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We study the subject of a behaviour of the solutions of systems with sequential fractional ℎ-differences. We give formulas for
the unique solutions to initial value problems for systems in linear and semilinear cases. Moreover, the sufficient condition that
guaranties the positivity of considered systems is presented.

1. Introduction

Thefirst definition of the fractional derivative was introduced
by Liouville and Riemann at the end of the 19th century.
Later on, in the late 1960s, this idea was used by engineers
for modeling various processes. Thus the fractional calculus
started to be exploited since that time. This calculus is a field
ofmathematics that grows out of the traditional definitions of
integrals, derivatives, and difference operators and deals with
fractional integrals, derivatives, and differences of any order.
Many authors prove that fractional differential and difference
equations are more adequate for modeling physical and
chemical processes than integer-order equations. Fractional
differential and difference equations describe many phenom-
ena arising in engineering, physics, economics, and science.
In fact, several applications can be found in viscoelasticity,
electrochemistry, electromagnetic, and so forth. For example,
Machado [1] gave a novel method for the design of fractional
order digital controllers. Fractional difference calculus has
been investigated by many authors, for example, [2–12] and
others. In particular, different delta and nabla type fractional
differences have been studied in [13–15], where the authors
relate these differences by deriving some dual identities. The
calculus of fractional ℎ-differences was given, for instance,
in [5, 10, 16–19]. The properties of systems defined by the
fractional difference equations where studied, for example,
in [20–24]. There exist definitions of sequential operators

in continuous case with different types of derivatives like
Caputo type, Riemann-Liouville type, and Hadamard type,
see, for example, [9, 12, 25–27]. In parallel with this paper
we developed the theory of fractional ℎ-differences with
sequential operators in the paper [28], where the approx-
imation of continuous fractional sequential derivative is
considered. We compute different formulas of solutions and
then we try to check the system’s behaviour, precisely the
positivity of solutions. As far as we know the subject of
positivity is well developed for fractional linear systems
with continuous time; see [8, 29–32]. However, positivity
of fractional discrete systems with sequential ℎ-differences
is still a field to be examined. In the present paper we
open our studies in this field. We give formulas for the
unique solutions to initial problems for systems in linear and
semilinear cases. Moreover, the positivity of systems with
sequential ℎ-differences is considered. We consider systems
with sequential ℎ-differences of Caputo type, while in [32]
systems with Grünwald-Letnikov operator are studied. It
is worth to add that in [32] (and references within) the
considered systems are not of sequential type. Additionally,
we have the exact formulas of the solutions of the systems
both with the sequential differences and with the ordinary
differences while in [32] the recurrence form of solution for
discrete systems with Grünwald-Letnikov difference is given.

The paper is organized as follows. In Section 2 all
preliminary definitions, facts, and notations are gathered.
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Section 3 presents systems with sequential fractional differ-
ences with results on uniqueness of solutions. We include
semilinear systems in Section 4. The Section 5 concerns pos-
itivity of considered systems. Finally, the illustrative example
is presented.

2. Preliminaries

Let us denote by F
𝐷

the set of all real valued functions
defined on 𝐷. Let ℎ > 0, 𝛼 > 0 and put (ℎN)

𝑎
:= {𝑎, 𝑎 +

ℎ, 𝑎 + 2ℎ, . . .}, where 𝑎 ∈ R. Let

R
𝑁

+
= {𝑥 ∈ R

𝑁
: 𝑥
𝑖
≥ 0, 1 ≤ 𝑖 ≤ 𝑁} , 𝑁 ∈ N

1
. (1)

Then the operator 𝜎 : (ℎN)
𝑎
→ (ℎN)

𝑎
is defined by 𝜎(𝑡) :=

𝑡 + ℎ. The next two definitions of ℎ-difference operator were
originally given in [16, 17].

Definition 1. For a function 𝑥 ∈ F
(ℎN)
𝑎

the forward ℎ-
difference operator is defined as

(Δ
ℎ
𝑥) (𝑡) :=

𝑥 (𝜎 (𝑡)) − 𝑥 (𝑡)

ℎ
, 𝑡 = 𝑎 + 𝑛ℎ, 𝑛 ∈ N

0
, (2)

while the ℎ-difference sum is given by

(
𝑎
Δ
−1

ℎ
𝑥) (𝑡) := ℎ

𝑛

∑

𝑘=0

𝑥 (𝑎 + 𝑘ℎ) , (3)

where 𝑡 = 𝑎 + (𝑛 + 1)ℎ, 𝑛 ∈ N
0
and (
𝑎
Δ
−1

ℎ
𝑥)(𝑎) := 0.

Definition 2. For arbitrary 𝛼 ∈ R the ℎ-factorial function is
defined by

𝑡
(𝛼)

ℎ
:= ℎ
𝛼 Γ ((𝑡/ℎ) + 1)

Γ ((𝑡/ℎ) + 1 − 𝛼)
, (4)

where Γ is the Euler gamma function, that is, Γ(𝑧) =

∫
+∞

0
𝑥
𝑧−1
𝑒
−𝑥d𝑥 for all 𝑧 ∈ C such that Re 𝑧 > 0, (𝑡/ℎ) ∉ Z

−
:=

{−1, −2, −3, . . .}, and we use the convention that division at a
pole yields zero.

Notice that if we use the general binomial coefficient
(
𝑎

𝑏
) := (Γ(𝑎 + 1))/(Γ(𝑏 + 1)Γ(𝑎 − 𝑏 + 1)), then (4) can be

rewritten as

𝑡
(𝛼)

ℎ
= ℎ
𝛼
Γ (𝛼 + 1)(

𝑡

ℎ

𝛼
) . (5)

In the sequel we need the following technical properties.

Proposition 3 (see [12]). Let 𝛼 ∈ R.

(1) For 𝑗 ∈ N
0
one has (−1)𝑗 ( 𝛼𝑗 ) = ( 𝑗−𝛼−1𝑗 ), where 𝛼, 𝑗

are such that both sides are well defined;

(2) For 𝑛 ∈ N
0
one has ∑𝑛

𝑗=0
(
𝑗−𝛼−1

𝑗
) = (
𝑛−𝛼

𝑛
);

(3) For 𝑘 ∈ N
1
one has ( 𝛼−1

𝑘
) + (
𝛼−1

𝑘−1
) = (
𝛼

𝑘
).

The next definition with another notation was stated in
[17]. Here we use more suitable summations.

Definition 4. For a function 𝑥 ∈ F
(ℎN)
𝑎

the fractional ℎ-sum
of order 𝛼 > 0 is given by

(
𝑎
Δ
−𝛼

ℎ
𝑥) (𝑡) :=

ℎ

Γ (𝛼)

𝑛

∑

𝑘=0

(𝑡 − 𝜎 (𝑎 + 𝑘ℎ))
(𝛼−1)

ℎ
𝑥 (𝑎 + 𝑘ℎ) , (6)

where 𝑡 = 𝑎 + (𝛼 + 𝑛)ℎ, 𝑛 ∈ N
0
. Moreover, we define

(
𝑎
Δ
0

ℎ
𝑥)(𝑡) := 𝑥(𝑡).
It is important to notice that the operator

𝑎
Δ
−𝛼

ℎ
changes

the domains of functions.

Remark 5. Note that
𝑎
Δ
−𝛼

ℎ
: F
(ℎN)
𝑎

→ F
(ℎN)
𝑎+𝛼ℎ

.
According to the definition of ℎ-factorial function the

formula given in Definition 4 can be rewritten as

(
𝑎
Δ
−𝛼

ℎ
𝑥) (𝑡) = ℎ

𝛼

𝑛

∑

𝑘=0

Γ (𝛼 + 𝑛 − 𝑘)

Γ (𝛼) Γ (𝑛 − 𝑘 + 1)
𝑥 (𝑎 + 𝑘ℎ)

= ℎ
𝛼

𝑛

∑

𝑘=0

(
𝑛 − 𝑘 + 𝛼 − 1

𝑛 − 𝑘
)𝑥 (𝑎 + 𝑘ℎ)

(7)

for 𝑡 = 𝑎 + (𝛼 + 𝑛)ℎ, 𝑛 ∈ N
0
. Observe that (

𝑎
Δ
−𝛼

ℎ
𝑥)(𝑎 + 𝛼ℎ) =

ℎ
𝛼
𝑥(𝑎) and for 𝛼 = 1 we have again (3).

Remark 6. In [7] one can find the following form of the
fractional ℎ-sum of order 𝛼 > 0:

(
𝑎
Δ
−𝛼

ℎ
𝑥) (𝑡) =

ℎ
𝛼

Γ (𝛼)

𝑡−𝛼ℎ

∑

𝑘=𝑎

(
𝑡 − 𝜎 (𝑘)

ℎ
)

(𝛼−1)

ℎ=1

𝑥 (𝑘) (8)

that can be useful in implementation.

The following definition can be found in [33] for ℎ = 1 or
in [10] for an arbitrary ℎ > 0.

Definition 7. Let 𝛼 ∈ (0, 1]. The Caputo ℎ-difference operator
𝑎
Δ
𝛼

ℎ,∗
𝑥 of order 𝛼 for a function 𝑥 ∈ F

(ℎN)
𝑎

is defined by

(
𝑎
Δ
𝛼

ℎ,∗
𝑥) (𝑡) := (𝑎Δ

−(1−𝛼)

ℎ
(Δ
ℎ
𝑥)) (𝑡) , 𝑡 ∈ (ℎN)𝑎+(1−𝛼)ℎ.

(9)

Remark 8. Note that
𝑎
Δ
𝛼

ℎ,∗
: F
(ℎN)
𝑎

→ F
(ℎN)
𝑎+(1−𝛼)ℎ

, where
𝛼 ∈ (0, 1].

We need the power rule formulas in the sequel. Firstly,
we easily notice that for 𝑝 ̸= 0 the well-defined ℎ-factorial
functions have the following property:

Δ
ℎ(𝑡 − 𝑎)

(𝑝)

ℎ
= 𝑝(𝑡 − 𝑎)

(𝑝−1)

ℎ
. (10)

More properties of ℎ-factorial functions can be found in [10].
In our consideration the crucial role plays the power rule
formula presented in [16], that is,

(
𝑎
Δ
−𝛼

ℎ
𝜓) (𝑡) =

Γ (𝜇 + 1)

Γ (𝜇 + 𝛼 + 1)
(𝑡 − 𝑎 + 𝜇ℎ)

(𝜇+𝛼)

ℎ
, (11)
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where 𝜓(𝑟) = (𝑟 − 𝑎 + 𝜇ℎ)(𝜇)
ℎ
, 𝑟 ∈ (ℎN)

𝑎
, 𝑡 ∈ (ℎN)

𝑎+𝛼ℎ
. Note

that using the general binomial coefficient one can write (11)
as

(
𝑎
Δ
−𝛼

ℎ
𝜓) (𝑡) = Γ (𝜇 + 1) (

𝑛 + 𝛼 + 𝜇

𝑛
) ℎ
𝜇+𝛼
. (12)

If𝜓 ≡ 1, thenwehave for𝜇 = 0,𝑎 = (1−𝛼)ℎ and 𝑡 = 𝑛ℎ+𝑎+𝛼ℎ

(
𝑎
Δ
−𝛼

ℎ
1) (𝑡) =

1

Γ (𝛼 + 1)
(𝑡 − 𝑎)

(𝛼)

ℎ

=
Γ (𝑛 + 𝛼 + 1)

Γ (𝛼 + 1) Γ (𝑛 + 1)
ℎ
𝛼
= (
𝑛 + 𝛼

𝑛
) ℎ
𝛼
.

(13)

Let us define special functions that we use in the next section
to write the formula for solutions.

Definition 9. For 𝛼, 𝛽 > 0 we define

𝜑
𝑘,𝑠 (𝑛ℎ) :=

{{

{{

{

(
𝑛 + 𝑘𝛼 + 𝑠𝛽

𝑛
) ℎ
𝑘𝛼+𝑠𝛽

, for 𝑛 ∈ N
0

0, for 𝑛 < 0,

𝜑
𝑘,𝑠 (𝑛ℎ) :=

{{{

{{{

{

(
𝑛 + 𝜇 − 1

𝑛
) ℎ
𝜇
=

Γ (𝑛 + 𝜇)

Γ (𝜇) Γ (𝑛 + 1)
ℎ
𝜇
,

for 𝑛 ∈ N
0

0, for 𝑛 < 0,

(14)

where 𝑛 belongs to the set of integers Z, 𝑘, 𝑠 ∈ N
0
and 𝜇 =

𝑘𝛼 + 𝑠𝛽.

Remark 10. It is worthy to notice that for 𝑛 ∈ N
0

(a) 𝜑
0,0
(𝑛ℎ) = 1;

(b) 𝜑
1,0
(𝑛ℎ) = (

𝑛+𝛼

𝑛
) ℎ
𝛼
= (
0
Δ
−𝛼

ℎ
1)(𝑛ℎ+𝛼ℎ) and the values

𝜑
1,0
((𝑛 − 1)ℎ) = ( 𝑛+𝛼−1

𝑛−1
) ℎ
𝛼
= (
0
Δ
−𝛼

ℎ
1)((𝑛 − 1)ℎ + 𝛼ℎ)

are neglected for 𝑛 = 0;

(c) 𝜑
𝑘,𝑠
((𝑛 − 𝑙)ℎ) = (Γ(𝑛 − 𝑙 + 1 + 𝑘𝛼 + 𝑠𝛽))/(Γ(𝑘𝛼 + 𝑠𝛽 +

1)Γ(𝑛 − 𝑙 + 1)) and as the division by pole gives zero,
the formula works also for 𝑛 < 𝑙, 𝑙 ∈ N

0
;

(d) 𝜑
𝑘,𝑠
((𝑛 − 𝑙)ℎ) = (1/(Γ(𝑘𝛼 + 𝑠𝛽 + 1))) ⋅

((𝑛 − 𝑙)ℎ + 𝑘𝛼ℎ + 𝑠𝛽ℎ)
(𝑘𝛼+𝑠𝛽)

ℎ
, 𝑙 ∈ N

0
.

We also need the following proposition.

Proposition 11. Let 𝛼, 𝛽 ∈ (0, 1], ℎ > 0 and 𝑎 = (𝛼−1)ℎ, 𝑏 =
(𝛽 − 1)ℎ. Then for 𝑛 ∈ N

𝑙+1
, 𝑙 ∈ N

0

(
0
Δ
−𝛼

ℎ
𝜑
𝑘,𝑠
) ((𝑛 − 𝑙) ℎ + 𝑎) = 𝜑𝑘+1,𝑠 ((𝑛 − 𝑙 − 1) ℎ) , (15)

(
0
Δ
−𝛽

ℎ
𝜑
𝑘,𝑠
) ((𝑛 − 𝑙) ℎ + 𝑏) = 𝜑𝑘,𝑠+1 ((𝑛 − 𝑙 − 1) ℎ) . (16)

Proof. We show only equality (15), as (16) is a symmetric one.

Let 𝜇 := 𝑘𝛼 + 𝑠𝛽. For 𝑟 ∈ (ℎN)
𝑙ℎ
we define the following

ℎ-factorial function 𝜓(𝑟) := (𝑟 + 𝜇ℎ)(𝜇)
ℎ
. Since

𝜑
𝑘,𝑠 ((𝑛 − 𝑙) ℎ) =

1

Γ (𝑘𝛼 + 𝑠𝛽 + 1)

⋅ ((𝑛 − 𝑙) ℎ + 𝑘𝛼ℎ + 𝑠𝛽ℎ)
(𝑘𝛼+𝑠𝛽)

ℎ

=
1

Γ (𝜇 + 1)
𝜓 (𝑛ℎ − 𝑙ℎ)

(17)

for 𝑛 ≥ 𝑙 and 𝜑
𝑘,𝑠
((𝑚 − 𝑙)ℎ) = 0 for𝑚 < 𝑙, by (11) we get

(
0
Δ
−𝛼

ℎ
𝜑
𝑘,𝑠
) (𝑡) = (𝑙ℎΔ

−𝛼

ℎ
𝜑
𝑘,𝑠
) (𝑡) =

1

Γ (𝜇 + 1)
(
0
Δ
−𝛼

ℎ
𝜓) (𝑡)

=
1

Γ (𝜇 + 1)

Γ (𝜇 + 1)

Γ (𝜇 + 𝛼 + 1)
(𝑡 + 𝜇ℎ)

(𝜇+𝛼)

ℎ

=
1

Γ (𝜇 + 𝛼 + 1)
(𝑡 + 𝜇ℎ)

(𝜇+𝛼)

ℎ
,

(18)

where 𝑡 = 𝑎 − 𝑙ℎ + 𝑛ℎ. Hence

𝑡 + 𝜇ℎ = 𝑛ℎ − (𝑙 + 1) ℎ + (𝑘 + 1) 𝛼ℎ + 𝑠𝛽ℎ,

(
0
Δ
−𝛼

ℎ
𝜑
𝑘,𝑠
) ((𝑛 − 𝑙) ℎ + 𝑎)

=
Γ (𝛼 + 𝑛 − (𝑙 + 1) + 𝜇 + 1)

Γ (𝜇 + 𝛼 + 1) Γ (𝑛 − (𝑙 + 1) + 1)
ℎ
𝜇+𝛼

=
Γ (𝛼 + 𝑛 − 𝑙 + 𝜇)

Γ (𝜇 + 𝛼 + 1) Γ (𝑛 − 𝑙)
ℎ
𝜇+𝛼

= (
𝑛 − 𝑙 − 1 + 𝜇 + 𝛼

𝑛 − 𝑙 − 1
) ℎ
𝜇+𝛼

= (
𝑛 − (𝑙 + 1) + (𝑘 + 1) 𝛼 + 𝑠𝛽

𝑛 − (𝑙 + 1)
) ℎ
(𝑘+1)𝛼+𝑠𝛽

= 𝜑
𝑘+1,𝑠 ((𝑛 − 𝑙 − 1) ℎ) .

(19)

From the application of the power rule follows the rule
for composing two fractional ℎ-sums. The proof for the case
ℎ = 1 can be found in [7]. For any positive ℎ > 0 the proof is
presented in [10].

Proposition 12. Let 𝑥 be a real valued function defined on
(ℎN)
𝑎
, where 𝑎, ℎ ∈ R, ℎ > 0. For 𝛼, 𝛽 > 0 the following

equalities hold:

(
𝑎+𝛽ℎ
Δ
−𝛼

ℎ
(
𝑎
Δ
−𝛽

ℎ
𝑥)) (𝑡) = (𝑎Δ

−(𝛼+𝛽)

ℎ
𝑥) (𝑡)

= (
𝑎+𝛼ℎ
Δ
−𝛽

ℎ
(
𝑎
Δ
−𝛼

ℎ
𝑥)) (𝑡) ,

(20)

where 𝑡 ∈ (ℎN)
𝑎+(𝛼+𝛽)ℎ

.

The next proposition gives a useful identity of transform-
ing Caputo fractional difference equations into fractional
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summations for the case when an order is from the interval
(0, 1].

Proposition 13 (see [10]). Let 𝛼 ∈ (0, 1], ℎ > 0, 𝑎 = (𝛼 −
1)ℎ and let 𝑥 be a real valued function defined on (ℎN)

𝑎
. The

following formula holds:

(
0
Δ
−𝛼

ℎ
(
𝑎
Δ
𝛼

ℎ,∗
𝑥)) (𝑛ℎ + 𝑎) = 𝑥 (𝑛ℎ + 𝑎) − 𝑥 (𝑎) , 𝑛 ∈ N

1
.

(21)

The operators presented above can be extended to vectors
in a componentwise manner.

3. Solutions of Systems with Sequential
Fractional Differences

Let 𝛼, 𝛽 ∈ (0, 1] and 𝑥 : (ℎN)
𝑎
→ R𝑁. Moreover, let us take

𝑎 = (𝛼 − 1)ℎ and 𝑏 = (𝛽 − 1)ℎ. Then we define

𝑦 (𝑏 + 𝑛ℎ) := (𝑎Δ
𝛼

ℎ,∗
𝑥) (𝑛ℎ) . (22)

Note that𝑦 : (ℎN)
𝑏
→ R𝑁.Thenwe apply the next difference

operator of order 𝛽 on the new function 𝑦 and consider here
an initial value problem stated by the system

(
𝑎
Δ
𝛼

ℎ,∗
𝑥) (𝑛ℎ) = 𝑦 (𝑏 + 𝑛ℎ) , (23)

(
𝑏
Δ
𝛽

ℎ,∗
𝑦) (𝑛ℎ) = 𝑓 (𝑛ℎ, 𝑥 (𝑎 + 𝑛ℎ)) , (24)

where 𝑓 : (ℎN)
0
×R𝑁 → R𝑁, with initial values

(
𝑎
Δ
𝛼

ℎ,∗
𝑥) (0) = 𝑥0, (25)

𝑥 (𝑎) = 𝑥𝑎, (26)

where 𝑥
𝑎
, 𝑥
0
are constant vectors fromR𝑁.

Solutions of the state equations (23) and (24) of the
sequential fractional discrete-time system can be computed
in the recursive way. FromDefinition 7 and by Proposition 3,
(23) can be written as

𝑦 (𝑏 + 𝑛ℎ)

= (
𝑎
Δ
𝛼

ℎ,∗
𝑥) (𝑛ℎ) = (𝑎Δ

−(1−𝛼)

ℎ
(Δ
ℎ
𝑥)) (𝑛ℎ)

=
ℎ

Γ (1 − 𝛼)

𝑛

∑

𝑘=0

(𝑛ℎ − 𝑎 − 𝑘ℎ − ℎ)
(−𝛼)

ℎ
(Δ
ℎ
𝑥) (𝑎 + 𝑘ℎ)

=
ℎ

Γ (1 − 𝛼)

𝑛

∑

𝑘=0

ℎ
−𝛼 Γ (𝑛 − 𝑘 − 𝛼 + 1)

Γ (𝑛 − 𝑘 + 1)
(Δ
ℎ
𝑥) (𝑎 + 𝑘ℎ)

= ℎ
1−𝛼

𝑛

∑

𝑘=0

(
𝑛 − 𝑘 − 𝛼

𝑛 − 𝑘
) (Δ
ℎ
𝑥) (𝑎 + 𝑘ℎ)

= ℎ
1−𝛼

𝑛

∑

𝑗=0

(−1)
𝑗
(
𝛼 − 1

𝑗
)

⋅
𝑥 (𝑎 + (𝑛 − 𝑗) ℎ + ℎ) − 𝑥 (𝑎 + (𝑛 − 𝑗) ℎ)

ℎ

= ℎ
−𝛼
{𝑥 (𝑎 + (𝑛 + 1) ℎ)

− [(
𝛼 − 1

1
) + (

𝛼 − 1

0
)] 𝑥 (𝑎 + 𝑛ℎ)

+ [(
𝛼 − 1

2
) + (

𝛼 − 1

1
)] 𝑥 (𝑎 + (𝑛 − 1) ℎ)

− [(
𝛼 − 1

3
) + (

𝛼 − 1

2
)] 𝑥 (𝑎 + (𝑛 − 2) ℎ)

+ ⋅ ⋅ ⋅ + (−1)
𝑛−1
[(
𝛼 − 1

𝑛 − 1
) + (

𝛼 − 1

𝑛 − 2
)] 𝑥 (𝑎 + 2ℎ)

+ (−1)
𝑛
[(
𝛼 − 1

𝑛
) + (

𝛼 − 1

𝑛 − 1
)]

⋅ 𝑥 (𝑎 + ℎ) − (−1)
𝑛
(
𝛼 − 1

𝑛
)𝑥 (𝑎) } .

(27)

Since by Proposition 3 the following relation ( 𝛼−1
𝑘
) + (
𝛼−1

𝑘−1
) =

(
𝛼

𝑘 ) holds, one gets

𝑦 (𝑏 + 𝑛ℎ) = ℎ
−𝛼
[𝑥 (𝑎 + (𝑛 + 1) ℎ) − (

𝛼

1
)𝑥 (𝑎 + 𝑛ℎ)

+ (
𝛼

2
)𝑥 (𝑎 + (𝑛 − 1) ℎ)

− (
𝛼

3
)𝑥 (𝑎 + (𝑛 − 2) ℎ)

+ (
𝛼

4
)𝑥 (𝑎 + (𝑛 − 3) ℎ)

+ ⋅ ⋅ ⋅ + (−1)
𝑛−1
(
𝛼

𝑛 − 1
)𝑥 (𝑎 + 2ℎ)

+ (−1)
𝑛
(
𝛼

𝑛
)𝑥 (𝑎 + ℎ)

−(−1)
𝑛
(
𝛼 − 1

𝑛
)𝑥 (𝑎)]

= ℎ
−𝛼 [

[

𝑛

∑

𝑗=0

(−1)
𝑗
(
𝛼

𝑗
)𝑥 (𝑎 + (𝑛 − 𝑗 + 1) ℎ)

+(−1)
𝑛+1
(
𝛼 − 1

𝑛
)𝑥 (𝑎) ]

]

.

(28)
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Repeating the same computation for (24) one gets

𝑓 (𝑛ℎ, 𝑥 (𝑎 + 𝑛ℎ)) = (𝑏Δ
𝛽

ℎ,∗
𝑦) (𝑛ℎ) = (𝑏Δ

−(1−𝛽)

ℎ
(Δ
ℎ
𝑦)) (𝑛ℎ)

= ℎ
−𝛽

𝑛

∑

𝑖=0

(−1)
𝑖
(
𝛽

𝑖
) 𝑦 (𝑏 + (𝑛 − 𝑖 + 1) ℎ)

+ ℎ
−𝛽
(−1)
𝑛+1
(
𝛽 − 1

𝑛
)𝑦 (𝑏) .

(29)

Hence,

𝑓 (𝑛ℎ, 𝑥 (𝑎 + 𝑛ℎ))

= ℎ
−𝛽

𝑛

∑

𝑖=0

(−1)
𝑖
(
𝛽

𝑖
)

⋅ [

[

ℎ
−𝛼

𝑛−𝑖+1

∑

𝑗=0

(−1)
𝑗
(
𝛼

𝑗
)

⋅ 𝑥 (𝑎 + (𝑛 − 𝑖 − 𝑗 + 2) ℎ)

+ℎ
−𝛼
(−1)
𝑛−𝑖+2

(
𝛼 − 1

𝑛 − 𝑖 + 1
) 𝑥 (𝑎) ]

]

+ ℎ
−𝛽
(−1)
𝑛+1
(
𝛽 − 1

𝑛
) ⋅ 𝑥
0

= ℎ
−𝛼−𝛽 [

[

𝑛

∑

𝑖=0

𝑛−𝑖+1

∑

𝑗=0

(−1)
𝑖+𝑗
(
𝛽

𝑖
)(
𝛼

𝑗
)

⋅ 𝑥 (𝑎 + (𝑛 − 𝑖 − 𝑗 + 2) ℎ)

+

𝑛

∑

𝑖=0

(−1)
𝑛−𝑖+2

(
𝛼 − 1

𝑛 − 𝑖 + 1
)𝑥 (𝑎)

+ (−1)
𝑛+1
(
𝛽 − 1

𝑛
) ⋅ [𝑥 (𝑎 + ℎ) − 𝑥 (𝑎)]]

]

.

(30)

Then using the Chu-Vandermonde identity, that is,
∑
𝑘

𝑖=0
(
𝛽

𝑖
) (
𝛼

𝑘−𝑖 ) = (
𝛼+𝛽

𝑘
), 𝛼, 𝛽 ∈ R, 𝑘 ∈ Z, one gets

ℎ
𝛼+𝛽
⋅ 𝑓 (𝑛ℎ, 𝑥 (𝑎 + 𝑛ℎ))

=

𝑛+1

∑

𝑘=0

(−1)
𝑘

𝑘

∑

𝑖=0

(
𝛽

𝑖
)(

𝛼

𝑘 − 𝑖
) 𝑥 (𝑎 + (𝑛 − 𝑘 + 2) ℎ)

+ [

𝑛

∑

𝑖=0

(−1)
𝑛−𝑖
(
𝛼 − 1

𝑛 − 𝑖 + 1
) + (−1)

𝑛
(
𝛽 − 1

𝑛
)]𝑥 (𝑎)

+ (−1)
𝑛+1
(
𝛽 − 1

𝑛
)𝑥 (𝑎 + ℎ)

=

𝑛

∑

𝑘=0

(−1)
𝑘
(
𝛼 + 𝛽

𝑘
)𝑥 (𝑎 + (𝑛 − 𝑘 + 2) ℎ)

+ (−1)
𝑛+1
[(
𝛼 + 𝛽

𝑛 + 1
) − (

𝛽

𝑛 + 1
) + (

𝛽 − 1

𝑛
)] 𝑥 (𝑎 + ℎ)

+ [

𝑛

∑

𝑖=0

(−1)
𝑛−𝑖
(
𝛼 − 1

𝑛 − 𝑖 + 1
) + (−1)

𝑛
(
𝛽 − 1

𝑛
)]𝑥 (𝑎) .

(31)

Then by Proposition 3, we have

ℎ
𝛼+𝛽
⋅ 𝑓 (𝑛ℎ, 𝑥 (𝑎 + 𝑛ℎ))

=

𝑛

∑

𝑘=0

(−1)
𝑘
(
𝛼 + 𝛽

𝑘
)𝑥 (𝑎 + (𝑛 − 𝑘 + 2) ℎ)

+ (−1)
𝑛+1
[(
𝛼 + 𝛽

𝑛 + 1
) − (

𝛽

𝑛 + 1
) +(

𝛽 − 1

𝑛
)] 𝑥 (𝑎 + ℎ)

+ [1 + (−1)
𝑛
(
𝛼 − 2

𝑛 + 1
) + (−1)

𝑛
⋅ (
𝛽 − 1

𝑛
)] 𝑥 (𝑎) .

(32)

Consequently, since ℎ𝛼𝑥
0
= 𝑥(𝑎 + ℎ) − 𝑥(𝑎), 𝑥(𝑎 + 2ℎ) =

ℎ
𝛼+𝛽
⋅ 𝑓(0, 𝑥(𝑎)) − 𝛼𝑥(𝑎) + (1 + 𝛼) ⋅ 𝑥(𝑎 + ℎ) and for 𝑛 ≥ 1

𝑥 (𝑎 + (𝑛 + 2) ℎ)

= ℎ
𝛼+𝛽
⋅ 𝑓 (𝑛ℎ, 𝑥 (𝑎 + 𝑛ℎ))

+

𝑛

∑

𝑘=1

(−1)
𝑘+1
(
𝛼 + 𝛽

𝑘
)𝑥 (𝑎 + (𝑛 − 𝑘 + 2) ℎ)

+ (−1)
𝑛
[(
𝛼 + 𝛽

𝑛 + 1
) − (

𝛽

𝑛 + 1
) + (

𝛽 − 1

𝑛
)] 𝑥 (𝑎 + ℎ)

− [1 + (−1)
𝑛
(
𝛼 − 2

𝑛 + 1
) + (−1)

𝑛
(
𝛽 − 1

𝑛
)] 𝑥 (𝑎) .

(33)

Using Proposition 3 we get for 𝑛 ≥ 1

𝑥 (𝑎 + (𝑛 + 2) ℎ)

= ℎ
𝛼+𝛽
⋅ 𝑓 (𝑛ℎ, 𝑥 (𝑎 + 𝑛ℎ))

+

𝑛

∑

𝑘=1

(−1)
𝑘+1
(
𝛼 + 𝛽

𝑘
)𝑥 (𝑎 + (𝑛 − 𝑘 + 2) ℎ)

+ [(
𝑛 − 𝛽

𝑛
) + (

𝑛 − 𝛽

𝑛 + 1
) − (

𝑛 − 𝛼 − 𝛽

𝑛 + 1
)] 𝑥 (𝑎 + ℎ)

− [1 − (
𝑛 − 𝛼 + 2

𝑛 + 1
) + (

𝑛 − 𝛽

𝑛
)] 𝑥 (𝑎)
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= ℎ
𝛼+𝛽
⋅ 𝑓 (𝑛ℎ, 𝑥 (𝑎 + 𝑛ℎ))

+

𝑛

∑

𝑘=1

(−1)
𝑘+1
(
𝛼 + 𝛽

𝑘
)𝑥 (𝑎 + (𝑛 − 𝑘 + 2) ℎ)

+ [(
𝑛 − 𝛽 + 1

𝑛 + 1
) − (

𝑛 − 𝛼 − 𝛽

𝑛 + 1
)]𝑥 (𝑎 + ℎ)

− [1 − (
𝑛 − 𝛼 + 2

𝑛 + 1
) + (

𝑛 − 𝛽

𝑛
)] 𝑥 (𝑎) .

(34)

Therefore the solution of (23) and (24) is given recursively
by the following formula:

𝑥 (𝑎 + ℎ) = ℎ
𝛼
𝑥
0
+ 𝑥 (𝑎) ,

𝑥 (𝑎 + 2ℎ) = ℎ
𝛼+𝛽
⋅ 𝑓 (0, 𝑥 (𝑎)) − 𝛼𝑥 (𝑎)

+ (1 + 𝛼) ⋅ 𝑥 (𝑎 + ℎ) ,

𝑥 (𝑎 + (𝑛 + 2) ℎ)

= ℎ
𝛼+𝛽
⋅ 𝑓 (𝑛ℎ, 𝑥 (𝑎 + 𝑛ℎ))

+

𝑛

∑

𝑘=1

(−1)
𝑘+1
(
𝛼 + 𝛽

𝑘
)𝑥 (𝑎 + (𝑛 − 𝑘 + 2) ℎ)

+ [(
𝑛 − 𝛽 + 1

𝑛 + 1
) − (

𝑛 − 𝛼 − 𝛽

𝑛 + 1
)] 𝑥 (𝑎 + ℎ)

+ [(
𝑛 − 𝛼 + 2

𝑛 + 1
) − 1 − (

𝑛 − 𝛽

𝑛
)]𝑥 (𝑎) .

(35)

Another possibility of computing the solution of (23) and
(24) is to use Proposition 13 twice and then, for 𝑛 ≥ 1, we get:

(
0
Δ
−𝛽

ℎ
(
𝑏
Δ
𝛽

ℎ,∗
𝑦)) (𝑏 + 𝑛ℎ) = 𝑦 (𝑏 + 𝑛ℎ) − 𝑦 (𝑏)

= (
𝑎
Δ
𝛼

ℎ,∗
𝑥) (𝑛ℎ) − 𝑥0,

(
0
Δ
−𝛼

ℎ
(
𝑎
Δ
𝛼

ℎ,∗
𝑥)) (𝑎 + 𝑛ℎ) = 𝑥 (𝑎 + 𝑛ℎ) − 𝑥𝑎.

(36)

Hence

(
𝑎
Δ
𝛼

ℎ,∗
𝑥) (𝑛ℎ) = 𝑥0 + (0Δ

−𝛽

ℎ
𝑓) (𝑏 + 𝑛ℎ) , (37)

where 𝑓(𝑛ℎ) := 𝑓(𝑛ℎ, 𝑥(𝑎 + 𝑛ℎ)). Nextly,

𝑥 (𝑛ℎ + 𝑎) = 𝑥𝑎 + 𝑥0 (0Δ
−𝛼

ℎ
1) (𝑎 + 𝑛ℎ) + (0Δ

−𝛼

ℎ
𝑔) (𝑎 + 𝑛ℎ) ,

(38)

where 𝑔(𝑛ℎ) = (
0
Δ
−𝛽

ℎ
𝑓)(𝑏 + 𝑛ℎ).

Firstly we prove the formula for the unique solution in
linear case of (23) and (24): 𝑓(𝑛ℎ, 𝑥(𝑛ℎ + 𝑎)) = 𝐴𝑥(𝑎 + 𝑛ℎ),
where 𝐴 is a constant square matrix of degree 𝑛.

Theorem 14. The solution to the system

(
𝑎
Δ
𝛼

ℎ,∗
𝑥) (𝑛ℎ) = 𝑦 (𝑏 + 𝑛ℎ) , (39)

(
𝑏
Δ
𝛽

ℎ,∗
𝑦) (𝑛ℎ) = 𝐴𝑥 (𝑎 + 𝑛ℎ) (40)

with initial conditions (25) and (26), that is, (
𝑎
Δ
𝛼

ℎ,∗
𝑥)(0) =

𝑥
0
and 𝑥(𝑎) = 𝑥

𝑎
, 𝑥
0
, 𝑥
𝑎
∈ R𝑁, is given by the following

formula:

𝑥 (𝑎 + 𝑛ℎ) =

𝑛

∑

𝑘=0

𝐴
𝑘
𝜑
𝑘,𝑘 ((𝑛 − 2𝑘) ℎ) 𝑥𝑎

+

𝑛

∑

𝑘=0

𝐴
𝑘
𝜑
𝑘+1,𝑘 ((𝑛 − (2𝑘 + 1)) ℎ) 𝑥0,

(41)

for 𝑛 ∈ N
0
.

Proof. Notice that for 𝑛 = 0we get 𝑥(𝑎+0⋅ℎ) = 𝐴0(𝜑
0,0
(0)𝑥
𝑎
+

𝜑
1,0
(−ℎ)𝑥

0
). Since 𝜑

0,0
(0) = 1 and 𝜑

1,0
(−ℎ) = 0, we get 𝑥(𝑎 +

0 ⋅ ℎ) = 𝑥
𝑎
.

For 𝑛 > 0 let us define the sequence {𝑥
𝑚
}
𝑚≥1

in the
following way:

𝑥
𝑚+1 (𝑎 + 𝑛ℎ) = 𝑥𝑎𝜑0,0 (𝑛ℎ) + 𝑥0𝜑1,0 ((𝑛 − 1) ℎ)

+ (
0
Δ
−𝛼

ℎ
𝑔
𝑚
) (𝑎 + 𝑛ℎ) , 𝑚 ∈ N

0
,

(42)

where 𝑔
𝑚
(𝑛ℎ) = (

0
Δ
−𝛽

ℎ
𝑓
𝑚
)(𝑏+𝑛ℎ) and𝑓

𝑚
(𝑛ℎ) = 𝐴𝑥

𝑚
(𝑎+𝑛ℎ)

with 𝑥
0
(𝑎 + 𝑛ℎ) = 𝑥

𝑎
.

We calculate the first step. As 𝑓
0
(𝑛ℎ) = 𝐴𝑥

0
(𝑎 + 𝑛ℎ) =

𝐴𝑥
𝑎
, then 𝑔

0
(𝑛ℎ) = 𝐴𝑥

𝑎
(
0
Δ
−𝛽
1)(𝑏 + 𝑛ℎ) = 𝐴𝑥

𝑎
𝜑
0,1
((𝑛 − 1)ℎ).

Going further,

𝑥
1 (𝑎 + 𝑛ℎ) = 𝑥𝑎𝜑0,0 (𝑛ℎ) + 𝑥0𝜑1,0 ((𝑛 − 1) ℎ)

+ (
0
Δ
−𝛼

ℎ
𝑔
0
) (𝑎 + 𝑛ℎ) ,

(43)

which could be written as

𝑥
1 (𝑎 + 𝑛ℎ) = 𝑥𝑎𝜑0,0 (𝑛ℎ) + 𝑥0𝜑1,0 ((𝑛 − 1) ℎ)

+ 𝐴𝑥
𝑎
𝜑
1,1 ((𝑛 − 2) ℎ)

(44)

and, using Proposition 11, we get

𝑥
2 (𝑎 + 𝑛ℎ) = 𝑥𝑎𝜑0,0 (𝑛ℎ) + 𝑥0𝜑1,0 ((𝑛 − 1) ℎ)

+ 𝐴𝑥
𝑎
𝜑
1,1 ((𝑛 − 2) ℎ)

+ 𝐴𝑥
0
𝜑
2,1 ((𝑛 − 3) ℎ)

+ 𝐴
2
𝑥
𝑎
𝜑
2,2 ((𝑛 − 4) ℎ) .

(45)

Taking 𝑚 tending to +∞ we get formula (41) as the
solution of (39) and (40) with initial conditions (25) and
(26).

3.1. Semilinear Sequential Systems. Firstly we state a technical
lemma and notations.

Lemma 15. Let 𝛾 : (ℎN)
0
→ R and 𝛼 > 0. Let

(
0
Δ
−𝑘𝛼

ℎ
𝛾)(𝑘𝛼ℎ + 𝑛ℎ) = 𝛾

1
(𝑘𝛼ℎ + 𝑛ℎ) and 𝛾

1
(𝑛ℎ) := 𝛾

1
(𝑘𝛼ℎ +

𝑛ℎ) for 𝑘 ∈ N
1
. Then for 𝑘 ∈ N

1
one gets

(
0
Δ
−𝛼

ℎ
𝛾
1
) (𝑡) = (0Δ

−(𝑘+1)𝛼

ℎ
𝛾) (𝑘𝛼ℎ + 𝑡) , (46)

where 𝑡 = 𝛼ℎ + 𝑛ℎ.
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Proof. First let us consider the case 𝑘 = 1. Then from
Proposition 12 we can write

(
𝛼ℎ
Δ
−𝛼

ℎ
(
0
Δ
−𝛼

ℎ
𝛾)) (𝑡) = (0Δ

−2𝛼

ℎ
𝛾) (𝑡) , (47)

where 𝑡 = 2𝛼ℎ + 𝑛ℎ, 𝑛 ∈ N
0
.

Let 𝛾
1
(𝛼ℎ+𝑛ℎ) = (

0
Δ
−𝛼

ℎ
𝛾)(𝛼ℎ+𝑛ℎ) and 𝛾

1
(𝑛ℎ) := 𝛾

1
(𝛼ℎ+

𝑛ℎ). Then

(
0
Δ
−𝛼

ℎ
𝛾
1
) (𝛼ℎ + 𝑛ℎ)

=
ℎ

Γ (𝛼)

𝑛

∑

𝑟=0

(𝑛ℎ + 𝛼ℎ − 𝜎 (𝑟ℎ))
(𝛼−1)

ℎ
𝛾
1 (𝑟ℎ)

=
ℎ

Γ (𝛼)

𝑛+𝛼

∑

𝑠=𝛼

(𝑛ℎ + 2𝛼ℎ − 𝜎 (𝑠ℎ))
(𝛼−1)

ℎ
𝛾
1 (𝑠ℎ)

= (
𝛼ℎ
Δ
−𝛼

ℎ
𝛾
1
) (2𝛼ℎ + 𝑛ℎ)

= (
0
Δ
−2𝛼

ℎ
𝛾) (2𝛼ℎ + 𝑛ℎ) .

(48)

Equation (46) for 𝑘 > 1 follows inductively.

Note that

(
0
Δ
−𝑘𝛼

ℎ
𝛾) (𝑘𝛼ℎ + 𝑛ℎ)

=
ℎ

Γ (𝑘𝛼)

𝑛

∑

𝑟=0

(𝑛ℎ + 𝑘𝛼ℎ − 𝜎 (𝑟ℎ))
(𝑘𝛼−1)

ℎ
𝛾 (𝑟ℎ) .

(49)

Similar to the procedure presented in the proof of Lemma 15
we can prove that for 𝑘, 𝑠 ∈ N

0
and 𝛼 > 0, 𝛽 > 0:

(
0
Δ
−𝑘𝛼−𝑠𝛽

ℎ
𝛾) (𝑘𝛼ℎ + 𝑠𝛽ℎ + 𝑛ℎ)

=
ℎ

Γ (𝑘𝛼 + 𝑠𝛽)

𝑛

∑

𝑟=0

((𝑛 + 𝑘𝛼 + 𝑠𝛽 − 𝑟 − 1) ℎ)
(𝑘𝛼+𝑠𝛽−1)

ℎ
𝛾 (𝑟ℎ)

= ℎ
𝑘𝛼+𝑠𝛽

𝑛

∑

𝑟=0

Γ (𝑛 − 𝑟 + 𝑘𝛼 + 𝑠𝛽)

Γ (𝑘𝛼 + 𝑠𝛽) Γ (𝑛 − 𝑟 + 1)
𝛾 (𝑟ℎ)

=

𝑛

∑

𝑟=0

(
𝑛 − 𝑟 + 𝑘𝛼 + 𝑠𝛽 − 1

𝑛 − 𝑟
) ℎ
𝑘𝛼+𝑠𝛽

𝛾 (𝑟ℎ) .

(50)

Taking 𝜇 = 𝑘𝛼 + 𝑠𝛽 and using formula (38) we can write
(50) shortly in the following way:

(
0
Δ
−𝜇

ℎ
𝛾) (𝜇ℎ + 𝑛ℎ) =

𝑛

∑

𝑟=0

𝜑
𝑘,𝑠 (𝑛ℎ − 𝑟ℎ) 𝛾 (𝑟ℎ) . (51)

Moreover, we can also write direct formula for values
(
0
Δ
−𝛼

ℎ
𝑔)(𝑛ℎ + 𝑎) given in (38) for nonlinear problem. In fact

using Definition 4 of fractional summation, formula (38) of
functions 𝜑

𝑘,𝑠
and Proposition 12 we write (51) as follows:

𝑥 (𝑎 + 𝑛ℎ) = 𝑥𝑎 + 𝑥0 (0Δ
−𝛼

ℎ
1) (𝑎 + 𝑛ℎ)

+

𝑛−1

∑

𝑟=0

𝜑
1,1 (𝑛ℎ − ℎ − 𝜎 (𝑟ℎ)) 𝑓 (𝑟ℎ, 𝑥 (𝑎 + 𝑟ℎ)) .

(52)

Using the power rule formula for 𝜇 = 0 and by Remark 10 we
can write the recursive formula for the solution to nonlinear
problem given by (23) and (24) and conditions (25) and (26):

𝑥 (𝑎 + 𝑛ℎ) = 𝑥𝑎 + 𝑥0𝜑1,0 ((𝑛 − 1) ℎ)

+

𝑛−1

∑

𝑟=0

𝜑
1,1 (𝑛ℎ − ℎ − 𝜎 (𝑟ℎ)) 𝑓 (𝑟ℎ, 𝑥 (𝑎 + 𝑟ℎ)) .

(53)

The given formula (53) also works for 𝑛 = 0 as 𝜑
1,1
(−2ℎ) = 0.

Then 𝑥(𝑎 + 0ℎ) = 𝑥
𝑎
. We can check the next steps:

𝑥 (𝑎 + ℎ) = 𝑥𝑎 + 𝑥0𝜑1,0 (0) + 𝜑1,1 (−ℎ) 𝑓 (0, 𝑥 (𝑎))

= 𝑥
𝑎
+ 𝑥
0
ℎ
𝛼
,

𝑥 (𝑎 + 2ℎ) = 𝑥𝑎 + 𝑥0𝜑1,0 (ℎ) + 𝜑1,1 (0ℎ) 𝑓 (0, 𝑥 (𝑎))

+ 𝜑
1,1 (−ℎ) 𝑓 (ℎ, 𝑥 (𝑎 + ℎ))

= 𝑥
𝑎
+ 𝑥
0
ℎ
𝛼
(1 + 𝛼) + ℎ

𝛼+𝛽
𝑓 (0, 𝑥 (𝑎)) .

(54)

For special semilinear case when 𝑓(𝑛ℎ, 𝑥(𝑛ℎ+ 𝑎)) = 𝐴𝑥(𝑛ℎ+
𝑎) + 𝛾(𝑛ℎ) we have 𝑓(0, 𝑥(𝑎)) = 𝐴𝑥(𝑎) + 𝛾(0). Then

𝑥 (𝑎 + 2ℎ) = (𝐼 + ℎ
𝛼+𝛽
𝐴)𝑥
𝑎
+ (1 + 𝛼) ℎ

𝛼
𝑥
0
+ ℎ
𝛼+𝛽
𝛾 (0) .

(55)

Theorem 16. The solution to the system

(
𝑎
Δ
𝛼

ℎ,∗
𝑥) (𝑛ℎ) = 𝑦 (𝑏 + 𝑛ℎ) , (56)

(
𝑏
Δ
𝛽

ℎ,∗
𝑦) (𝑛ℎ) = 𝐴𝑥 (𝑎 + 𝑛ℎ) + 𝛾 (𝑛ℎ) (57)

with initial conditions (25) and (26), that is, (
𝑎
Δ
𝛼

ℎ,∗
𝑥)(0) = 𝑥

0

and 𝑥(𝑎) = 𝑥
𝑎
, 𝑥
0
, 𝑥
𝑎
∈ R𝑁 is given by

𝑥 (𝑎 + 𝑛ℎ)

=

𝑛

∑

𝑘=0

𝐴
𝑘
𝜑
𝑘,𝑘 ((𝑛 − 2𝑘) ℎ) 𝑥𝑎

+

𝑛

∑

𝑘=0

𝐴
𝑘
𝜑
𝑘+1,𝑘 ((𝑛 − (2𝑘 + 1)) ℎ) 𝑥0

+

𝑛−1

∑

𝑟=0

(

𝑛

∑

𝑘=0

𝐴
𝑘
𝜑
𝑘+1,𝑘+1 ((𝑛 − 1) ℎ − 𝜎 (𝑟ℎ))) 𝛾 (𝑟ℎ) ,

(58)

for 𝑛 ∈ N
0
.

Proof. Note that 𝜑
0,0
(0) = 1, 𝜑

1,0
(−ℎ) = 0 and 𝜑

𝑘+1,𝑘+1
(−ℎ)

= 0 for 𝑘 ≥ 0, so we get 𝑥(𝑎 + 0ℎ) = 𝑥
𝑎
.



8 Abstract and Applied Analysis

For 𝑛 > 0 based on the proof for linear case we can write
the solution formula as follows:

𝑥 (𝑎 + 𝑛ℎ) =

𝑛

∑

𝑘=0

𝐴
𝑘
𝜑
𝑘,𝑘 ((𝑛 − 2𝑘) ℎ) 𝑥𝑎

+

𝑛

∑

𝑘=0

𝐴
𝑘
𝜑
𝑘+1,𝑘 ((𝑛 − (2𝑘 + 1)) ℎ) 𝑥0

+

𝑛

∑

𝑘=0

𝐴
𝑘
(
0
Δ
−𝜏

ℎ
𝛾) ((𝑛 − 1 + 𝜏) ℎ) ,

(59)

where 𝜏 = (𝑘 + 1)(𝛼 + 𝛽). Then taking into account formulas
(50) and (51) we get the form (58) as the solution of (56) and
(57) with initial conditions (25) and (26).

4. Positivity

Let R𝑁×𝑀
+

be the set of real 𝑁 × 𝑀 matrices with the
nonnegative entries and R𝑁

+
= R𝑁×1
+

.
Based on [8, 31, 32] we consider the following definitions.

Definition 17. The fractional system (23) and (24) is called
positive fractional system if and only if 𝑥(𝑎 + 𝑛ℎ) ∈ R𝑁

+
for

any initial conditions 𝑥
𝑎
, 𝑥
0
∈ R𝑁
+
.

Similarly as in [32] we will use the recursive formula (35)
to show the positivity of the considered systems. Observe that
the systems considered in this paper are of the sequential
type while in [32] the sequential systems are not studied.
Moreover, the Grünwald-Letnikov operator with the step
equal to one is used in [32], whereaswe study the systemswith
the ℎ-differences of Caputo type. So in our case the steps are
equal to ℎ.

From [32] we have the following lemma.

Lemma 18. If 0 < 𝛼 < 1, then (−1)𝑖+1 ( 𝛼𝑖 ) > 0, 𝑖 = 1, 2, 3, . . ..

Moreover, for 𝑘 ≥ 3 we have ( 1
𝑘
) = 0.

Using the properties of Euler gamma function one can
show that if 0 < 𝛼 + 𝛽 ≤ 1, then for 𝑛 ∈ N

1
, one has the

following inequality:

(
𝑛 − 𝛽

𝑛 + 1
) + (

𝑛 − 𝛼 + 2

𝑛 + 1
) ≥ (

𝑛 − 𝛼 − 𝛽

𝑛 + 1
) + (

𝑛 + 1

𝑛 + 1
) . (60)

Proposition 19. Let 0 < 𝛼 + 𝛽 ≤ 1. If 𝑥
0
, 𝑥
𝑎
∈ R𝑁
+
and for all

𝑛 ≥ 0, 𝑥 ∈ R𝑁
+

ℎ
𝛼+𝛽
𝑓 (𝑛ℎ, 𝑥) − (

𝛼 + 𝛽

2
)𝑥 ∈ R

𝑁

+
, (61)

then 𝑥(𝑎 + 𝑛ℎ) ∈ R𝑁
+
for all 𝑛 ≥ 1.

Proof. The proof is by the induction principle. Assume that
0 < 𝛼 + 𝛽 ≤ 1 and both 𝛼 > 0 and 𝛽 > 0. Since 𝑥

0
, 𝑥
𝑎
∈ R𝑁
+

and ℎ > 0, by (35) we have

𝑥 (𝑎 + ℎ) = ℎ
𝛼
𝑥
0
+ 𝑥
𝑎
∈ R
𝑁

+
. (62)

Moreover,

𝑥
𝑖 (𝑎 + ℎ) ≥ 𝑥

𝑖

𝑎
= 𝑥
𝑖 (𝑎) , (63)

where 𝑥(𝑎 + ℎ) = [𝑥
1
(𝑎 + ℎ), . . . , 𝑥

𝑁
(𝑎 + ℎ)]

𝑇 and 𝑥(𝑎) =
[𝑥
1
(𝑎), . . . , 𝑥

𝑁
(𝑎)]
𝑇
= [𝑥

1

𝑎
, . . . , 𝑥

𝑁

𝑎
]
𝑇. Let 𝑥

𝑖
(𝑎 + 𝑛ℎ) and

𝑓
𝑖
(𝑛ℎ, 𝑥(𝑎 + 𝑛ℎ)) denote the 𝑖th coordinates of the vectors
𝑥(𝑎+𝑛ℎ) and𝑓(𝑛ℎ, 𝑥(𝑎+𝑛ℎ)), respectively.Then since 𝑥

𝑖
(𝑎+

ℎ) ≥ 𝑥
𝑖
(𝑎) ≥ 0 for 𝑖 = 1, . . . , 𝑁,

𝑥
𝑖 (𝑎 + 2ℎ) = ℎ

𝛼+𝛽
⋅ 𝑓
𝑖 (0, 𝑥 (𝑎))

− 𝛼𝑥
𝑖 (𝑎) + (1 + 𝛼) ⋅ 𝑥𝑖 (𝑎 + ℎ)

≥ ℎ
𝛼+𝛽
⋅ 𝑓
𝑖 (0, 𝑥 (𝑎)) − 𝛼𝑥𝑖 (𝑎) + (1 + 𝛼) ⋅ 𝑥𝑖 (𝑎)

= ℎ
𝛼+𝛽
⋅ 𝑓
𝑖 (0, 𝑥 (𝑎)) + 𝑥𝑖 (𝑎) .

(64)

Note that for 0 < 𝛼 + 𝛽 ≤ 1 we have −(1/8) ≤ ( 𝛼+𝛽
2
) ≤ 0, so

(
𝛼+𝛽

2
) + 1 ≥ 0. Then since 𝑥

𝑖
(𝑎) ≥ 0 and (61) holds for 𝑛 = 0,

we get

𝑥
𝑖 (𝑎 + 2ℎ) ≥ [(

𝛼 + 𝛽

2
) + 1] 𝑥

𝑖 (𝑎) ≥ 0. (65)

For 𝑛 = 1 we have

𝑥
𝑖 (𝑎 + 3ℎ) = ℎ

𝛼+𝛽
⋅ 𝑓
𝑖 (ℎ, 𝑥 (𝑎 + ℎ)) − (

𝛼 + 𝛽

2
)

⋅ 𝑥
𝑖 (𝑎 + ℎ) + (𝛼 + 𝛽) ⋅ 𝑥𝑖 (𝑎 + 2ℎ) + (

2 − 𝛽

2
)

⋅ 𝑥 (𝑎 + ℎ) + [(
3 − 𝛼

2
) − 1 − (1 − 𝛽)] 𝑥

𝑖 (𝑎) .

(66)

Since ( 2−𝛽
2
) > 0, 𝑥

𝑖
(𝑎 + ℎ) ≥ 𝑥

𝑖
(𝑎) ≥ 0 for 𝑖 = 1, . . . , 𝑁, and

(61) holds for 𝑛 = 1, we have

𝑥
𝑖 (𝑎 + 3ℎ) ≥ [(

2 − 𝛽

2
) + (

3 − 𝛼

2
) + 𝛽] 𝑥

𝑖 (𝑎) ≥ 0 (67)

for 0 < 𝛼, 𝛽 ≤ 1.

Now for 𝑛 = 2 we get

𝑥
𝑖 (𝑎 + 4ℎ) = ℎ

𝛼+𝛽
⋅ 𝑓
𝑖 (2ℎ, 𝑥 (𝑎 + 2ℎ))

− (
𝛼 + 𝛽

2
)𝑥
𝑖 (𝑎 + 2ℎ) + (𝛼 + 𝛽) ⋅ 𝑥𝑖 (𝑎 + 3ℎ)

+ [(
3 − 𝛽

3
) − (

2 − 𝛼 − 𝛽

3
)]𝑥 (𝑎 + ℎ)

+ [(
4 − 𝛼

3
) − 1 − (

2 − 𝛽

2
)]𝑥
𝑖 (𝑎) .

(68)
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Since ( 3−𝛽
3
) − (

2−𝛼−𝛽

3
) > 0 for 0 < 𝛼, 𝛽 ≤ 1, 𝑥

𝑖
(𝑎 + ℎ) ≥

𝑥
𝑖
(𝑎) ≥ 0 for 𝑖 = 1, . . . , 𝑁, and (61) holds for 𝑛 = 2, using (60)

we have

𝑥
𝑖 (𝑎 + 4ℎ) ≥ [(

3 − 𝛽

3
) + (

4 − 𝛼

3
)

−(
2 − 𝛼 − 𝛽

3
) − (

3

3
)] 𝑥
𝑖 (𝑎) ≥ 0

(69)

for 0 < 𝛼, 𝛽 ≤ 1.
Assume that 𝑥(𝑎 + 𝑘ℎ) ∈ R𝑁

+
for 𝑘 = 1, 2, 3, . . . , 𝑛 + 1.

Using the properties of gamma function one can show that
(
𝑛−𝛽+1

𝑛+1
) ≥ (

𝑛−𝛼−𝛽

𝑛+1
) for 𝑛 ≥ 3. Then applying 𝑥(𝑎 + ℎ) ≥ 𝑥(𝑎)

to (35) we get for 𝑛 ≥ 3

𝑥
𝑖 (𝑎 + (𝑛 + 2) ℎ)

= ℎ
𝛼+𝛽
⋅ 𝑓
𝑖 (𝑛ℎ, 𝑥 (𝑎 + 𝑛ℎ)) − (

𝛼 + 𝛽

2
)𝑥
𝑖 (𝑎 + 𝑛ℎ)

+ (𝛼 + 𝛽) 𝑥
𝑖 (𝑎 + (𝑛 + 1) ℎ)

+

𝑛

∑

𝑘=3

(−1)
𝑘+1
(
𝛼 + 𝛽

𝑘
)𝑥
𝑖 (𝑎 + (𝑛 − 𝑘 + 2) ℎ)

+ [(
𝑛 − 𝛽 + 1

𝑛 + 1
) − (

𝑛 − 𝛼 − 𝛽

𝑛 + 1
)] 𝑥
𝑖 (𝑎 + ℎ)

+ [(
𝑛 − 𝛼 + 2

𝑛 + 1
) − 1 − (

𝑛 − 𝛽

𝑛
)] 𝑥
𝑖 (𝑎)

≥ ℎ
𝛼+𝛽
⋅ 𝑓 (𝑛ℎ, 𝑥 (𝑎 + 𝑛ℎ)) − (

𝛼 + 𝛽

2
)𝑥
𝑖 (𝑎 + 𝑛ℎ)

+ (𝛼 + 𝛽) 𝑥 (𝑎 + (𝑛 + 1) ℎ)

+

𝑛

∑

𝑘=3

(−1)
𝑘+1
(
𝛼 + 𝛽

𝑘
)𝑥
𝑖 (𝑎 + (𝑛 − 𝑘 + 2) ℎ)

+ [(
𝑛 − 𝛽 + 1

𝑛 + 1
) − (

𝑛 − 𝛼 − 𝛽

𝑛 + 1
)

+(
𝑛 − 𝛼 + 2

𝑛 + 1
) − 1 − (

𝑛 − 𝛽

𝑛
)] 𝑥
𝑖 (𝑎)

= ℎ
𝛼+𝛽
⋅ 𝑓 (𝑛ℎ, 𝑥 (𝑎 + 𝑛ℎ)) − (

𝛼 + 𝛽

2
)𝑥
𝑖 (𝑎 + 𝑛ℎ)

+ (𝛼 + 𝛽) 𝑥 (𝑎 + (𝑛 + 1) ℎ)

+

𝑛

∑

𝑘=3

(−1)
𝑘+1
(
𝛼 + 𝛽

𝑘
)𝑥
𝑖 (𝑎 + (𝑛 − 𝑘 + 2) ℎ)

+ [(
𝑛 − 𝛽

𝑛 + 1
) − (

𝑛 − 𝛼 − 𝛽

𝑛 + 1
)

+(
𝑛 − 𝛼 + 2

𝑛 + 1
) − (

𝑛 + 1

𝑛 + 1
)] 𝑥
𝑖 (𝑎) .

(70)

By inequality (60) and the assumptions, that is, 𝑥(𝑎 + 𝑘ℎ) ∈
R𝑁
+
, 𝑘 ≤ 𝑛+1, and by (61) one gets𝑥(𝑎+(𝑛+2)ℎ) ∈ R𝑁

+
. Hence

0 0.16
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Figure 1: Consider the following system (
𝑎
Δ
0.4

ℎ,∗
𝑥)(𝑛ℎ) = 𝑦(𝑏 + 𝑛ℎ),

(
𝑏
Δ
0.5

ℎ,∗
𝑦)(𝑛ℎ) = 𝐴𝑥(𝑎 + 𝑛ℎ), where 𝐴 is given in Example 22, with

initial conditions: 𝑥
0
= (0, 1), 𝑥

𝑎
= (0, 0.1), ℎ0.9𝐴 − ( 0.9

2
) 𝐼
2
∈ R2×2
+

.

using the induction principle we get that 𝑥(𝑎 + 𝑛ℎ) ∈ R𝑁
+
for

all 𝑛 ≥ 1.

Corollary 20. Let 0 < 𝛼 + 𝛽 ≤ 1 and 𝐼
𝑁
denote the identity

matrix. If 𝑥
0
, 𝑥
𝑎
∈ R𝑁
+
and for all 𝑛 ≥ 1, 𝑥 ∈ R𝑁

+

ℎ
𝛼+𝛽
𝐴 − (

𝛼 + 𝛽

2
) 𝐼
𝑁
∈ R
𝑁×𝑁

+
, (71)

then 𝑥(𝑎 + 𝑛ℎ) ∈ R𝑁
+
for all 𝑛 ≥ 1 that is, (39) and (40) is

positive.

Remark 21. In [32] the sufficient condition concerning the
positivity of the linear discrete systems with Grünwald-
Letnikov operator is as follows: 𝐴 + 𝛼𝐼

𝑁
∈ R𝑁×𝑁
+

. In our
case since we have systems with the sequential fractional ℎ-
difference, in our condition ℎ and both orders 𝛼 and𝛽 appear.
Note that taking ℎ = 1 the sufficient condition (71) has the
form 𝐴 − ( 𝛼+𝛽

2
) 𝐼
𝑁
∈ R𝑁×𝑁
+

.

Let us now consider some examples that illustrate the
solution of the considered systems.

Example 22. Let𝑁 = 2, 𝛼 = 0.4, 𝛽 = 0.5 and ℎ = 0.01. Then
let us take 𝑎 = −0.006 and 𝑏 = −0.005 and consider the linear
system with sequential difference in the following form:

(
𝑎
Δ
0.4

ℎ,∗
𝑥) (𝑛ℎ) = 𝑦 (𝑏 + 𝑛ℎ) ,

(
𝑏
Δ
0.5

ℎ,∗
𝑦) (𝑛ℎ) = 𝐴𝑥 (𝑎 + 𝑛ℎ)

(72)

with initial conditions (25) and (26), that is, (
𝑎
Δ
𝛼

ℎ,∗
𝑥)(0) = 𝑥

0

and 𝑥(𝑎) = 𝑥
𝑎
, 𝑥
0
, 𝑥
𝑎
∈ R2. Moreover let 𝐴 = [ −2 1

1 −2
]

and 𝐵 = [ −4 1
1 −2

]. Then the matrix ℎ𝛼+𝛽𝐴 − ( 𝛼+𝛽
2
) 𝐼
2
has
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Figure 2: Consider the following system (
𝑎
Δ
0.4

ℎ,∗
𝑥)(𝑛ℎ) = 𝑦(𝑏 + 𝑛ℎ),

(
𝑏
Δ
0.5

ℎ,∗
𝑦)(𝑛ℎ) = 𝐵𝑥(𝑎 + 𝑛ℎ), where 𝐵 is given in Example 22, with

initial conditions: 𝑥
0
= (0, 1), 𝑥

𝑎
= (0, 0.1), ℎ0.9𝐴 − ( 0.9

2
) 𝐼
2
∉ R2×2
+

.

nonnegative values and the fact of staring from nonnegative
initial conditions provides the remaining in the same positive
cone. In Figure 1 we present the trajectory for 𝑇 = 500 steps
on the (𝑥

1
, 𝑥
2
)-plane that start from 𝑥

𝑎
= (0, 0.1) and with

the initial value 𝑥
0
= (0, 1). Let us notice that in the case

ℎ
𝛼+𝛽
𝐵−(
𝛼+𝛽

2
) 𝐼
2
∉ R2×2
+

one can see that in a few initial steps
points are escaping from the positive area (see Figure 2). All
calculations were done in the Maple program.

5. Conclusions

The behaviour of the solutions of systems with sequential
fractional difference is studied.Wepresent recursive formulas
for nonlinear systems and give the exact formulas for the
unique solutions to systems in linear and semilinear cases.We
prove the sufficient condition for the positivity of considered
systems.

Our future goal is to study stability of systems with se-
quential fractional differences.
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