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We obtain sharp bounds for the Seiffert mean in terms of a two parameter family of means. Our results generalize and extend the
recent bounds presented in the Journal of Inequalities and Applications (2012) and Abstract and Applied Analysis (2012).

1. Introduction

For 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, the Seiffert mean 𝑇(𝑎, 𝑏), root mean
square 𝑆(𝑎, 𝑏), and contraharmonic mean 𝐶(𝑎, 𝑏) are defined
by

𝑇 (𝑎, 𝑏) =

𝑎 − 𝑏

2 arctan [(𝑎 − 𝑏) / (𝑎 + 𝑏)]

, (1)

𝑆 (𝑎, 𝑏) =
√

𝑎
2
+ 𝑏
2

2

,
(2)

𝐶 (𝑎, 𝑏) =

𝑎
2
+ 𝑏
2

𝑎 + 𝑏

, (3)

respectively. It is well known that the inequalities

𝑇 (𝑎, 𝑏) < 𝑆 (𝑎, 𝑏) < 𝐶 (𝑎, 𝑏) (4)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Recently, 𝑇(𝑎, 𝑏), 𝑆(𝑎, 𝑏), and 𝐶(𝑎, 𝑏) have been the sub-

ject of intensive research. In particular, many remarkable
inequalities and properties for these means can be found in
the literature [1–8].

For 𝛼, 𝛽, 𝜆, 𝜇 ∈ (1/2, 1), very recently Chu et al. [9, 10]
proved that the inequalities

𝑆 (𝛼𝑎 + (1 − 𝛼) 𝑏, 𝛼𝑏 + (1 − 𝛼) 𝑎)

< 𝑇 (𝑎, 𝑏)

< 𝑆 (𝛽𝑎 + (1 − 𝛽) 𝑏, 𝛽𝑏 + (1 − 𝛽) 𝑎) ,

(5)

𝐶 (𝜆𝑎 + (1 − 𝜆) 𝑏, 𝜆𝑏 + (1 − 𝜆) 𝑎)

< 𝑇 (𝑎, 𝑏)

< 𝐶 (𝜇𝑎 + (1 − 𝜇) 𝑏, 𝜇𝑏 + (1 − 𝜇) 𝑎)

(6)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼 ≤ (1 +

√16/𝜋
2
− 1)/2, 𝛽 ≥ (3 + √6)/6, 𝜆 ≤ (1 + √4/𝜋 − 1)/2, and

𝜇 ≥ (3 + √3)/6.
Let 𝑡 ∈ (1/2, 1), 𝑝 ≥ 1/2, and

𝑄
𝑡,𝑝

(𝑎, 𝑏) = 𝐶
𝑝
(𝑡𝑎 + (1 − 𝑡) 𝑏, 𝑡𝑏 + (1 − 𝑡) 𝑎) 𝐴

1−𝑝
(𝑎, 𝑏) ,

(7)

where 𝐴(𝑎, 𝑏) = (𝑎 + 𝑏)/2 is the classical arithmetic mean of
𝑎 and 𝑏. Then from (2), (3), and (7) we clearly see that

𝑄
𝑡,1/2

(𝑎, 𝑏) = 𝑆 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝑡𝑏 + (1 − 𝑡) 𝑎) ,

𝑄
𝑡,1

(𝑎, 𝑏) = 𝐶 (𝑡𝑎 + (1 − 𝑡) 𝑏, 𝑡𝑏 + (1 − 𝑡) 𝑎) ,

(8)

and𝑄
𝑡,𝑝
(𝑎, 𝑏) is strictly increasing with respect to 𝑡 ∈ (1/2, 1)

for fixed 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
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It is natural to ask what are the greatest value 𝑡
1
= 𝑡
1
(𝑝)

and the least value 𝑡
2
= 𝑡
2
(𝑝) in (1/2, 1) such that the double

inequality

𝑄
𝑡
1
,𝑝
(𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝑄

𝑡
2
,𝑝
(𝑎, 𝑏) (9)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 and 𝑝 ≥ 1/2. The aim of
this paper is to answer this question; our main result is the
followingTheorem 1.

Theorem 1. If 𝑡
1
, 𝑡
2

∈ (1/2, 1) and 𝑝 ∈ [1/2,∞), then the
double inequality

𝑄
𝑡
1
,𝑝
(𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝑄

𝑡
2
,𝑝
(𝑎, 𝑏) (10)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑡
1

≤ 1/2 +

[√(4/𝜋)
1/𝑝

− 1]/2 and 𝑡
2
≥ 1/2 + √3𝑝/(6𝑝).

Remark 2. If we take 𝑝 = 1/2 and 𝑝 = 1 in Theorem 1, then
inequality (10) reduces to inequalities (5) and (6), respec-
tively.

2. Proof of Theorem 1

In order to prove Theorem 1 we need two lemmas, which we
present in this section.

Lemma 3 (see [11, Theorem 1.25]). For −∞ < 𝑎 < 𝑏 < ∞, let
𝑓, 𝑔 : [𝑎, 𝑏] → R be continuous on [𝑎, 𝑏] and differentiable
on (𝑎, 𝑏); let 𝑔󸀠(𝑥) ̸= 0 on (𝑎, 𝑏). If 𝑓󸀠(𝑥)/𝑔󸀠(𝑥) is increasing
(decreasing) on (𝑎, 𝑏), then so are

𝑓 (𝑥) − 𝑓 (𝑎)

𝑔 (𝑥) − 𝑔 (𝑎)

,

𝑓 (𝑥) − 𝑓 (𝑏)

𝑔 (𝑥) − 𝑔 (𝑏)

. (11)

If 𝑓󸀠(𝑥)/𝑔󸀠(𝑥) is strictly monotone, then the monotonicity in
the conclusion is also strict.

Lemma 4. Let 𝑢 ∈ [0, 1], 𝑝 ≥ 1/2 and

𝑓
𝑢,𝑝

(𝑥) = 𝑝 log (1 + 𝑢𝑥
2
) − log𝑥 + log arctan𝑥. (12)

Then

(1) 𝑓
𝑢,𝑝

(𝑥) > 0 for 𝑥 ∈ (0, 1) if and only if 3𝑝𝑢 ≥ 1;

(2) 𝑓
𝑢,𝑝

(𝑥) < 0 for 𝑥 ∈ (0, 1) if and only if 1+𝑢 ≤ (4/𝜋)
1/𝑝.

Proof. By (12) and simple computations one has

lim
𝑥→0

𝑓
𝑢,𝑝

(𝑥) = 0, (13)

𝑓
𝑢,𝑝

(1) = 𝑝 log (1 + 𝑢) + log(𝜋

4

) , (14)

𝑓
󸀠

𝑢,𝑝
(𝑥)

=

2𝑝𝑢𝑥

1 + 𝑢𝑥
2
+

1

(1 + 𝑥
2
) arctan𝑥

−

1

𝑥

= (𝑢 [(2𝑝 − 1) 𝑥
2
(1 + 𝑥

2
) arctan𝑥 + 𝑥

3
]

− [(1 + 𝑥
2
) arctan𝑥 − 𝑥])

× (𝑥(1 + 𝑥
2
)(1 + 𝑢𝑥

2
) arctan𝑥)

−1

=

(2𝑝 − 1) 𝑥
2
(1 + 𝑥

2
) arctan𝑥 + 𝑥

3

𝑥 (1 + 𝑥
2
) (1 + 𝑢𝑥

2
) arctan𝑥

[𝑢 − 𝑔 (𝑥)] ,

(15)

where

𝑔 (𝑥) =

(1 + 𝑥
2
) arctan𝑥 − 𝑥

(2𝑝 − 1) 𝑥
2
(1 + 𝑥

2
) arctan𝑥 + 𝑥

3
. (16)

Let 𝑔
1
(𝑥) = arctan𝑥 − 𝑥/(1 + 𝑥

2
) and 𝑔

2
(𝑥) = (2𝑝 −

1)𝑥
2 arctan𝑥 + 𝑥

3
/(1 + 𝑥

2
). Then 𝑔

2
(𝑥) is strictly increasing

in (0, 1):

𝑔 (𝑥) =

𝑔
1
(𝑥)

𝑔
2
(𝑥)

, 𝑔
1
(0) = 𝑔

2
(0) = 0, (17)

𝑔
󸀠

1
(𝑥)

𝑔
󸀠

2
(𝑥)

=

1

(2𝑝 − 1) [(1 + 𝑥
2
)
2 arctan𝑥] /𝑥 + 𝑝𝑥

2
+ 𝑝 + 1

.

(18)

It is not difficult to verify that the function 𝑥 → [(1 +

𝑥
2
)
2 arctan𝑥]/𝑥 is strictly increasing from (0, 1) onto (1, 𝜋);

hence (18) implies that 𝑔󸀠
1
(𝑥)/𝑔
󸀠

2
(𝑥) is strictly decreasing in

(0, 1). Therefore, 𝑔(𝑥) is strictly decreasing in (0, 1) follows
from Lemma 3 and (17) together with the monotonicity of
𝑔
2
(𝑥) and 𝑔

󸀠

1
(𝑥)/𝑔
󸀠

2
(𝑥). Moreover, making use of l’Hôpital’s

rule we get

lim
𝑥→0

𝑔 (𝑥) =

1

3𝑝

, (19)

𝑔 (1) =

𝜋 − 2

(2𝑝 − 1) 𝜋 + 2

. (20)

We divide the proof into three cases.

Case 1 (𝑢 ≥ 1/(3𝑝)). Then from (15) and (19) together with
the monotonicity of 𝑔(𝑥) we conclude that 𝑓

𝑢,𝑝
(𝑥) is strictly

increasing in (0, 1). Therefore 𝑓
𝑢,𝑝

(𝑥) > 0 for 𝑥 ∈ (0, 1)

follows from (13) and the monotonicity of 𝑓
𝑢,𝑝

(𝑥).

Case 2 (𝑢 ≤ (𝜋− 2)/[(2𝑝− 1)𝜋+ 2]). Then from (15) and (20)
together with the monotonicity of 𝑔(𝑥) we clearly see that
𝑓
𝑢,𝑝

(𝑥) is strictly decreasing in (0, 1). Therefore 𝑓
𝑢,𝑝

(𝑥) < 0

for 𝑥 ∈ (0, 1) follows from (13) and the monotonicity of
𝑓
𝑢,𝑝

(𝑥).

Case 3 ((𝜋 − 2)/[(2𝑝 − 1)𝜋 + 2] < 𝑢 < 1/(3𝑝)). Then from
(15), (19), and (20) together with the monotonicity of 𝑔(𝑥)
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we know that there exists 𝑥
0

∈ (0, 1) such that 𝑓
𝑢,𝑝

(𝑥) is
strictly decreasing in (0, 𝑥

0
) and strictly increasing in (𝑥

0
, 1).

Therefore, 𝑓
𝑢,𝑝

(𝑥) < 0 in (0, 1) if and only if 𝑓
𝑢,𝑝

(1) ≤ 0

follows from (13) and the piecewise monotonicity of 𝑓
𝑢,𝑝

(𝑥),
which (14) gives immediately 1 + 𝑢 ≤ (4/𝜋)

1/𝑝.

Proof of Theorem 1. Since both 𝑄
𝑡,𝑝
(𝑎, 𝑏) and 𝑇(𝑎, 𝑏) are

symmetric and homogeneous of degree 1, without loss of
generality, we assume that 𝑎 > 𝑏. Let 𝑥 = (𝑎 − 𝑏)/(𝑎 + 𝑏) ∈

(0, 1). Then from (1) and (7) we get

log(
𝑄
𝑡,𝑝

(𝑎, 𝑏)

𝑇 (𝑎, 𝑏)

)

= log(
𝑄
𝑡,𝑝

(𝑎, 𝑏)

𝐴 (𝑎, 𝑏)

) − log(𝑇 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)

)

= 𝑝 log [1 + (1 − 2𝑡)
2
𝑥
2
] − log𝑥 + log arctan𝑥.

(21)

Therefore, Theorem 1 follows from Lemma 4 and (21).
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