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We obtain the approximate analytical solution for the fractional quadratic Riccati differential equation with the Riemann-Liouville
derivative by using the Bernstein polynomials (BPs) operational matrices. In this method, we use the operational matrix for
fractional integration in the Riemann-Liouville sense. Then by using this matrix and operational matrix of product, we reduce
the problem to a system of algebraic equations that can be solved easily. The efficiency and accuracy of the proposed method are

illustrated by several examples.

1. Introduction

The Riccati differential equation is named after the Italian
Nobleman Count Jacopo Francesco Riccati (1676-1754). The
book of Reid [1] contains the fundamental theories of the
Riccati equation, with applications to random processes,
optimal control, and diffusion problems. Moreover, it is well
known that the one-dimensional static Schrédinger equation
is closely related to a Riccati differential equation [2]. Solitary
wave solution of a nonlinear partial differential equation can
be represented as a polynomial in two elementary functions
satisfying a projective Riccati equation [3].

In this paper, we are dealing with the fractional quadratic
Riccati differential equation as follows:

DEyt)=fO+b®)y® +a®)y*(t), a<t<b, (1)

subject to the initial conditions

YO @) =35 k=01,...,[a]-1, )

where ys (k=0,1,...,[«] — 1) are constants and a(t), b(t),
and f(t) are known functions. We can see [4] to guarantee
the existence and uniqueness of the solution of (1) with initial
conditions (2).

The general response expression (1) contains a parameter
«, the order of the fractional derivative that can be varied to
obtain various responses. In the case that « is integer, then (1)
is reduced to the classical Riccati differential equation.

This problem to develop the analytical and numerical
method to solve the Riccati differential equation with stan-
dard derivative, the Caputo fractional derivative and the
Riemann-Liouville fractional derivative, has attracted much
attention and has been studied by many authors [5-18].

The aim of this work is using the Bernstein polynomials
for solving the problem (1) and (2). We notice that the
problem presented [18] was in the Caputo sense but in our
work, the problem is with the Riemann-Liouville derivative;
therefore we considered a more general space of functions.
Also, in [18], the authors used the polynomials in the form of



B, (x)=(7) x4(1 = x*™" (i=0,1,...,m) that is different
from the standard Bernstein polynomials. So, the operational
matrices in this work are different from those in [18].

The organization of this paper is as follows. In Section 2,
the Bernstein polynomials are introduced. Some basic defi-
nitions and properties of the fractional calculus and also the
BPs operational matrix for the Riemann-Liouville fractional
integration are presented in Section 3. In Section 4, by BPs
operational matrices, we solve the fractional quadratic Riccati
differential equation. In Section 5, we discuss the convergence
of the proposed method. In Section 6, several examples are
considered to evaluate the power and effectiveness of the
presented method. Some conclusions are summarized in the
last section.

2. The Bernstein Polynomials and
Their Properties

On the interval [0, 1] we define the Bernstein polynomials
(BPs) of mth degree as follows [19]:

B, (x) = <T> x(1-x)"",

Set {By,,,(x), By ,,(x),...,
L*[0,1] is a complete basis. We can write D, (x)

i=0,1,...,m. (3)

B,,,(x)} in the Hilbert space
= AT, (x),
where A is a matrix upper triangular, T,,(x) = [1, x, ...
and ®@,,(x) = [By ,,(x), By ,(x), ..., Bm’m(x)]T [20].
As a result, any polynomial of degree m can be expanded

T
,xM,

in terms of linear combination of B; ,,(x) (i = 0,1,...,m) as
given below:
P(x) = Y 6B, (x) =’ ®,, (x), (4)
i=0

where
-1

c=<Ll®(x)®(x)de> <J01P(x)®(x)dx>. 5)

The approximation of functions within the Bernstein polyno-
mials and convergence analysis can be found in [20, 21].

3. BPs Operational Matrix for the
Riemann-Liouville Fractional Integration

In this section, firstly, we give some basic definitions and
properties of the fractional calculus which are used further
in this paper.

Definition 1 (see [4, 22-24]). Let « > 0; the operator ulf‘,
defined on L, [a, b] by

IEf () = J(t—x)“ f(x)dx, a<t<b,

T () (6)
JFO=f0,

is called the Riemann-Liouville fractional integral operator of

order a.
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Definition 2 (see [4, 22-24]). Let « > 0 and n = [«a]; the
operator Dy, defined by

roala) L€

=f®,

is called the Riemann-Liouville fractional derivative operator
of order a.

Dl f(t) = - x)"7 f (%) dx,

a<t<hb, @)

DL f

Definition 3 (see [4, 22-24]). Let « > 0, n = [«a], and
d"f(x)/dx" € L,[a,b]. The operator ZD;X, defined by

PO toa ),

D)= fO),

is called the Caputo fractional derivative operator of order a.

Lemma4. Ifa >0,n=[al,anda <t < b, then

(1) DF I f6) =f@®), )
c f(k k
@) I} .Df f(t)—f(t)—z - a), (10)
n—1 (k)

DY FB) = DE ()Y —d @ ke

(3) ,Df f (1) = ,Dff () I;F(k_aﬂ)(x ).
(1)
Proof. See [22-24]. O

Theorem 5. One can get BPs operational matrix F, from
order (m + 1) x (m + 1) for the Riemann-Liouville fractional
integral as

t

'O, (t) = ﬁj (t

Proof. See [21]. O

-x)"'®,, (x)dx = E,®,, ().
(12)

4. BPs for Solving the Fractional Quadratic
Riccati Differential Equation

Firstly, we use the initial conditions to reduce a given initial-
value problem to a problem with zero initial conditions.
So, we define

y®)=y@)+z(), (13)

where y(t) is some known function that satisfied the initial
conditions (2) and z(t) is a new unknown function.
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Substituting (13) in (1) and (2), we have an initial-value
problem as follows:

Dizt)=fO+b®Mzt)+at)z’ (t), a<t<b,

(14)
subject to the initial conditions
29 @=0 k=01, a]-1 (15)
On the other hand, by (11) in Lemma 4 we can write
‘Dfz(t)= Dfz(t). (16)

Also, by using Lemma 3.3 in [20] the inputs f(t), a(r), o(r),
and Dj z(t) can be approximated as follows:

f(t)~Fo, 1), 17)
Diz@t)=C'o, (1), (18)
ait)=~A"o, (1), (19)
b(t)~B'®,, (1), (20)

where F, A, and B are known (m + 1) column vectors and C
is an unknown (m + 1) column vector.
From (10), (15), (16), (18), and (12), we have

z (t)
n—lz(k) (61)

c
YD z() + ,;) Z

(x —a)f e I Dy z (1)

(10) )

T
o i DEEO = (C'o,, @)

=C' IY,, (t) 5 C'E,®,, (t)

= C,®,, (1),
(21)

where CI = C'F,.
Now, by substituting (17)-(21) into (14), we obtain

C'®,, (t) = F'®,, (t) + B'®,, (t) ©,,(1) F.C+ AT®,, ()
x (C"F,@,, (t) ®,,(t) F,C)
=F'o, (t)+B @, )0, C,+AT®,, ()

x(Clo, (H®,1'C,).

(22)
Then, from Lemma 3.5 in [20] we have
Cro,, (x) ©,,(x)" = ,,(x)"C,, (23)
ATo, (x)@,,(x)" =, (x)" A, (24)
B'®, (x)®,,(x)" = @, (x)"B. (25)

Therefore we can reduce (22) by (23)-(25) as

c'o, (t)=F'®, t)+®, () 'BC,+d,() AC,C,.
(26)

Finally, we obtain the following nonlinear system of algebraic
equation:

C=F+BC,+AC,C,, (27)

such that by solving this system we can obtain the vector C.
Then, we can get

y(t) = 7 (1) +C"F,®,, (t). (28)

5. Convergence Analysis

In this section, we investigate the convergence analysis for the
method presented in Section 4.
The problem (14) changes to the following problems

Dzt =f)y+b@) (IF Dfz (1)

(29)
+a)(,IF Diz(1), a<t<b,
since
n-1_(k)
o C o3 zZ a
() 5 Jf D20+ k'( ) (x — a)f
k=0 (30)

o C (¢4 (24 (24
(125) L JDs z (t) (126) L Ds z(t).

By taking u(t) = _D; z(t) we obtain the following fractional
integral equation:

u®)=fO+b@®) JFu®)+a® (I u®),

a<t<hb.

31

If we use the approximation u(t) =~ CT®, (t), then the
problem (31) from space C'10, 1] reduces to the following
problem in space S,,, = Span{B, ,(t), B ,,,(t), ..., B, ,,(t)}:

c'o,t)=f®O+b@) I (C'o, 1))
(32)

2
, a<t<hb.

+at) (1 (C"o, 1))

Now, similar to Theorem 6.1 in [21], we propose the next
theorem.

Theorem 6. Suppose thatu™ () € C'[0, 1] is the exact solution
of (31) and p,, = J[u,,] = Min,cg, J[ul, where

T = ut)- FO -b@) Ju® -a@ (L u®)].
(33)

Then one has p,, — 0asm — oo (ie., u,(t) — u*(t)as
m — 00).



Proof. By substituting (33) instead of (41) in [21], we can use
the proof of Theorem 6.1 in [21]. O

Theorem 7. Suppose thatu™(t) € C'[0, 1] is the exact solution
of (31) and u,,(t) € S, is the obtained solution of (26). Then
one has u,,(t) — u*(t) asm — oo.

Proof. Substituting (17), (19), (20), and (12) in (32) we have
T T M
c’o, (t) = (F (I)M(t)+ef)

+(B @y (1) + ;') (CT (F,@p (1) + E7'))
+(ATDy (1) + M) (CT (Eydy (1) + M)
(34)
From Lemmas 2.3 and 4.11in [21], we have el}ff, egf, e{a-w, E?/I —
0as M — o00. So we can observe that as M increases, (34)
gets close to (32). Now, by taking M = m we propose the
following problem that gets close to (32) as m increases:

c'o, (t)= Fro,, (1) + B"®, (1) @,,(t)"C,
(35)
+ATo,, (1) (Cro, (1) ©,0)C,).

Then by (23) and (25), (35) reduces to the following equation:

o, (t) = F O, (t) + (CDM(t)TE + Eff) C,
(36)
+ ATq)m (t) ((QM(t)Téa + Ev]c\i) Coc) .

Equation (36) gets to (35) as M — 0o, because from
Lemma 3.1 in [21] E?,Eg — 0as M — oo. Then by

deleting Eg/f, Eé/f, taking M = m, and using (24) in (36), we
have

c'o,, (t)= F'o,,(t) + ,,(t) BC,
o (37)
+(0y®" A+ EY)C,C,

where, from Lemma 3.1 in [21], Eﬁ‘f — 0as M — oo.
Now, by taking M = m and deleting EY' in (37), we get
(26). Obviously, if ,,(t) is solution of (32), then we have
u,,— u, — O0asm — oo.

On the other hand, from Theorem 6 we obtained #,, —
u* asm — 00. Therefore we can writeu,, — u*asm — o
and the proof is complete. O

6. Illustrative Numerical Examples

In this section, we apply our method with m = 10 (BPs of
degree m = 10) to solve the following examples. We define
y,(t) and y(t) for the approximate solution and the exact
solution, respectively.

Example 1. Consider the nonlinear Riccati differential equa-
tion [14]:

DEy) =-y)*+1, 0<t<l, (38)
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FIGURE 1: Behavior of the absolute error function in Example 1 for
a = 1landm = 10.
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FIGURE 2: Behavior of y,,(t) in Example 1 for different « and exact
solution for o = 1.

subject to the initial condition as y(0) = 0. The exact solution
of the equation for a = 1 is given as

|

= (39)
et +1

y ()

Numerical results compared to [14] are given in Table 1 and
also Figure 1 shows the absolute error for our method for o =
1 and Figure 2 shows behavior y,,(t) for different values of «.

Example 2. Consider the following quadratic Riccati differ-
ential equation of fractional order [14]

DEy) =2yt) -y’ +1, 0<t<1,  (40)

subject to the initial condition as y(0) = 0. The exact solution
of the equation for « = 1 is given as

1 V2-1
y(t):1+\/§tanh<\/§t+zlog<\/§+l>>. (41)

Numerical results compared to [14] are given in Table 2 and
also, Figure 3 shows the absolute error for our method for o =
1 and Figure 4 shows behavior y,,(t) for different values of «.
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TABLE 1: Numerical results for « = 1 and m = 10 in Example 1 with
comparison to exact solution and [14].

TABLE 4: Numerical results for &« =
comparison to [25, 26].

2.5 in Example 3 with

Present method

Present method

t Exact Reference [14] t ADM [25] FDTM [26]
m =10 m =10
0.1 0.099668 0.099668 0.099668 0.1 0.000952 0.000952 0.000952
0.2 0.197375 0.197375 0.197375 0.2 0.005383 0.005383 0.005383
0.3 0.291313 0.291313 0.291313 0.3 0.014833 0.014833 0.014833
0.4 0.379949 0.379949 0.379944 0.4 0.030450 0.030450 0.030450
0.5 0.462117 0.462117 0.462078 0.5 0.053197 0.053197 0.053197
0.6 0.537050 0.537050 0.536857 0.6 0.083925 0.083925 0.083925
0.7 0.604368 0.604368 0.603631 0.7 0.123412 0.123412 0.123412
0.8 0.664037 0.664037 0.661706 0.8 0.172391 0.172391 0.172391
0.9 0.716298 0.716298 0.709919 0.9 0.231574 0.231574 0.231574
1 0.761594 0.761594 0.746032 1 0.301676 0.301676 0.301676
x1077
TABLE 2: Numerical results for « = 1 and m = 10 in Example 2 with T T T T
comparison to exact solution and [14]. 1k ]
t Exact Present method Reference [14] = 08 4
m =10 =
0.1 0.110295 0.110295 0.110294 g 0.6 - ]
0.2 0.241977 0.241977 0.241965 %
0.3 0.395105 0.395105 0.395106 E 041 ]
0.4 0.567812 0.567812 0.568115 P ]
0.5 0.756014 0.756014 0.757564
0.6 0.953566 0.953566 0.958259 0 k. L L L e
0.7 1152949 1152949 1163459 0 0.2 0.4 0.6 0.8 1
0.8 1346364 1346364 1365240 t
0.9 1.526911 1.526911 1.554960 FIGURE 3: Behavior of the absolute error function in Example 2 for
1 1.689499 1.689499 1.723810 a=1andm = 10.

TABLE 3: Numerical results for « =
comparison to [25-27].

1.5 in Example 3 with

Present method

t ADM [25] FDTM [26]  BPFs [27]
m =10
0.1 0.023779 0.023790 0.023790 0.023800
0.2 0.067336 0.067330 0.067330 0.067335
0.3 0.123886 0.123896 0.123896 0.123900
0.4 0.191373 0.191362 0.191362 0.191368
0.5 0.268851 0.268856 0.268856 0.268862
0.6 0.356235 0.356238 0.356238 0.356244
0.7 0.453958 0.453950 0.453950 0.453956
0.8 0.562999 0.563007 0.563007 0.563014
0.9 0.685066 0.685056 0.685056 0.685067
1 0.822540 0.822511 0.822509 0.822525

Example 3. Consider the nonlinear fractional differential
equation:

0Df‘y(t)zyz(t)+l, 0<t<l,n-1<a<n (42)

with the initial conditions
y9©0)=0, k=0,1,...,n-1. (43)

This problem has been studied by using ADM [25], FDTM
[26], and BPFs [27]. Our results with « = 1.5, « = 2.5 are
compared to [25-27] in Tables 3 and 4. Therefore, we see that
our method is very effective and obtained solutions that are
in good agreement with the results in [25-27]. Also, Figure 5
shows behavior y,,(t) for different values of «.

7. Conclusion

In this paper, we proposed a numerical method for solving
the fractional quadratic Riccati differential equations by
the operational matrices of the Bernstein polynomials. We
applied operational matrix for fractional integration in the
Riemann-Liouville sense. Then by using this matrix and
operational matrix of product, we reduced the fractional
quadratic Riccati differential equation to a system of algebraic
equations that can be solved easily. Finally, examples have
been simulated to demonstrate the high performance of the
proposed method. We saw that the results were in good
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FIGURE 4: Behavior of y,,(¢) in Example 2 for different & and exact
solution for & = 1.

FIGURE 5: Plot of y,,(¢) for different « in Example 3.

agreement with the analytical solutions and the solutions in
the open literatures. Also, we observed that the solutions
approach to classical solutions as the order of the fractional
derivatives approaches 1, for fixed m.
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