
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 453689, 13 pages
http://dx.doi.org/10.1155/2013/453689

Research Article
Cascading Dynamics of Heterogenous Scale-Free Networks with
Recovery Mechanism

Shudong Li,1,2 Zhongtian Jia,3 Aiping Li,2 Lixiang Li,4 Xinran Liu,5 and Yixian Yang4

1 College of Mathematics and Information Science, Shandong Institute of Business and Technology, Yantai, Shandong 264005, China
2 School of Computer Science, National University of Defense Technology, Changsha, Hunan 410073, China
3 Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China
4 Information Security Center, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876, China
5 National Computer Network Emergency Response Technical Team/Coordination Center, Beijing 100029, China

Correspondence should be addressed to Shudong Li; leeshudong79@163.com

Received 11 November 2013; Accepted 6 December 2013

Academic Editor: Shuping He

Copyright © 2013 Shudong Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In network security, how to use efficient response methods against cascading failures of complex networks is very important. In
this paper, concerned with the highest-load attack (HL) and random attack (RA) on one edge, we define five kinds of weighting
strategies to assign the external resources for recovering the edges fromcascading failures in heterogeneous scale-free (SF) networks.
The influence of external resources, the tolerance parameter, and the different weighting strategies on SF networks against cascading
failures is investigated carefully. We find that, under HL attack, the fourth kind of weighting method can more effectively improve
the integral robustness of SF networks, simultaneously control the spreading velocity, and control the outburst of cascading failures
in SF networks than other methods. Moreover, the third method is optimal if we only knew the local structure of SF networks and
the uniform assignment is the worst. The simulations of the real-world autonomous system in, Internet have also supported our
findings. The results are useful for using efficient response strategy against the emergent accidents and controlling the cascading
failures in the real-world networks.

1. Introduction

The robustness properties of complex networks subject
to either random breakdown or intentional attacks have
attracted considerable interest [1, 2], due to the blackouts
in US power grids [3, 4], the large-scale congestion in the
Internet [5], and the electrical blackout in Italy [6]. These
accidents have threatened the network safety and resulted in
enormous loss in economy.

As a result, many issues have been investigated carefully,
including the robustness of the topological structure of net-
works [7–11], the description of cascading phenomenon and
transition [12], the protection strategies against cascade [13–
18], the cost of attack and defense [19, 20], and the reliability
metrics of networks [21, 22]. In addition, the vulnerability of
the real-world networks has become an important topic in the
design of engineering safety [23, 24]. The cascading failure in
power systems [25, 26] and the attacks in computer networks

[27] have attracted more consideration. Some researches
focus on the stability analysis for the uncertain systems [28–
30] and the analysis of cyberphysical networking systems
[31]. Especially, the robustness and cascading failures in
interdependent networks [32–35] have become a hot topic for
the past few years. Also, traffic bound [36], traffic delay [37],
and the control systems of heavy inputs and delay systems
[38, 39] are considered carefully.

The cascading failures [35, 40], which originate very
locally but often result in a global collapse, have become one
of the hottest topics in network safety. On the one hand, by
characterizing the load on nodes, the considerable cascading
models under the attacks on nodes have been presented. The
conditions of the global cascade are explored [40, 41], where
every node is assumed to have the same capacity [41]. The
influence of the removal of nodes on reducing the efficiency
of networks is investigated [42]. The cascading failures of the
North American power grid under the loss of nodes [43]
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and the cascading failures induced by flux fluctuations [44]
are also probed. On the other hand, the cascading dynamics
induced by the edge-based attacks have also been probed.
These researches focus on the cascading model by assigning
the load and adopting a local load redistribution to edges
[45, 46] and the model that the overloaded edges break down
with some probability [47]. The size of cascade and the cost
of investment under the removal of targeted edges [48] and
the cascade by adopting theOhw’ andKirchhoff conservation
law [49] are also probed.

However, once the cascading failures emerged, the impor-
tant question is concerned with the efficient response to
disasters. In real-world networks, there always exists some
emergency mechanism or “recovery mechanism” that can
be regarded as the coming external resources (e.g., man-
power, number of vehicles) into networks, which recovers
the overloaded components to the normal state. For example,
police could deal with the emergent accidents or chaos in
roads and the technical experts could handle the breakdown
and repair the components damaged in technical networks,
such as the electric power system and the Internet network.
These accidents or breakdown can be caused by the natural
events (earthquakes, floods, or extreme weather) or the
intentional attacks. Such recovery mechanism can effectively
counteract the overload and relieve the stress, which could
make the edges or nodes from “overloaded” to “congestion”
(the midstate) and maybe to “normal.” Yet this recovery
mechanism has not been considered in previous works.
Therefore, it is important to investigate the influence of
the recovery mechanism on increasing the robustness of
the networks against cascading failures, especially for the
network safety. We argue that probing this question will
give us important implications in using efficient strategy
to deal with the disasters happening in real-world net-
works.

In this paper, induced by highest-load attack (HL) and
random attack (RA) on one edge, we study the cascading
dynamics of the heterogeneous scale-free (SF) network with
recovery mechanism that is represented by the external
resources 𝜏 entering into SF network. Our novel model
defines four kinds of weighing strategies to assign the external
resource to the edges for recovering the networks from
cascading failures. The influence of 𝜏, the tolerance param-
eter 𝛼, and the different weighting strategies on improving
the robustness against cascading failures in SF networks is
investigated. We find that, firstly, under intentional attack,
the fourth weighing method can more effectively decrease
the number of avalanched edges, reduce the spreading speed
of cascading failures, and control the outburst of cascading
failures in SF networks than other methods. Secondly, as the
most efficient strategy under intentional attack, the fourth
weighting method needs to compute the betweenness cen-
trality of nodes, which implies that the topological structure
of SF networks is needed. Therefore, the third weighting
method will be optimal if we only knew the local structure
of network (namely, the degree of nodes). On the other
hand, as an example in real-world networks, the simulation
of the autonomous system in the Internet with scale-free
characteristics also shows the same results of SF network

model. It means that the simulation of real-world networks
supports our findings.

The rest of this paper is organized as follows. Section 2
develops the novel model of cascading dynamics with
recovery mechanism under edge-based attack, in which the
external resource is assigned to the links according to the
weight of links in SF network. In Section 3, we describe four
kinds of weighting strategies to measure the weight of the
links in SF networks. In Section 4, we compare the influence
of four kinds of weighting strategies on the robustness of SF
network against cascading failures and analyze the results of
our simulations. Section 5 summarizes the most important
findings and offers the future research.

2. The Cascading Dynamics with
Recovery Mechanism

In this section, we focus on the development of cascading
model on the weighted scale-free network subject to random
and intentional attack on one edge.

Since many real-world networks have been observed to
have a typical power-law degree distribution 𝑃(𝑘) ∝ 𝑘

−𝛾 (𝛾
is the scale exponent), the vulnerability and the robustness
of such scale-free networks (SF) under attacks have been
an important problem in studying the cascading failures of
complex networks [10, 40, 45–47, 50].

Therefore, in this paper, we focus on the cascading
dynamics of the Barabási-Albert scale-free network model
generated according to the rule of growth and preferential
attachment [50]. On the other hand, The large-scale conges-
tion in the Internet has drawn attention to the robustness of
the autonomous system (AS) [5]. Therefore, as an example
in the real-world networks, considering that the autonomous
system (AS) formed by the graph of routers comprising the
Internet from the BGP (Border Gateway Protocol) logs has
been observed to showpower-law degree distribution [51], we
also focus on the autonomous system (AS) defined as AS1470
which has 1470 nodes and 3997 edges and the mean degree
⟨𝑘⟩ ≈ 4.26. Here, we define the adjacent matrix of network
considered as 𝐴 = (𝑎

𝑖𝑗

)
𝑁×𝑁

, where 𝑎
𝑖𝑗

= 1 if the node 𝑖 links
to the node 𝑗; otherwise 𝑎

𝑖𝑗

= 0. We denote 𝑤
𝑖𝑗

as the weight
of the edge 𝑒

𝑖𝑗

in network.
Generally, the development of cascading model is based

on the following three factors: the definition of the original
load, the correlation between the original load and the
capacity, and the dynamical redistribution of load after the
attacks. Similarly, the cascading dynamics in this paper is
modeled as follows.

(1) The original load on the edge 𝑒
𝑖𝑗

: in many physi-
cal network structures, the physical flows (data packets or
energy) are always forwarded along the edges according to the
shortest path routing strategy. For a given pair of nodes (𝑚, 𝑛),
the flows are transmitted along the shortest paths connecting
them; maybe there exist some shortest paths through the
edge 𝑒

𝑖𝑗

. Therefore, it is natural to define the total number of
shortest paths passing through 𝑒

𝑖𝑗

between any pair of nodes
in a network as the load on 𝑒

𝑖𝑗

. Naturally, for our weighted
SF network, the load 𝐿

𝑖𝑗

(𝑡) on the edge 𝑒
𝑖𝑗

at time 𝑡 is defined
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as the number of the shortest paths through it (𝑡 = 0 means
the initial load 𝐿

𝑖𝑗

(0) before attack). Now we assume that the
original load on 𝑒

𝑖𝑗

is 𝐿
𝑖𝑗

(0).
(2) The capacity 𝐶

𝑖𝑗

of the edge 𝑒
𝑖𝑗

: we suppose that 𝐶
𝑖𝑗

is the maximum load that an edge 𝑒
𝑖𝑗

could handle and is
proportional to the initial load 𝐿

𝑖𝑗

(0); that is,

𝐶
𝑖𝑗

= (1 + 𝛼) 𝐿
𝑖𝑗

(0) , ∀𝑖𝑗, (1)

where 𝛼 ≥ 0 is the tolerance parameter. The higher 𝛼 means
that the edge has the higher capacity and the higher ability
against failures. Also, it is rational in designing the real-world
networks including power grids and the Internet, because the
capacity of the links in these networks is always limited by the
cost.

Inmost of the previousmodels, there were only two states
assigned to a node or edge: normal or overloaded; besides
the node or edge would break down (i.e., overloaded) once
the load on them exceeded their capacity. However, in real-
world networks, there exists some emergency mechanism
that will handle the congestion state, relieve the pressure on
them, and thus reduce the probability of the overload. For
example, in transportation networks, the external resources
(such as manpower or vehicles) will come to deal with the
emergent events and recover the road from the “congested or
overloaded” road to the “normal” state. Therefore, we assign
a recovery rate 𝜏

𝑖𝑗

to every edge 𝑒
𝑖𝑗

and assume that the
threshold 𝐶∗

𝑖𝑗

is the upper bound load on 𝑒
𝑖𝑗

in normal state.
Naturally, we define

𝜏
𝑖𝑗

=

1 + (𝑤
𝑖𝑗

/∑
1≤𝑖<𝑗≤𝑁

𝑤
𝑖𝑗

) ⋅ 𝜏

10

,
(2)

𝐶
∗

𝑖𝑗

= (1 + 𝛼 ⋅ 𝜏
𝑖𝑗

) 𝐿
𝑖𝑗

(0) , ∀𝑖𝑗, (3)

where 𝑤
𝑖𝑗

is the weight of the edge 𝑒
𝑖𝑗

and 𝜏 is an adjustable
parameter which represents the external resources entering
into the network. Here we assume 𝜏 ≥ 1. When developing
(2) and (3), we required the following.

(i) We hope that the external resources 𝜏 enter into
the network according to the importance of the
edge 𝑒

𝑖𝑗

that is measured by the normalized weight
𝑤
𝑖𝑗

/∑
1≤𝑖<𝑗≤𝑁

𝑤
𝑖𝑗

. The recovery rate 𝜏
𝑖𝑗

should
increase monotonically with the increasing 𝜏. For
some 𝜏, the bigger 𝑤

𝑖𝑗

, the more external resources
are assigned to the edge 𝑒

𝑖𝑗

, and then the recovery
rate 𝜏
𝑖𝑗

can be closer to the upper bound (1 + 𝜏)/10.
(ii) We can control the parameter 𝜏 to adjust the recovery

rate 𝜏
𝑖𝑗

. When 𝜏 = 0, there is no external resource and
𝜏
𝑖𝑗

= 0.1 is the initial recovery rate.
(iii) We have 𝐶∗

𝑖𝑗

∝ 𝜏
𝑖𝑗

∝ 𝜏. The bigger 𝜏 is, the higher 𝜏
𝑖𝑗

is, and then the closer𝐶∗
𝑖𝑗

is to𝐶
𝑖𝑗

. It implies that, when
themore external resources entering into the network
are assigned to the edges, the more easily the links are
recovered from the abnormal to normal state.Namely,
the external resources have only positive effect on the
edge 𝑒

𝑖𝑗

.

Cij = (1+ 𝛼)Lij(0), ∀ij

Delete one single edge at t = 1

Compute L󳰀ij(t) for all edges in the largest component

Yes

No

End

Lij(t)

L󳰀ij(t)

= (1 − 𝛽·𝜏ij)L󳰀ij(t)

(1 − 𝜏ij)L󳰀ij(t)

if L󳰀ij(t) < C∗
ij,

if C∗
ij ≤ L󳰀ij(t) < Cij,

if Cij ≤ L󳰀ij(t)

Lij(t) < Cij, ∀ij

Delete the edge ij if Lij(t) > Cij

t ← t + 1

Figure 1: The evolving procedure of cascading failures in networks
with the external resource 𝜏.

We can find that such definition is rational in the actual
situations and highlights the protection of the important
edges. Of course, we can choose other functions of (2) and
(3) satisfying these conditions.

(3) The redistribution of load: when a few edges break
down, at some time 𝑡, we assume the temporary load on the
edge 𝑒

𝑖𝑗

as 𝐿󸀠
𝑖𝑗

(𝑡) after the redistribution of load. Then, the
edge 𝑒

𝑖𝑗

will get a number of external resources according to
(2) once the load on 𝑒

𝑖𝑗

exceeds the threshold 𝐶∗
𝑖𝑗

. It means
that the recovery rate 𝜏

𝑖𝑗

will work according to the degree of
𝐿
󸀠

𝑖𝑗

(𝑡) exceeding the threshold𝐶∗
𝑖𝑗

. Finally, the true load 𝐿
𝑖𝑗

(𝑡)

on 𝑒
𝑖𝑗

becomes

𝐿
𝑖𝑗

(𝑡) =

{
{
{
{
{

{
{
{
{
{

{

𝐿
󸀠

𝑖𝑗

(𝑡) if 𝐿󸀠
𝑖𝑗

(𝑡) < 𝐶
∗

𝑖𝑗

,

(1 − 𝛽 ⋅ 𝜏
𝑖𝑗

) 𝐿
󸀠

𝑖𝑗

(𝑡) if 𝐶∗
𝑖𝑗

≤ 𝐿
󸀠

𝑖𝑗

(𝑡) < 𝐶
𝑖𝑗

,

(1 − 𝜏
𝑖𝑗

) 𝐿
󸀠

𝑖𝑗

(𝑡) if 𝐶
𝑖𝑗

≤ 𝐿
󸀠

𝑖𝑗

(𝑡) ,

(4)

where 𝛽 = (𝐿
󸀠

𝑖𝑗

(𝑡) − 𝐶
∗

𝑖𝑗

)/(𝐶
𝑖𝑗

− 𝐶
∗

𝑖𝑗

). In fact, in (4), the final
load 𝐿

𝑖𝑗

(𝑡) indicates the three states of edge 𝑒
𝑖𝑗

: normal (if
𝐿
𝑖𝑗

(𝑡) < 𝐶
∗

𝑖𝑗

); congestion (if 𝐶∗
𝑖𝑗

≤ 𝐿
𝑖𝑗

(𝑡) < 𝐶
𝑖𝑗

); overloaded
(if 𝐿
𝑖𝑗

(𝑡) ≥ 𝐶
𝑖𝑗

). 𝐶∗
𝑖𝑗

≤ 𝐿
𝑖𝑗

(𝑡) ≤ 𝐶
𝑖𝑗

means that the edge
deals with the load busily and still works; 𝐿

𝑖𝑗

(𝑡) ≥ 𝐶
𝑖𝑗

implies
that the edge 𝑒

𝑖𝑗

cannot handle the too high a load even with
the recovery mechanism, and as a result, the edge fails. Thus,
a larger 𝜏

𝑖𝑗

leads to the stronger ability to handle the load
on the edge, and finally the network will have the stronger
robustness, which is consistent with the actual situations in
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Figure 2: For SF network, after the cascade stops, the avalanche size AS as a function of 𝛼 for different strategies with (a) 𝜏 = 20 under HL
attack, (b) 𝜏 = 100 under HL attack, (c) 𝜏 = 20 under RA attack, and (d) 𝜏 = 100 under RA attack, respectively. Here (c) and (d) are averaged
over 20 runs.

many real-world networks.Generally, themore important the
edges are, the higher investment and the force are on them.

In (2), the external resource 𝜏 is assigned to the edge
𝑒
𝑖𝑗

according to the weight of 𝑒
𝑖𝑗

, so that (2) highlights the
protection of the important edges in SF network. However,
the external resources are limited and the higher 𝜏 represents
the higher cost for protection. Naturally, it is needed to
measure how important the edge is in order to find the
efficient response strategy against disasters. This will be
discussed in the following sections.

3. The Weighting Strategy

In the description of network characterization, the centrality
is significant for measuring the importance of an element

(node or edge) in studying cascading failures, which can
be used to measure the topological position of an element
in network. In this part, we will introduce four kinds of
weighting methods to measure the centrality of an edge 𝑒

𝑖𝑗

,
which is regarded as the weight 𝑤

𝑖𝑗

of 𝑒
𝑖𝑗

and can reflect the
importance of 𝑒

𝑖𝑗

in network.
(1) The weighting strategy 𝑤

(1)

𝑖𝑗

: in many real-world
networks, the flows are forwarded along the edge according to
the shortest path routing strategy.Thus, the edge betweenness
centrality is always used to measure the centrality of the edge
[52, 53], which is defined as

𝐵
𝑖𝑗

= ∑

𝑎 ̸= 𝑏

𝜎
𝑎𝑏

(𝑒
𝑖𝑗

)

𝜎
𝑎𝑏

, (5)
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Figure 3: For autonomous system network, after the cascade stops, the avalanche size AS as a function of 𝛼 for different strategies with (a)
𝜏 = 20 under HL attack, (b) 𝜏 = 100 under HL attack, (c) 𝜏 = 20 under RA attack, and (d) 𝜏 = 100 under RA attack, respectively. Here (c)
and (d) are averaged over 20 runs.

where 𝜎
𝑎𝑏

(𝑒
𝑖𝑗

) is the number of the shortest paths between the
nodes 𝑎 and 𝑏 passing through the edge 𝑒

𝑖𝑗

. Then, we define
the weight of the edge 𝑒

𝑖𝑗

as

𝑤
(1)

𝑖𝑗

= 𝐵
𝑖𝑗

. (6)

(2)Theweighting strategy𝑤(2)
𝑖𝑗

: however, in real networks,
the edge centrality is always related to some intrinsic quality
of the end node of the edge. For example, in traffic networks,
the design of the highway or the airlines always depends on
the population or the economic development conditions (like
GDP) among cities.These intrinsic characteristics can be seen
as the quality of the node (city). The lines or roads connected
to the nodes (city) with high quality always have high edge

betweenness centrality, which have not been considered in
the previous models yet.

Thus we define a novel edge betweenness centrality of 𝑒
𝑖𝑗

as

𝐵
󸀠

𝑖𝑗

= ∑

𝑎 ̸= 𝑏

∑
𝑘∈𝑃

𝑎𝑏
(𝑒

𝑖𝑗
)

𝑤
𝑘

∑
𝑘∈𝑃

𝑎𝑏

𝑤
𝑘

, (7)

where 𝑃
𝑎𝑏

is the set of all shortest paths between the nodes 𝑎
and 𝑏, 𝑃

𝑎𝑏

(𝑒
𝑖𝑗

) is the shortest paths between 𝑎 and 𝑏 passing
through the edge 𝑒

𝑖𝑗

, and 𝑤
𝑘

is the intrinsic quality of node
𝑘. (Here we choose the degree of node 𝑘 as 𝑤

𝑘

; of course,
one can choose other rational values.) Note that the definition
of 𝐵󸀠
𝑖𝑗

incorporates the intrinsic characteristics of nodes with
the network structure, which can better reflect the weight
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Figure 4: After the cascade stops, the spreading velocity 𝑉 of failures in SF network as a function of 𝛼 for different strategies with (a) 𝜏 = 20
under HL attack, (b) 𝜏 = 100 under HL attack, (c) 𝜏 = 20 under RA attack, and (d) 𝜏 = 100 under RA attack, respectively. Here (c) and (d)
are averaged over 20 runs.

importance of edges in actual situations. Specially, (7) will
degenerate into the definition in (5) if every node has a
uniform intrinsic quality (𝑤

𝑘

= 1). Now we assume the
weight of the edge 𝑒

𝑖𝑗

as

𝑤
(2)

𝑖𝑗

= 𝐵
󸀠

𝑖𝑗

. (8)

(3) The weighting strategy 𝑤(3)
𝑖𝑗

: another centrality mea-
sure of the edge 𝑒

𝑖𝑗

is the product of the nodes degree of the
end node 𝑖 and 𝑗, which has been used to measure the weight
of the edge 𝑒

𝑖𝑗

[45, 46]; that is,

𝑤
(3)

𝑖𝑗

= (𝑘
𝑖

𝑘
𝑗

)

𝜃

, (9)

where 𝑘
𝑖

and 𝑘
𝑗

are the degrees of nodes 𝑖 and 𝑗, respectively.
Here we assume 𝜃 = 1.

(4) The weighting strategy 𝑤(4)
𝑖𝑗

: usually, the link is also
important when the end of a link is important;this is in
accordance with the real-world networks [45–47]. Moreover,
the importance of one end 𝑖 of a link 𝑒

𝑖𝑗

can be measured by
the node betweenness centrality [51, 53]; that is,

𝐵
𝑖

= ∑

𝑎 ̸= 𝑏

𝜎
𝑎𝑏

(𝑖)

𝜎
𝑎𝑏

, (10)

where 𝜎
𝑎𝑏

(𝑖) is the number of the shortest paths between the
nodes 𝑎 and 𝑏 passing through the node 𝑖. This motivated
the introduction of another weight measure for an edge.
Therefore, we assume that the weight of the edge 𝑒

𝑖𝑗

depends
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Figure 5: After the cascade stops, the spreading velocity𝑉 of failures in autonomous system network as a function of 𝛼 for different strategies
with (a) 𝜏 = 20 under HL attack, (b) 𝜏 = 100 under HL attack, (c) 𝜏 = 20 under RA attack, and (d) 𝜏 = 100 under RA attack, respectively.
Here (c) and (d) are averaged over 20 runs.

on the product of betweenness centrality of the end nodes 𝑖
and 𝑗, which is defined as

𝑤
(4)

𝑖𝑗

= (𝐵
𝑖

𝐵
𝑗

)

𝜃

. (11)

Here we assume 𝜃 = 1.
(5) The uniform strategy: finally, we should note that the

SF network considered will become an unweighted network
if every edge has the uniform weight (e.t., 𝑤

𝑖𝑗

= 1). It means
that every edge 𝑒

𝑖𝑗

will get the uniform external resource
according to (2). We defined this strategy as the uniform
assignment strategy.

Now one can see that the external resource 𝜏, the different
weighting methods𝑤

𝑖𝑗

, and the tolerance parameter 𝛼 would
have great influence on the robustness of SF network subject

to attacks on edges. This will be discussed in the following
sections.

4. The Simulation and Analysis

In this paper, we mainly consider two kinds of attacks on
one edge 𝑒

𝑖𝑗

. (1) Highest-load attack (HL): we remove one
edge with the highest initial load; (2) random attack (RA):
we randomly choose one edge 𝑒

𝑖𝑗

and then remove it. The
attack originates from the removal of one edge and leads
to the redistribution of load on other edges, and then some
of them would fail as the load exceeds the capacity. This
process is repeated until no edge fails, and at this moment,
the cascade can be considered to be completed. Thus, the
cascading process with the recovery mechanism 𝜏 under
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Figure 6: For SF network with 𝜏 = 20 under HL attack, the avalanche size 𝑁ae(𝑡) in each time step 𝑡 as a function of 𝑡 for (a) 𝛼 = 0.02, (b)
𝛼 = 0.04, (c) 𝛼 = 0.06, and (d) 𝛼 = 0.08, respectively.

edge-based attacks can be described in Figure 1. Now, in the
following section, we will reveal the function of the recovery
mechanism on the network robustness against cascading
failures from three aspects: improving the integral robustness,
controlling the spreading velocity of cascading failures, and
controlling the burst of cascading failures.

4.1. Improving the Integral Robustness against Cascading
Failures. Now, in the first part of this section, we focus
on the function of the recovery mechanism on improving
the robustness of the heterogeneous scale-free network (SF)
against cascading failures, which is quantified by the follow-
ing metrics: the avalanche size (AS) after cascade failures
which is defined as follows:

AS =
∑
𝑡

𝑁ae (𝑡)

𝑁
𝑒

− 1

, (12)

where𝑁ae(𝑡) and𝑁𝑒 are the number of the avalanched edges
at each time step 𝑡 under attack and the total number of edges

in initial networks, respectively. From (12), we can see that the
metric AS can be regarded as a function of 𝛼 and 𝜏, and then
AS could quantify the integral robustness of structure against
cascading failures.

From Figures 2(a) and 2(b), it is clear that, for SF network
model and the autonomous system network AS1470 subject
to HL attack, as the external resources 𝜏 are assigned to the
edges according to the weighting method 𝑤

(4)

𝑖𝑗

, it could be
better at decreasing the avalanche size (AS) thus improving
the integrity of SF networks than other strategies. Especially,
the effect is obvious for smaller tolerance parameter 𝛼 (𝛼 <

0.2) and more external resources (𝜏 = 100). For example,
as 𝛼 = 0.04 and 𝜏 = 20, the weighting method 𝑤(4)

𝑖𝑗

could
decrease the avalanche size AS from about 0.71 to 0.3 (see
the arrow in Figure 2(a)). The simulations of the real-world
networks (AS1470) have proved these findings (see Figures
3(a) and 3(b)). Moreover, as shown in Figures 2(b) and 3(b),
the weighting method 𝑤

(3)

𝑖𝑗

is suboptimal and the uniform
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Figure 7: For SF network with 𝜏 = 100 under HL attack, the avalanche size𝑁ae(𝑡) in each time step 𝑡 as a function of 𝑡 for (a) 𝛼 = 0.02, (b)
𝛼 = 0.04, (c) 𝛼 = 0.06, and (d) 𝛼 = 0.08, respectively.

method (𝑤
𝑖𝑗

= 1) is the worst. Although the weighting
method 𝑤(4)

𝑖𝑗

is optimal, it depends on the betweenness cen-
trality of the nodes that needs to know the whole topological
structure of SF network from (11). It implies that the third
weighting strategy 𝑤(3)

𝑖𝑗

is suggested if we only knew the local
structure of networks, such as the degree of nodes.

On the other hand, as shown in Figures 2(c), 2(d), 3(c),
and 3(d), under RA attack, the difference among the four
kinds of weighting strategies is not clear if with fewer external
resource (e.g., 𝜏 = 20). But, as 𝛼 ≥ 0.1, it seems that the
second weighting strategy 𝑤(2)

𝑖𝑗

and the uniform assignment
strategy (𝑤

𝑖𝑗

= 1) are optimal if with sufficient external
resource (e.g., 𝜏 = 100).

4.2. Controlling the Spreading Velocity of Cascading Failures.
In the second part of this section, to further measure how

efficient the different weighting strategies are in response to
the cascading failures in SF network, we will explore the
spreading velocity of cascading failures, which is computed
by 𝑉:

𝑉 =

∑
𝑡

𝑁ae (𝑡)

𝑇

, (13)

where 𝑁ae(𝑡) is the number of the avalanched edges at each
time step 𝑡 under attacks and 𝑇 is the evolving time step of
cascading propagation in networks (see Figure 1).

As shown in Figures 4(a), 4(b), 5(a), and 5(b), under
HL attack, the weighing method 𝑤

(4)

𝑖𝑗

can obviously reduce
the spreading velocity of cascading failures in both the
SF network model and AS1470 network, regardless of the
quantity of external resources 𝜏. Moreover, the third weight-
ing method 𝑤

(3)

𝑖𝑗

is suboptimal if having more resources
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Figure 8: For autonomous system network with 𝜏 = 20 under HL attack, the avalanche size𝑁ae(𝑡) in each time step 𝑡 as a function of 𝑡 for
(a) 𝛼 = 0.02, (b) 𝛼 = 0.04, (c) 𝛼 = 0.06, and (d) 𝛼 = 0.08, respectively.

(e.g., 𝜏 = 100). It reveals that, under HL attack, the external
resource assigned to edges according to the method 𝑤

(4)

𝑖𝑗

can control the spreading speed 𝑉 of cascading failures in
heterogeneous scale-free networks more efficiently.

4.3. Controlling the Process of Cascading Failures. In the
previous two parts of this section, the function of different
weighting methods on improving the robustness of networks
against cascading failures has been shown. However, another
question that whether the weighting methods could control
the outbreak of cascading failures also should be considered.
In this part of this section, we focus on controlling the process
of cascading failures in networks and plot the avalanche size
𝑁ae(𝑡) in each time step 𝑡 under HL attack to explore this
question.

As shown in Figures 6 and 7, under HL attack with
different tolerance parameters 𝛼 (𝛼 = 0.02, 0.04, 0.06,
and 0.08), we can see that the weighting method 𝑤

(4)

𝑖𝑗

can
more effectively control the outburst of cascading failures
in SF network model than other methods. Especially, with
more external resources (𝜏 = 100), the more obviously can
𝑤
(4)

𝑖𝑗

reduce the peak of cascading failures (see Figure 7).
Moreover, the simulations of the autonomous system AS1470
also show the similar findings (see Figures 8 and 9).

5. Conclusion

In this paper, we study the cascading dynamics of heteroge-
neous scale-free (SF) network with the recovery mechanism
subject to edge-based attack. The recovery mechanism is



Abstract and Applied Analysis 11

Time
0 5 10 15 20

Av
al

an
ch

e s
iz

e

400

500

300

200

100

0

(a)

Time
0 5 10 15 20

Av
al

an
ch

e s
iz

e

400

500

300

200

100

0

(b)

Time
0 5 10 15

w(1)
ij

w(2)
ij

w(3)
ij

w(4)
ij

Av
al

an
ch

e s
iz

e

400

300

200

100

0

(c)

Time
0 5 10 15

w(1)
ij

w(2)
ij

w(3)
ij

w(4)
ij

Av
al

an
ch

e s
iz

e

250

200

150

100

50

0

(d)

Figure 9: For autonomous system network with 𝜏 = 100 under HL attack, the avalanche size𝑁ae(𝑡) in each time step 𝑡 as a function of 𝑡 for
(a) 𝛼 = 0.02, (b) 𝛼 = 0.04, (c) 𝛼 = 0.06, and (d) 𝛼 = 0.08, respectively.

represented by the external resources 𝜏 that are distributed
to the edge 𝑒

𝑖𝑗

according to five kinds of weighting strategies:
𝑤
(1)

𝑖𝑗

, 𝑤(2)
𝑖𝑗

, 𝑤(3)
𝑖𝑗

, 𝑤(4)
𝑖𝑗

, and the uniform strategy. We mainly
investigate the influence of 𝜏 and different weighting strate-
gies on the cascading dynamics of SF networks subject to
intentional attack and random breakdown. On the whole, the
main contributions of this paper are listed as follows.

(1) Under intentional attack, 𝑤(4)
𝑖𝑗

is the most efficient
response strategy against cascading failures in SF
networks, which can obviously improve the inte-
gral robustness, simultaneously reduce the spreading
speed, and control the outbreak of cascading fail-
ures in SF networks. Especially, the more external
resources are, the more efficient 𝑤(4)

𝑖𝑗

is. The uniform
assignment strategy is the worst strategy.

(2) Although the method 𝑤
(4)

𝑖𝑗

is optimal, it needs to
compute the betweenness centrality of node that
depends on the whole structure of networks. There-
fore, 𝑤(3)

𝑖𝑗

will be optimal if we only knew the local
structure of SF network (e.g., the degree of nodes).
The simulations of autonomous system network have
proved these results. However, the recent research
[54] has shown that, the node betweenness centrality
can be approximately estimated by using the local
information of nodes in order to reduce the computa-
tional complexity in large networks. This implies that
the weighting method 𝑤(4)

𝑖𝑗

defined in this paper has
great significance in the protection of actual scale-free
networks.

(3) Under random breakdown, although the difference
among the five kinds of weighting methods is not
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clear in terms of the protection result against cascad-
ing effect, the uniform assignment strategy (𝑤

𝑖𝑗

= 1)
can better decrease the spreading velocity of failures
in SF network than other strategies.

The results remind us to take different actions on han-
dling and controlling the emergent disasters in heteroge-
neous SF networks. Here we just highlight the protection of
the important links. Our approach makes contributions to
understanding the dynamics of disaster spreading and pro-
vides some possible countermeasures to control the disasters
and finally to repair the system damaged.
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“Efficient response to cascading disaster spreading,” Physical
Review E, vol. 75, no. 5, Article ID 056107, 7 pages, 2007.

[16] B. A. Rezaei, N. Sarshar, V. P. Roychowdhury, and P. O. Boykin,
“Disaster management in power-law networks: recovery from
and protection against intentional attacks,” Physica A, vol. 381,
no. 1-2, pp. 497–514, 2007.

[17] K. Peters, L. Buzna, and D. Helbing, “Modelling of cascading
effects and efficient response to disaster spreading in complex
networks,” International Journal of Critical Infrastructures, vol.
4, no. 1-2, pp. 46–62, 2008.

[18] R. Yang, W.-X. Wang, Y.-C. Lai, and G.-R. Chen, “Optimal
weighting scheme for suppressing cascades and traffic conges-
tion in complex networks,” Physical Review E, vol. 79, no. 2,
Article ID 026112, 2009.

[19] B.-L. Dou, X.-G. Wang, and S.-Y. Zhang, “Robustness of
networks against cascading failures,” Physica A, vol. 389, no. 11,
pp. 2310–2317, 2010.

[20] J. Domingo-Ferrer and U. González-Nicolás, “Decapitation
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