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We employ the new method of fixed point theory to study the stability of a class of impulsive cellular neural networks with infinite
delays. Some novel and concise sufficient conditions are presented ensuring the existence and uniqueness of solution and the
asymptotic stability of trivial equilibrium at the same time.These conditions are easily checked and do not require the boundedness
and differentiability of delays.

1. Introduction

Cellular neural networks (CNNs), proposed by Chua and
Yang in 1988 [1, 2], have become a hot topic for their
numerous successful applications in various fields such as
optimization, linear and nonlinear programming, associative
memory, pattern recognition, and computer vision.

Due to the finite switching speed of neurons and ampli-
fiers in the implementation of neural networks, it turns out
that the time delays should not be neglected, and therefore,
themodel of delayed cellular neural networks (DCNNs) is put
forward, which is naturally of better realistic significances.
In fact, besides delay effects, stochastic and impulsive as
well as diffusing effects are also likely to exist in neural
networks. Accordingly many experts are showing a growing
interest in the research on the dynamic behaviors of complex
CNNs such as impulsive delayed reaction-diffusion CNNs
and stochastic delayed reaction-diffusion CNNs, with a result
of many achievements [3–9] obtained.

Synthesizing the reported results about complex CNNs,
we find that the existing research methods for dealing with
stability are mainly based on Lyapunov theory. However,
we also notice that there are still lots of difficulties in the
applications of corresponding results to specific problems;
correspondingly it is necessary to seek some new techniques
to overcome those difficulties.

Encouragingly, in recent few years, Burton and other
authors have applied the fixed point theory to investigate
the stability of deterministic systems and obtained some
more applicable results; for example, see the monograph
[10] and papers [11–22]. In addition, more recently, there
have been a few publications where the fixed point theory
is employed to deal with the stability of stochastic (delayed)
differential equations; see [23–29]. Particularly, in [24–26],
Luo used the fixed point theory to study the exponential
stability of mild solutions to stochastic partial differential
equations with bounded delays and with infinite delays. In
[27, 28], Sakthivel used the fixed point theory to investigate
the asymptotic stability in 𝑝th moment of mild solutions to
nonlinear impulsive stochastic partial differential equations
with bounded delays and with infinite delays. In [29], Luo
used the fixed point theory to study the exponential stability
of stochastic Volterra-Levin equations.

Naturally, for complex CNNs which have high appli-
cation values, we wonder if we can utilize the fixed point
theory to investigate their stability, not just the existence
and uniqueness of solution. With this motivation, in the
present paper, we aim to discuss the stability of impulsive
CNNs with infinite delays via the fixed point theory. It
is worth noting that our research skill is the contraction
mapping theory which is different from the usual method
of Lyapunov theory. We employ the fixed point theorem
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to prove the existence and uniqueness of solution and the
asymptotic stability of trivial equilibrium all at once. Some
new and concise algebraic criteria are provided, and these
conditions are easy to verify and, moreover, do not require
the boundedness and differentiability of delays.

2. Preliminaries

Let 𝑅𝑛 denote the 𝑛-dimensional Euclidean space and let ‖ ⋅ ‖
represent the Euclidean norm.N ≜ {1, 2, . . . , 𝑛}.𝑅

+
= [0,∞).

𝐶[𝑋, 𝑌] corresponds to the space of continuous mappings
from the topological space𝑋 to the topological space 𝑌.

In this paper, we consider the following impulsive cellular
neural network with infinite delays:

d𝑥
𝑖
(𝑡)

d𝑡
= − 𝑎

𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

(1)

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
𝑘
+ 0) − 𝑥

𝑖
(𝑡
𝑘
)

= 𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) , 𝑘 = 1, 2, . . . ,

(2)

where 𝑖 ∈ N and 𝑛 is the number of neurons in the neural
network. 𝑥

𝑖
(𝑡) corresponds to the state of the 𝑖th neuron at

time 𝑡. 𝑓
𝑗
(⋅), 𝑔
𝑗
(⋅) ∈ 𝐶[𝑅, 𝑅] denote the activation functions,

respectively. 𝜏
𝑗
(𝑡) ∈ 𝐶[𝑅

+
, 𝑅
+
] corresponds to the known

transmission delay satisfying 𝜏
𝑗
(𝑡) → ∞ and 𝑡 − 𝜏

𝑗
(𝑡) → ∞

as 𝑡 → ∞. Denote 𝜗 = inf{𝑡 − 𝜏
𝑗
(𝑡), 𝑡 ≥ 0, 𝑗 ∈ N}.

The constant 𝑏
𝑖𝑗
represents the connection weight of the 𝑗th

neuron on the 𝑖th neuron at time 𝑡. The constant 𝑐
𝑖𝑗
denotes

the connection strength of the 𝑗th neuron on the 𝑖th neuron
at time 𝑡 − 𝜏

𝑗
(𝑡). The constant 𝑎

𝑖
> 0 represents the rate with

which the ith neuronwill reset its potential to the resting state
when disconnected from the network and external inputs.
The fixed impulsive moments 𝑡

𝑘
(𝑘 = 1, 2, . . .) satisfy 0 = 𝑡

0
<

𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ and lim

𝑘→∞
𝑡
𝑘
= ∞. 𝑥

𝑖
(𝑡
𝑘
+ 0) and 𝑥

𝑖
(𝑡
𝑘
− 0)

stand for the right-hand and left-hand limits of 𝑥
𝑖
(𝑡) at time

𝑡
𝑘
, respectively. 𝐼

𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) shows the abrupt change of 𝑥

𝑖
(𝑡) at

the impulsive moment 𝑡
𝑘
and 𝐼
𝑖𝑘
(⋅) ∈ 𝐶[𝑅, 𝑅].

Throughout this paper, we always assume that 𝑓
𝑖
(0) =

𝑔
𝑖
(0) = 𝐼

𝑖𝑘
(0) = 0 for 𝑖 ∈ N and 𝑘 = 1, 2, . . .. Thereby,

problem (1) and (2) admits a trivial equilibrium x = 0.
Denote by x(𝑡) ≜ x(𝑡; 𝑠, 𝜑) = (𝑥

1
(𝑡; 𝑠, 𝜑

1
), . . . ,

𝑥
𝑛
(𝑡; 𝑠, 𝜑

𝑛
))
𝑇

∈ 𝑅
𝑛 the solution to (1) and (2) with the initial

condition

𝑥
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) , 𝜗 ≤ 𝑠 ≤ 0, 𝑖 ∈N, (3)

where 𝜑(𝑠) = (𝜑
1
(𝑠), . . . , 𝜑

𝑛
(𝑠))
𝑇

∈ 𝑅
𝑛 and 𝜑

𝑖
(𝑠) ∈ 𝐶[[𝜗, 0],

𝑅]. Denote |𝜑| = sup
𝑠∈[𝜗,0]

‖𝜑(𝑠)‖.
The solution x(𝑡) ≜ x(𝑡; 𝑠, 𝜑) ∈ 𝑅𝑛 of (1)–(3) is, for

the time variable 𝑡, a piecewise continuous vector-valued
function with the first kind discontinuity at the points 𝑡

𝑘

(𝑘 = 1, 2, . . .), where it is left continuous; that is, the following
relations are valid:

𝑥
𝑖
(𝑡
𝑘
− 0) = 𝑥

𝑖
(𝑡
𝑘
) ,

𝑥
𝑖
(𝑡
𝑘
+ 0) = 𝑥

𝑖
(𝑡
𝑘
) + 𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) ,

𝑖 ∈N, 𝑘 = 1, 2, . . . .

(4)

Definition 1. The trivial equilibrium x = 0 is said to be stable,
if, for any 𝜀 > 0, there exists 𝛿 > 0 such that for any initial
condition 𝜑(𝑠) ∈ 𝐶[[𝜗, 0], 𝑅𝑛] satisfying |𝜑| < 𝛿:

x (𝑡; 𝑠, 𝜑)
 < 𝜀, 𝑡 ≥ 0. (5)

Definition 2. The trivial equilibrium x = 0 is said to be
asymptotically stable if the trivial equilibrium x = 0 is
stable, and for any initial condition 𝜑(𝑠) ∈ 𝐶[[𝜗, 0], 𝑅𝑛],
lim
𝑡→∞

‖x(𝑡; 𝑠, 𝜑)‖ = 0 holds.

The consideration of this paper is based on the following
fixed point theorem.

Theorem 3 (see [30]). Let Υ be a contraction operator on a
complete metric spaceΘ, then there exists a unique point 𝜁 ∈ Θ
for which Υ(𝜁) = 𝜁.

3. Main Results

In this section, we will consider the existence and uniqueness
of solution and the asymptotic stability of trivial equilibrium
by means of the contraction mapping principle. Before
proceeding, we introduce some assumptions listed as follows.

(A1) There exist nonnegative constants 𝑙
𝑗
such that, for any

𝜂, 𝜐 ∈ 𝑅,


𝑓
𝑗
(𝜂) − 𝑓

𝑗
(𝜐)

≤ 𝑙
𝑗

𝜂 − 𝜐
 , 𝑗 ∈N. (6)

(A2) There exist nonnegative constants 𝑘
𝑗
such that, for any

𝜂, 𝜐 ∈ 𝑅,


𝑔
𝑗
(𝜂) − 𝑔

𝑗
(𝜐)

≤ 𝑘
𝑗

𝜂 − 𝜐
 , 𝑗 ∈N. (7)

(A3) There exist nonnegative constants 𝑝
𝑗𝑘

such that, for
any 𝜂, 𝜐 ∈ 𝑅,


𝐼
𝑗𝑘
(𝜂) − 𝐼

𝑗𝑘
(𝜐)

≤ 𝑝
𝑗𝑘

𝜂 − 𝜐
 , 𝑗 ∈N, 𝑘 = 1, 2, . . . . (8)

Let H = H
1
× ⋅ ⋅ ⋅ × H

𝑛
, and let H

𝑖
(𝑖 ∈ N) be the

space consisting of functions 𝜙
𝑖
(𝑡) : [𝜗,∞) → 𝑅, where 𝜙

𝑖
(𝑡)

satisfies the following:

(1) 𝜙
𝑖
(𝑡) is continuous on 𝑡 ̸= 𝑡

𝑘
(𝑘 = 1, 2, . . .);

(2) lim
𝑡→ 𝑡
−

𝑘

𝜙
𝑖
(𝑡) and lim

𝑡→ 𝑡
+

𝑘

𝜙
𝑖
(𝑡) exist; furthermore,

lim
𝑡→ 𝑡
−

𝑘

𝜙
𝑖
(𝑡) = 𝜙

𝑖
(𝑡
𝑘
) for 𝑘 = 1, 2, . . .;

(3) 𝜙
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [𝜗, 0];

(4) 𝜙
𝑖
(𝑡) → 0 as 𝑡 → ∞;
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here 𝑡
𝑘
(𝑘 = 1, 2, . . .) and 𝜑

𝑖
(𝑠) (𝑠 ∈ [𝜗, 0]) are defined as

shown in Section 2. AlsoH is a complete metric space when
it is equipped with the following metric:

𝑑 (q (𝑡) , h (𝑡)) =
𝑛

∑

𝑖=1

sup
𝑡≥𝜗

𝑞𝑖 (𝑡) − ℎ𝑖 (𝑡)
 , (9)

where q(𝑡) = (𝑞
1
(𝑡), . . . , 𝑞

𝑛
(𝑡)) ∈ H and h(𝑡) = (ℎ

1
(𝑡), . . . ,

ℎ
𝑛
(𝑡)) ∈H.
In what follows, we will give the main result of this paper.

Theorem 4. Assume that conditions (A1)–(A3) hold. Provided
that

(i) there exists a constant 𝜇 such that inf
𝑘=1,2,...

{𝑡
𝑘
−𝑡
𝑘−1
} ≥

𝜇,

(ii) there exist constants 𝑝
𝑖
such that 𝑝

𝑖𝑘
≤ 𝑝
𝑖
𝜇 for 𝑖 ∈ N

and 𝑘 = 1, 2, . . .,

(iii) 𝜆∗ ≜ ∑𝑛
𝑖=1
{(1/𝑎
𝑖
)max
𝑗∈N|𝑏𝑖𝑗𝑙𝑗|+(1/𝑎𝑖)max

𝑗∈N|𝑐𝑖𝑗𝑘𝑗|}+

max
𝑖∈N{𝑝𝑖(𝜇 + (1/𝑎𝑖))} < 1,

(iv) max
𝑖∈N{𝜆𝑖} < 1/√𝑛, where 𝜆𝑖 = (1/𝑎𝑖) ∑

𝑛

𝑗=1
|𝑏
𝑖𝑗
𝑙
𝑗
| +

(1/𝑎
𝑖
) ∑
𝑛

𝑗=1
|𝑐
𝑖𝑗
𝑘
𝑗
| + 𝑝
𝑖
(𝜇 + (1/𝑎

𝑖
)),

then the trivial equilibrium x = 0 is asymptotically stable.

Proof. Multiplying both sides of (1) with 𝑒𝑎𝑖𝑡 gives, for 𝑡 > 0
and 𝑡 ̸= 𝑡

𝑘
,

d𝑒𝑎𝑖𝑡𝑥
𝑖
(𝑡) = 𝑒

𝑎
𝑖

𝑡d𝑥
𝑖
(𝑡) + 𝑎

𝑖
𝑥
𝑖
(𝑡) 𝑒
𝑎
𝑖

𝑡d𝑡

= 𝑒
𝑎
𝑖

𝑡
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)))

}

}

}

d𝑡,

(10)

which yields after integrating from 𝑡
𝑘−1
+ 𝜀 (𝜀 > 0) to 𝑡 ∈

(𝑡
𝑘−1
, 𝑡
𝑘
) (𝑘 = 1, 2, . . .)

𝑥
𝑖
(𝑡) 𝑒
𝑎
𝑖

𝑡

= 𝑥
𝑖
(𝑡
𝑘−1
+ 𝜀) 𝑒
𝑎
𝑖

(𝑡
𝑘−1

+𝜀)

+ ∫

𝑡

𝑡
𝑘−1

+𝜀

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠.

(11)

Letting 𝜀 → 0 in (11), we have

𝑥
𝑖
(𝑡) 𝑒
𝑎
𝑖

𝑡

= 𝑥
𝑖
(𝑡
𝑘−1
+ 0) 𝑒

𝑎
𝑖

𝑡
𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

𝑒
𝑎
𝑖

𝑠

×
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠,

(12)

for 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
) (𝑘 = 1, 2, . . .). Setting 𝑡 = 𝑡

𝑘
− 𝜀 (𝜀 > 0) in

(12), we get

𝑥
𝑖
(𝑡
𝑘
− 𝜀) 𝑒
𝑎
𝑖

(𝑡
𝑘

−𝜀)

= 𝑥
𝑖
(𝑡
𝑘−1
+ 0) 𝑒

𝑎
𝑖

𝑡
𝑘−1

+ ∫

𝑡
𝑘

−𝜀

𝑡
𝑘−1

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠,

(13)

which generates by letting 𝜀 → 0

𝑥
𝑖
(𝑡
𝑘
− 0) 𝑒

𝑎
𝑖

𝑡
𝑘 = 𝑥
𝑖
(𝑡
𝑘−1
+ 0) 𝑒

𝑎
𝑖

𝑡
𝑘−1

+ ∫

𝑡
𝑘

𝑡
𝑘−1

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠.

(14)

Noting 𝑥
𝑖
(𝑡
𝑘
− 0) = 𝑥

𝑖
(𝑡
𝑘
), (14) can be rearranged as

𝑥
𝑖
(𝑡
𝑘
) 𝑒
𝑎
𝑖

𝑡
𝑘 = 𝑥
𝑖
(𝑡
𝑘−1
+ 0) 𝑒

𝑎
𝑖

𝑡
𝑘−1

+ ∫

𝑡
𝑘

𝑡
𝑘−1

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠.

(15)
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Combining (12) and (15), we reach that

𝑥
𝑖
(𝑡) 𝑒
𝑎
𝑖

𝑡

= 𝑥
𝑖
(𝑡
𝑘−1
+ 0) 𝑒

𝑎
𝑖

𝑡
𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠

(16)

is true for 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] (𝑘 = 1, 2, . . .). Further,

𝑥
𝑖
(𝑡) 𝑒
𝑎
𝑖

𝑡

= 𝑥
𝑖
(𝑡
𝑘−1
) 𝑒
𝑎
𝑖

𝑡
𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠

+ 𝐼
𝑖(𝑘−1)

(𝑥
𝑖
(𝑡
𝑘−1
)) 𝑒
𝑎
𝑖

𝑡
𝑘−1

(17)

holds for 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] (𝑘 = 1, 2, ⋅ ⋅ ⋅). Hence,

𝑥
𝑖
(𝑡
𝑘−1
) 𝑒
𝑎
𝑖

𝑡
𝑘−1 = 𝑥

𝑖
(𝑡
𝑘−2
) 𝑒
𝑎
𝑖

𝑡
𝑘−2

+ ∫

𝑡
𝑘−1

𝑡
𝑘−2

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠

+ 𝐼
𝑖(𝑘−2)

(𝑥
𝑖
(𝑡
𝑘−2
)) 𝑒
𝑎
𝑖

𝑡
𝑘−2 ,

...

𝑥
𝑖
(𝑡
2
) 𝑒
𝑎
𝑖

𝑡
2 = 𝑥
𝑖
(𝑡
1
) 𝑒
𝑎
𝑖

𝑡
1

+ ∫

𝑡
2

𝑡
1

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠

+ 𝐼
𝑖1
(𝑥
𝑖
(𝑡
1
)) 𝑒
𝑎
𝑖

𝑡
1 ,

𝑥
𝑖
(𝑡
1
) 𝑒
𝑎
𝑖

𝑡
1 = 𝜑
𝑖
(0)

+ ∫

𝑡
1

0

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠,

(18)

which produces, for 𝑡 > 0,

𝑥
𝑖
(𝑡) = 𝜑

𝑖
(0) 𝑒
−𝑎
𝑖

𝑡

+ 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

0

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠

+ 𝑒
−𝑎
𝑖

𝑡

∑

0<𝑡
𝑘

<𝑡

{𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) 𝑒
𝑎
𝑖

𝑡
𝑘} .

(19)

Note 𝑥
𝑖
(0) = 𝜑

𝑖
(0) in (19). We then define the following

operator 𝜋 acting onH, for y(𝑡) = (𝑦
1
(𝑡), . . . , 𝑦

𝑛
(𝑡)) ∈H:

𝜋 (y) (𝑡) = (𝜋 (𝑦
1
) (𝑡) , . . . , 𝜋 (𝑦

𝑛
) (𝑡)) , (20)

where 𝜋(𝑦
𝑖
)(𝑡) : [𝜗,∞) → 𝑅 (𝑖 ∈ N) obeys the rules as

follows:

𝜋 (𝑦
𝑖
) (𝑡) = 𝜑

𝑖
(0) 𝑒
−𝑎
𝑖

𝑡

+ 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

0

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠

+ 𝑒
−𝑎
𝑖

𝑡

∑

0<𝑡
𝑘

<𝑡

{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) 𝑒
𝑎
𝑖

𝑡
𝑘} ,

(21)

on 𝑡 ≥ 0 and 𝜋(𝑦
𝑖
)(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [𝜗, 0].

The subsequent part is the application of the contraction
mapping principle, which can be divided into two steps.

Step 1. We need to prove 𝜋(H) ⊂ H. Choosing 𝑦
𝑖
(𝑡) ∈ H

𝑖

(𝑖 ∈N), it is necessary to testify 𝜋(𝑦
𝑖
)(𝑡) ⊂H

𝑖
.

First, since 𝜋(𝑦
𝑖
)(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [𝜗, 0] and 𝜑

𝑖
(𝑠) ∈

𝐶[[𝜗, 0], 𝑅], we know 𝜋(𝑦
𝑖
)(𝑠) is continuous on 𝑠 ∈ [𝜗, 0]. For

a fixed time 𝑡 > 0, it follows from (21) that

𝜋 (𝑦
𝑖
) (𝑡 + 𝑟) − 𝜋 (𝑦

𝑖
) (𝑡) = 𝑄

1
+ 𝑄
2
+ 𝑄
3
+ 𝑄
4
, (22)
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where

𝑄
1
= 𝜑
𝑖
(0) 𝑒
−𝑎
𝑖

(𝑡+𝑟)

− 𝜑
𝑖
(0) 𝑒

−𝑎
𝑖

𝑡

, (23)

𝑄
2
= 𝑒
−𝑎
𝑖

(𝑡+𝑟)

∫

𝑡+𝑟

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠)) d𝑠

− 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠)) d𝑠,

𝑄
3
= 𝑒
−𝑎
𝑖

(𝑡+𝑟)

∫

𝑡+𝑟

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))) d𝑠

− 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))) d𝑠,

𝑄
4
= 𝑒
−𝑎
𝑖

(𝑡+𝑟)

∑

0<𝑡
𝑘

<(𝑡+𝑟)

{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) 𝑒
𝑎
𝑖

𝑡
𝑘}

− 𝑒
−𝑎
𝑖

𝑡

∑

0<𝑡
𝑘

<𝑡

{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) 𝑒
𝑎
𝑖

𝑡
𝑘} .

(24)

Owing to 𝑦
𝑖
(𝑡) ∈ H

𝑖
, we see that 𝑦

𝑖
(𝑡) is continuous on

𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .); moreover, lim

𝑡→ 𝑡
−

𝑘

𝑦
𝑖
(𝑡) and lim

𝑡→ 𝑡
+

𝑘

𝑦
𝑖
(𝑡)

exist, and lim
𝑡→ 𝑡
−

𝑘

𝑦
𝑖
(𝑡) = 𝑦

𝑖
(𝑡
𝑘
).

Consequently, when 𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .) in (22), it is easy

to find that𝑄
𝑖
→ 0 as 𝑟 → 0 for 𝑖 = 1, . . . , 4, and so 𝜋(𝑦

𝑖
)(𝑡)

is continuous on the fixed time 𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .).

On the other hand, as 𝑡 = 𝑡
𝑘
(𝑘 = 1, 2, . . .) in (22), it is

not difficult to find that 𝑄
𝑖
→ 0 as 𝑟 → 0 for 𝑖 = 1, 2, 3.

Furthermore, if letting 𝑟 < 0 be small enough, we derive

𝑄
4
= 𝑒
−𝑎
𝑖

(𝑡
𝑘

+𝑟)

∑

0<𝑡
𝑚

<(𝑡
𝑘

+𝑟)

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚

− 𝑒
−𝑎
𝑖

𝑡
𝑘 ∑

0<𝑡
𝑚

<𝑡
𝑘

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚

= {𝑒
−𝑎
𝑖

(𝑡
𝑘

+𝑟)

− 𝑒
−𝑎
𝑖

𝑡
𝑘}

× ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚} ,

(25)

which implies lim
𝑟→0
−𝑄
4
= 0 as 𝑡 = 𝑡

𝑘
. While letting 𝑟 >

0 tend to zero gives

𝑄
4
= 𝑒
−𝑎
𝑖

(𝑡
𝑘

+𝑟)

∑

0<𝑡
𝑚

<(𝑡
𝑘

+𝑟)

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚

− 𝑒
−𝑎
𝑖

𝑡
𝑘 ∑

0<𝑡
𝑚

<𝑡
𝑘

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚

= 𝑒
−𝑎
𝑖

(𝑡
𝑘

+𝑟)

{ ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚}

+𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) 𝑒
𝑎
𝑖

𝑡
𝑘}

− 𝑒
−𝑎
𝑖

𝑡
𝑘 ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚}

= {𝑒
−𝑎
𝑖

(𝑡
𝑘

+𝑟)

− 𝑒
−𝑎
𝑖

𝑡
𝑘}

× ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚}

+ 𝑒
−𝑎
𝑖

(𝑡
𝑘

+𝑟)

𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) 𝑒
𝑎
𝑖

𝑡
𝑘 ,

(26)

which yields lim
𝑟→0
+𝑄
4
= 𝑒
−𝑎
𝑖

𝑡
𝑘𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
))𝑒
𝑎
𝑖

𝑡
𝑘 as 𝑡 = 𝑡

𝑘
.

According to the above discussion, we find that 𝜋(𝑦
𝑖
)(𝑡) :

[𝜗,∞) → 𝑅 is continuous on 𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .); more-

over, lim
𝑡→ 𝑡
−

𝑘

𝜋(𝑦
𝑖
)(𝑡) and lim

𝑡→ 𝑡
+

𝑘

𝜋(𝑦
𝑖
)(𝑡) exist; in addition,

lim
𝑡→ 𝑡
−

𝑘

𝜋(𝑦
𝑖
)(𝑡) = 𝜋(𝑦

𝑖
)(𝑡
𝑘
) ̸= lim

𝑡→ 𝑡
+

𝑘

𝜋(𝑦
𝑖
)(𝑡).

Next, we will prove 𝜋(𝑦
𝑖
)(𝑡) → 0 as 𝑡 → ∞. For

convenience, denote

𝜋 (𝑦
𝑖
) (𝑡) = 𝐽

1
+ 𝐽
2
+ 𝐽
3
+ 𝐽
4
, 𝑡 > 0, (27)

where 𝐽
1
= 𝜑
𝑖
(0)𝑒
−𝑎
𝑖

𝑡, 𝐽
2
= 𝑒
−𝑎
𝑖

𝑡

∫
𝑡

0

𝑒
𝑎
𝑖

𝑠

∑
𝑛

𝑗=1
𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠))d𝑠,

𝐽
4
= 𝑒
−𝑎
𝑖

𝑡

∑
0<𝑡
𝑘

<𝑡
{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
))𝑒
𝑎
𝑖

𝑡
𝑘}, and 𝐽

3
= 𝑒
−𝑎
𝑖

𝑡

∫
𝑡

0

𝑒
𝑎
𝑖

𝑠

∑
𝑛

𝑗=1
𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏
𝑗
(𝑠)))d𝑠.

Due to 𝑦
𝑗
(𝑡) ∈ H

𝑗
(𝑗 ∈ N), we know lim

𝑡→∞
𝑦
𝑗
(𝑡) = 0.

Then for any 𝜀 > 0, there exists a 𝑇
𝑗
> 0 such that 𝑡 ≥ 𝑇

𝑗

implies |𝑦
𝑗
(𝑡) | < 𝜀. Choose 𝑇∗ = max

𝑗∈N{𝑇𝑗}. It is derived
from (A1) that, for 𝑡 ≥ 𝑇∗,

𝐽
2
≤ 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

{

𝑏
𝑖𝑗
𝑙
𝑗




𝑦
𝑗
(𝑠)

} d𝑠

= 𝑒
−𝑎
𝑖

𝑡

∫

𝑇
∗

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

{

𝑏
𝑖𝑗
𝑙
𝑗




𝑦
𝑗
(𝑠)

} d𝑠

+ 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

𝑇
∗

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

{

𝑏
𝑖𝑗
𝑙
𝑗




𝑦
𝑗
(𝑠)

} d𝑠

≤ 𝑒
−𝑎
𝑖

𝑡

𝑛

∑

𝑗=1

{

𝑏
𝑖𝑗
𝑙
𝑗


sup
𝑠∈[0,𝑇

∗

]


𝑦
𝑗
(𝑠)

}{∫

𝑇
∗

0

𝑒
𝑎
𝑖

𝑠d𝑠}

+ 𝜀

𝑛

∑

𝑗=1

{

𝑏
𝑖𝑗
𝑙
𝑗


} 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

𝑇
∗

𝑒
𝑎
𝑖

𝑠d𝑠
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≤ 𝑒
−𝑎
𝑖

𝑡

𝑛

∑

𝑗=1

{

𝑏
𝑖𝑗
𝑙
𝑗


sup
𝑠∈[0,𝑇

∗

]


𝑦
𝑗
(𝑠)

}

× {∫

𝑇
∗

0

𝑒
𝑎
𝑖

𝑠d𝑠} + 𝜀
𝑎
𝑖

𝑛

∑

𝑗=1

{

𝑏
𝑖𝑗
𝑙
𝑗


} .

(28)

Moreover, as lim
𝑡→∞

𝑒
−𝑎
𝑖

𝑡

= 0, we can find a 𝑇 > 0 for the
given 𝜀 such that 𝑡 ≥ 𝑇 implies 𝑒−𝑎𝑖𝑡 < 𝜀, which leads to

𝐽
2
≤ 𝜀
{

{

{

𝑛

∑

𝑗=1

{

𝑏
𝑖𝑗
𝑙
𝑗


sup
𝑠∈[0,𝑇

∗

]


𝑦
𝑗
(𝑠)

}

×{∫

𝑇
∗

0

𝑒
𝑎
𝑖

𝑠

𝑑𝑠} +
1

𝑎
𝑖

𝑛

∑

𝑗=1

{

𝑏
𝑖𝑗
𝑙
𝑗


}
}

}

}

,

𝑡 ≥ max {𝑇∗, 𝑇} ;

(29)

namely,

𝐽
2
→ 0 as 𝑡 → ∞. (30)

On the other hand, since 𝑡 − 𝜏
𝑗
(𝑡) → ∞ as 𝑡 → ∞, we

get lim
𝑡→∞

𝑦
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)) = 0. Then for any 𝜀 > 0, there also

exists a 𝑇
𝑗
> 0 such that 𝑠 ≥ 𝑇

𝑗
implies |𝑦

𝑗
(𝑠 − 𝜏

𝑗
(𝑠))| < 𝜀.

Select 𝑇 = max
𝑗∈N{𝑇



𝑗
}. It follows from (A2) that

𝐽
3
≤ 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

{

𝑐
𝑖𝑗
𝑘
𝑗




𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))

} d𝑠

= 𝑒
−𝑎
𝑖

𝑡

∫

𝑇

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

{

𝑐
𝑖𝑗
𝑘
𝑗




𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))

} d𝑠

+ 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

𝑇

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

{

𝑐
𝑖𝑗
𝑘
𝑗




𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))

} d𝑠

≤

𝑛

∑

𝑗=1

{

{

{


𝑐
𝑖𝑗
𝑘
𝑗


sup
𝑠∈[𝜗,𝑇]


𝑦
𝑗
(𝑠)


}

}

}

𝑒
−𝑎
𝑖

𝑡

∫

𝑇

0

𝑒
𝑎
𝑖

𝑠d𝑠

+ 𝜀

𝑛

∑

𝑗=1

{

𝑐
𝑖𝑗
𝑘
𝑗


} 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

𝑇

𝑒
𝑎
𝑖

𝑠d𝑠

≤ 𝑒
−𝑎
𝑖

𝑡

𝑛

∑

𝑗=1

{

{

{


𝑐
𝑖𝑗
𝑘
𝑗


sup
𝑠∈[𝜗,𝑇]


𝑦
𝑗
(𝑠)


}

}

}

∫

𝑇

0

𝑒
𝑎
𝑖

𝑠d𝑠

+
𝜀

𝑎
𝑖

𝑛

∑

𝑗=1

{

𝑐
𝑖𝑗
𝑘
𝑗


} ,

(31)

which results in

𝐽
3
→ 0 as 𝑡 → ∞. (32)

Furthermore, from (A3), we know that |𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
))| ≤

𝑝
𝑖𝑘
|𝑦
𝑖
(𝑡
𝑘
)|. So

𝐽
4
≤ 𝑒
−𝑎
𝑖

𝑡

∑

0<𝑡
𝑘

<𝑡

{𝑝
𝑖𝑘

𝑦𝑖 (𝑡𝑘)
 𝑒
𝑎
𝑖

𝑡
𝑘} . (33)

As 𝑦
𝑖
(𝑡) ∈ H

𝑖
, we have lim

𝑡→∞
𝑦
𝑖
(𝑡) = 0. Then for any

𝜀 > 0, there exists a nonimpulsive point 𝑇
𝑖
> 0 such that

𝑠 ≥ 𝑇
𝑖
implies |𝑦

𝑖
(𝑠)| < 𝜀. It then follows from conditions (i)

and (ii) that

𝐽
4
≤ 𝑒
−𝑎
𝑖

𝑡
{

{

{

∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

𝑦𝑖 (𝑡𝑘)
 𝑒
𝑎
𝑖

𝑡
𝑘}

+ ∑

𝑇
𝑖

<𝑡
𝑘

<𝑡

{𝑝
𝑖𝑘

𝑦𝑖 (𝑡𝑘)
 𝑒
𝑎
𝑖

𝑡
𝑘}
}

}

}

≤ 𝑒
−𝑎
𝑖

𝑡

∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

𝑦𝑖 (𝑡𝑘)
 𝑒
𝑎
𝑖

𝑡
𝑘}

+ 𝑒
−𝑎
𝑖

𝑡

𝑝
𝑖
𝜀 ∑

𝑇
𝑖

<𝑡
𝑘

<𝑡

{𝜇𝑒
𝑎
𝑖

𝑡
𝑘}

≤ 𝑒
−𝑎
𝑖

𝑡

∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

𝑦𝑖 (𝑡𝑘)
 𝑒
𝑎
𝑖

𝑡
𝑘}

+ 𝑒
−𝑎
𝑖

𝑡

𝑝
𝑖
𝜀
{

{

{

∑

𝑇
𝑖

<𝑡
𝑟

<𝑡
𝑘

{𝑒
𝑎
𝑖

𝑡
𝑟 (𝑡
𝑟+1
− 𝑡
𝑟
)}

+𝜇𝑒
𝑎
𝑖

𝑡
𝑘

}

}

}

≤ 𝑒
−𝑎
𝑖

𝑡

∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

𝑦𝑖 (𝑡𝑘)
 𝑒
𝑎
𝑖

𝑡
𝑘}

+ 𝑒
−𝑎
𝑖

𝑡

𝑝
𝑖
𝜀 (∫

𝑡

𝑇
𝑖

𝑒
𝑎
𝑖

𝑠d𝑠 + 𝜇𝑒𝑎𝑖𝑡)

≤ 𝑒
−𝑎
𝑖

𝑡

∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

𝑦𝑖 (𝑡𝑘)
 𝑒
𝑎
𝑖

𝑡
𝑘}

+
𝜀𝑝
𝑖

𝑎
𝑖

+ 𝑝
𝑖
𝜀𝜇,

(34)

which produces

𝐽
4
→ 0 as 𝑡 → ∞. (35)

From (30), (32), and (35), we deduce 𝜋(𝑦
𝑖
)(𝑡) → 0 as

𝑡 → ∞ for 𝑖 ∈N. We therefore conclude that 𝜋(𝑦
𝑖
)(𝑡) ⊂H

𝑖

(𝑖 ∈N) which means 𝜋(H) ⊂H.

Step 2. We need to prove 𝜋 is contractive. For y =

(𝑦
1
(𝑡), . . . , 𝑦

𝑛
(𝑡)) ∈ H and 𝑧 = (𝑧

1
(𝑡), . . . , 𝑧

𝑛
(𝑡)) ∈ H, we

estimate
𝜋 (𝑦𝑖) (𝑡) − 𝜋 (𝑧𝑖) (𝑡)

 ≤ 𝐼1 + 𝐼2 + 𝐼3, (36)
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where 𝐼
1
= 𝑒
−𝑎
𝑖

𝑡

∫
𝑡

0

𝑒
𝑎
𝑖

𝑠

∑
𝑛

𝑗=1
[|𝑏
𝑖𝑗
||𝑓
𝑗
(𝑦
𝑗
(𝑠)) − 𝑓

𝑗
(𝑧
𝑗
(𝑠))|]

d𝑠, 𝐼
3
= 𝑒
−𝑎
𝑖

𝑡

∑
0<𝑡
𝑘

<𝑡
{𝑒
𝑎
𝑖

𝑡
𝑘 |𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) − 𝐼
𝑖𝑘
(𝑧
𝑖
(𝑡
𝑘
))|}, and 𝐼

2
=

𝑒
−𝑎
𝑖

𝑡

∫
𝑡

0

𝑒
𝑎
𝑖

𝑠

∑
𝑛

𝑗=1
[|𝑐
𝑖𝑗
| |𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏
𝑗
(𝑠))) − 𝑔

𝑗
(𝑧
𝑗
(𝑠 − 𝜏
𝑗
(𝑠)))|]d𝑠.

Note

𝐼
1
≤ 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

[

𝑏
𝑖𝑗
𝑙
𝑗




𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

] d𝑠

≤ max
𝑗∈N


𝑏
𝑖𝑗
𝑙
𝑗



𝑛

∑

𝑗=1

{ sup
𝑠∈[0,𝑡]


𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

} 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

0

𝑒
𝑎
𝑖

𝑠d𝑠

≤
1

𝑎
𝑖

max
𝑗∈N


𝑏
𝑖𝑗
𝑙
𝑗



𝑛

∑

𝑗=1

{ sup
𝑠∈[0,𝑡]


𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

} ,

𝐼
2
≤ 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

0

𝑒
𝑎
𝑖

𝑠

×

𝑛

∑

𝑗=1

[

𝑐
𝑖𝑗
𝑘
𝑗




𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))

−𝑧
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))

] d𝑠

≤ max
𝑗∈N


𝑐
𝑖𝑗
𝑘
𝑗



𝑛

∑

𝑗=1

{ sup
𝑠∈[𝜗,𝑡]


𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

} 𝑒
−𝑎
𝑖

𝑡

∫

𝑡

0

𝑒
𝑎
𝑖

𝑠d𝑠

≤
1

𝑎
𝑖

max
𝑗∈N


𝑐
𝑖𝑗
𝑘
𝑗



𝑛

∑

𝑗=1

{ sup
𝑠∈[𝜗,𝑡]


𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

} ,

𝐼
3
≤ 𝑒
−𝑎
𝑖

𝑡

∑

0<𝑡
𝑘

<𝑡

{𝑒
𝑎
𝑖

𝑡
𝑘𝑝
𝑖𝑘

𝑦𝑖 (𝑡𝑘) − 𝑧𝑖 (𝑡𝑘)
}

≤ 𝑝
𝑖
𝑒
−𝑎
𝑖

𝑡 sup
𝑠∈[0,𝑡]

𝑦𝑖 (𝑠) − 𝑧𝑖 (𝑠)
 ∑

0<𝑡
𝑘

<𝑡

{𝑒
𝑎
𝑖

𝑡
𝑘𝜇}

≤ 𝑝
𝑖
𝑒
−𝑎
𝑖

𝑡 sup
𝑠∈[0,𝑡]

𝑦𝑖 (𝑠) − 𝑧𝑖 (𝑠)


× { ∑

0<𝑡
𝑟

<𝑡
𝑘

{𝑒
𝑎
𝑖

𝑡
𝑟 (𝑡
𝑟+1
− 𝑡
𝑟
)} + 𝑒

𝑎
𝑖

𝑡
𝑘𝜇}

≤ 𝑝
𝑖
sup
𝑠∈[0,𝑡]

𝑦𝑖 (𝑠) − 𝑧𝑖 (𝑠)
 𝑒
−𝑎
𝑖

𝑡

× {∫

𝑡

0

𝑒
𝑎
𝑖

𝑠d𝑠 + 𝑒𝑎𝑖𝑡𝜇}

≤ 𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

) sup
𝑠∈[0,𝑡]

𝑦𝑖 (𝑠) − 𝑧𝑖 (𝑠)
 .

(37)

It hence follows from (37) that

𝜋 (𝑦𝑖) (𝑡) − 𝜋 (𝑧𝑖) (𝑡)


≤
1

𝑎
𝑖

max
𝑗∈N


𝑏
𝑖𝑗
𝑙
𝑗



×

𝑛

∑

𝑗=1

{ sup
𝑠∈[0,𝑡]


𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

}

+
1

𝑎
𝑖

max
𝑗∈N


𝑐
𝑖𝑗
𝑘
𝑗



𝑛

∑

𝑗=1

{ sup
𝑠∈[𝜗,𝑡]


𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

}

+ 𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

) sup
𝑠∈[0,𝑡]

𝑦𝑖 (𝑠) − 𝑧𝑖 (𝑠)
 ,

(38)

which implies

sup
𝑡∈[𝜗,𝑇]

𝜋 (𝑦𝑖) (𝑡) − 𝜋 (𝑧𝑖) (𝑡)


≤
1

𝑎
𝑖

max
𝑗∈N


𝑏
𝑖𝑗
𝑙
𝑗



𝑛

∑

𝑗=1

{ sup
𝑠∈[𝜗,𝑇]


𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

}

+
1

𝑎
𝑖

max
𝑗∈N


𝑐
𝑖𝑗
𝑘
𝑗



𝑛

∑

𝑗=1

{ sup
𝑠∈[𝜗,𝑇]


𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

}

+ 𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

) sup
𝑠∈[𝜗,𝑇]

𝑦𝑖 (𝑠) − 𝑧𝑖 (𝑠)
 .

(39)

Therefore,

𝑛

∑

𝑖=1

sup
𝑡∈[−𝜏,𝑇]

𝜋 (𝑦𝑖) (𝑡) − 𝜋 (𝑧𝑖) (𝑡)


≤ 𝜆
∗

𝑛

∑

𝑗=1

{ sup
𝑠∈[𝜗,𝑇]


𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

} .

(40)

In view of condition (iii), we see 𝜋 is a contraction
mapping, and, thus there exists a unique fixed point y∗(⋅) of
𝜋 inH which means the transposition of y∗(⋅) is the vector-
valued solution to (1)–(3) and its norm tends to zero as 𝑡 →
∞.

To obtain the asymptotic stability, we still need to prove
that the trivial equilibrium x = 0 is stable. For any 𝜀 > 0,
from condition (iv), we can find 𝛿 satisfying 0 < 𝛿 < 𝜀 such
that 𝛿 +max

𝑖∈N{𝜆𝑖}𝜀 ≤ 𝜀/√𝑛. Let |𝜑| < 𝛿. According to what
has been discussed above, we know that there exists a unique
solution x(𝑡; 𝑠, 𝜑) = (𝑥

1
(𝑡; 𝑠, 𝜑

1
), . . . , 𝑥

𝑛
(𝑡; 𝑠, 𝜑

𝑛
))
𝑇 to (1)–(3);

moreover,

𝑥
𝑖
(𝑡) = 𝜋 (𝑥

𝑖
) (𝑡) = 𝐽

1
+ 𝐽
2
+ 𝐽
3
+ 𝐽
4
, 𝑡 ≥ 0; (41)

here 𝐽
1
= 𝜑
𝑖
(0)𝑒
−𝑎
𝑖

𝑡, 𝐽
2
= 𝑒
−𝑎
𝑖

𝑡

∫
𝑡

0

𝑒
𝑎
𝑖

𝑠

∑
𝑛

𝑗=1
𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))d𝑠,

𝐽
3
= 𝑒
−𝑎
𝑖

𝑡

∫
𝑡

0

𝑒
𝑎
𝑖

𝑠

∑
𝑛

𝑗=1
𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))d𝑠, and 𝐽

4
= 𝑒
−𝑎
𝑖

𝑡

∑
0<𝑡
𝑘

<𝑡
{𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
))𝑒
𝑎
𝑖

𝑡
𝑘}.

Suppose there exists 𝑡∗ > 0 such that ‖x(𝑡∗; 𝑠, 𝜑)‖ = 𝜀 and
‖x(𝑡; 𝑠, 𝜑)‖ < 𝜀 as 0 ≤ 𝑡 < 𝑡∗. It follows from (41) that

𝑥𝑖 (𝑡
∗

)
 ≤
𝐽1 (𝑡
∗

)
 +
𝐽2 (𝑡
∗

)
 +
𝐽3 (𝑡
∗

)
 +
𝐽4 (𝑡

∗

)
 . (42)
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As

𝐽1 (𝑡
∗

)
 =

𝜑
𝑖
(0) 𝑒
−𝑎
𝑖

𝑡
∗ 
≤ 𝛿,

𝐽2 (𝑡
∗

)
 ≤ 𝑒
−𝑎
𝑖

𝑡
∗

∫

𝑡
∗

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1


𝑏
𝑖𝑗
𝑙
𝑗
𝑥
𝑗
(𝑠)

d𝑠

<
𝜀

𝑎
𝑖

𝑛

∑

𝑗=1


𝑏
𝑖𝑗
𝑙
𝑗


,

𝐽3 (𝑡
∗

)
 ≤ 𝑒
−𝑎
𝑖

𝑡
∗

∫

𝑡
∗

0

𝑒
𝑎
𝑖

𝑠

×

𝑛

∑

𝑗=1


𝑐
𝑖𝑗
𝑘
𝑗
𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))

d𝑠

<
𝜀

𝑎
𝑖

𝑛

∑

𝑗=1


𝑐
𝑖𝑗
𝑘
𝑗


,

𝐽4 (𝑡
∗

)
 ≤ 𝑝𝑖𝑒

−𝑎
𝑖

𝑡
∗

∑

0<𝑡
𝑘

<𝑡
∗

{𝜇
𝑥𝑖 (𝑡𝑘)

 𝑒
𝑎
𝑖

𝑡
𝑘}

< 𝜀𝑝
𝑖
𝑒
−𝑎
𝑖

𝑡
∗

{∫

𝑡
∗

0

𝑒
𝑎
𝑖

𝑠

𝑑𝑠 + 𝜇𝑒
𝑎
𝑖

𝑡
∗

}

≤ 𝜀𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

) ,

(43)

we obtain |𝑥
𝑖
(𝑡
∗

)| < 𝛿 + 𝜆
𝑖
𝜀.

So ‖x(𝑡∗; 𝑠, 𝜑)‖2 = ∑𝑛
𝑖=1
{|𝑥
𝑖
(𝑡
∗

)|
2

} < ∑
𝑛

𝑖=1
{|𝛿 + 𝜆

𝑖
𝜀|
2

} ≤

𝑛|𝛿 +max
𝑖∈N{𝜆𝑖}𝜀|

2

≤ 𝜀
2. This contradicts the assumption of

‖x(𝑡∗; 𝑠, 𝜑)‖ = 𝜀. Therefore, ‖x(𝑡; 𝑠, 𝜑)‖ < 𝜀 holds for all 𝑡 ≥ 0.
This completes the proof.

Corollary 5. Assume that conditions (A1)–(A3) hold. Pro-
vided that

(i) inf
𝑘=1,2,...

{𝑡
𝑘
− 𝑡
𝑘−1
} ≥ 1,

(ii) there exist constants 𝑝
𝑖
such that 𝑝

𝑖𝑘
≤ 𝑝
𝑖
for 𝑖 ∈ N

and 𝑘 = 1, 2, . . .,
(iii) ∑𝑛

𝑖=1
{(1/𝑎
𝑖
)max
𝑗∈N|𝑏𝑖𝑗𝑙𝑗| + (1/𝑎𝑖)max

𝑗∈N|𝑐𝑖𝑗𝑘𝑗|} +

max
𝑖∈N{𝑝𝑖(1 + (1/𝑎𝑖))} < 1,

(iv) max
𝑖∈N{𝜆


𝑖
} < 1/√𝑛, where 𝜆

𝑖
= (1/𝑎

𝑖
) ∑
𝑛

𝑗=1
|𝑏
𝑖𝑗
𝑙
𝑗
| +

(1/𝑎
𝑖
) ∑
𝑛

𝑗=1
|𝑐
𝑖𝑗
𝑘
𝑗
| + 𝑝
𝑖
(1 + (1/𝑎

𝑖
)),

then the trivial equilibrium x = 0 is asymptotically stable.

Proof. Corollary 5 is a direct conclusion by letting 𝜇 = 1 in
Theorem 4.

Remark 6. In Theorem 4, we can see it is the fixed point
theory that deals with the existence and uniqueness of
solution and the asymptotic analysis of trivial equilibrium at
the same time, while Lyapunov method fails to do this.

Remark 7. The presented sufficient conditions in Theorems
4 and Corollary 5 do not require even the boundedness and

differentiability of delays, let alone the monotone decreasing
behavior of delays which is necessary in some relevant works.

Provided that 𝐼
𝑖𝑘
(⋅) ≡ 0, (1) and (2) will become the

following cellular neural network with infinite delays and
without impulsive effects:

d𝑥
𝑖
(𝑡)

d𝑡
= − 𝑎

𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) ,

𝑖 ∈N, 𝑡 ≥ 0,

(44)

where 𝑎
𝑖
, 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
, 𝑓
𝑗
(⋅), 𝑔
𝑗
(⋅), 𝜏
𝑗
(𝑡), and 𝑥

𝑖
(𝑡) are the same as

defined in Section 2. Obviously, (44) also admits a trivial
equilibrium x = 0. FromTheorem 4, we reach the following.

Theorem 8. Assume that conditions (A1)-(A2) hold. Provided
that

(i) ∑𝑛
𝑖=1
{(1/𝑎
𝑖
)max
𝑗∈N|𝑏𝑖𝑗𝑙𝑗| + (1/𝑎𝑖)max

𝑗∈N|𝑐𝑖𝑗𝑘𝑗|} < 1,

(ii) max
𝑖∈N{𝜆


𝑖
} < 1/√𝑛, where 𝜆

𝑖
= (1/𝑎

𝑖
) ∑
𝑛

𝑗=1
|𝑏
𝑖𝑗
𝑙
𝑗
| +

(1/𝑎
𝑖
) ∑
𝑛

𝑗=1
|𝑐
𝑖𝑗
𝑘
𝑗
|,

then the trivial equilibrium x = 0 is asymptotically stable.

4. Example

Consider the following two-dimensional impulsive cellular
neural network with infinite delays:

d𝑥
𝑖
(𝑡)

d𝑡
= − 𝑎

𝑖
𝑥
𝑖
(𝑡) +

2

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

2

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
𝑘
+ 0) − 𝑥

𝑖
(𝑡
𝑘
)

= arctan (0.4𝑥
𝑖
(𝑡
𝑘
)) , 𝑘 = 1, 2, . . . ,

(45)

with the initial conditions 𝑥
1
(𝑠) = cos(𝑠), 𝑥

2
(𝑠) = sin(𝑠) on

−1 ≤ 𝑠 ≤ 0, where 𝜏
𝑗
(𝑡) = 0.4𝑡 + 1, 𝑎

1
= 𝑎
2
= 7, 𝑏

𝑖𝑗
= 0,

𝑐
11
= 3/7, 𝑐

12
= 2/7, 𝑐

21
= 0, 𝑐

22
= 1/7, 𝑓

𝑗
(𝑠) = 𝑔

𝑗
(𝑠) =

(|𝑠 + 1| − |𝑠 − 1|)/2, and 𝑡
𝑘
= 𝑡
𝑘−1
+ 0.5𝑘.

It is easy to see that 𝜇 = 0.5, 𝑙
𝑗
= 𝑘
𝑗
= 1, and 𝑝

𝑖𝑘
= 0.4. Let

𝑝
𝑖
= 0.8 and compute

2

∑

𝑖=1

{
1

𝑎
𝑖

max
𝑗=1,2


𝑐
𝑖𝑗
𝑘
𝑗


} +max
𝑖=1,2

{𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

)} < 1,

max
𝑖∈N
{𝜆
𝑖
} <

1

√2
,

(46)
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where𝜆
𝑖
= (1/𝑎

𝑖
) ∑
𝑛

𝑗=1
|𝑐
𝑖𝑗
𝑘
𝑗
|+𝑝
𝑖
(𝜇+(1/𝑎

𝑖
)). FromTheorem 4,

we conclude that the trivial equilibrium x = 0 of this two-
dimensional impulsive cellular neural network with infinite
delays is asymptotically stable.

5. Conclusions

This work is devoted to seeking new methods to investigate
the stability of complex neural networks. From what has
been discussed above, we find that the fixed point theory is
feasible. With regard to a class of impulsive cellular neural
networks with infinite delays, we utilize the contraction
mapping principle to deal with the existence and uniqueness
of solution and the asymptotic analysis of trivial equilibrium
at the same time, for which Lyapunov method feels helpless.
Now that there are different kinds of fixed point theorems and
complex neural networks, our future work is to continue the
study on the application of fixed point theory to the stability
analysis of complex neural networks.
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inequality,” Neurocomputing, vol. 83, pp. 198–204, 2012.

[9] Y. Zhang and Q. Luo, “Novel stability criteria for impulsive
delayed reaction-diffusion Cohen-Grossberg neural networks
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