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A relatively new iterative Laplace transformmethod, which combines twomethods; the iterativemethod and the Laplace transform
method, is applied to obtain the numerical solutions of fractional Fokker-Planck equations.Themethod gives numerical solutions in
the form of convergent series with easily computable components, requiring no linearization or small perturbation.The numerical
results show that the approach is easy to implement and straightforward when applied to space-time fractional Fokker-Planck
equations. The method provides a promising tool for solving space-time fractional partial differential equations.

1. Introduction

Fractional calculus has attracted much attention for its
potential applications in various scientific fields such as fluid
mechanics, biology, viscoelasticity, engineering, and other
areas of science [1–4]. So it becomes important to find some
efficient methods for solving fractional differential equations.
A great deal of effort has been spent on constructing of
the numerical solutions and many effective methods have
been developed such as fractional wavelet method [5–8],
fractional differential transform method [9], fractional oper-
ationalmatrixmethod [10, 11], fractional improved homotopy
perturbation method [12, 13], fractional variational iteration
method [14, 15], and fractional Laplace Adomian decomposi-
tion method [16, 17].

In 2006, Daftardar-Gejji and Jafari proposed a new
iterative method to seek numerical solutions of nonlinear
functional equations [18, 19]. By now, the iterative method
has been used to solve many nonlinear differential equations
of integer and fractional order [20] and fractional boundary
value problem [21]. Most recently, Jafari et al. firstly applied
Laplace transform in the iterative method and proposed a
new direct method called iterative Laplace transformmethod
[22] to search for numerical solutions of a systemof fractional
partial differential equations.Themethod is based on Laplace
transform, iterative method, Caputo fractional derivative,

and symbolic computation. By using this method, Jafari and
Seifi successfully obtained the numerical solutions of two
systems of space-time fractional differential equations. It has
been shown that, with this method, one can discover some
solutions found by the existing methods such as homo-
topy perturbation method, Laplace Adomian decomposition
method, and variational iterative method [23].

It is well known that the choice of an appropriate ansatz
is of great importance when a method is applied to search
for numerical solutions of nonlinear partial differential equa-
tions. In the present paper, we will use the iterative Laplace
transform method to solve space-time fractional Fokker-
Planck equations. The fractional derivatives described here
are in the Caputo sense.

Fokker-Planck equation has been applied in various nat-
ural science fields such as quantumoptics, solid-state physics,
chemical physics, theoretical biology, and circuit theory. It
is firstly proposed by Fokker and Planck to characterize
the Brownian motion of particles [24]. The general form of
Fokker-Planck equation is as follows:

𝜕𝑢

𝜕𝑡
= [−

𝜕

𝜕𝑥
𝐴 (𝑥) +

𝜕
2

𝜕𝑥2
𝐵 (𝑥)] 𝑢 (𝑥, 𝑡) (1)

with the initial condition
𝑢 (𝑥, 0) = 𝑓 (𝑥) , (2)
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where𝐴(𝑥), 𝐵(𝑥) > 0 are called diffusion coefficient and drift
coefficient, respectively. If 𝐴(𝑥), 𝐵(𝑥) > 0 depend on 𝑢(𝑥, 𝑡)
and the time 𝑡, then (1) becomes the following generalized
nonlinear form [25]:

𝜕𝑢

𝜕𝑡
= [−

𝜕

𝜕𝑥
𝐴 (𝑥, 𝑡, 𝑢) +

𝜕
2

𝜕𝑥2
𝐵 (𝑥, 𝑡, 𝑢)] 𝑢 (𝑥, 𝑡) . (3)

The space-time fractional Fokker-Planck is as follows
[26]:

𝐷
𝛼

𝑡
𝑢 = [−𝐷

𝛽

𝑥
𝐴 (𝑥, 𝑡, 𝑢) + 𝐷

2𝛽

𝑥
𝐵 (𝑥, 𝑡, 𝑢)] 𝑢 (𝑥, 𝑡) (4)

which is the generalized fractional form of (3). Here
𝐷
𝛼

𝑡
(⋅), 𝐷
𝛽

𝑥
(⋅), 𝐷
2𝛽

𝑥
(⋅) are the Caputo fractional derivative with

respect to 𝑡 and 𝑥 defined in Section 2. When 𝛼 = 𝛽 = 1, (4)
reduces to (3).

The rest of this paper is organized as follows. In Section 2,
we review some basic definitions of Caputo fractional deriva-
tive and Laplace transform. In Section 3, we describe the
iterative Laplace transform method for solving fractional
partial differential equations. In Section 4, we give three
applications of the method to Fokker-Planck equations. In
Section 5, some conclusions and discussions are given.

2. Preliminaries

Definition 1. The Caputo fractional derivative [27, 28] of
function 𝑢(𝑥, 𝑡) is defined as

𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡) =

1

Γ (𝑚 − 𝛼)
∫

𝑡

0

(𝑡 − 𝜂)
𝑚−𝛼−1

𝑢
(𝑚)
(𝑥, 𝜂) 𝑑𝜂,

𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ 𝑁,

(5)

where Γ(⋅) denotes the gamma function.

Definition 2. The Laplace transform of 𝑓(𝑡) is defined as [27,
28]

𝐹 (𝑠) =L [𝑓 (𝑡)] = ∫
∞

0

𝑒
−𝑠𝑡
𝑓 (𝑡) 𝑑𝑡. (6)

Definition 3. Laplace transform of 𝐷𝛼
𝑡
𝑢(𝑥, 𝑡) is given as [27,

28]

L [𝐷
𝛼

𝑡
𝑢 (𝑥, 𝑡)] = 𝑠

𝛼
L [𝑢 (𝑥, 𝑡)] −

𝑚−1

∑

𝑘=0

𝑢
(𝑘)
(𝑥, 0) 𝑠

𝛼−1−𝑘
,

𝑚 − 1 < 𝛼 ≤ 𝑚,

(7)

where 𝑢(𝑘)(𝑥, 0) is the 𝑘-order derivative of 𝑢(𝑥, 𝑡) at 𝑡 = 0.

Further information about fractional derivative and its
properties can be found in [27–29].

3. The Iterative Laplace Transform Method

To illustrate the basic idea of the iterative Laplace transform
method [22], we consider the general space-time fractional

partial differential equation with initial conditions of the
form

𝐷
𝛼

𝑡
𝑢 = A (𝑢,𝐷

𝛽

𝑥
𝑢,𝐷
2𝛽

𝑥
𝑢, . . .) , 𝑚 − 1 < 𝛼 ≤ 𝑚,

𝑛 − 1 < 𝛽 ≤ 𝑛, 𝑚, 𝑛 ∈ 𝑁,

(8)

with initial value conditions

𝑢
(𝑘)
(𝑥, 0) = ℎ

𝑘
(𝑥) , 𝑘 = 0, 1, . . . , 𝑚 − 1, (9)

where A(𝑢, 𝐷𝛽
𝑥
𝑢,𝐷
2𝛽

𝑥
𝑢, . . .) is a linear or nonlinear operator

of 𝑢,𝐷𝛽
𝑥
𝑢,𝐷
2𝛽

𝑥
𝑢, . . ., and 𝑢 = 𝑢(𝑥, 𝑡) is the unknown function

that will be determined later.
Taking Laplace transfer of both sides of (8) results in

𝑠
𝛼
L [𝑢 (𝑥, 𝑡)] −

𝑚−1

∑

𝑘=0

𝑠
𝛼−1−𝑘
𝑢
(𝑘)
(𝑥, 0)

=L [A (𝑢,𝐷
𝛽

𝑥
𝑢,𝐷
2𝛽

𝑥
𝑢, . . .)] .

(10)

Equivalently,

L [𝑢 (𝑥, 𝑡)] =
𝑚−1

∑

𝑘=0

𝑠
−1−𝑘
𝑢
(𝑘)
(𝑥, 0)

+ 𝑠
−𝛼
L [A (𝑢,𝐷

𝛽

𝑥
𝑢,𝐷
2𝛽

𝑥
𝑢, . . .)] .

(11)

Operating with Laplace inverse (denoted by L−1

throughout the present paper) on both sides of (11) gives

𝑢 (𝑥, 𝑡) =L
−1
[

𝑚−1

∑

𝑘=0

𝑠
−1−𝑘
𝑢
(𝑘)
(𝑥, 0)]

+L
−1
[𝑠
−𝛼
L [A (𝑢,𝐷

𝛽

𝑥
𝑢,𝐷
2𝛽

𝑥
𝑢, . . .)]] ,

(12)

which can be rewritten as the form

𝑢 (𝑥, 𝑡) =L
−1
[

𝑚−1

∑

𝑘=0

𝑠
−1−𝑘
𝑢
(𝑘)
(𝑥, 0)]

+B (𝑢,𝐷
𝛽

𝑥
𝑢,𝐷
2𝛽

𝑥
𝑢, . . .) ,

(13)

where B(𝑢, 𝐷𝛽
𝑥
𝑢,𝐷
2𝛽

𝑥
𝑢, . . .) = L−1[𝑠−𝛼L[A(𝑢, 𝐷𝛽

𝑥
𝑢,𝐷
2𝛽

𝑥
𝑢,

. . .)]].
The iterative Laplace transform method represents the

solution as an infinite series:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=0

𝑢
𝑛
, (14)
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where the terms 𝑢
𝑛
are to be recursively computed. The

linear or nonlinear operator B(𝑢, 𝐷𝛽
𝑥
𝑢,𝐷
2𝛽

𝑥
𝑢, . . .) can be

decomposed as follows:

B(
∞

∑

𝑛=0

𝑢
𝑛
, 𝐷
𝛽

𝑥

∞

∑

𝑛=0

𝑢
𝑛
, 𝐷
2𝛽

𝑥

∞

∑

𝑛=0

𝑢
𝑛
, . . .)

=B (𝑢
0
, 𝐷
𝛽

𝑥
𝑢
0
, 𝐷
2𝛽

𝑥
𝑢
0
, . . .)

+

∞

∑

𝑗=1

B(

𝑗

∑

𝑘=0

𝑢
𝑘
, 𝐷
𝛽

𝑥

𝑗

∑

𝑘=0

𝑢
𝑘
, 𝐷
2𝛽

𝑥

𝑗

∑

𝑘=0

𝑢
𝑘
, . . .)

−

∞

∑

𝑗=1

B(

𝑗−1

∑

𝑘=0

𝑢
𝑘
, 𝐷
𝛽

𝑥

𝑗−1

∑

𝑘=0

𝑢
𝑘
, 𝐷
2𝛽

𝑥

𝑗−1

∑

𝑘=0

𝑢
𝑘
, . . .) .

(15)

Substituting (14) and (15) into (13) yields

∞

∑

𝑛=0

𝑢
𝑛
=L
−1
[

𝑚−1

∑

𝑘=0

𝑠
−1−𝑘
𝑢
(𝑘)
(𝑥, 0)]

+B (𝑢
0
, 𝐷
𝛽

𝑥
𝑢
0
, 𝐷
2𝛽

𝑥
𝑢
0
, . . .)

+

∞

∑

𝑗=1

[B(

𝑗

∑

𝑘=0

𝑢
𝑘
, 𝐷
𝛽

𝑥

𝑗

∑

𝑘=0

𝑢
𝑘
, 𝐷
2𝛽

𝑥

𝑗

∑

𝑘=0

𝑢
𝑘
, . . .)

−B(

𝑗−1

∑

𝑘=0

𝑢
𝑘
, 𝐷
𝛽

𝑥

𝑗−1

∑

𝑘=0

𝑢
𝑘
, 𝐷
2𝛽

𝑥

𝑗−1

∑

𝑘=0

𝑢
𝑘
, . . .)] .

(16)

We set

𝑢
0
=L
−1
[

𝑚−1

∑

𝑘=0

𝑠
−1−𝑘
𝑢
(𝑘)
(𝑥, 0)] ,

𝑢
1
=B (𝑢

0
, 𝐷
𝛽

𝑥
𝑢
0
, 𝐷
2𝛽

𝑥
𝑢
0
, . . .) ,

𝑢
𝑚+1
=B(

𝑚

∑

𝑘=0

𝑢
𝑘
, 𝐷
𝛽

𝑥

𝑚

∑

𝑘=0

𝑢
𝑘
, 𝐷
2𝛽

𝑥

𝑚

∑

𝑘=0

𝑢
𝑘
, . . .)

−B(
𝑚−1

∑

𝑘=0

𝑢
𝑘
, 𝐷
𝛽

𝑥

𝑚−1

∑

𝑘=0

𝑢
𝑘
, 𝐷
2𝛽

𝑥

𝑚−1

∑

𝑘=0

𝑢
𝑘
, . . .) , 𝑚 ≥ 1.

(17)

Therefore the 𝑚-term numerical solution of (8)-(9) is
given by

𝑢 (𝑥, 𝑡) ≅ 𝑢
0
(𝑥, 𝑡) + 𝑢

1
(𝑥, 𝑡) + ⋅ ⋅ ⋅ + 𝑢

𝑚
(𝑥, 𝑡) ,

𝑚 = 1, 2, . . . .

(18)

4. Numerical Solutions of Fractional
Fokker-Planck Equations

The iterative Laplace transform method, described in
Section 3, will be applied to solve three special cases of
space-time fractional Fokker-Planck equations with initial
conditions.

Example 1. Consider the Fokker-Planck equation in the case
that [30]

𝐷
𝛼

𝑡
𝑢 =
𝜕𝑢

𝜕𝑥
+
𝜕
2
𝑢

𝜕𝑥2
, 0 < 𝛼 ≤ 1, (19)

subject to

𝑢 (𝑥, 0) = 𝑥. (20)

Taking Laplace transform on both sides of (19) gives

𝑠
𝛼
L [𝑢 (𝑥, 𝑡)] − 𝑠

𝛼−1
𝑢 (𝑥, 0) =L[

𝜕𝑢

𝜕𝑥
+
𝜕
2
𝑢

𝜕𝑥2
] , (21)

L [𝑢 (𝑥, 𝑡)] =
𝑥

𝑠
+
1

𝑠𝛼
L[
𝜕𝑢

𝜕𝑥
+
𝜕
2
𝑢

𝜕𝑥2
] . (22)

Operating with Laplace inverse on both sides of (22)
results in

𝑢 (𝑥, 𝑡) = 𝑥 +L
−1
[
1

𝑠𝛼
L[
𝜕𝑢

𝜕𝑥
+
𝜕
2
𝑢

𝜕𝑥2
]] . (23)

Substituting (14) and (15) into (23) and applying (17), we
obtain the components of the solution as follows:

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) = 𝑥,

𝑢
1
(𝑥, 𝑡) =L

−1
[
1

𝑠𝛼
L[
𝜕𝑢
0

𝜕𝑥
+
𝜕
2
𝑢
0

𝜕𝑥2
]] =

𝑡
𝛼

Γ (1 + 𝛼)
,

𝑢
2
(𝑥, 𝑡) = 0,

𝑢
3
(𝑥, 𝑡) = ⋅ ⋅ ⋅ = 𝑢

𝑛
(𝑥, 𝑡) = ⋅ ⋅ ⋅ = 0.

(24)

Therefore, the solution of (19)-(20) in a closed form can
be obtained as follows:

𝑢 (𝑥, 𝑡) = 𝑥 +
𝑡
𝛼

Γ (1 + 𝛼)
. (25)

If we take 𝛼 = 1, then (25) can be reduced to

𝑢 (𝑥, 𝑡) = 𝑥 + 𝑡, (26)

which is exactly the same as that obtained by homotopy
perturbation method in [30].

It should be pointed out that the iterative Laplace trans-
form method is the generalization algorithm of iterative
method proposed by Daftardar-Gejji and Jafari [18]. When
these two methods are used to solve differential equations
with integer order derivatives, especially for linear cases, they
are not different from each other.

Example 2. Consider the following space-time fractional
Fokker-Planck equation with initial value conditions [26]:

𝐷
𝛼

𝑡
𝑢 = −𝐷

𝛽

𝑥
(
𝑢𝑥

6
) + 𝐷

2𝛽

𝑥
(
𝑢𝑥
2

12
) ,

𝑡 > 0, 𝑥 > 0, 0 < 𝛼, 𝛽 ≤ 1,

(27)
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subject to

𝑢 (𝑥, 0) = 𝑥
2
. (28)

Taking Laplace transform on both sides of (27) gives

𝑠
𝛼
L [𝑢 (𝑥, 𝑡)] − 𝑠

𝛼−1
𝑢 (𝑥, 0)

=L[−𝐷
𝛽

𝑥
(
𝑢𝑥

6
) + 𝐷

2𝛽

𝑥
(
𝑢𝑥
2

12
)] ,

(29)

L [𝑢 (𝑥, 𝑡)]

=
𝑢 (𝑥, 0)

𝑠
+
1

𝑠𝛼
L[−𝐷

𝛽

𝑥
(
𝑢𝑥

6
) + 𝐷

2𝛽

𝑥
(
𝑢𝑥
2

12
)] .

(30)

Operating with Laplace inverse on both sides of (30), we
obtain the following Laplace equation:

𝑢 (𝑥, 𝑡)

= 𝑢 (𝑥, 0) +L
−1
[
1

𝑠𝛼
L[−𝐷

𝛽

𝑥
(
𝑢𝑥

6
) + 𝐷

2𝛽

𝑥
(
𝑢𝑥
2

12
)]] .

(31)

Following the algorithm given in (17), the first three compo-
nents of the solution are as follows:

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) = 𝑥

2
,

𝑢
1
(𝑥, 𝑡)

=L
−1
[
1

𝑠𝛼
L[−𝐷

𝛽

𝑥
(
𝑢
0
𝑥

6
) + 𝐷

2𝛽

𝑥
(
𝑢
0
𝑥
2

12
)]]

= (−
1

Γ (4 − 𝛽)
𝑥
3−𝛽
+

2

Γ (5 − 2𝛽)
𝑥
4−2𝛽
) ⋅

𝑡
𝛼

Γ (1 + 𝛼)
,

𝑢
2
(𝑥, 𝑡)

= [
4 − 𝛽

6Γ (5 − 2𝛽)
𝑥
4−2𝛽
−
5 − 3𝛽

3Γ (6 − 3𝛽)
𝑥
5−3𝛽

−
(5 − 𝛽) (4 − 𝛽)

12Γ (6 − 3𝛽)
𝑥
5−3𝛽
+
(6 − 2𝛽) (5 − 2𝛽)

6Γ (7 − 4𝛽)

× 𝑥
6−4𝛽
] ⋅

𝑡
2𝛼

Γ (1 + 2𝛼)
.

(32)

The solution in series form is then given by

𝑢 (𝑥, 𝑡)

= 𝑥
2
+ (−

1

Γ (4 − 𝛽)
𝑥
3−𝛽
+

2

Γ (5 − 2𝛽)
𝑥
4−2𝛽
) ⋅

𝑡
𝛼

Γ (1 + 𝛼)

+ [
4 − 𝛽

6Γ (5 − 2𝛽)
𝑥
4−2𝛽
−
5 − 3𝛽

3Γ (6 − 3𝛽)
𝑥
5−3𝛽

−
(5 − 𝛽) (4 − 𝛽)

12Γ (6 − 3𝛽)
𝑥
5−3𝛽
+
(6 − 2𝛽) (5 − 2𝛽)

6Γ (7 − 4𝛽)
𝑥
6−4𝛽
]

⋅
𝑡
2𝛼

Γ (1 + 2𝛼)
+ ⋅ ⋅ ⋅ .

(33)

Setting 𝛼 = 𝛽 = 1 in (33), we get the solution of the
problem by

𝑢 (𝑥, 𝑡) = 𝑥
2
(1 +

𝑡

2
+
(𝑡/2)
2

2!
+ ⋅ ⋅ ⋅ ) (34)

and in a closed form by

𝑢 (𝑥, 𝑡) = 𝑥
2
𝑒
𝑡/2 (35)

which is in full agreement with the results by homotopy
perturbation method in [26].

Example 3. Consider the following space-time fractional
nonlinear initial value problem that describes Fokker-Planck
equation [12]:

𝐷
𝛼

𝑡
𝑢 = −𝐷

𝛽

𝑥
(
4𝑢
2

𝑥
−
𝑥𝑢

3
) + 𝐷

2𝛽

𝑥
𝑢
2
, 0 < 𝛼, 𝛽 ≤ 1, (36)

subject to

𝑢 (𝑥, 0) = 𝑥
2
. (37)

Taking Laplace transform on both sides of (35) gives

𝑠
𝛼
L [𝑢 (𝑥, 𝑡)] − 𝑠

𝛼−1
𝑢 (𝑥, 0)

=L[−𝐷
𝛽

𝑥
(
4𝑢
2

𝑥
−
𝑥𝑢

3
) + 𝐷

2𝛽

𝑥
𝑢
2
] ,

(38)

L [𝑢 (𝑥, 𝑡)] =
𝑥
2

𝑠
+
1

𝑠𝛼
L[−𝐷

𝛽

𝑥
(
4𝑢
2

𝑥
−
𝑥𝑢

3
) + 𝐷

2𝛽

𝑥
𝑢
2
] .

(39)

Operating with Laplace inverse on both sides of (38), we
obtain the following Laplace equation:

𝑢 (𝑥, 𝑡) = 𝑥
2
+L
−1
[
1

𝑠𝛼
L[−𝐷

𝛽

𝑥
(
4𝑢
2

𝑥
−
𝑥𝑢

3
) + 𝐷

2𝛽

𝑥
𝑢
2
]] .

(40)
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Table 1: Several approximate values and exact solutions for (36) and (37) when 𝛼 = 𝛽 = 1.

𝑥 𝑡 SolutionILTM SolutionHPM SolutionADM Exact solution

0.25

0.1 0.0690729 0.0690729 0.0690729 0.0690732
0.2 0.0763333 0.0763333 0.0763333 0.0763377
0.4 0.0931667 0.0931667 0.0931667 0.093239
0.8 0.137833 0.137833 0.137833 0.139096

0.5

0.1 0.276292 0.276292 0.276292 0.276293
0.2 0.305333 0.305333 0.305333 0.305351
0.4 0.372667 0.372667 0.372667 0.372956
0.8 0.551333 0.551333 0.551333 0.556385

0.75

0.1 0.621656 0.621656 0.621656 0.621659
0.2 0.687 0.687 0.687 0.687039
0.4 8385 0.8385 0.8385 0.839151
0.8 1.2405 1.2405 1.2405 1.25187

Following the algorithm given in (17), the first few
components of the solution are as follows:

𝑢
0
(𝑥, 𝑡) = 𝑥

2
,

𝑢
1
(𝑥, 𝑡) =L

−1
[
1

𝑠𝛼
L[−𝐷

𝛽

𝑥
(
4𝑢
2

0

𝑥
−
𝑥𝑢
0

3
) + 𝐷

2𝛽

𝑥
𝑢
2

0
]]

= (−
22

Γ (4 − 𝛽)
𝑥
3−𝛽
+

24

Γ (5 − 2𝛽)
𝑥
4−2𝛽
)

⋅
𝑡
𝛼

Γ (1 + 𝛼)
,

𝑢
2
(𝑥, 𝑡)

=L
−1
[
1

𝑠𝛼
L [−𝐷

𝛽

𝑥
(
4(𝑢
0
+ 𝑢
1
)
2

𝑥
−
𝑥 (𝑢
0
+ 𝑢
1
)

3
)

+𝐷
2𝛽

𝑥
(𝑢
0
+ 𝑢
1
)
2

]]

−L
−1
[
1

𝑠𝛼
L[−𝐷

𝛽

𝑥
(
4𝑢
2

0

𝑥
−
𝑥𝑢
0

3
) + 𝐷

2𝛽

𝑥
𝑢
2

0
]]

= −
Γ (1 + 2𝛼) Γ (8 − 4𝛽)

Γ2 (1 + 𝛼) Γ (1 + 3𝛼) Γ (8 − 5𝛽) Γ (5 − 2𝛽)

⋅ (
2304

Γ (5 − 2𝛽)
+
1056

Γ (4 − 𝛽)
) 𝑡
3𝛼
𝑥
7−5𝛽

−
1

Γ (1 + 2𝛼) Γ (6 − 3𝛽)
(
184Γ (6 − 2𝛽)

Γ (5 − 2𝛽)
+
44Γ (6 − 𝛽)

Γ (4 − 𝛽)
)

⋅ 𝑡
2𝛼
𝑥
5−3𝛽

+
Γ (1 + 2𝛼)

Γ2 (1 + 𝛼) Γ (1 + 3𝛼) Γ (7 − 4𝛽) Γ (4 − 𝛽)

× (
484Γ (7 − 2𝛽)

Γ (4 − 𝛽)
+
4224Γ (7 − 3𝛽)

Γ (5 − 2𝛽)
) ⋅ 𝑡
3𝛼
𝑥
6−4𝛽

+
506Γ (5 − 𝛽)

3Γ (1 + 2𝛼) Γ (5 − 2𝛽) Γ (4 − 𝛽)
⋅ 𝑡
2𝛼
𝑥
4−2𝛽

−
1936Γ (1 + 2𝛼) Γ (6 − 2𝛽)

Γ2 (1 + 𝛼) Γ (1 + 3𝛼) Γ (6 − 3𝛽) Γ2 (4 − 𝛽)
⋅ 𝑡
3𝛼
𝑥
5−3𝛽

+
576Γ (1 + 2𝛼) Γ (9 − 4𝛽)

Γ2 (1 + 𝛼) Γ (1 + 3𝛼) Γ (8 − 5𝛽) Γ2 (5 − 2𝛽)
⋅ 𝑡
3𝛼
𝑥
8−6𝛽

+
48Γ (7 − 2𝛽)

Γ (1 + 2𝛼) Γ (7 − 4𝛽) Γ (5 − 2𝛽)
⋅ 𝑡
2𝛼
𝑥
6−4𝛽

+ (
22

Γ (4 − 𝛽)
𝑥
3−𝛽
−

24

Γ (5 − 2𝛽)
𝑥
4−2𝛽
) ⋅

𝑡
𝛼

Γ (1 + 𝛼)
,

...
(41)

The solution in series form is then given by

𝑢 (𝑥, 𝑡) = 𝑢
0
(𝑥, 𝑡) + 𝑢

1
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡) + ⋅ ⋅ ⋅ . (42)

If we take 𝛼 = 𝛽 = 1, the first few components of the solution
are as follows:

𝑢
0
(𝑥, 𝑡) = 𝑥

2
,

𝑢
1
(𝑥, 𝑡) = 𝑥

2
𝑡,

𝑢
2
(𝑥, 𝑡) =

𝑥
2
𝑡
2

2
,

...

(43)

For this special case, the exact solution of (36) and (37) is
therefore given by

𝑢 (𝑥, 𝑡) = 𝑥
2
𝑒
𝑡 (44)

which is exactly the result obtained by homotopy perturba-
tion transformation method in [12].
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Table 1 shows the numerical solutions for (36) and (37)
by using iterative Laplace transform method, homotopy
perturbation transform method, Adomian decomposition
method, and the exact solution as 𝛼 = 𝛽 = 1. It should be
pointed out that only three terms of these methods are used
to evaluate the numerical solutions in Table 1. It is obvious
that the iterative Laplace transform method used in the
present paper has the same convergence as the convergence
of homotopy perturbation transform method and Adomian
decomposition method for solving this fractional nonlinear
Fokker-Planck equation. Therefore, iterative Laplace trans-
form method is an effective method for solving fractional
partial differential equations just as homotopy perturbation
transform method and Adomian decomposition method.

5. Conclusions

With the aid of the symbolic computation system Math-
ematica, the iterative Laplace transform method is first
successfully applied to solve fractional Fokker-Planck equa-
tions. The results obtained by the iterative Laplace transform
method are the same as those obtained by homotopy per-
turbation transform method and Adomian decomposition
method. The method finds the solutions without unneces-
sary linearization, small perturbation and other restrictive
assumptions.Therefore, themethod considerably reduces the
computational work to a great extent. It is worth mentioning
that the method can also be applied to solve other nonlinear
fractional differential equations with initial value conditions.
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