
→ 0, 𝜇

2
→ 0.

Taking 𝑢 = 𝑋 + 𝑛

3
/𝑛

5
, substituting 𝑢 in system (46), and

rewriting 𝑢 as 𝑋, we get that

̇

𝑋 = 𝑌,

̇

𝑌 = 𝑛

1
−

𝑛

2
𝑛

3

𝑛

5

+

𝑛

4
𝑛

2

3

𝑛

2

5

+ (𝑛

2
−

2𝑛

4
𝑛

3

𝑛

5

) 𝑋

+ 𝑛

4
𝑋

2
+ 𝑛

5
𝑋𝑌 + 𝑛

6
𝑌

2
+ 𝑊

4
(𝑋, 𝑌, 𝜇) ,

(48)

where𝑊

4
is a smooth function of𝑋,𝑌, and 𝜇 at least of order

three. When 𝜇

1
→ 0, 𝜇

2
→ 0,

𝑛

1
−

𝑛

2
𝑛

3

𝑛

5

+

𝑛

4
𝑛

2

3

𝑛

2

5

→ 0, 𝑛

2
−

2𝑛

4
𝑛

3

𝑛

5

→ 0. (49)

Next, let 𝑠 = 𝑡/(1 − 𝑛

6
𝑋), 𝑥 = 𝑋, and 𝑦 = (1 − 𝑛

6
𝑋)𝑌 into

(48) and rewriting 𝑠, 𝑥, and 𝑦 as 𝑡, 𝑋, and 𝑌 yields

̇

𝑋 = 𝑌,

̇

𝑌 = 𝜀

1
+ 𝜀

2
𝑋 + 𝑛

5
𝑋𝑌 + 𝜀

3
𝑋

2
+ 𝑊

5
(𝑋, 𝑌, 𝜇) ,

(50)

where𝑊

5
is a smooth function of𝑋,𝑌, and 𝜇 at least of order

three and

𝜀

1
= 𝑛

1
−

𝑛

2
𝑛

3

𝑛

5

+

𝑛

4
𝑛

2

3

𝑛

2

5

→ 0,

𝜀

2
= 𝑛

2
− 2

𝑛

4
𝑛

3

𝑛

5

− 2𝑛

6
𝜀

1
→ 0,

𝜀

3
= 𝑛

4
− 2𝑛

6
(𝑛

2
− 2

𝑛

4
𝑛

3

𝑛

5

) + 𝑛

2

6
𝜀

1
→ −

1

(𝑎𝛽 + 1)

2
< 0,

(51)

when 𝜇

1
→ 0, 𝜇

2
→ 0. Let 𝑥 = (𝑛

2

5
/𝜀

3
)𝑋, 𝑦 = (𝑛

3

5
/𝜀

2

3
)𝑌,

𝜈 = (𝜀

3
/𝑛

5
)𝑡, and rewrite 𝜈 as 𝑡. Then system (50) becomes

�̇� = 𝑦,

�̇� = 𝜏

1
+ 𝜏

2
𝑥 + 𝑥𝑦 + 𝑥

2
+ 𝑊

6
(𝑥, 𝑦, 𝜇) ,

(52)

where 𝑊

6
is a smooth function of 𝑥, 𝑦, and 𝜇 at least of order

three and 𝜏

1
= 𝑛

4

5
𝜀

1
/𝜀

3

3
, 𝜏

2
= 𝑛

2

5
𝜀

2
/𝜀

2

3
.

Then system (4) exists the following bifurcation curves in
a small neighborhood of the origin in the (𝜇

1
, 𝜇

2
) plane.

Theorem 12. Let 0 < 𝑚 < 1/2−𝛽/2(𝑎𝛽+1), 𝛿 = 1/(𝑎𝛽 + 1)

2,
ℎ = (1/4)(𝛽/(𝑎𝛽 + 1) − 1)

2
+ 𝑚𝛽/(𝑎𝛽 + 1). Then system (43)

admits the following bifurcations:

(i) there exists a saddle node bifurcation curve SN =

{(𝜇

1
, 𝜇

2
) : 4𝜀

3
𝜀

1
= 𝜀

2

2
+ 𝑜(‖𝜇‖)

2
};

(ii) there is a Hopf bifurcation curve 𝐻 = {(𝜇

1
, 𝜇

2
) : 𝜀

1
=

0 + 𝑜(‖𝜇‖)

2
, 𝜀

2
< 0};

(iii) there is a homoclinic bifurcation curve𝐻𝐿 = {(𝜇

1
, 𝜇

2
) :

25𝜀

1
𝜀

3
+ 6𝜀

2

2
= 0 + 𝑜(‖𝜇‖)

2
}.
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The biological interpretation for the Bogdanov-Takens
bifurcation is that if the harvesting rate ℎ and the prey refuge
value 𝑚 satisfy 0 < 𝑚 < 1/2 − 𝛽/2(𝑎𝛽 + 1) , ℎ =

(1/4)(𝛽/(𝑎𝛽 + 1) − 1)

2
+ 𝑚𝛽/(𝑎𝛽 + 1), and 𝛿 = 1/(𝑎𝛽 + 1)

2,
then the predator and prey coexist in the form of a positive
equilibrium or a periodic orbit for different initial values,
respectively. And there exist other values of parameters, such
that the predator and prey coexist in the form of a positive
equilibrium for all initial values lying inside the homoclinic
loop, and the predator and prey coexist in the form of a
periodic orbit with infinite period for all initial values on
the homoclinic loop. By choosing 𝛽 = 2, 𝑎 = 1.6, 𝑚 =

(1/4)(1 − 𝛽/(𝑎𝛽 + 1)), ℎ = (1/4)(𝛽/(𝑎𝛽 + 1) − 1)

2
+ 𝑚𝛽/(𝑎𝛽 +

1), and 𝛿 = 1/(𝑎𝛽 + 1)

2, the numerical simulations for the
Bogdanov-Takens bifurcation inTheorem 12 can be shown in
Figures 3, 4 and 5.

3.5. Separatrix Connecting a Saddle-Node and a Saddle
Bifurcation and Heteroclinic Bifurcation. From Theorem 8
and Lemma 3, when 0 < 𝑚 < (1/2)(1 − 𝛽/(𝑎𝛽 + 1)),
ℎ =

̃

ℎ, 𝛿 ̸= 1/(𝑎𝛽 + 1)

2, there may exist a separatrix
connecting the saddle-node 𝑃

∗
and the saddle 𝐸

1
. When

0 < 𝑚 < (1/2)(1 − 𝛽/(𝑎𝛽 + 1)), 𝑚(1 − 𝑚) < ℎ <

̃

ℎ, the saddle node 𝑃

∗
separates into the hyperbolic node

𝑃

1
and the hyperbolic saddle 𝑃

2
, which implies that system

(4) undergoes a separatrix connecting a saddle node and a
saddle bifurcation. Furthermore, the heteroclinic bifurcation
may occur if there exists a heteroclinic orbit connecting the
separatrix of saddle 𝐸

1
and saddle 𝑃

2
.
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