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This paper concerns the square-mean almost automorphic solutions to a class of abstract semilinear nonautonomous functional
integrodifferential stochastic evolution equations in real separable Hilbert spaces. Using the so-called “Acquistapace-Terreni”
conditions and Banach contraction principle, the existence, uniqueness, and asymptotical stability results of square-mean almost
automorphic mild solutions to such stochastic equations are established. As an application, square-mean almost automorphic
solution to a concrete nonautonomous integro-differential stochastic evolution equation is analyzed to illustrate our abstract results.

1. Introduction

Stochastic differential equations in both finite and infinite
dimensions, which are important from the viewpoint of
applications since they incorporate natural randomness into
the mathematical description of the phenomena and hence
provide a more accurate description of it, have received
considerable attention. Based on this viewpoint, there has
been an increasing interest in extending certain classical
deterministic results to stochastic differential equations in
recent years. As a good case in point, the existence of almost
periodic or pseudo-almost periodic solutions to stochastic
evolution equations has been extensively considered in many
publications; see [1–8] and the references therein.

Integrodifferential equations are used to describe lots of
phenomena arising naturally from many fields such as fluid
dynamics, number reactor dynamics, population dynamics,
electromagnetic theory, and biologicalmodels,most of which
cannot be described by classical differential equations, and
hence they have attracted more and more attention in recent
years; see [1, 9–12] for more details.

Recently, Keck and McKibben [9, 10] proposed a
general abstract model for semilinear functional stochas-
tic integrodifferential equations and studied the existence
and uniqueness of mild solutions to these equations.
Based on their works, the existence and uniqueness of
square-mean almost periodic solutions to some functional

integrodifferential stochastic evolution equations was care-
fully investigated in [1] for the autonomous case and in our
forthcoming paper for the nonautonomous case. In a very
recent paper, as a natural generalization of the notion of
square-mean almost periodicity, a new concept of square-
mean almost automorphic stochastic process was introduced
by Fu and Liu [13], and the existence results of square-
mean almost automorphic mild solutions to some linear
and semilinear autonomous stochastic differential equations
were formulated, while paper [14] investigated the same
issue for nonautonomous stochastic differential equations.
Under some suitable assumptions, the authors established in
a forthcoming paper the existence and uniqueness of square-
mean almost automorphic solutions to a class of autonomous
functional integrodifferential stochastic evolution equations.

In this paper, we are concerned with a class of semilin-
ear nonautonomous functional stochastic integrodifferential
equations in a real separable Hilbert space in the abstract
form:

𝑋


(𝑡) = 𝐴 (𝑡)𝑋 (𝑡) + ∫

𝑡

−∞

𝐶 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠)

+ ∫

𝑡

−∞

𝐵 (𝑡 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠

+ 𝐹
1
(𝑡, 𝑋 (𝑡)) , 𝑡 ∈ R,

(1)
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where 𝐴(𝑡) : 𝐷(𝐴(𝑡)) ⊂ L2(P;H) → L2(P;H) is a
family of densely defined closed (possibly unbounded) lin-
ear operator satisfying the so-called “Acquistapace-Terreni”
conditions introduced in [15], 𝐵 and 𝐶 are convolution-type
kernels in L1(0,∞) and L2(0,∞), respectively, satisfying
Assumption 3.2 in [16], 𝑊(𝑡) is a two-sided standard one-
dimensional Brownian motion defined on the filtered proba-
bility space (Ω,F,P,F

𝑡
), whereF

𝑡
= 𝜎{𝑊(𝑢)−𝑊(V); 𝑢, V ≤

𝑡}. Here 𝐹
1
, 𝐹
2
, 𝐺 : R × L2(P;H) → L2(P;H) are jointly

continuous functions satisfying some additional conditions
to be specified later in Section 3.

Motivated by the aforementioned works [1, 13, 14],
we investigate in this paper the existence and uniqueness
of square-mean almost automorphic solutions to nonau-
tonomous equation (1). The main tools employed here are
Banach contraction principle and an estimate on the Ito
integral. The obtained results can be seen as a contribution
to this emerging field.

The paper is organized as follows. In Section 2, we review
some basic definitions and preliminary facts on square-mean
almost automorphic processes whichwill be used throughout
this paper. Section 3 is devoted to establish the existence,
uniqueness, and the asymptotical stability of square-mean
almost automorphic mild solution to (1). As an illustration
of our abstract result, square-mean almost automorphic
solution to a concrete nonautonomous integrodifferential
stochastic evolution equation is investigated in Section 4.

2. Preliminaries

To begin this paper, we recall some primary definitions,
notations, lemmas, and technical results which will be used
in the sequel. For more details on almost automorphy and
stochastic differential equations, the readers are referred to
[13, 17–23] and the references therein.

Throughout this paper, we assume that (H, ‖⋅‖) is a real
separable Hilbert space, (Ω,F,P) is a probability space,
and L2(P;H) stands for the space of all H-valued random
variables𝑋 such that

E‖𝑋‖2 = ∫
Ω

‖𝑋‖
2
𝑑P < ∞. (2)

For𝑋 ∈ L2(P;H), let

‖𝑋‖
2
:= (∫
Ω

‖𝑋‖
2
𝑑P)
1/2

. (3)

It is routine to check that L2(P;H) is a Banach space
equipped with the norm ‖⋅‖

2
.

It is well-known that Brownian motion plays a key role
in the construction of stochastic integrals. Throughout this
paper, 𝑊(𝑡) denotes a two-sided standard one-dimensional
Brownian motion defined on the filtered probability space
(Ω,F,P,F

𝑡
), whereF

𝑡
= 𝜎{𝑊(𝑢) −𝑊(V); 𝑢, V ≤ 𝑡}.

Definition 1. A standard one-dimensional Brownian motion
is a continuous, adapted real-valued stochastic process
(𝑊(𝑡), 𝑡 ≥ 0) such that

(i) 𝑊(0) = 0 a.s.;
(ii) 𝑊(𝑡) − 𝑊(𝑠) is independent ofF

𝑠
for all 0 ≤ 𝑠 < 𝑡;

(iii) 𝑊(𝑡) −𝑊(𝑠) is𝑁(0, 𝑡 − 𝑠) distributed for all 0 ≤ 𝑠 ≤ 𝑡.

The following definitions and lemmas concerning square-
mean almost automorphic functions can be found in [13, 14].

Definition 2. A stochastic process𝑋 : R → L2(P;H) is said
to be stochastically continuous if

lim
𝑡→ 𝑠

E‖𝑋 (𝑡) − 𝑋 (𝑠)‖
2
= 0. (4)

Definition 3. A stochastically continuous stochastic process
𝑋 : R → L2(P;H) is said to be square-mean almost
automorphic if for every sequence of real numbers {𝑠

𝑛
} there

exists a subsequence {𝑠
𝑛
} and a stochastic process 𝑌 : R →

L2(P;H) such that

lim
𝑛→∞

E𝑋 (𝑡 + 𝑠
𝑛
) − 𝑌 (𝑡)



2

= 0,

lim
𝑛→∞

E𝑋 (𝑡 + 𝑠
𝑛
) − 𝑌 (𝑡)



2

= 0

(5)

hold for each 𝑡 ∈ R. The collection of all square-mean
almost automorphic stochastic processes is denoted by
𝐴𝐴(R;L2(P;H)).

Lemma 4. If 𝑋, 𝑋
1
, and 𝑋

2
are all square-mean almost

automorphic stochastic processes, then the following statements
hold true:

(i) 𝑋
1
+ 𝑋
2
is square-mean almost automorphic;

(ii) 𝜆𝑋 is square-mean almost automorphic for every scalar
𝜆;

(iii) There exists a constant𝑀 > 0 such that sup
𝑡∈R‖𝑋 (𝑡)‖

2

≤ 𝑀. That is,𝑋 is bounded inL2(P;H).

Lemma 5. 𝐴𝐴(R;L2(P;H)) is a Banach space when it is
equipped with the norm

‖𝑋‖
∞
:= sup
𝑡∈R

‖𝑋 (𝑡)‖
2
= sup
𝑡∈R

(E‖𝑋 (𝑡)‖
2
)
1/2

(6)

for𝑋 ∈ 𝐴𝐴(R;L2(P;H)).

Definition 6. A jointly continuous function 𝐹 : R ×

L2(P;H) → L2(P;H), (𝑡, 𝑋) → 𝐹(𝑡, 𝑋) is said to be
square-mean almost automorphic in 𝑡 ∈ R for each 𝑋 ∈

L2(P;H) if for every sequence of real numbers {𝑠
𝑛
} there

exists a subsequence {𝑠
𝑛
} and a stochastic process 𝐺 : R ×

L2(P;H) → L2(P;H) such that

lim
𝑛→∞

E𝐹 (𝑡 + 𝑠𝑛, 𝑋) − 𝐺 (𝑡, 𝑋)


2

= 0,

lim
𝑛→∞

E𝐺 (𝑡 − 𝑠
𝑛
, 𝑋) − 𝐹 (𝑡, 𝑋)



2

= 0

(7)

hold for each 𝑡 ∈ R and each𝑋 ∈ L2(P;H).
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Lemma 7. Let 𝑓 : R × L2(P;H) → L2(P;H), (𝑡, 𝑋) →

𝑓(𝑡, 𝑋) be square-mean almost automorphic in 𝑡 ∈ R for
each 𝑋 ∈ L2(P;H), and assume that 𝑓 satisfies a Lipschitz
condition in the following sense:

E𝑓 (𝑡, 𝜑) − 𝑓 (𝑡, 𝜓)


2

≤ 𝐿E𝜑 − 𝜓


2 (8)

for all 𝜑, 𝜓 ∈ L2(P;H) and each 𝑡 ∈ R, where 𝐿 > 0 is inde-
pendent of 𝑡. Then for any square-mean almost automorphic
stochastic process 𝑋 : R → L2(P;H), the stochastic process
𝐹 : R → L2(P;H) given by𝐹(𝑡) := 𝑓(𝑡, 𝑋(𝑡)) is square-mean
almost automorphic.

The Acquistapace-Terreni conditions (ATCs, for short)
play an important role in the study of nonautonomous
stochastic differential equations. We state it below for the
readers’ convenience.

ATCs. There exist constants 𝜆
0
≥ 0, 𝜃 ∈ (𝜋/2, 𝜋), 𝐿, 𝐾 ≥ 0,

and 𝛼, 𝛽 ∈ (0, 1] with 𝛼 + 𝛽 > 1 such that

Σ
𝜃
∪ {0} ⊂ 𝜌 (𝐴 (𝑡) − 𝜆

0
) ,

𝑅 (𝜆, 𝐴 (𝑡) − 𝜆
0
)
 ≤

𝐾

1 + |𝜆|
,

(𝐴 (𝑡) − 𝜆
0
) 𝑅 (𝜆, 𝐴 (𝑡) − 𝜆

0
)

× [𝑅 (𝜆
0
, 𝐴 (𝑡)) − 𝑅 (𝜆

0
, 𝐴 (𝑠))]

 ≤ 𝐿|𝑡 − 𝑠|
𝛼

|𝜆|
𝛽

(9)

for 𝑡, 𝑠 ∈ R, 𝜆 ∈ Σ
𝜃
:= {𝜆 ∈ C − {0} : |arg 𝜆| ≤ 𝜃}.

The following lemma can be found in [15, 24, 25].

Lemma 8. Suppose that the ATCs are satisfied, and then
there exists a unique evolution family {𝑈(𝑡, 𝑠)}

−∞<𝑠≤𝑡<∞
on

L2(P;H), which governs the linear part of (1).

3. Main Results

In this section, we investigate the existence and uniqueness
of square-mean almost automorphic solution to the nonau-
tonomous stochastic integrodifferential evolution equation
(1). The following assumptions are imposed on (1) which will
be assumed throughout the manuscript.

(H1) The operator 𝐴(𝑡) : 𝐷(𝐴(𝑡)) ⊂ L2(P;H) →

L2(P;H) is a family of densely defined closed linear
operators satisfying the ATCs, and the generated
evolution family 𝑈(𝑡, 𝑠) is uniformly exponentially
stable; that is, there exist constants𝑀 ≥ 1 and 𝛿 > 0

such that

‖𝑈 (𝑡, 𝑠)‖ ≤ 𝑀𝑒
−𝛿(𝑡−𝑠)

, ∀𝑡 ≥ 𝑠. (10)

(H2) The evolution family {𝑈(𝑡, 𝑠), 𝑡 ≥ 𝑠} generated by𝐴(𝑡)
satisfies the following condition: from every sequence
of real numbers {𝑠

𝑛
}
𝑛∈N, we can extract a subsequence

{𝑠
𝑛
}
𝑛∈N such that, for any 𝜀 > 0, there exists an𝑁 ∈ N

such that 𝑛 > 𝑁 implies that

𝑈 (𝑡 + 𝑠
𝑛
, 𝑠 + 𝑠
𝑛
) − 𝑈 (𝑡, 𝑠)

 ≤ 𝜀𝑒
−𝛿(𝑡−𝑠)

,

𝑈 (𝑡 − 𝑠
𝑛
, 𝑠 − 𝑠
𝑛
) − 𝑈 (𝑡, 𝑠)

 ≤ 𝜀𝑒
−𝛿(𝑡−𝑠)

(11)

for all 𝑡 ≥ 𝑠, where 𝛿 > 0 is the constant required in
(H1).

(H3) The functions 𝐹
𝑖

: R × L2(P;H) →

L2(P;H), (𝑡, 𝑋) → 𝐹
𝑖
(𝑡, 𝑋) (𝑖 = 1, 2), and

𝐺 : R ×L2(P;H) → L2(P;H), (𝑡, 𝑋) → 𝐺(𝑡, 𝑋) are
square-mean almost automorphic in 𝑡 ∈ R for each
𝑋 ∈ L2(P;H). Moreover, 𝐹

1
, 𝐹
2
, and 𝐺 are Lipschitz

in 𝑋 uniformly for 𝑡 in the following sense: there
exist constants𝐾

𝑖
> 0 (𝑖 = 1, 2, 3) such that

E𝐹𝑖 (𝑡, 𝑋) − 𝐹𝑖 (𝑡, 𝑌)


2

≤ 𝐾
𝑖
E‖𝑋 − 𝑌‖

2
, 𝑖 = 1, 2,

E‖𝐺 (𝑡, 𝑋) − 𝐺 (𝑡, 𝑌)‖
2
≤ 𝐾
3
E‖𝑋 − 𝑌‖

2

(12)

for all stochastic processes 𝑋,𝑌 ∈ L2(P;H) and 𝑡 ∈
R.

Definition 9. An F
𝑡

progressively measurable process
(𝑋(𝑡))

𝑡∈R is called a mild solution of (1) if it satisfies the
corresponding stochastic integral equation:

𝑋 (𝑡) = 𝑈 (𝑡, 𝑎)𝑋 (𝑎)

+ ∫

𝑡

𝑎

𝑈 (𝑡, 𝜎) ∫

𝜎

𝑎

𝐶 (𝜎 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) 𝑑𝜎

+ ∫

𝑡

𝑎

𝑈 (𝑡, 𝜎) ∫

𝜎

𝑎

𝐵 (𝜎 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠 𝑑𝜎

+ ∫

𝑡

𝑎

𝑈 (𝑡, 𝑠) 𝐹
1
(𝑠, 𝑋 (𝑠)) 𝑑𝑠

(13)

for all 𝑡 ≥ 𝑎 and each 𝑎 ∈ R.

Now we are in a position to show the existence and
uniqueness of square-mean almost automorphic solution to
(1).

Theorem 10. Assume that conditions (H1)–(H3) are satisfied,
then (1) has a unique square-mean almost automorphic mild
solution 𝑋(⋅) ∈ 𝐴𝐴(R;L2(P;H)) which can be explicitly
expressed as

𝑋(𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) 𝑑𝜎

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠 𝑑𝜎

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝐹
1
(𝑠, 𝑋 (𝑠)) 𝑑𝑠

(14)
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provided that

Θ := 3
𝑀
2

𝛿2
[𝐾
1
+ 𝐾
2
⋅ ‖𝐵‖
2

L1(0,∞) + 𝐾3 ⋅ ‖𝐶‖
2

L2(0,∞)] < 1.

(15)
Proof. First of all, it is not difficult to verify that the stochastic
process

𝑋(𝑡) = ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) 𝑑𝜎

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠 𝑑𝜎

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝐹
1
(𝑠, 𝑋 (𝑠)) 𝑑𝑠

(16)
is well defined and satisfies

𝑋 (𝑡) = 𝑈 (𝑡, 𝑎)𝑋 (𝑎)

+ ∫

𝑡

𝑎

𝑈 (𝑡, 𝜎) ∫

𝜎

𝑎

𝐶 (𝜎 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) 𝑑𝜎

+ ∫

𝑡

𝑎

𝑈 (𝑡, 𝜎) ∫

𝜎

𝑎

𝐵 (𝜎 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠 𝑑𝜎

+ ∫

𝑡

𝑎

𝑈 (𝑡, 𝑠) 𝐹
1
(𝑠, 𝑋 (𝑠)) 𝑑𝑠

(17)
for all 𝑡 ≥ 𝑎 and each 𝑎 ∈ R, and hence it is a mild solution of
the original (1).

To seek the square-mean almost automorphic mild solu-
tion to (1), let us consider the nonlinear operatorS acting on
the Banach space 𝐴𝐴(R;L2(P;H)) given by

(S𝑋) (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) 𝑑𝜎

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠 𝑑𝜎

+ ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝐹
1
(𝑠, 𝑋 (𝑠)) 𝑑𝑠.

(18)

If we can show that the operator S maps 𝐴𝐴(R;L2(P;H))
into itself and it is a contraction mapping, then, by Banach
contraction principle, we can conclude that there is a unique
square-mean almost automorphic mild solution to (1).

Now define three nonlinear operators acting on the
Banach space 𝐴𝐴(R;L2(P;H)) as follows:

(S
1
𝑋) (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝐹
1
(𝑠, 𝑋 (𝑠)) 𝑑𝑠,

(S
2
𝑋) (𝑡) :=∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎−𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠)) 𝑑𝑠 𝑑𝜎,

(S
3
𝑋) (𝑡) :=∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎−𝑠) 𝐺 (𝑠, 𝑋 (𝑠)) 𝑑𝑊 (𝑠) 𝑑𝜎.

(19)

We show first that S
1
𝑋 is square-mean almost automorphic

whenever 𝑋 is. Indeed, assuming that 𝑋 is square-mean
almost automorphic, then Lemma 7 implies that 𝑓

1
(⋅) :=

𝐹
1
(⋅, 𝑋(⋅)) is also square-mean almost automorphic. Hence,

for any sequence of real numbers {𝑠
𝑛
}, there exists a sub-

sequence {𝑠
𝑛
} of {𝑠

𝑛
} and a stochastic process 𝑓

1
: R →

L2(P;H) such that

lim
𝑛→∞

E𝑓1 (𝑡 + 𝑠𝑛) − 𝑓1 (𝑡)


2

= 0,

lim
𝑛→∞

E𝑓1 (𝑡 − 𝑠𝑛) − 𝑓1 (𝑡)


2

= 0

(20)

hold for each 𝑡 ∈ R. By assumption (H2), for any 𝜀 > 0, there
exists𝑁

1
= 𝑁
1
(𝜀) ∈ N such that 𝑛 > 𝑁

1
implies that

𝑈 (𝑡 + 𝑠
𝑛
, 𝑠 + 𝑠
𝑛
) − 𝑈 (𝑡, 𝑠)

 ≤ 𝜀𝑒
−𝛿(𝑡−𝑠)

∀𝑡 ≥ 𝑠,

E𝑓1 (𝑡 + 𝑠𝑛) − 𝑓1 (𝑡)


2

< 𝜀,

E𝑓1 (𝑡 − 𝑠𝑛) − 𝑓1 (𝑡)


2

< 𝜀 ∀𝑡 ∈ R.

(21)

Now, define functions on R as follows:

𝑢 (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝑓
1
(𝑠) 𝑑𝑠

�̃� (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝑓
1
(𝑠) 𝑑𝑠,

(22)

and then the above observation together with (3.1) and
Cauchy-Schwarz inequality implies that for any 𝜀 > 0 and
for the aforementioned 𝑁

1
= 𝑁
1
(𝜀) ∈ N if 𝑛 > 𝑁

1
it yields

that

E𝑢 (𝑡 + 𝑠𝑛) − �̃� (𝑡)


2

= E


∫

𝑡+𝑠
𝑛

−∞

𝑈 (𝑡 + 𝑠
𝑛
, 𝑠) 𝑓
1
(𝑠) 𝑑𝑠 − ∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝑓
1
(𝑠) 𝑑𝑠



2

= E


∫

𝑡

−∞

𝑈(𝑡 + 𝑠
𝑛
, 𝑠 + 𝑠
𝑛
) 𝑓
1
(𝑠 + 𝑠
𝑛
) 𝑑𝑠

−∫

𝑡

−∞

𝑈 (𝑡, 𝑠) 𝑓
1
(𝑠) 𝑑𝑠



2

≤ 2E


∫

𝑡

−∞

[𝑈 (𝑡 + 𝑠
𝑛
, 𝑠 + 𝑠
𝑛
) − 𝑈 (𝑡, 𝑠)] 𝑓

1
(𝑠 + 𝑠
𝑛
) 𝑑𝑠



2

+ 2E


∫

𝑡

−∞

𝑈 (𝑡, 𝑠) [𝑓
1
(𝑠 + 𝑠
𝑛
) − 𝑓
1
(𝑠)] 𝑑𝑠



2
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≤ 2𝜀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠) 𝑓1 (𝑠 + 𝑠𝑛)

 𝑑𝑠)

2

+ 2𝑀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠) 

𝑓
1
(𝑠 + 𝑠
𝑛
) − 𝑓
1
(𝑠)

𝑑𝑠)

2

≤ 2𝜀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)E𝑓1 (𝑠 + 𝑠𝑛)



2

𝑑𝑠)

+ 2𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)E𝑓1 (𝑠 + 𝑠𝑛) − 𝑓1 (𝑠)



2

𝑑𝑠)

≤ 2𝜀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

2

sup
𝑡∈R

E𝑓1 (𝑡 + 𝑠𝑛)


2

+ 2𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

2

sup
𝑡∈R

E𝑓1 (𝑡 + 𝑠𝑛) − 𝑓1 (𝑡)


2

≤
2𝑀
1

𝛿2
⋅ 𝜀
2
+
2𝑀
2

𝛿2
⋅ 𝜀,

(23)

where𝑀
1
:= sup

𝑡∈RE ‖ 𝑓
1
(𝑡)‖
2
< +∞. Hence,

lim
𝑛→∞

E𝑢 (𝑡 + 𝑠𝑛) − �̃� (𝑡)


2

= 0 (24)

for each 𝑡 ∈ R. And we can show in a similar way that

lim
𝑛→∞

E�̃� (𝑡 − 𝑠𝑛) − 𝑢 (𝑡)


2

= 0 (25)

for each 𝑡 ∈ R. Thus, we conclude that 𝑢 = S
1
𝑋 ∈

𝐴𝐴(R;L2(P;H)).
In an analogous way, assuming that 𝑋 is square-mean

almost automorphic and using Lemma 7, one can easily see
that 𝑓

2
(⋅) := 𝐹

2
(⋅, 𝑋(⋅)) is also square-mean almost automor-

phic. Let {𝑠
𝑛
} be an arbitrary sequence of real numbers, and

then there exists a subsequence {𝑠
𝑛
} of {𝑠

𝑛
} and a stochastic

process 𝑓
2
: R → L2(P;H) such that

lim
𝑛→∞

E𝑓2 (𝑡 + 𝑠𝑛) − 𝑓2 (𝑡)


2

= 0,

lim
𝑛→∞

E𝑓2 (𝑡 − 𝑠𝑛) − 𝑓2 (𝑡)


2

= 0

(26)

hold for each 𝑡 ∈ R. Now define functions on R as follows:

V (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠) 𝑑𝑠 𝑑𝜎

Ṽ (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠) 𝑑𝑠 𝑑𝜎,

(27)

and then, by making change of variables 𝜏 = 𝜎 − 𝑠
𝑛
and 𝑟 =

𝑠 − 𝑠
𝑛
, we obtain that

EV (𝑡 + 𝑠𝑛) − Ṽ (𝑡)


2

= E


∫

𝑡+𝑠
𝑛

−∞

𝑈(𝑡 + 𝑠
𝑛
, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠) 𝑑𝑠 𝑑𝜎

−∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠) 𝑑𝑠 𝑑𝜎



2

= E


∫

𝑡

−∞

𝑈(𝑡 + 𝑠
𝑛
, 𝜎 + 𝑠

𝑛
)

× ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠 + 𝑠
𝑛
) 𝑑𝑠 𝑑𝜎

−∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠) 𝑑𝑠 𝑑𝜎



2

≤ 2E


∫

𝑡

−∞

[𝑈 (𝑡 + 𝑠
𝑛
, 𝜎 + 𝑠

𝑛
) − 𝑈 (𝑡, 𝜎)]

× ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠 + 𝑠
𝑛
) 𝑑𝑠 𝑑𝜎



2

+ 2E


∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐵 (𝜎 − 𝑠)

× [𝑓
2
(𝑠 + 𝑠
𝑛
) − 𝑓
2
(𝑠)] 𝑑𝑠 𝑑𝜎



2

≤ 2𝜀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×



∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠 + 𝑠
𝑛
) 𝑑𝑠



𝑑𝜎)

2

+2𝑀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×



∫

𝜎

−∞

𝐵 (𝜎−𝑠)

×[𝑓
2
(𝑠+𝑠
𝑛
)−𝑓
2
(𝑠)]𝑑𝑠



𝑑𝜎)

2

.

(28)

Let us evaluate the first term of the right-handed side by using
Cauchy-Schwarz inequality:

E(∫
𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)



∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠 + 𝑠
𝑛
) 𝑑𝑠



𝑑𝜎)

2

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× ∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)E



∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠 + 𝑠
𝑛
) 𝑑𝑠



2

𝑑𝜎
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≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

{∫

𝜎

−∞

‖𝐵 (𝜎 − 𝑠)‖ 𝑑𝑠}

×{∫

𝜎

−∞

‖𝐵 (𝜎 − 𝑠)‖E𝑓2 (𝑠 + 𝑠𝑛)


2

𝑑𝑠} 𝑑𝜎)

≤ {∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎}

2

⋅ {∫

+∞

0

‖𝐵 (𝑢)‖ 𝑑𝑢}

2

⋅ sup
𝑠∈R

E𝑓2 (𝑠 + 𝑠𝑛)


2

≤

‖𝐵‖
2

L1(0,∞)

𝛿2
⋅ sup
𝑡∈R

E𝑓2 (𝑡)


2

.

(29)

As to the second term, in a similar manner as above, we have
the following observation:

E(∫
𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)



∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) [𝑓
2
(𝑠 + 𝑠
𝑛
) − 𝑓
2
(𝑠)] 𝑑𝑠



𝑑𝜎)

2

≤E [(∫
𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

×(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×



∫

𝜎

−∞

𝐵 (𝜎−𝑠)

× [𝑓
2
(𝑠+𝑠
𝑛
)−𝑓
2
(𝑠)]𝑑𝑠



2

𝑑𝜎)]

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× E


∫

𝜎

−∞

𝐵 (𝜎 − 𝑠)

×[𝑓
2
(𝑠 + 𝑠
𝑛
) − 𝑓
2
(𝑠)] 𝑑𝑠



2

𝑑𝜎)

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

{∫

𝜎

−∞

‖𝐵 (𝜎−𝑠)‖ 𝑑𝑠}

× {∫

𝜎

−∞

‖𝐵 (𝜎−𝑠)‖

×E 
𝑓
2
(𝑠+𝑠
𝑛
)−𝑓
2
(𝑠)


2

𝑑𝑠} 𝑑𝜎)

≤ {∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎}

2

⋅ {∫

+∞

0

‖𝐵 (𝑢)‖ 𝑑𝑢}

2

⋅ sup
𝑡∈R

E𝑓2 (𝑡 + 𝑠𝑛) − 𝑓2 (𝑡)


2

≤
1

𝛿2
⋅ ‖𝐵‖
2

L1(0,∞) ⋅ sup
𝑡∈R

E𝑓2 (𝑡 + 𝑠𝑛) − 𝑓2 (𝑡)


2

≤

‖𝐵‖
2

L1(0,∞)

𝛿2
⋅ 𝜀.

(30)
Based on the above argument, for arbitrary 𝜀 > 0, thanks to
the boundedness and square-mean almost automorphy of 𝑓

2
,

there exists certain𝑁
2
= 𝑁
2
(𝜀) ∈ N such that 𝑛 > 𝑁

2
implies

that
EV (𝑡 + 𝑠𝑛) − Ṽ (𝑡)



2

≤ 2𝜀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×



∫

𝜎

−∞

𝐵 (𝜎 − 𝑠) 𝑓
2
(𝑠 + 𝑠
𝑛
) 𝑑𝑠



𝑑𝜎)

2

+2𝑀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×



∫

𝜎

−∞

𝐵 (𝜎−𝑠)

×[𝑓
2
(𝑠+𝑠
𝑛
)−𝑓
2
(𝑠)]𝑑𝑠



𝑑𝜎)

2

≤

2‖𝐵‖
2

L1(0,∞) ⋅ sup𝑡∈RE
𝑓2 (𝑡)



2

𝛿2

⋅ 𝜀
2
+

2𝑀
2
⋅ ‖𝐵‖
2

L1(0,∞)

𝛿2
⋅ 𝜀,

(31)

where we use the fact that, for arbitrary 𝜀 > 0, there exists
𝑁
2
= 𝑁
2
(𝜀) ∈ N such that, for all 𝑛 > 𝑁

2
,

E𝑓2 (𝑡 + 𝑠𝑛) − 𝑓2 (𝑡)


2

< 𝜀 (32)

holds for all 𝑡 ∈ R. This indicates that
lim
𝑛→∞

EV (𝑡 + 𝑠𝑛) − Ṽ (𝑡)


2

= 0 (33)

for each 𝑡 ∈ R. In an analogous way, we can show that

lim
𝑛→∞

EṼ (𝑡 − 𝑠𝑛) − V (𝑡)


2

= 0 (34)

for each 𝑡 ∈ R. Combining (33) with (34), we obtain that V =
S
2
𝑋 is square-mean almost automorphic.
Assuming that 𝑋 ∈ 𝐴𝐴(R;L2(P;H)), then similar

argument as above ensures that 𝑔(⋅) := 𝐺(⋅, 𝑋(⋅)) ∈

𝐴𝐴(R;L2(P;H)). As a consequence, for every sequence of
real numbers {𝑠

𝑛
} there exist a subsequence {𝑠

𝑛
} ⊂ {𝑠



𝑛
} and a

stochastic process 𝑔 such that

lim
𝑛→∞

E𝑔 (𝑡 + 𝑠𝑛) − 𝑔 (𝑡)


2

= 0,

lim
𝑛→∞

E𝑔 (𝑡 − 𝑠𝑛) − 𝑔 (𝑡)


2

= 0

(35)
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hold for each 𝑡 ∈ R. Hence, for arbitrary 𝜀 > 0, there exists
certain𝑁

3
= 𝑁
3
(𝜀) ∈ N such that, for all 𝑛 > 𝑁

3
, there holds

E𝑔 (𝑡 + 𝑠𝑛) − 𝑔 (𝑡)


2

< 𝜀 (36)

for all 𝑡 ∈ R.
The next step aims to prove the square-mean almost

automorphy of S
3
𝑋. This is more complicated because

the involvement of the Brownian motion 𝑊. Consider the
Brownian motion �̃� defined by

�̃� (𝑠) = 𝑊 (𝑠 + 𝑠
𝑛
) − 𝑊(𝑠

𝑛
) (37)

for each 𝑠 ∈ R, which has the same distribution as𝑊. Define
two functions on R as below:

𝜔 (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠) 𝑑𝜎,

�̃� (𝑡) := ∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠) 𝑑𝜎.

(38)

By making change of variables 𝜏 = 𝜎 − 𝑠
𝑛
and 𝑟 = 𝑠 − 𝑠

𝑛
, and

then using Cauchy-Schwarz inequality, we obtain that

E𝜔 (𝑡 + 𝑠𝑛) − �̃� (𝑡)


2

= E


∫

𝑡+𝑠
𝑛

−∞

𝑈(𝑡 + 𝑠
𝑛
, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠) 𝑑𝜎

−∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠) 𝑑𝜎



2

=E


∫

𝑡

−∞

𝑈 (𝑡+𝑠
𝑛
, 𝜎+𝑠
𝑛
)

×∫

𝜎

−∞

𝐶 (𝜎−𝑠) 𝑔 (𝑠+𝑠
𝑛
) 𝑑𝑊 (𝑠+𝑠

𝑛
) 𝑑𝜎

−∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎−𝑠) 𝑔 (𝑠) 𝑑𝑊 (𝑠) 𝑑𝜎



2

=E


∫

𝑡

−∞

𝑈 (𝑡+𝑠
𝑛
, 𝜎+𝑠
𝑛
)

×∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠+𝑠
𝑛
) 𝑑�̃� (𝑠) 𝑑𝜎

−∫

𝑡

−∞

𝑈 (𝑡, 𝜎) ∫

𝜎

−∞

𝐶 (𝜎−𝑠) 𝑔 (𝑠) 𝑑�̃� (𝑠) 𝑑𝜎



2

≤ 2E


∫

𝑡

−∞

[𝑈 (𝑡 + 𝑠
𝑛
, 𝜎 + 𝑠

𝑛
) − 𝑈 (𝑡, 𝜎)]

×∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠 + 𝑠
𝑛
) 𝑑�̃� (𝑠) 𝑑𝜎



2

+ 2E


∫

𝑡

−∞

𝑈 (𝑡, 𝜎)

× ∫

𝜎

−∞

𝐶 (𝜎 − 𝑠)

× [𝑔 (𝑠 + 𝑠
𝑛
) − 𝑔 (𝑠)] 𝑑�̃� (𝑠) 𝑑𝜎



2

≤ 2𝜀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×



∫

𝜎

−∞

𝐶 (𝜎−𝑠) 𝑔 (𝑠+𝑠
𝑛
) 𝑑�̃� (𝑠)



𝑑𝜎)

2

+ 2𝑀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×



∫

𝜎

−∞

𝐶 (𝜎 − 𝑠)

× [𝑔 (𝑠 + 𝑠
𝑛
)

−𝑔 (𝑠)] 𝑑�̃� (𝑠)



𝑑𝜎)

2

≤ 2𝜀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× E


∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠+𝑠
𝑛
) 𝑑�̃� (𝑠)



2

𝑑𝜎)

+ 2𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× E


∫

𝜎

−∞

𝐶 (𝜎 − 𝑠)

× [𝑔 (𝑠 + 𝑠
𝑛
)−𝑔 (𝑠)] 𝑑�̃� (𝑠)



2

𝑑𝜎) .

(39)

For the above-mentioned 𝜀 > 0, by using an estimate on Ito
integral established in [26], it follows that once 𝑛 > 𝑁

3
, then

the first term of the above inequality can be evaluated as

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× E


∫

𝜎

−∞

𝐶 (𝜎−𝑠) 𝑔 (𝑠+𝑠
𝑛
) 𝑑�̃� (𝑠)



2

𝑑𝜎)
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≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× {∫

𝜎

−∞

E𝐶 (𝜎 − 𝑠) 𝑔 (𝑠 + 𝑠
𝑛
)


2

𝑑𝑠} 𝑑𝜎)

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× {∫

𝜎

−∞

‖𝐶 (𝜎 − 𝑠)‖
2E𝑔 (𝑠 + 𝑠𝑛)



2

𝑑𝑠} 𝑑𝜎)

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

{∫

𝜎

−∞

‖𝐶 (𝜎 − 𝑠)‖
2
𝑑𝑠} 𝑑𝜎)

⋅ sup
𝑠∈R

E𝑔 (𝑠 + 𝑠𝑛)


2

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

2

⋅ (∫

∞

0

‖𝐶 (𝑢)‖
2
𝑑𝑢)

⋅ sup
𝑡∈R

E𝑔 (𝑡)


2

≤

‖𝐶‖
2

L2(0,∞)

𝛿2
⋅ sup
𝑡∈R

E𝑔(𝑡)


2

,

(40)

and the second term can be evaluated analogously as

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

×(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)E



∫

𝜎

−∞

𝐶 (𝜎−𝑠)

×[𝑔 (𝑠+𝑠
𝑛
)−𝑔 (𝑠)] 𝑑�̃� (𝑠)



2

𝑑𝜎)

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

×(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

{∫

𝜎

−∞

E𝐶 (𝜎−𝑠)[𝑔 (𝑠+𝑠
𝑛
)−𝑔 (𝑠)]



2

𝑑𝑠} 𝑑𝜎)

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

{∫

𝜎

−∞

‖𝐶 (𝜎 − 𝑠)‖
2E

×
𝑔 (𝑠 + 𝑠𝑛) − 𝑔 (𝑠)



2

𝑑𝑠} 𝑑𝜎)

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× {∫

𝜎

−∞

‖𝐶 (𝜎−𝑠)‖
2
𝑑𝑠} 𝑑𝜎)

⋅ sup
𝑡∈R

𝑔 (𝑠 + 𝑠𝑛) − 𝑔 (𝑠)


2

≤ (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

2

⋅ (∫

∞

0

‖𝐶 (𝑢)‖
2
𝑑𝑢) ⋅ sup

𝑡∈R

𝑔 (𝑠 + 𝑠𝑛) − 𝑔 (𝑠)


2

≤

‖𝐶‖
2

L2(0,∞)

𝛿2
⋅ 𝜀.

(41)

The above argument yields that

E𝜔 (𝑡 + 𝑠𝑛) − �̃� (𝑡)


2

≤ 2𝜀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× E


∫

𝜎

−∞

𝐶 (𝜎 − 𝑠) 𝑔 (𝑠 + 𝑠
𝑛
) 𝑑�̃� (𝑠)



2

𝑑𝜎)

+ 2𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× E


∫

𝜎

−∞

𝐶 (𝜎 − 𝑠)

×[𝑔 (𝑠 + 𝑠
𝑛
) − 𝑔 (𝑠)] 𝑑�̃� (𝑠)



2

𝑑𝜎)

≤

2‖𝐶‖
2

L2(0,∞) ⋅ sup𝑡∈RE
𝑔 (𝑡)



2

𝛿2
⋅ 𝜀
2

+

2𝑀
2
⋅ ‖𝐶‖
2

L2(0,∞)

𝛿2
⋅ 𝜀,

(42)

which implies that

lim
𝑛→∞

E𝜔 (𝑡 + 𝑠𝑛) − �̃� (𝑡)


2

= 0 (43)

for each 𝑡 ∈ R. Analogously, we can show that

lim
𝑛→∞

E�̃� (𝑡 − 𝑠𝑛) − 𝜔 (𝑡)


2

= 0 (44)

for each 𝑡 ∈ R. Combining (43) with (44), we obtain that
𝜔 = S

3
𝑋 is square-mean almost automorphic.
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In view of the above arguments, it follows from (18)
that the nonlinear operator S = S

1
+ S
2
+ S
3
maps

𝐴𝐴(R;L2(P;H)) into itself. To complete the proof, it suffices
to show thatS is a contractionmapping on𝐴𝐴(R;L2(P;H)).
Indeed, for each 𝑋,𝑌 ∈ 𝐴𝐴(R;L2(P;H)), thanks to the fact
that (𝑎 + 𝑏 + 𝑐)

2
≤ 3𝑎
2
+ 3𝑏
2
+ 3𝑐
2, we have the following

observation:

E‖(S𝑋) (𝑡) − (S𝑌) (𝑡)‖2

≤ 3E


∫

𝑡

−∞

𝑈 (𝑡, 𝑠) [𝐹
1
(𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑌 (𝑠))] 𝑑𝑠



2

+ 3E


∫

𝑡

−∞

𝑈 (𝑡, 𝜎)

× ∫

𝜎

−∞

𝐵 (𝜎−𝑠)

× [𝐹
2
(𝑠, 𝑋 (𝑠))−𝐹

2
(𝑠, 𝑌 (𝑠))]𝑑𝑠 𝑑𝜎



2

+ 3E


∫

𝑡

−∞

𝑈 (𝑡, 𝜎)

× ∫

𝜎

−∞

𝐶 (𝜎−𝑠)

×[𝐺 (𝑠, 𝑋 (𝑠))−𝐺 (𝑠, 𝑌 (𝑠))]𝑑𝑊 (𝑠)𝑑𝜎



2

≤ 3E(∫
𝑡

−∞

‖𝑈 (𝑡, 𝑠)‖
𝐹1 (𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑌 (𝑠))

 𝑑𝑠)

2

+ 3E(∫
𝑡

−∞

‖𝑈 (𝑡, 𝜎)‖

×∫

𝜎

−∞

𝐵 (𝜎−𝑠)

×[𝐹
2
(𝑠, 𝑋(𝑠))−𝐹

2
(𝑠, 𝑌(𝑠))]

𝑑𝑠 𝑑𝜎)

2

+ 3E(∫
𝑡

−∞

‖𝑈 (𝑡, 𝜎)‖

×



∫

𝜎

−∞

𝐶 (𝜎−𝑠) [𝐺 (𝑠, 𝑋 (𝑠))

−𝐺 (𝑠, 𝑌 (𝑠))]𝑑𝑊 (𝑠)



𝑑𝜎)

2

.

(45)

Now, we evaluate the first term of the right-hand side with the
help of Cauchy-Schwarz inequality as follows:

3E(∫
𝑡

−∞

‖𝑈 (𝑡, 𝑠)‖
𝐹1 (𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑌 (𝑠))

 𝑑𝑠)

2

≤3𝑀
2E(∫
𝑡

−∞

𝑒
−𝛿(𝑡−𝑠) 𝐹1 (𝑠, 𝑋 (𝑠))−𝐹

1
(𝑠, 𝑌 (𝑠))

 𝑑𝑠)

2

≤ 3𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)E𝐹1 (𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑌 (𝑠))



2

𝑑𝑠)

≤ 3𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

2

× sup
𝑠∈R

E𝐹1 (𝑠, 𝑋 (𝑠)) − 𝐹
1
(𝑠, 𝑌 (𝑠))



2

≤ 3𝐾
1
𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

2

sup
𝑡∈R

E‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

=
3𝐾
1

𝛿2
⋅ 𝑀
2
⋅ sup
𝑡∈R

E‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2
.

(46)

As to the second term, we can proceed in the same manner
as above and obtain

3E(∫
𝑡

−∞

‖𝑈 (𝑡, 𝜎)‖

×∫

𝜎

−∞

𝐵 (𝜎−𝑠) [𝐹2 (𝑠, 𝑋 (𝑠))−𝐹
2
(𝑠, 𝑌 (𝑠))]

 𝑑𝑠 𝑑𝜎)

2

≤
3𝐾
2

𝛿2
⋅ 𝑀
2
⋅ ‖𝐵‖
2

L1(0,∞) ⋅ sup
𝑡∈R

E‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2
.

(47)

As far as the last term of the right-hand side is concerned, we
use again the estimate on the Ito integral to obtain

3E(∫
𝑡

−∞

‖𝑈 (𝑡, 𝜎)‖

×



∫

𝜎

−∞

𝐶 (𝜎 − 𝑠)

× [𝐺 (𝑠, 𝑋 (𝑠)) − 𝐺 (𝑠, 𝑌 (𝑠))] 𝑑𝑊 (𝑠)



𝑑𝜎)

2

≤ 3𝑀
2E(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×



∫

𝜎

−∞

𝐶 (𝜎−𝑠)

× [𝐺 (𝑠, 𝑋 (𝑠))−𝐺 (𝑠, 𝑌 (𝑠))]𝑑𝑊



𝑑𝜎)

2
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≤ 3𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

×(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

×E


∫

𝜎

−∞

𝐶 (𝜎−𝑠)

×[𝐺 (𝑠, 𝑋 (𝑠))−𝐺 (𝑠, 𝑌 (𝑠))]𝑑𝑊 (𝑠)



2

𝑑𝜎)

≤ 3𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

× ∫

𝜎

−∞

‖𝐶 (𝜎 − 𝑠)‖
2

×E‖𝐺 (𝑠, 𝑋 (𝑠)) − 𝐺 (𝑠, 𝑌 (𝑠))‖
2
𝑑𝑠 𝑑𝜎)

≤ 3𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

2

⋅ ‖𝐶‖
2

L2(0,∞)

⋅ sup
𝑠∈R

E‖𝐺 (𝑠, 𝑋 (𝑠)) − 𝐺 (𝑠, 𝑌 (𝑠))‖
2

≤ 3𝐾
3
𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝜎)

𝑑𝜎)

2

⋅ ‖𝐶‖
2

L2(0,∞)

⋅ sup
𝑡∈R

E‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

=
3𝐾
3

𝛿2
⋅ 𝑀
2
⋅ ‖𝐶‖
2

L2(0,∞) ⋅ sup
𝑡∈R

E‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2
.

(48)

Thus, by combining the three inequalities together, we obtain
that, for each 𝑡 ∈ R,

E‖(S𝑋) (𝑡) − (S𝑌) (𝑡)‖2

≤ {3
𝑀
2

𝛿2
[𝐾
1
+ 𝐾
2
⋅ ‖𝐵‖
2

L1(0,∞) + 𝐾3 ⋅ ‖𝐶‖
2

L2(0,∞)]}

⋅ sup
𝑡∈R

E‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2
.

(49)

That is,

‖(S𝑋) (𝑡) − (S𝑌) (𝑡)‖
2

2
≤ Θ sup
𝑡∈R

‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

2
, (50)

whereΘ := 3(𝑀
2
/𝛿
2
)[𝐾
1
+𝐾
2
⋅ ‖ 𝐵‖
2

L1(0,∞)+𝐾3⋅ ‖ 𝐶‖
2

L2(0,∞)].
Notice that

sup
𝑡∈R

‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

2
≤ (sup
𝑡∈R

‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2
)

2

. (51)

As a result, (50) together with (51) gives that, for each 𝑡 ∈ R,

‖(S𝑋) (𝑡) − (S𝑌) (𝑡)‖
2
≤ √Θ sup

𝑡∈R

‖𝑋 (𝑡) − 𝑌 (𝑡)‖
2

= √Θ ‖𝑋 − 𝑌‖
∞
.

(52)

It follows that
‖S𝑋 −S𝑌‖

∞

= sup
𝑡∈R

‖(S𝑋) (𝑡) − (S𝑌) (𝑡)‖
2
≤ √Θ ‖𝑋 − 𝑌‖

∞
,

(53)

which implies thatS is a contractionmapping by the assump-
tion (15) imposed onΘ.Therefore, by the Banach contraction
principle, we conclude that there exists a unique fixed point
𝑋 for S in 𝐴𝐴(R;L2(P;H)), which is the unique square-
mean almost automorphic mild solution to the functional
integrodifferential semilinear stochastic evolution equation
(1) as we have claimed. The proof is complete.

Remark 11. If the functions 𝐹
1
, 𝐹
2
, 𝐺 in (1) are square-mean

almost periodic in 𝑡, then the unique square-mean almost
automorphic solution obtained in Theorem 10 is actually
square-mean almost periodic; see paper [27].

Nowwe are in a position to show the asymptotically stable
property of the unique square-mean almost automorphic
solution to (1). Recall that the unique square-mean almost
automorphic solution 𝑋

∗
(𝑡) of (1) is said to be stable in

square-mean sense if, for arbitrary 𝜖 > 0, there exists 𝛿 > 0

such that

E𝑋 (𝑡) − 𝑋
∗

(𝑡)


2

< 𝜖, 𝑡 ≥ 0 (54)

whenever E ‖ 𝑋(0) − 𝑋
∗
(0)‖
2
< 𝛿, where 𝑋(𝑡) stands for a

solution of (1) with initial value 𝑋(0). The solution 𝑋
∗
(𝑡) is

said to be asymptotically stable in square-mean sense if it is
stable in square-mean sense and

lim
𝑡→∞

E𝑋 (𝑡) − 𝑋
∗

(𝑡)


2

= 0. (55)

The following Gronwall-type inequality is proved to be
useful in our asymptotic stability analysis.

Lemma 12. Let 𝑢(𝑡), 𝑏(𝑡) be nonnegative continuous functions
for 𝑡 ≥ 𝑎, and 𝛼, 𝛾 be some positive constants. If

𝑢 (𝑡) ≤ 𝛼𝑒
−𝛽(𝑡−𝑎)

+ ∫

𝑡

𝑎

𝑒
−𝛽(𝑡−𝑠)

𝑏 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ≥ 𝑎, (56)

then

𝑢 (𝑡) ≤ 𝛼 exp{−𝛽 (𝑡 − 𝑎) + ∫
𝑡

𝑎

𝑏 (𝑠) 𝑑𝑠} . (57)

Theorem 13. Let all the assumptions in Theorem 10 hold and
assume that

𝑀
2

𝛿2
[𝐾
1
+ 𝐾
2
⋅ ‖𝐵‖
2

L1(0,∞) + 𝐾3 ⋅ ‖𝐶‖
2

L2(0,∞)] <
1

4
. (58)

Then the unique square-mean almost automorphic mild solu-
tion𝑋∗(𝑡) of (1) is asymptotically stable in square-mean sense.
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Proof. Let 𝑋(𝑡) be any mild solution of (1) with initial value
𝑋(0). Then, on account of (H1)-(H2) and the assumptions
imposed on 𝐵 and 𝐶, along the same line as in [9] we could
show that, for any 𝑡 ≥ 0,

E𝑋 (𝑡) − 𝑋
∗

(𝑡)


2

= E


𝑈 (𝑡, 0) [𝑋 (0) − 𝑋
∗

(0)]

+ ∫

𝑡

0

𝑈 (𝑡, 𝑠)

× [𝐹
1
(𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑋
∗

(𝑠))] 𝑑𝑠

+ ∫

𝑡

0

𝑈 (𝑡, 𝜎)

× ∫

𝜎

0

𝐵 (𝜎 − 𝑠)

× [𝐹
2
(𝑠, 𝑋 (𝑠)) − 𝐹

2
(𝑠, 𝑋
∗

(𝑠))] 𝑑𝑠 𝑑𝜎

+ ∫

𝑡

0

𝑈 (𝑡, 𝜎)

×∫

𝜎

0

𝐶 (𝜎−𝑠)

× [𝐺 (𝑠, 𝑋(𝑠))−𝐺 (𝑠, 𝑋
∗

(𝑠))]𝑑𝑊(𝑠)𝑑𝜎



2

≤ 4E𝑈 (𝑡, 0) [𝑋 (0) − 𝑋
∗

(0)]


2

+ 4E


∫

𝑡

0

𝑈 (𝑡, 𝑠) [𝐹
1
(𝑠, 𝑋 (𝑠)) − 𝐹

1
(𝑠, 𝑋
∗

(𝑠))]



2

+ 4E


∫

𝑡

0

𝑈 (𝑡, 𝜎)

×∫

𝜎

0

𝐵 (𝜎−𝑠)

× [𝐹
2
(𝑠, 𝑋 (𝑠))−𝐹

2
(𝑠, 𝑋
∗

(𝑠))] 𝑑𝑠 𝑑𝜎



2

+4E


∫

𝑡

0

𝑈 (𝑡, 𝜎)

×∫

𝜎

0

𝐶 (𝜎−𝑠)

×[𝐺 (𝑠, 𝑋(𝑠))−𝐺 (𝑠, 𝑋
∗

(𝑠))]𝑑𝑊(𝑠) 𝑑𝜎



2

≤ 4𝑀
2
𝑒
−𝛿𝑡E𝑋 (0) − 𝑋

∗

(0)


2

+ 𝜅∫

𝑡

0

𝑒
−𝛿(𝑡−𝑠)E𝑋 (𝑠) − 𝑋

∗

(𝑠)


2

𝑑𝑠,

(59)

where 𝜅 := (4𝑀
2
(𝐾
1
+𝐾
2
⋅ ‖ 𝐵‖
2

L1(0,∞) +𝐾3⋅ ‖ 𝐶‖
2

L2(0,∞)))/𝛿.

Define 𝑌(𝑡) := E ‖ 𝑋(𝑡) − 𝑋
∗
(𝑡)‖
2, and it yields that

𝑌 (𝑡) ≤ 4𝑀
2
𝑌 (0) 𝑒

−𝛿𝑡
+ 𝜅∫

𝑡

0

𝑒
−𝛿(𝑡−𝑠)

𝑌 (𝑠) 𝑑𝑠. (60)

Hence, it follows from Lemma 12 that

𝑌 (𝑡) ≤ 4𝑀
2
𝑌 (0) exp {(−𝛿 + 𝜅) 𝑡} . (61)

Straightforwardly, we obtain that 𝑌(𝑡) converges to 0 expo-
nentially fast if −𝛿 + 𝜅 < 0, which is equivalent to
our condition (58). Thus, we come to the conclusion that
the unique square-mean almost automorphic mild solution
𝑋
∗
(𝑡) of (1) is asymptotically stable in square-mean sense.

The proof is completed.

4. Applications

To illustrate the applications of our abstract results, let us
consider the following nonautonomous functional integrod-
ifferential stochastic partial differential equation:

𝜕𝑋

𝜕𝑡
=
𝜕
2
𝑋

𝜕𝑥2
+ ∫

𝑡

−∞

𝐶 (𝑡 − 𝑠) 𝐺 (𝑠, 𝑋 (𝑠, 𝑥)) 𝑑𝑊 (𝑠)

+ ∫

𝑡

−∞

𝐵 (𝑡 − 𝑠) 𝐹
2
(𝑠, 𝑋 (𝑠, 𝑥)) 𝑑𝑠 + 𝐹

1
(𝑡, 𝑋 (𝑡, 𝑥))

(62)

for 𝑡 ∈ R and 𝑥 ∈ Ω, where Ω ⊂ R𝑛 is a bounded subset
whose boundary 𝜕Ω is both of class 𝐶2 and locally on one
side of Ω. Suppose further that (62) satisfies the following
boundary conditions:
𝑛

∑

𝑖,𝑗=1

𝑛
𝑖
(𝑥) 𝑎
𝑖𝑗
(𝑡, 𝑥)

𝑑𝑋 (𝑡, 𝑥)

𝑑𝑥
𝑖

= 0, 𝑡 ∈ R, 𝑥 ∈ 𝜕Ω, (63)

where 𝑛(𝑥) = (𝑛
1
(𝑥), 𝑛
2
(𝑥), . . . , 𝑛

𝑛
(𝑥)) is the outer unit

normal vector. A family of operators 𝐴(𝑡, 𝑥) defined by
𝜕
2
𝑋/𝜕𝑥
2
= 𝐴(𝑡, 𝑥)𝑋(𝑡, 𝑥) is formally assigned to be

𝐴 (𝑡, 𝑥)=

𝑛

∑

𝑖,𝑗=1

𝜕

𝜕𝑥
𝑖

(𝑎
𝑖𝑗
(𝑡, 𝑥)

𝜕

𝜕𝑥
𝑗

)+𝑐 (𝑡, 𝑥) , 𝑡∈R, 𝑥∈Ω,

(64)

where 𝑎
𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) and 𝑐 satisfy the following

conditions.

(H4) The coefficients 𝑎
𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) are symmetric,

that is, 𝑎
𝑖𝑗
= 𝑎
𝑗𝑖
for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛. In addition,

𝑎
𝑖𝑗
∈ 𝐶
𝜇

𝑏
(R;L

2
(P; 𝐶 (Ω)))

∩ 𝐶
𝑏
(R;L

2
(P; 𝐶1 (Ω)))

∩ 𝐴𝐴 (R;L
2
(P;L2 (Ω)))

(65)

for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛 and

𝑐 ∈ 𝐶
𝜇

𝑏
(R;L

2
(P;L2 (Ω))) ∩ 𝐶

𝑏
(R;L

2
(P; 𝐶 (Ω)))

∩ 𝐴𝐴 (R;L
2
(P;L1 (Ω)))

(66)
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for some 𝜇 ∈ (1/2, 1], where Ω means the closure of
Ω.

(H5) There exists 𝛿
0
> 0 such that

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑡, 𝑥) 𝜂

𝑖
𝜂
𝑗
≥ 𝛿
0

𝜂


2

(67)

for all (𝑡, 𝑥) ∈ R × Ω and 𝜂 ∈ R𝑛.

Now, let H = L2(Ω) and letH2(Ω) be the Sobolev space
of order 2 on Ω. For each 𝑡 ∈ R, define an operator 𝐴(𝑡) on
L2(P;H) by

𝐴 (𝑡)𝑋 = 𝐴 (𝑡, 𝑥)𝑋 ∀𝑋 ∈ D (𝐴 (𝑡)) , (68)

where

D (𝐴 (𝑡)) =

{

{

{

𝑋 ∈ L
2
(P,H2 (Ω)) :

𝑛

∑

𝑖,𝑗=1

𝑛
𝑖
(⋅) 𝑎
𝑖𝑗
(𝑡, ⋅)

𝑑𝑋 (𝑡, ⋅)

𝑑𝑥
𝑖

= 0 on 𝜕Ω

}

}

}

.

(69)

Under assumptions (H4)-(H5), the existence of an evolution
family 𝑈(𝑡, 𝑠) satisfying (H1) is guaranteed; see, for example,
[28].

And thus, as an immediate consequence ofTheorem 10, it
yields the following.

Theorem 14. Under assumptions (H2), (H3), (H4), and (H5),
the nonautonomous integrodifferential stochastic evolution
equation (62)-(63) has a unique mild solution which is square-
mean almost automorphic provided that (15) holds. If, in
addition, (58) is valid, then the unique almost automorphic
solution is asymptotically stable in square-mean sense.
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[21] G. M. N’Guérékata, Topics in Almost Automorphy, Springer,
New York, NY, USA, 2005.



Abstract and Applied Analysis 13

[22] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite
Dimensions, vol. 44 of Encyclopedia of Mathematics and its
Applications, Cambridge University Press, Cambridge, UK,
1992.

[23] M. Zaki, “Almost automorphic solutions of certain abstract
differential equations,”Annali di Matematica Pura ed Applicata,
vol. 101, pp. 91–114, 1974.

[24] P. Acquistapace, “Evolution operators and strong solutions of
abstract linear parabolic equations,” Differential and Integral
Equations, vol. 1, no. 4, pp. 433–457, 1988.

[25] A. Lunardi, Analytic Semigroups and Optimal Regularity in
Parabolic Problems, vol. 16 of Progress in Nonlinear Differential
Equations and Their Applications, Birkhäuser, Basel, Switzer-
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