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Integral equation has been one of the essential tools for various areas of applied mathematics. In this paper, we review different
numerical methods for solving both linear and nonlinear Fredholm integral equations of second kind.The goal is to categorize the
selectedmethods and assess their accuracy and efficiency.We discuss challenges faced by researchers in this field, andwe emphasize
the importance of interdisciplinary effort for advancing the study on numerical methods for solving integral equations.

1. Introduction

Integral equations occur naturally in many fields of science
and engineering [1]. A computational approach to solve
integral equation is an essential work in scientific research.

Integral equation is encountered in a variety of appli-
cations in many fields including continuum mechanics,
potential theory, geophysics, electricity and magnetism,
kinetic theory of gases, hereditary phenomena in physics
and biology, renewal theory, quantum mechanics, radiation,
optimization, optimal control systems, communication the-
ory, mathematical economics, population genetics, queuing
theory, medicine, mathematical problems of radiative equi-
librium, the particle transport problems of astrophysics and
reactor theory, acoustics, fluid mechanics, steady state heat
conduction, fracture mechanics, and radiative heat transfer
problems. Fredholm integral equation is one of the most
important integral equations.

Integral equations can be viewed as equations which are
results of transformation of points in a given vector spaces
of integrable functions by the use of certain specific integral
operators to points in the same space. If, in particular, one
is concerned with function spaces spanned by polynomials
for which the kernel of the corresponding transforming
integral operator is separable being comprised of polynomial

functions only, then several approximatemethods of solution
of integral equations can be developed.

A computational approach to solving integral equation
is an essential work in scientific research. Some methods
for solving second kind Fredholm integral equation are
available in the open literature.The B-spline wavelet method,
the method of moments based on B-spline wavelets by
Maleknejad and Sahlan [2], and variational iteration method
(VIM) by He [3–5] have been applied to solve second kind
Fredholm linear integral equations. The learned researchers
Maleknejad et al. proposed some numerical methods for
solving linear Fredholm integral equations system of second
kind using Rationalized Haar functions method, Block-Pulse
functions, and Taylor series expansion method [6–8]. Haar
wavelet method with operational matrices of integration [9]
has been applied to solve system of linear Fredholm integral
equations of second kind. Quadrature method [10], B-spline
wavelet method [11], wavelet Galerkin method [12], and
also VIM [13] can be applied to solve nonlinear Fredholm
integral equation of second kind. Some iterative methods
like Homotopy perturbation method (HPM) [14–16] and
Adomian decomposition method (ADM) [16–18] have been
applied to solve nonlinear Fredholm integral equation of
second kind.
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2. Fredholm Integral Equation

The general form of linear Fredholm integral equation is
defined as follows:

𝑔 (𝑥) 𝑦 (𝑥) = 𝑓 (𝑥) + 𝜆∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡, (1)

where 𝑎 and 𝑏 are both constants. 𝑓(𝑥), 𝑔(𝑥), and 𝐾(𝑥, 𝑡)
are known functions while 𝑦(𝑥) is unknown function. 𝜆
(nonzero parameter) is called eigenvalue of the integral
equation. The function 𝐾(𝑥, 𝑡) is known as kernel of the
integral equation.

2.1. Fredholm Integral Equation of First Kind. The linear
integral equation is of form (by setting 𝑔(𝑥) = 0 in (1))

𝑓 (𝑥) + 𝜆∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡 = 0. (2)

Equation (2) is known as Fredholm integral equation of first
kind.

2.2. Fredholm Integral Equation of Second Kind. The linear
integral equation is of form (by setting 𝑔(𝑥) = 1 in (1))

𝑦 (𝑥) = 𝑓 (𝑥) + ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡. (3)

Equation (3) is known as Fredholm integral equation of
second kind.

2.3. System of Linear Fredholm Integral Equations. The gen-
eral form of system of linear Fredholm integral equations of
second kind is defined as follows:

𝑛

∑

𝑗=1

𝑔𝑖,𝑗𝑦𝑗 (𝑥) = 𝑓𝑖 (𝑥) +

𝑛

∑

𝑗=1

∫

𝑏

𝑎

𝐾𝑖,𝑗 (𝑥, 𝑡) 𝑦𝑗 (𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛,

(4)

where 𝑓𝑖(𝑥) and 𝐾𝑖,𝑗(𝑥, 𝑡) are known functions and 𝑦𝑗(𝑥) are
the unknown functions for 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

2.4. Nonlinear Fredholm-Hammerstein Integral Equation of
Second Kind. Nonlinear Fredholm-Hammerstein integral
equation of second kind is defined as follows:

𝑦 (𝑥) = 𝑓 (𝑥) + ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝐹 (𝑦 (𝑡)) 𝑑𝑡, (5)

where 𝐾(𝑥, 𝑡) is the kernel of the integral equation, 𝑓(𝑥)
and 𝐾(𝑥, 𝑡) are known functions, and 𝑦(𝑥) is the unknown
function that is to be determined.

2.5. System of Nonlinear Fredholm Integral Equations. System
of nonlinear Fredholm integral equations of second kind is
defined as follows:
𝑛

∑

𝑗=1

𝑔𝑖,𝑗𝑦𝑗 (𝑥) = 𝑓𝑖 (𝑥) +

𝑛

∑

𝑗=1

∫

𝑏

𝑎

𝐾𝑖,𝑗 (𝑥, 𝑡) 𝐹𝑖,𝑗 (𝑡, 𝑦𝑗 (𝑡)) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛,

(6)

where 𝑓𝑖(𝑥) and 𝐾𝑖,𝑗(𝑥, 𝑡) are known functions and 𝑦𝑗(𝑥) are
the unknown functions for 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

3. Numerical Methods for Linear Fredholm
Integral Equation of Second Kind

Consider the following Fredholm integral equation of second
kind defined in (3)

𝑦 (𝑥) = 𝑓 (𝑥) + ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡, 𝑎 ≤ 𝑥 ≤ 𝑏, (7)

where 𝐾(𝑥, 𝑡) and 𝑔(𝑥) are known functions and 𝑦(𝑥) is
unknown function to be determined.

3.1. B-Spline Wavelet Method

3.1.1. B-Spline Scaling and Wavelet Functions on the Interval
[0, 1]. Semiorthogonal wavelets using B-spline are specially
constructed for the bounded interval and this wavelet can
be represented in a closed form. This provides a compact
support. Semiorthogonal wavelets form the basis in the space
𝐿
2
(𝑅).
Using this basis, an arbitrary function in 𝐿2(𝑅) can be

expressed as the wavelet series. For the finite interval [0, 1],
the wavelet series cannot be completely presented by using
this basis.This is because supports of some basis are truncated
at the left or right end points of the interval. Hence, a special
basis has to be introduced into the wavelet expansion on the
finite interval.These functions are referred to as the boundary
scaling functions and boundary wavelet functions.

Let𝑚 and 𝑛 be two positive integers and let

𝑎 = 𝑥−𝑚+1 = ⋅ ⋅ ⋅ = 𝑥0 < 𝑥1

< ⋅ ⋅ ⋅ < 𝑥𝑛 = 𝑥𝑛+1

= ⋅ ⋅ ⋅ = 𝑥𝑛+𝑚−1 = 𝑏

(8)

be an equally spaced knots sequence. The functions

𝐵𝑚,𝑗,𝑋 (𝑥) =
𝑥 − 𝑥𝑗

𝑥𝑗+𝑚−1 − 𝑥𝑗

𝐵𝑚−1,𝑗,𝑋 (𝑥)

+
𝑥𝑗+𝑚 − 𝑥

𝑥𝑗+𝑚 − 𝑥𝑗+1

𝐵𝑚−1,𝑗+1,𝑋 (𝑥) ,

𝑗 = −𝑚 + 1, . . . , 𝑛 − 1,

𝐵1,𝑗,𝑋 (𝑥) = {
1, 𝑥 ∈ [𝑥𝑗, 𝑥𝑗+1) ,

0, otherwise,

(9)



Abstract and Applied Analysis 3

are called cardinal B-spline functions of order 𝑚 ≥ 2 for
the knot sequence 𝑋 = {𝑥𝑖}

𝑛+𝑚−1

𝑖=−𝑚+1
and Supp𝐵𝑚,𝑗,𝑋(𝑥) =

[𝑥𝑗, 𝑥𝑗+𝑚] ∩ [𝑎, 𝑏].
By considering the interval [𝑎, 𝑏] = [0, 1], at any level 𝑗 ∈

Ζ
+, the discretization step is 2−𝑗, and this generates 𝑛 = 2𝑗

number of segments in [0, 1] with knot sequence

𝑋
(𝑗)
=

{{{

{{{

{

𝑥
(𝑗)

−𝑚+1
= ⋅ ⋅ ⋅ = 𝑥

(𝑗)

0
= 0,

𝑥
(𝑗)

𝑘
=
𝑘

2𝑗
, 𝑘 = 1, . . . , 𝑛 − 1,

𝑥
(𝑗)

𝑛
= ⋅ ⋅ ⋅ = 𝑥

(𝑗)

𝑛+𝑚−1
= 1.

(10)

Let 𝑗0 be the level forwhich 2
𝑗0 ≥ 2𝑚−1; for each level, 𝑗 ≥ 𝑗0,

the scaling functions of order 𝑚 can be defined as follows in
[2]:
𝜑𝑚,𝑗,𝑖 (𝑥)

=

{{

{{

{

𝐵𝑚,𝑗0,𝑖
(2
𝑗−𝑗0𝑥) 𝑖 = −𝑚 + 1, . . . , −1,

𝐵𝑚,𝑗0,2
𝑗−𝑚−𝑖 (1 − 2

𝑗−𝑗0𝑥) 𝑖 = 2
𝑗
− 𝑚 + 1, . . . , 2

𝑗
− 1,

𝐵𝑚,𝑗0,0
(2
𝑗−𝑗0𝑥 − 2

−𝑗0 𝑖) 𝑖 = 0, . . . , 2
𝑗
− 𝑚.

(11)

And the two scale relations for the 𝑚-order semiorthogonal
compactly supported B-wavelet functions are defined as
follows:

𝜓𝑚,𝑗,𝑖−𝑚 =

2𝑖+2𝑚−2

∑

𝑘=𝑖

𝑞𝑖,𝑘𝐵𝑚,𝑗,𝑘−𝑚, 𝑖 = 1, . . . , 𝑚 − 1,

𝜓𝑚,𝑗,𝑖−𝑚 =

2𝑖+2𝑚−2

∑

𝑘=2𝑖−𝑚

𝑞𝑖,𝑘𝐵𝑚,𝑗,𝑘−𝑚, 𝑖 = 𝑚, . . . , 𝑛 − 𝑚 + 1,

𝜓𝑚,𝑗,𝑖−𝑚 =

𝑛+𝑖+𝑚−1

∑

𝑘=2𝑖−𝑚

𝑞𝑖,𝑘𝐵𝑚,𝑗,𝑘−𝑚, 𝑖 = 𝑛 − 𝑚 + 2, . . . , 𝑛,

(12)

where 𝑞𝑖,𝑘 = 𝑞𝑘−2𝑖.
Hence, there are 2(𝑚 − 1) boundary wavelets and (𝑛 −

2𝑚+ 2) inner wavelets in the bounded interval [𝑎, 𝑏]. Finally,
by considering the level 𝑗with 𝑗 ≥ 𝑗0, the B-wavelet functions
in [0, 1] can be expressed as follows:

𝜓𝑚,𝑗,𝑖 (𝑥)

=

{{

{{

{

𝜓𝑚,𝑗0,𝑖
(2
𝑗−𝑗0𝑥) 𝑖 = −𝑚 + 1, . . . , −1,

𝜓𝑚,2𝑗−2𝑚+1−𝑖,𝑖 (1 − 2
𝑗−𝑗0𝑥) 𝑖 = 2

𝑗
−2𝑚+2, . . . , 2

𝑗
−𝑚,

𝜓𝑚,𝑗0,0
(2
𝑗−𝑗0𝑥 − 2

−𝑗0 𝑖) 𝑖 = 0, . . . , 2
𝑗
− 2𝑚 + 1.

(13)

The scaling functions 𝜑𝑚,𝑗,𝑖(𝑥) occupy 𝑚 segments and the
wavelet functions 𝜓𝑚,𝑗,𝑖(𝑥) occupy 2𝑚 − 1 segments.

When the semiorthogonal wavelets are constructed from
B-spline of order 𝑚, the lowest octave level 𝑗 = 𝑗0 is
determined in [19, 20] by

2
𝑗0 ≥ 2𝑚 − 1, (14)

so as to have a minimum of one complete wavelet on the
interval [0, 1].

3.1.2. Function Approximation. A function 𝑓(𝑥) defined over
[0, 1]may be approximated by B-spline wavelets as [21, 22]

𝑓 (𝑥) =

2
𝑗0−1

∑

𝑘=1−𝑚

𝑐𝑗0 ,𝑘
𝜑𝑗0 ,𝑘

(𝑥)

+

∞

∑

𝑗=𝑗0

2
𝑗
−𝑚

∑

𝑘=1−𝑚

𝑑𝑗,𝑘𝜓𝑗,𝑘 (𝑥) .

(15)

If the infinite series in (15) is truncated at𝑀, then (15) can be
written as [2]

𝑓 (𝑥) ≅

2
𝑗0−1

∑

𝑘=1−𝑚

𝑐𝑗0 ,𝑘
𝜑𝑗0 ,𝑘

(𝑥)

+

𝑀

∑

𝑗=𝑗0

2
𝑗
−𝑚

∑

𝑘=1−𝑚

𝑑𝑗,𝑘𝜓𝑗,𝑘 (𝑥) ,

(16)

where 𝜑2,𝑘 and 𝜓𝑗,𝑘 are scaling and wavelets functions,
respectively, and𝐶 andΨ are (2𝑀+1 +𝑚−1)×1 vectors given
by

𝐶 = [𝑐𝑗0,1−𝑚
, . . . , 𝑐𝑗0 ,2

𝑗0−1, 𝑑𝑗0 ,1−𝑚
, . . . ,

𝑑𝑗0 ,2
𝑗0−𝑚, . . . , 𝑑𝑀,1−𝑚, . . . , 𝑑𝑀,2𝑀−𝑚]

𝑇

,

(17)

Ψ = [𝜑𝑗0 ,1−𝑚
, . . . , 𝜑𝑗0 ,2

𝑗0−1, 𝜓𝑗0,1−𝑚
, . . . ,

𝜓𝑗0,2
𝑗0−𝑚, . . . , 𝜓𝑀,1−𝑚, . . . , 𝜓𝑀,2𝑀−𝑚]

𝑇

,

(18)

with

𝑐𝑗0 ,𝑘
= ∫

1

0

𝑓 (𝑥) 𝜑𝑗0 ,𝑘
(𝑥) 𝑑𝑥, 𝑘 = 1 − 𝑚, . . . , 2

𝑗0 − 1,

𝑑𝑗,𝑘 = ∫

1

0

𝑓 (𝑥) 𝜓̃𝑗,𝑘 (𝑥) 𝑑𝑥,

𝑗 = 𝑗0, . . . ,𝑀, 𝑘 = 1 − 𝑚, . . . , 2
𝑀
− 𝑚,

(19)

where 𝜑𝑗0 ,𝑘(𝑥) and 𝜓̃𝑗,𝑘(𝑥) are dual functions of 𝜑𝑗0 ,𝑘 and 𝜓𝑗,𝑘,
respectively.These can be obtained by linear combinations of
𝜑𝑗0 ,𝑘

, 𝑘 = 1 − 𝑚, . . . , 2𝑗0 − 1, and 𝜓𝑗,𝑘, 𝑗 = 𝑗0, . . . ,𝑀, 𝑘 =
1 − 𝑚, . . . , 2

𝑀
− 𝑚, as follows. Let

Φ = [𝜑𝑗0 ,1−𝑚
, . . . , 𝜑𝑗0 ,2

𝑗0−1]
𝑇

, (20)

Ψ = [𝜓𝑗0 ,1−𝑚
, . . . , 𝜓𝑗0 ,2

𝑗0−𝑚, . . . , 𝜓𝑀,1−𝑚, . . . , 𝜓𝑀,2𝑀−𝑚]
𝑇

.

(21)

Using (11), (20), (12)-(13), and (21), we get

∫

1

0

ΦΦ
𝑇
𝑑𝑥 = 𝑃1,

∫

1

0

ΨΨ
𝑇

𝑑𝑥 = 𝑃2.

(22)
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Suppose that Φ̃ and ̃Ψ are the dual functions of Φ and Ψ,
respectively; then

∫

1

0

Φ̃Φ
𝑇
𝑑𝑥 = 𝐼1,

∫

1

0

̃
ΨΨ
𝑇

𝑑𝑥 = 𝐼2,

(23)

Φ̃ = 𝑃1
−1
Φ,

̃
Ψ = 𝑃2

−1
Ψ.

(24)

3.1.3. Application of B-SplineWavelet Method. In this section,
linear Fredholm integral equation of the second kind of form
(7) has been solved by using B-spline wavelets. For this, we
use (16) to approximate 𝑦(𝑥) as

𝑦 (𝑥) = 𝐶
𝑇
Ψ (𝑥) , (25)

where Ψ(𝑥) is defined in (18) and 𝐶 is (2𝑀+1 + 𝑚 − 1) × 1
unknown vector defined similarly as in (17). We also expand
𝑓(𝑥) and 𝐾(𝑥, 𝑡) by B-spline dual wavelets Ψ̃ defined in (24)
as

𝑓 (𝑥) = 𝐶1
𝑇
Ψ̃ (𝑥) ,

𝐾 (𝑥, 𝑡) = Ψ̃
𝑇
(𝑡) ΘΨ̃ (𝑥) ,

(26)

where

Θ𝑖,𝑗 = ∫

1

0

[∫

1

0

𝐾 (𝑥, 𝑡) Ψ𝑖 (𝑡) 𝑑𝑡]Ψ𝑗 (𝑥) 𝑑𝑥. (27)

From (26) and (25), we get

∫

1

0

𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡 = ∫

1

0

𝐶
𝑇
Ψ (𝑡) Ψ̃

𝑇
(𝑡) ΘΨ̃ (𝑥) 𝑑𝑡

= 𝐶
𝑇
ΘΨ̃ (𝑥)

(28)

since

∫

1

0

Ψ (𝑡) Ψ̃
𝑇
(𝑡) 𝑑𝑡 = 𝐼. (29)

By applying (25)–(28) in (7) we have

𝐶
𝑇
Ψ (𝑥) − 𝐶

𝑇
ΘΨ̃ (𝑥) = 𝐶

𝑇

1
Ψ̃ (𝑥) . (30)

By multiplying both sides of (30) with Ψ𝑇(𝑥) from the right
and integrating both sides with respect to 𝑥 from 0 to 1, we
get

𝐶
𝑇
𝑃 − 𝐶

𝑇
Θ = 𝐶

𝑇

1
, (31)

since

∫

1

0

Ψ̃ (𝑥)Ψ
𝑇
(𝑥) 𝑑𝑥 = 𝐼, (32)

and 𝑃 is a (2𝑀+1 +𝑚−1)×(2𝑀+1 +𝑚−1) square matrix given
by

𝑃 = ∫

1

0

Ψ (𝑥)Ψ
𝑇
(𝑥) 𝑑𝑥 = (

𝑃1 0

0 𝑃2
) . (33)

Consequently, from (31), we get 𝐶𝑇 = 𝐶𝑇
1
(𝑃 − Θ)

−1. Hence,
we can calculate the solution for 𝑦(𝑥) = 𝐶𝑇Ψ(𝑥).

3.2. Method of Moments

3.2.1. Multiresolution Analysis (MRA) andWavelets [2]. A set
of subspaces {𝑉𝑗}𝑗∈𝑍 is said to beMRA of 𝐿2(𝑅) if it possesses
the following properties:

𝑉𝑗 ⊂ 𝑉𝑗+1, ∀𝑗 ∈ Ζ, (34)

⋃

𝑗∈Ζ

𝑉𝑗 is dense in 𝐿2 (𝑅) , (35)

⋂

𝑗∈Ζ

𝑉𝑗 = 𝜙, (36)

𝑓 (𝑥) ∈ 𝑉𝑗 ⇐⇒ 𝑓(2𝑥) ∈ 𝑉𝑗+1, ∀𝑗 ∈ Ζ, (37)

where𝑍 denotes the set of integers. Properties (34)–(36) state
that {𝑉𝑗}𝑗∈𝑍 is a nested sequence of subspaces that effectively
covers 𝐿2(𝑅). That is, every square integrable function can be
approximated as closely as desired by a function that belongs
to at least one of the subspaces 𝑉𝑗. A function 𝜑 ∈ 𝐿2(𝑅) is
called a scaling function if it generates the nested sequence of
subspaces 𝑉𝑗 and satisfies the dilation equation; namely,

𝜑 (𝑥) = ∑

𝑘

𝑝𝑘𝜑 (𝑎𝑥 − 𝑘) , (38)

with 𝑝𝑘 ∈ 𝑙
2 and 𝑎 being any rational number.

For each scale 𝑗, since 𝑉𝑗 ⊂ 𝑉𝑗+1, there exists a unique
orthogonal complementary subspace 𝑊𝑗 of 𝑉𝑗 in 𝑉𝑗+1. This
subspace 𝑊𝑗 is called wavelet subspace and is generated by
𝜓𝑗,𝑘 = 𝜓(2

𝑗
𝑥 − 𝑘), where 𝜓 ∈ 𝐿2 is called the wavelet. From

the above discussion, these results follow easily:

𝑉𝑗1
∩ 𝑉𝑗2

= 𝑉𝑗2
, 𝑗1 > 𝑗2,

𝑊𝑗1
∩𝑊𝑗2

= 0, 𝑗1 ̸= 𝑗2,

𝑉𝑗1
∩𝑊𝑗2

= 0, 𝑗1 ≤ 𝑗2.

(39)

Some of the important properties relevant to the present
analysis are given below [2, 19].

(1) Vanishing Moment. A wavelet is said to have a vanishing
moment of order𝑚 if

∫

∞

−∞

𝑥
𝑝
𝜓 (𝑥) 𝑑𝑥 = 0; 𝑝 = 0, . . . , 𝑚 − 1. (40)
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All wavelets must satisfy the previously mentioned condition
for 𝑝 = 0.

(2) Semiorthogonality.Thewavelets 𝜓𝑗,𝑘 form a semiorthogo-
nal basis if

⟨𝜓𝑗,𝑘, 𝜓𝑠,𝑖⟩ = 0; 𝑗 ̸= 𝑠; ∀𝑗, 𝑘, 𝑠, 𝑖 ∈ Ζ. (41)

3.2.2. Method ofMoments for the Solution of Fredholm Integral
Equation. In this section, we solve the integral equation of
form (7) in interval [0, 1] by using linear B-spline wavelets
[2]. The unknown function in (7) can be expanded in terms
of the scaling and wavelet functions as follows:

𝑦 (𝑥) ≈

2
𝑗0−1

∑

𝑘=−1

𝑐𝑘𝜑𝑗0 ,𝑘
(𝑥)

+

𝑀

∑

𝑗=𝑗0

2
𝑗
−2

∑

𝑘=−1

𝑑𝑗,𝑘𝜓𝑗,𝑘 (𝑥)

= 𝐶
𝑇
Ψ (𝑥) .

(42)

By substituting this expression into (7) and employing the
Galerkin method, the following set of linear system of order
(2
𝑀
+ 1) is generated. The scaling and wavelet functions are

used as testing and weighting functions:

(
⟨𝜑, 𝜑⟩ − ⟨𝐾𝜑, 𝜑⟩ ⟨𝜓, 𝜑⟩ − ⟨𝐾𝜓, 𝜑⟩

⟨𝜑, 𝜓⟩ − ⟨𝐾𝜑, 𝜓⟩ ⟨𝜓, 𝜓⟩ − ⟨𝐾𝜓, 𝜓⟩
)(
𝐶

𝐷
) = (

𝐹1

𝐹2
) ,

(43)
where

𝐶 = [𝑐−1, 𝑐0, . . . , 𝑐3]
𝑇
,

𝐷 = [𝑑2,−1, . . . , 𝑑2,2, 𝑑3,−1, . . . , 𝑑3,6, . . . ,

𝑑𝑀,−1, . . . , 𝑑𝑀,2𝑀−2]
𝑇
,

⟨𝜑, 𝜑⟩ − ⟨𝐾𝜑, 𝜑⟩

= (∫

1

0

𝜑𝑗0 ,𝑟
(𝑥) 𝜑𝑗0 ,𝑖

(𝑥) 𝑑𝑥

−∫

1

0

𝜑𝑗0 ,𝑟
(𝑥) ∫

1

0

𝐾(𝑥, 𝑡)𝜑𝑗0 ,𝑖
(𝑡)𝑑𝑡 𝑑𝑥)

𝑖,𝑟

,

⟨𝜓, 𝜑⟩ − ⟨𝐾𝜓, 𝜑⟩

= (∫

1

0

𝜑𝑗0 ,𝑟
(𝑥) 𝜓𝑘,𝑗 (𝑥) 𝑑𝑥

−∫

1

0

𝜑𝑗0 ,𝑟
(𝑥) ∫

1

0

𝐾(𝑥, 𝑡)𝜓𝑘,𝑗(𝑡)𝑑𝑡 𝑑𝑥)

𝑟,𝑘,𝑗

,

⟨𝜑, 𝜓⟩ − ⟨𝐾𝜑, 𝜓⟩

= (∫

1

0

𝜓𝑠,𝑙 (𝑥) 𝜑𝑗0 ,𝑖
(𝑥) 𝑑𝑥

−∫

1

0

𝜓𝑠,𝑙(𝑥) ∫

1

0

𝐾(𝑥, 𝑡)𝜑𝑗0 ,𝑖
(𝑡)𝑑𝑡 𝑑𝑥)

𝑖,𝑙,𝑠

,

⟨𝜓, 𝜓⟩ − ⟨𝐾𝜓, 𝜓⟩

= (∫

1

0

𝜓𝑠,𝑙 (𝑥) 𝜓𝑘,𝑗 (𝑥) 𝑑𝑥

− ∫

1

0

𝜓𝑠,𝑙(𝑥) ∫

1

0

𝐾(𝑥, 𝑡)𝜓𝑘,𝑗(𝑡)𝑑𝑡 𝑑𝑥)

𝑙,𝑠,𝑘,𝑗

,

𝐹1 = ∫

1

0

𝑓 (𝑥) 𝜑𝑗0 ,𝑟
(𝑥) 𝑑𝑥,

𝐹2 = ∫

1

0

𝑓 (𝑥) 𝜓𝑠,𝑙 (𝑥) 𝑑𝑥,

(44)

and the subscripts 𝑖, 𝑟, 𝑘, 𝑗, 𝑙, and 𝑠 assume values as given
below:

𝑖, 𝑟 = −1, . . . , 2
𝑗0 − 1,

𝑙, 𝑘 = 𝑗0, . . . ,𝑀,

𝑠, 𝑗 = −1, . . . , 2
𝑀
− 2.

(45)

In fact, the entries with significant magnitude are in the
⟨𝐾𝜑, 𝜑⟩− ⟨𝜑, 𝜑⟩ and ⟨𝐾𝜓, 𝜓⟩− ⟨𝜓, 𝜓⟩ submatrices which are
of order (2𝑗0 + 1) and (2𝑀+1 + 1), respectively.

3.3. Variational Iteration Method [3–5]. In this section, Fred-
holm integral equation of second kind given in (7) has been
considered for solving (7) by variational iteration method.
First, we have to take the partial derivative of (7) with respect
to 𝑥 yielding

𝑌
󸀠
(𝑥) = 𝑓

󸀠
(𝑥) + ∫

1

0

𝐾
󸀠
(𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡. (46)

We apply variation iteration method for (46). According to
this method, correction functional can be defined as

𝑦𝑛+1 (𝑥)

= 𝑦𝑛 (𝑥)

+ ∫

𝑥

0

𝜆 (𝜉) (𝑦
󸀠

𝑛
(𝜉) − 𝑓

󸀠
(𝜉) − ∫

𝑏

𝑎

𝐾
󸀠
(𝜉, 𝑡) 𝑦𝑛 (𝑡) 𝑑𝑡) 𝑑𝜉,

(47)

where 𝜆(𝜉) is a general Lagrange multiplier which can be
identified optimally by the variational theory, the subscript
𝑛 denotes the 𝑛th order approximation, and 𝑦𝑛 is considered
as a restricted variation; that is, 𝛿𝑦𝑛 = 0. The successive
approximations 𝑦𝑛(𝑥), 𝑛 ≥ 1 for the solution 𝑦(𝑥) can be
readily obtained after determining the Lagrange multiplier
and selecting an appropriate initial function 𝑦0(𝑥). Conse-
quently the approximate solution may be obtained by using

𝑦 (𝑥) = lim
𝑛→∞

𝑦𝑛 (𝑥) . (48)
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To make the above correction functional stationary, we have

𝛿𝑦𝑛+1 (𝑥) = 𝛿𝑦𝑛 (𝑥)

+ 𝛿∫

𝑥

0

𝜆 (𝜉) (𝑦
󸀠

𝑛
(𝜉) − 𝑓

󸀠
(𝜉)

−∫

𝑏

𝑎

𝐾
󸀠
(𝜉, 𝑡) 𝑦𝑛 (𝑡) 𝑑𝑡) 𝑑𝜉

= 𝛿𝑦𝑛 (𝑥) + ∫

𝑥

0

𝜆 (𝜉) 𝛿 (𝑦
󸀠

𝑛
(𝜉)) 𝑑𝜉

= 𝛿𝑦𝑛 (𝑥) + 𝜆𝛿𝑦𝑛
󵄨󵄨󵄨󵄨𝜉=𝑥 − ∫

𝑥

0

𝜆
󸀠
(𝜉) 𝛿𝑦𝑛 (𝜉) 𝑑𝜉.

(49)

Under stationary condition,

𝛿𝑦𝑛+1 = 0 (50)

implies the following Euler Lagrange equation:

𝜆
󸀠
(𝜉) = 0, (51)

with the following natural boundary condition:

1 + 𝜆(𝜉)
󵄨󵄨󵄨󵄨𝜉=𝑥 = 0. (52)

Solving (51), along with boundary condition (52), we get the
general Lagrange multiplier

𝜆 = −1. (53)

Substituting the identified Lagrange multiplier into (47)
results in the following iterative scheme:

𝑦𝑛+1 (𝑥) = 𝑦𝑛 (𝑥)

− ∫

𝑥

0

(𝑦
󸀠

𝑛
(𝜉) − 𝑓

󸀠
(𝜉) − ∫

𝑏

𝑎

𝐾
󸀠
(𝜉, 𝑡) 𝑦𝑛 (𝑡) 𝑑𝑡) 𝑑𝜉,

𝑛 ≥ 0.

(54)

By starting with initial approximate function 𝑦0(𝑥) = 𝑓(𝑥)
(say), we can determine the approximate solution 𝑦(𝑥) of (7).

4. Numerical Methods for System of
Linear Fredholm Integral Equations of
Second Kind

Consider the system of linear Fredholm integral equations of
second kind of the following form:

𝑛

∑

𝑗=1

𝑦𝑗 (𝑥) = 𝑓𝑖 (𝑥) +

𝑛

∑

𝑗=1

∫

1

0

𝐾𝑖,𝑗 (𝑥, 𝑡) 𝑦𝑗 (𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛,

(55)

where 𝑓𝑖(𝑥) and 𝐾𝑖,𝑗(𝑥, 𝑡) are known functions and 𝑦𝑗(𝑥) are
the unknown functions for 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

4.1. Application of Haar Wavelet Method [9]. In this section,
an efficient algorithm for solving Fredholm integral equations
with Haar wavelets is analyzed. The present algorithm takes
the following essential strategy. The Haar wavelet is first
used to decompose integral equations into algebraic systems
of linear equations, which are then solved by collocation
methods.

4.1.1. Haar Wavelets. The compact set of scale functions is
chosen as

ℎ0 = {
1, 0 ≤ 𝑥 < 1,

0, others.
(56)

The mother wavelet function is defined as

ℎ1 (𝑥) =

{{{{

{{{{

{

1, 0 ≤ 𝑥 <
1

2
,

−1,
1

2
≤ 𝑥 < 1,

0, others.

(57)

The family of wavelet functions generated by translation and
dilation of ℎ1(𝑥) are given by

ℎ𝑛 (𝑥) = ℎ1 (2
𝑗
𝑥 − 𝑘) , (58)

where 𝑛 = 2𝑗 + 𝑘, 𝑗 ≥ 0, 0 ≤ 𝑘 < 2𝑗.
Mutual orthogonalities of all Haar wavelets can be

expressed as

∫

1

0

ℎ𝑚 (𝑥) ℎ𝑛 (𝑥) 𝑑𝑥 = 2
−𝑗
𝛿𝑚𝑛 = {

2
−𝑗
, 𝑚 = 𝑛 = 2

𝑗
+ 𝑘,

0, 𝑚 ̸= 𝑛.

(59)

4.1.2. Function Approximation. An arbitrary function 𝑦(𝑥) ∈
𝐿
2
[0, 1) can be expanded into the following Haar series:

𝑦 (𝑥) =

+∞

∑

𝑛=0

𝑐𝑛ℎ𝑛 (𝑥) , (60)

where the coefficients 𝑐𝑛 are given by

𝑐𝑛 = 2
𝑗
∫

1

0

𝑦 (𝑥) ℎ𝑛 (𝑥) 𝑑𝑥,

𝑛 = 2
𝑗
+ 𝑘, 𝑗 ≥ 0, 0 ≤ 𝑘 < 2

𝑗
.

(61)

In particular, 𝑐0 = ∫
1

0
𝑦(𝑥)𝑑𝑥.

The previously mentioned expression in (60) can be
approximately represented with finite terms as follows:

𝑦 (𝑥) ≈

𝑚−1

∑

𝑛=0

𝑐𝑛ℎ𝑛 (𝑥) = 𝐶
𝑇

(𝑚)
ℎ(𝑚) (𝑥) , (62)

where the coefficient vector𝐶𝑇
(𝑚)

and theHaar function vector
ℎ(𝑚)(𝑥) are, respectively, defined as

𝐶
𝑇

(𝑚)
= [𝑐0, 𝑐1, . . . , 𝑐𝑚−1] , 𝑚 = 2

𝑗
,

ℎ(𝑚) (𝑥) = [ℎ0 (𝑥) , ℎ1 (𝑥) , . . . , ℎ𝑚−1 (𝑥)]
𝑇
, 𝑚 = 2

𝑗
.

(63)
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TheHaar expansion for function𝐾(𝑥, 𝑡) of order𝑚 is defined
as follows:

𝐾 (𝑥, 𝑡) ≈

𝑚−1

∑

𝑢=0

𝑚−1

∑

V=0

𝑎𝑢VℎV (𝑥) ℎ𝑢 (𝑡) , (64)

where 𝑎𝑢V = 2
𝑖+𝑞
∬
1

0
𝐾(𝑥, 𝑡)ℎV(𝑥)ℎ𝑢(𝑡)𝑑𝑥 𝑑𝑡, 𝑢 = 2

𝑖
+ 𝑗, V =

2
𝑞
+ 𝑟, 𝑖, 𝑞 ≥ 0.
From (62) and (64), we obtain

𝐾 (𝑥, 𝑡) ≈ ℎ
𝑇

(𝑚)
(𝑡) 𝐾ℎ(𝑚) (𝑥) , (65)

where

𝐾 = (𝑎𝑢V)
𝑇

𝑚×𝑚
. (66)

4.1.3. Operational Matrices of Integration. We define

𝐻(𝑚) = [ℎ(𝑚) (
1

2𝑚
) , ℎ(𝑚) (

3

2𝑚
) , . . . , ℎ(𝑚) (

2𝑚 − 1

2𝑚
)] ,

(67)

where𝐻(1) = [1],𝐻(2) = [ 1 11 −1 ].
Then, for 𝑚 = 4, the corresponding matrix can be

represented as

𝐻(4) = [ℎ(4) (
1

8
) , ℎ(4) (

3

8
) , . . . , ℎ(4) (

7

8
)]

=
[
[
[

[

1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1

]
]
]

]

.

(68)

The integration of the Haar function vector ℎ(𝑚)(𝑡) is

∫

𝑥

0

ℎ(𝑚) (𝑡) 𝑑𝑡 = 𝑃(𝑚)ℎ(𝑚) (𝑥) ,

𝑥 ∈ [0, 1) ,

(69)

where 𝑃(𝑚) is the operational matrix of order𝑚, and

𝑃(1) = [
1

2
] ,

𝑃(𝑚) =
1

2𝑚
[

2𝑚𝑃(𝑚/2) −𝐻(𝑚/2)

𝐻
−1

(𝑚/2)
0

] .

(70)

By recursion of the above formula, we obtain

𝑃(2) =
1

4
[
2 −1

1 0
] ,

𝑃(4) =
1

16

[
[
[

[

8 −4 −2 −2

4 0 −2 2

1 1 0 0

1 −1 0 0

]
]
]

]

,

𝑃(8) =
1

64

[
[
[
[
[
[
[
[
[
[

[

32 −16 −8 −8 −4 −4 −4 −4

16 0 −8 8 −4 −4 4 4

4 4 0 0 −4 4 0 0

4 4 0 0 0 0 −4 4

1 1 2 0 0 0 0 0

1 1 −2 0 0 0 0 0

1 −1 0 2 0 0 0 0

1 −1 0 −2 0 0 0 0

]
]
]
]
]
]
]
]
]
]

]

.

(71)

Therefore, we get

𝐻
−1

(𝑚)
= (

1

𝑚
)𝐻
𝑇

(𝑚)

× diag(1, 1, 2, 2, 22, . . . , 22⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

22

, . . . , 2
𝛼−1
, . . . , 2

𝛼−1
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝛼−1

) ,

(72)

where𝑚 = 2𝛼 and 𝛼 is a positive integer.
The inner product of two Haar functions can be repre-

sented as

∫

1

0

ℎ(𝑚) (𝑡) ℎ
𝑇

(𝑚)
(𝑡) 𝑑𝑡 = 𝐷, (73)

where

𝐷 = diag(1, 1, 1/2, 1/2, 1/22, . . . , 1/22⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

22

, . . . ,

1/2
𝛼−1
, . . . , 1/2

𝛼−1
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝛼−1

) .

(74)

4.1.4. Haar Wavelet Solution for Fredholm Integral Equations
System [9]. Consider the following Fredholm integral equa-
tions system defined in (55):

𝑚

∑

𝑗=1

𝑦𝑗 (𝑥) = 𝑓𝑖 (𝑥) +

𝑚

∑

𝑗=1

∫

1

0

𝐾𝑖,𝑗 (𝑥, 𝑡) 𝑦𝑗 (𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑚.

(75)

The Haar series of 𝑦𝑗(𝑥) and𝐾𝑖,𝑗(𝑥, 𝑡), 𝑖 = 1, 2, . . . , 𝑚; 𝑗 =
1, 2, . . . , 𝑚 are, respectively, expanded as

𝑦𝑗 (𝑥) ≈ 𝑌
𝑇

𝑗
ℎ(𝑚) (𝑥) , 𝑗 = 1, 2, . . . , 𝑚,

𝐾𝑖,𝑗 (𝑥, 𝑡) ≈ ℎ
𝑇

(𝑚)
(𝑡) 𝐾𝑖,𝑗ℎ(𝑚) (𝑥) ,

𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(76)
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Substituting (76) into (75), we get

𝑚

∑

𝑗=1

𝑌
𝑇

𝑗
ℎ(𝑚) (𝑥)

= 𝑓𝑖 (𝑥) +

𝑚

∑

𝑗=1

∫

1

0

𝑌
𝑇

𝑗
ℎ(𝑚) (𝑡) ℎ

𝑇

(𝑚)
(𝑡) 𝐾𝑖,𝑗ℎ(𝑚) (𝑥) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑚.

(77)

From (77) and (73), we get

𝑚

∑

𝑗=1

𝑌
𝑇

𝑗
ℎ(𝑚) (𝑥) = 𝑓𝑖 (𝑥) +

𝑚

∑

𝑗=1

𝑌
𝑇

𝑗
𝐷𝐾𝑖,𝑗ℎ(𝑚) (𝑥) ,

𝑖 = 1, 2, . . . , 𝑚.

(78)

Interpolating 𝑚 collocation points, that is, {𝑥𝑖}
𝑚

𝑖=1
, in the

interval [0, 1] leads to the following algebraic system of
equations:

𝑚

∑

𝑗=1

𝑌
𝑇

𝑗
ℎ(𝑚) (𝑥𝑖) = 𝑓𝑖 (𝑥𝑖) +

𝑚

∑

𝑗=1

𝑌
𝑇

𝑗
𝐷𝐾𝑖,𝑗ℎ(𝑚) (𝑥𝑖) ,

𝑖 = 1, 2, . . . , 𝑚.

(79)

Hence, 𝑌𝑗, 𝑗 = 1, 2, . . . , 𝑚 can be computed by solving the
above algebraic system of equations and consequently the
solutions 𝑦𝑗(𝑥) ≈ 𝑌

𝑇

𝑗
ℎ(𝑚)(𝑥), 𝑗 = 1, 2, . . . , 𝑚.

4.2. Taylor Series Expansion Method. In this section, we
present Taylor series expansionmethod for solving Fredholm
integral equations system of second kind [7]. This method
reduces the system of integral equations to a linear system
of ordinary differential equation. After including boundary
conditions, this system reduces to a system of equations that
can be solved easily by any usual methods.

Consider the second kind Fredholm integral equations
system defined in (55) as follows:

𝑦𝑖 (𝑥) = 𝑓𝑖 (𝑥) +

𝑛

∑

𝑗=1

∫

1

0

𝐾𝑖,𝑗 (𝑥, 𝑡) 𝑦𝑗 (𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛, 0 ≤ 𝑥 ≤ 1.

(80)

A Taylor series expansion can be made for the solution of
𝑦𝑗(𝑡) in the integral equation (80):

𝑦𝑗 (𝑡) = 𝑦𝑗 (𝑥) + 𝑦
󸀠

𝑗
(𝑥) (𝑡 − 𝑥) + ⋅ ⋅ ⋅

+
1

𝑚!
𝑦
(𝑚)

𝑗
(𝑥) (𝑡 − 𝑥)

𝑚
+ 𝐸 (𝑡) ,

(81)

where 𝐸(𝑡) denotes the error between 𝑦𝑗(𝑡) and its Taylor
series expansion in (81).

If we use the first 𝑚 term of Taylor series
expansion and neglect the term containing 𝐸(𝑡), that is,

∫
1

0
∑
𝑛

𝑗=1
𝐾𝑖,𝑗(𝑥, 𝑡)𝐸(𝑡)𝑑𝑡, then, substituting (81) for 𝑦𝑗(𝑡) into

the integral in (80), we have

𝑦𝑖 (𝑥) ≈ 𝑓𝑖 (𝑥)

+

𝑛

∑

𝑗=1

∫

1

0

𝐾𝑖,𝑗 (𝑥, 𝑡)

𝑚

∑

𝑟=0

1

𝑟!
(𝑡 − 𝑥)

𝑟
𝑦
(𝑟)

𝑗
(𝑥) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛,

𝑦𝑖 (𝑥) ≈ 𝑓𝑖 (𝑥)

+

𝑛

∑

𝑗=1

𝑚

∑

𝑟=0

1

𝑟!
𝑦
(𝑟)

𝑗
(𝑥) ∫

1

0

𝐾𝑖,𝑗 (𝑥, 𝑡) (𝑡 − 𝑥)
𝑟
𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛,

(82)

𝑦𝑖 (𝑥) −

𝑛

∑

𝑗=1

𝑚

∑

𝑟=0

1

𝑟!
𝑦
(𝑟)

𝑗
(𝑥) [∫

1

0

𝐾𝑖,𝑗 (𝑥, 𝑡) (𝑡 − 𝑥)
𝑟
𝑑𝑡]

≈ 𝑓𝑖 (𝑥) , 𝑖 = 1, 2, . . . , 𝑛.

(83)

Equation (83) becomes a linear systemof ordinary differential
equations that we have to solve. For solving the linear
system of ordinary differential equations (83), we require an
appropriate number of boundary conditions.

In order to construct boundary conditions, we first
differentiate 𝑠 times both sides of (80) with respect to 𝑥; that
is,

𝑦
(𝑠)

𝑖
(𝑥) = 𝑓

(𝑠)

𝑖
(𝑥) +

𝑛

∑

𝑗=1

∫

1

0

𝐾
(𝑠)

𝑖,𝑗
(𝑥, 𝑡) 𝑦𝑗 (𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛, 𝑠 = 1, 2, . . . , 𝑚,

(84)

where𝐾(𝑠)
𝑖,𝑗
(𝑥, 𝑡) = 𝜕

(𝑠)
𝐾𝑖,𝑗(𝑥, 𝑡)/𝜕𝑥

(𝑠), 𝑠 = 1, 2, . . . , 𝑚.
Applying the mean value theorem for integral in (84), we

have

𝑦
(𝑠)

𝑖
(𝑥) − [

[

𝑛

∑

𝑗=1

∫

1

0

𝐾
(𝑠)

𝑖,𝑗
(𝑥, 𝑡) 𝑑𝑡]

]

𝑦𝑗 (𝑥) ≈ 𝑓
(𝑠)

𝑖
(𝑥) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑠 = 1, 2, . . . , 𝑚.

(85)

Now (83) combined with (85) becomes a linear system
of algebraic equations that can be solved analytically or
numerically.

4.3. Block-Pulse Functions for the Solution of Fredholm Integral
Equation. In this section, Block-Pulse functions (BPF) have
been utilized for the solution of system of Fredholm integral
equations [6].

An𝑚-set of BPF is defined as follows:

Φ𝑖 (𝑡) =
{

{

{

1, (𝑖 − 1)
𝑇

𝑚
≤ 𝑡 < 𝑖

𝑇

𝑚
,

0, otherwise
(86)

with 𝑡 ∈ [0, 𝑇), 𝑇/𝑚 = ℎ and 𝑖 = 1, 2, . . . , 𝑚.
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4.3.1. Properties of BPF

(1) Disjointness. One has

Φ𝑖 (𝑡) Φ𝑗 (𝑡) = {
Φ𝑖 (𝑡) , 𝑖 = 𝑗;

0, 𝑖 ̸= 𝑗,
(87)

, 𝑖, 𝑗 = 1, 2, . . . , 𝑚. This property is obtained from definition
of BPF.

(2) Orthogonality. One has

∫

𝑇

0

Φ𝑖 (𝑡) Φ𝑗 (𝑡) 𝑑𝑡 = {
ℎ, 𝑖 = 𝑗;

0, 𝑖 ̸= 𝑗,
(88)

𝑡 ∈ [0, 𝑇), 𝑖, 𝑗 = 1, 2, . . . , 𝑚. This property is obtained from
the disjointness property.

(3) Completeness. For every𝑓 ∈ 𝐿2, {Φ} is complete; if ∫Φ𝑓 =
0 then 𝑓 = 0 almost everywhere. Because of completeness of
{Φ}, we have

∫

𝑇

0

𝑓
2
(𝑡) 𝑑𝑡 =

∞

∑

𝑖=1

𝑓
2

𝑖

󵄩󵄩󵄩󵄩Φ𝑖(𝑡)
󵄩󵄩󵄩󵄩
2 (89)

for every real bounded function 𝑓(𝑡) which is square inte-
grable in the interval 𝑡 ∈ [0, 𝑇) and 𝑓𝑖 = (1/ℎ)𝑓(𝑡)Φ𝑖(𝑡)𝑑𝑡.

4.3.2. Function Approximation. The orthogonality property
of BPF is the basis of expanding functions into their Block-
Pulse series. For every 𝑓(𝑡) ∈ 𝐿2(𝑅),

𝑓 (𝑡) =

𝑚

∑

𝑖=1

𝑓𝑖Φ𝑖 (𝑡) , (90)

where 𝑓𝑖 is the coefficient of Block-Pulse function, with
respect to 𝑖th Block-Pulse functionΦ𝑖(𝑡).

The criterion of this approximation is that mean square
error between 𝑓(𝑡) and its expansion is minimum

𝜀 =
1

𝑇
∫

𝑇

0

(𝑓(𝑡) −

𝑚

∑

𝑗=1

𝑓𝑗Φ𝑗(𝑡))

2

𝑑𝑡 (91)

so that we can evaluate Block-Pulse coefficients.

Now 𝜕𝜀

𝜕𝑓𝑖

= −
2

𝑇
∫

𝑇

0

(𝑓 (𝑡) −

𝑚

∑

𝑗=1

𝑓𝑗Φ𝑗 (𝑡))Φ𝑖 (𝑡) 𝑑𝑡 = 0,

󳨐⇒ 𝑓𝑖 =
1

ℎ
∫

𝑇

0

𝑓 (𝑡)Φ𝑖 (𝑡) 𝑑𝑡 (using orthogonal property) .

(92)

In the matrix form, we obtain the following from (90) as
follow:

𝑓 (𝑡) =

𝑚

∑

𝑖=1

𝑓𝑖Φ𝑖 (𝑡) = 𝐹
𝑇
Φ (𝑡) = Φ

𝑇
𝐹

where 𝐹 = [𝑓1, 𝑓2, . . . , 𝑓𝑚]
𝑇
,

Φ (𝑡) = [Φ1 (𝑡) , Φ2 (𝑡) , . . . , Φ𝑚 (𝑡)]
𝑇
.

(93)

Now let𝐾(𝑡, 𝑠) be two-variable function defined on 𝑡 ∈ [0, 𝑇)
and 𝑠 ∈ [0, 1); then 𝐾(𝑡, 𝑠) can be expanded to BPF as

𝐾 (𝑡, 𝑠) = Φ
𝑇
(𝑡) 𝐾Ψ (𝑠) , (94)

whereΦ(𝑡) andΨ(𝑠) are𝑚1 and𝑚2 dimensional Block-Pulse
function vectors and 𝑘 is a 𝑚1 × 𝑚2 Block-Pulse coefficient
matrix.

There are two different cases of multiplication of two BPF.
The first case is

Φ (𝑡)Φ
𝑇
(𝑡) = (

Φ1 (𝑡) 0 ⋅ ⋅ ⋅ 0

0 Φ2 (𝑡) ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ Φ𝑚 (𝑡)

) . (95)

It is obtained from disjointness property of BPF. It is a
diagonal matrix with𝑚 Block-Pulse functions.

The second case is

Φ
𝑇
(𝑡) Φ (𝑡) = 1 (96)

because ∑𝑚
𝑖=1
(Φ𝑖(𝑡))

2
= ∑
𝑚

𝑖=1
Φ𝑖(𝑡) = 1.

Operational Matrix of Integration. BPF integration property
can be expressed by an operational equation as

∫

𝑇

0

Φ (𝑡) 𝑑𝑡 = 𝑃Φ (𝑡) , (97)

where

Φ (𝑡) = [Φ1 (𝑡) , Φ2 (𝑡) , . . . , Φ𝑚 (𝑡)]
𝑇
. (98)

A general formula for 𝑃𝑚×𝑚 can be written as

𝑃 =
1

2
(

1 2 2 ⋅ ⋅ ⋅ 2

0 1 2 ⋅ ⋅ ⋅ 2

0 0 1 ⋅ ⋅ ⋅ 2

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 1

). (99)

By using this matrix, we can express the integral of a function
𝑓(𝑡) into its Block-Pulse series

∫

𝑡

0

𝑓 (𝑡) 𝑑𝑡 = ∫

𝑡

0

𝐹
𝑇
Φ (𝑡) 𝑑𝑡 = 𝐹

𝑇
𝑃Φ (𝑡) . (100)

4.3.3. Solution for Linear Integral Equations System. Consider
the integral equations system from (55) as follows:

𝑛

∑

𝑗=1

𝑦𝑗 (𝑥) = 𝑓𝑖 (𝑥) +

𝑛

∑

𝑗=1

∫

𝛽

𝛼

𝐾𝑖,𝑗 (𝑥, 𝑡) 𝑦𝑗 (𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛.

(101)

Block-Pulse coefficients of𝑦𝑗(𝑥), 𝑗 = 1, 2, . . . , 𝑛 in the interval
𝑥 ∈ [𝛼, 𝛽) can be determined from the known functions
𝑓𝑖(𝑥), 𝑖 = 1, 2, . . . , 𝑛 and the kernels 𝐾𝑖,𝑗(𝑥, 𝑡), 𝑖, 𝑗 = 1, 2, . . . 𝑛.
Usually, we consider 𝛼 = 0 to facilitie the use of Block-Pulse



10 Abstract and Applied Analysis

functions. In case 𝛼 ̸= 0, we set𝑋 = ((𝑥−𝛼)/(𝛽−𝛼))𝑇, where
𝑇 = 𝑚ℎ.

We approximate 𝑓𝑖(𝑥), 𝑦𝑗(𝑥), 𝐾𝑖,𝑗(𝑥, 𝑡) by its BPF as
follows:

𝑓𝑖 (𝑥) ≈ 𝐹
𝑇

𝑖
Φ (𝑥) ,

𝑦𝑗 (𝑥) ≈ 𝑌
𝑇

𝑗
Φ (𝑥) ,

𝐾𝑖,𝑗 (𝑥, 𝑡) ≈ Φ
𝑇
(𝑡) 𝐾𝑖,𝑗Φ (𝑥) ,

(102)

where 𝐹𝑖, 𝑌𝑗, and 𝐾𝑖,𝑗 are defined in Section 4.3.2, and
substituting (102) into (101), we have

𝑛

∑

𝑗=1

𝑌
𝑇

𝑗
Φ (𝑥) = 𝐹

𝑇

𝑖
Φ (𝑥)

+

𝑛

∑

𝑗=1

∫

𝑚ℎ

0

𝑌
𝑇

𝑗
Φ (𝑡)Φ

𝑇
(𝑡) 𝐾𝑖,𝑗Φ (𝑥) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛,

(103)

𝑛

∑

𝑗=1

𝑌
𝑇

𝑗
Φ (𝑥) = 𝐹

𝑇

𝑖
Φ (𝑥) +

𝑛

∑

𝑗=1

𝑌
𝑇

𝑗
ℎ𝐼𝐾𝑖,𝑗Φ (𝑥) ,

𝑖 = 1, 2, . . . , 𝑛,

(104)

since

∫

𝑚ℎ

0

Φ (𝑡)Φ
𝑇
(𝑡) 𝑑𝑡 = ℎ𝐼. (105)

From (104), we get

𝑛

∑

𝑗=1

(𝐼 − ℎ𝐾
𝑇

𝑖,𝑗
) 𝑌𝑗 = 𝐹𝑖, 𝑖 = 1, 2, . . . , 𝑛. (106)

Set 𝐴 𝑖,𝑗 = 𝐼 − ℎ𝐾
𝑇

𝑖,𝑗
; then we have from (106)

𝑛

∑

𝑗=1

𝐴 𝑖,𝑗𝑌𝑗 = 𝐹𝑖, 𝑖 = 1, 2, . . . , 𝑛 (107)

which is a linear system

(

(

𝐴11 𝐴12 . . . 𝐴1𝑛

𝐴21 𝐴22 . . . 𝐴2𝑛

. . . .

. . . .

. . . .

𝐴𝑛1 𝐴𝑛2 . . . 𝐴𝑛𝑛

)

)

(

(

𝑌1

𝑌2

.

.

.

𝑌𝑛

)

)

=(

(

𝐹1

𝐹2

.

.

.

𝐹𝑛

)

)

.

(108)

After solving the above system we can find 𝑌𝑗, 𝑗 = 1, 2, . . . , 𝑛
and hence obtain the solutions 𝑦𝑗 = Φ

𝑇
𝑌𝑗, 𝑗 = 1, 2, . . . , 𝑛.

5. Numerical Methods for Nonlinear
Fredholm-Hammerstein Integral Equation

We consider the second kind nonlinear Fredholm integral
equation of the following form:

𝑢 (𝑥) = 𝑓 (𝑥) + ∫

1

0

𝐾 (𝑥, 𝑡) 𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡,

0 ≤ 𝑥 ≤ 1,

(109)

where 𝐾(𝑥, 𝑡) is the kernel of the integral equation, 𝑓(𝑥)
and 𝐾(𝑥, 𝑡) are known functions, and 𝑢(𝑥) is the unknown
function that is to be determined.

5.1. B-Spline Wavelet Method. In this section, nonlinear
Fredholm integral equation of second kind of the form given
in (109) has been solved by using B-spline wavelets [11].

B-spline scaling and wavelet functions in the interval
[0, 1] and function approximation have been defined in
Sections 3.1.1 and 3.1.2, respectively.

First, we assume that

𝑦 (𝑥) = 𝐹 (𝑥, 𝑢 (𝑥)) ,

0 ≤ 𝑥 ≤ 1.

(110)

Now, from (16), we can approximate the functions 𝑢(𝑥) and
𝑦(𝑥) as

𝑢 (𝑥) = 𝐴
𝑇
Ψ (𝑥) ,

𝑦 (𝑥) = 𝐵
𝑇
Ψ (𝑥) ,

(111)

where 𝐴 and 𝐵 are (2𝑀+1 +𝑚− 1) × 1 column vectors similar
to 𝐶 defined in (17).

Again, by using dual of the wavelet functions, we can
approximate the functions 𝑓(𝑥) and𝐾(𝑥, 𝑡) as follows:

𝐹 (𝑥) = 𝐷
𝑇
Ψ̃ (𝑥) ,

𝐾 (𝑥, 𝑡) = Ψ̃
𝑇
(𝑡) ΘΨ̃ (𝑥) ,

(112)

where

Θ(𝑖,𝑗) = ∫

1

0

[∫

1

0

𝐾 (𝑥, 𝑡) Ψ𝑖 (𝑡) 𝑑𝑡]Ψ𝑗 (𝑥) 𝑑𝑥. (113)

From (110)–(112), we get

∫

1

0

𝐾 (𝑥, 𝑡) 𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

= ∫

1

0

𝐵
𝑇
Ψ (𝑡) Ψ̃

𝑇
(𝑡) ΘΨ̃ (𝑥) 𝑑𝑡

= 𝐵
𝑇
[∫

1

0

Ψ (𝑡) Ψ̃
𝑇
(𝑡) 𝑑𝑡]ΘΨ̃ (𝑥)

= 𝐵
𝑇
ΘΨ̃ (𝑥) , since ∫

1

0

Ψ (𝑡) Ψ̃
𝑇
(𝑡) 𝑑𝑡 = 𝐼.

(114)
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Applying (110)–(114) in (109), we get

𝐴
𝑇
Ψ (𝑥) = 𝐷

𝑇
Ψ̃ (𝑥) + 𝐵

𝑇
ΘΨ̃ (𝑥) . (115)

Multiplying (115) by Ψ𝑇(𝑥) both sides from the right and
integrating both sides with respect to 𝑥 from 0 to 1, we have

𝐴
𝑇
𝑃 = 𝐷

𝑇
+ 𝐵
𝑇
Θ,

𝐴
𝑇
𝑃 − 𝐷

𝑇
− 𝐵
𝑇
Θ = 0,

(116)

where 𝑃 is a (2𝑀+1 + 𝑚 − 1) × (2𝑀+1 + 𝑚 − 1) square matrix
given by

𝑃 = ∫

1

0

Ψ (𝑥)Ψ
𝑇
(𝑥) 𝑑𝑥 = [

𝑃1

𝑃2
] ,

∫

1

0

Ψ̃ (𝑥)Ψ
𝑇
(𝑥) 𝑑𝑥 = 𝐼.

(117)

Equation (116) gives a system of (2𝑀+1 + 𝑚 − 1) algebraic
equations with 2(2𝑀+1+𝑚−1) unknowns for𝐴 and 𝐵 vectors
given in (111).

To find the solution 𝑢(𝑥) in (111), we first utilize the
following equation:

𝐹 (𝑥, 𝐴
𝑇
Ψ (𝑥)) = 𝐵

𝑇
Ψ (𝑥) , (118)

with the collocation points 𝑥𝑖 = (𝑖 − 1)/(2
𝑀+1

+𝑚−2), where
𝑖 = 1, 2, . . . , 2

𝑀+1
+ 𝑚 − 1.

Equation (118) gives a system of (2𝑀+1 + 𝑚 − 1) algebraic
equations with 2(2𝑀+1+𝑚−1) unknowns, for𝐴 and𝐵 vectors
given in (111).

Combining (116) and (118), we have a total of 2(2𝑀+1 +
𝑚 − 1) system of algebraic equations with 2(2𝑀+1 + 𝑚 −

1) unknowns for 𝐴 and 𝐵. Solving those equations for the
unknown coefficients in the vectors 𝐴 and 𝐵, we can obtain
the solution 𝑢(𝑥) = 𝐴𝑇Ψ(𝑥).

5.2. Quadrature Method Applied to Fredholm Integral Equa-
tion. In this section, Quadrature method has been applied
to solve nonlinear Fredholm-Hammerstein integral equation
[10].

The quadrature methods like Simpson rule and modified
trapezoidmethod are applied for solving a definite integral as
follows.

5.2.1. Simpson’s Rule. One has

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =

𝑛−1

∑

𝑖=1

∫

𝑥𝑖+1

𝑥𝑖−1

𝑓 (𝑥) 𝑑𝑥

=
ℎ

3
𝑓 (𝑎) +

4ℎ

3

𝑛/2

∑

𝑖=1

𝑓 (𝑥2𝑖−1)

+
2ℎ

3

(𝑛−1)/2

∑

𝑖=1

𝑓 (𝑥2𝑖)

+
ℎ

3
𝑓 (𝑏)

−
(𝑏 − 𝑎)

180
ℎ
4
𝑓
(4)
(𝜂) .

(119)

5.2.2. Modified Trapezoid Rule. One has

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =

𝑛

∑

𝑖=1

∫

𝑥𝑖

𝑥𝑖−1

𝑓 (𝑥) 𝑑𝑥

=
ℎ

2
𝑓 (𝑎) + ℎ

𝑛−1

∑

𝑖=1

𝑓 (𝑥𝑖)

+
ℎ

2
𝑓 (𝑏)

+
ℎ
2

12
[𝑓
󸀠
(𝑎) − 𝑓

󸀠
(𝑏)] .

(120)

Consider the nonlinear Fredholm integral equation of second
kind defined in (109) as follows:

𝑢 (𝑥) = 𝑓 (𝑥) + ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝐹 (𝑢 (𝑡)) 𝑑𝑡,

𝑎 ≤ 𝑥 ≤ 𝑏.

(121)

For solving (121), we approximate the right-hand integral of
(121) with Simpson’s rule and modified trapezoid rule; then
we get the following.

5.2.3. Simpson’s Rule. One has
𝑢 (𝑥) = 𝑓 (𝑥)

+
ℎ

3

[

[

𝐾 (𝑥, 𝑡0) 𝐹 (𝑢0)

+ 4

𝑛/2

∑

𝑗=1

𝐾(𝑥, 𝑡2𝑗−1) 𝐹 (𝑢2𝑗−1)

+ 2

(𝑛/2)−1

∑

𝑗=1

𝐾(𝑥, 𝑡2𝑗) 𝐹 (𝑢2𝑗)

+ 𝐾 (𝑥, 𝑡𝑛) 𝐹 (𝑢𝑛)
]

]

.

(122)

Hence, for 𝑥 = 𝑥0, 𝑥1, . . . , 𝑥𝑛 and 𝑡 = 𝑡0, 𝑡1, . . . , 𝑡𝑛 in (122), we
have
𝑢 (𝑥𝑖) = 𝑓 (𝑥𝑖)

+
ℎ

3

[

[

𝐾 (𝑥𝑖, 𝑡0) 𝐹 (𝑢0)

+ 4

𝑛/2

∑

𝑗=1

𝐾(𝑥𝑖, 𝑡2𝑗−1) 𝐹 (𝑢2𝑗−1)
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+ 2

(𝑛/2)−1

∑

𝑗=1

𝐾(𝑥𝑖, 𝑡2𝑗) 𝐹 (𝑢2𝑗)

+𝐾 (𝑥𝑖, 𝑡𝑛) 𝐹 (𝑢𝑛)
]

]

.

(123)

Equation (123) is a nonlinear system of equations and, by
solving (123), we obtain the unknowns𝑢(𝑥𝑖) for 𝑖 = 0, 1, . . . , 𝑛.

5.2.4. Modified Trapezoid Rule. One has

𝑢 (𝑥) = 𝑓 (𝑥)

+
ℎ

2
𝐾 (𝑥, 𝑡0) 𝐹 (𝑢0)

+ ℎ

𝑛−1

∑

𝑗=1

𝐾(𝑥, 𝑡𝑗) 𝐹 (𝑢𝑗)

+
ℎ

2
𝐾 (𝑥, 𝑡𝑛) 𝐹 (𝑢𝑛)

+
ℎ
2

12
[𝐽 (𝑥, 𝑡0) 𝐹 (𝑢0)

+ 𝐾 (𝑥, 𝑡0) 𝑢
󸀠

0
𝐹
󸀠
(𝑢0)

− 𝐽 (𝑥, 𝑡𝑛) 𝐹 (𝑢𝑛)

−𝐾 (𝑥, 𝑡𝑛) 𝑢
󸀠

𝑛
𝐹
󸀠
(𝑢𝑛)] ,

(124)

where 𝐽(𝑥, 𝑡) = 𝜕𝐾(𝑥, 𝑡)/𝜕𝑡.
For 𝑥 = 𝑥0, 𝑥1, . . . , 𝑥𝑛 and 𝑡 = 𝑡0, 𝑡1, . . . , 𝑡𝑛 in (124), we

have

𝑢 (𝑥𝑖) = 𝑓 (𝑥𝑖)

+
ℎ

2
𝐾 (𝑥𝑖, 𝑡0) 𝐹 (𝑢0)

+ ℎ

𝑛−1

∑

𝑗=1

𝐾(𝑥𝑖, 𝑡𝑗) 𝐹 (𝑢𝑗)

+
ℎ

2
𝐾 (𝑥𝑖, 𝑡𝑛) 𝐹 (𝑢𝑛)

+
ℎ
2

12
[𝐽 (𝑥𝑖, 𝑡0) 𝐹 (𝑢0)

+ 𝐾 (𝑥𝑖, 𝑡0) 𝑢
󸀠

0
𝐹
󸀠
(𝑢0)

− 𝐽 (𝑥𝑖, 𝑡𝑛) 𝐹 (𝑢𝑛)

−𝐾 (𝑥𝑖, 𝑡𝑛) 𝑢
󸀠

𝑛
𝐹
󸀠
(𝑢𝑛)] ,

(125)

for 𝑖 = 0, 1, . . . , 𝑛.

This is a system of (𝑛+1) equations and (𝑛+3) unknowns.
By taking derivative from (121) and setting 𝐻(𝑥, 𝑡) =

𝜕𝐾(𝑥, 𝑡)/𝜕𝑥, we obtain

𝑢
󸀠
(𝑥) = 𝑓

󸀠
(𝑥) + ∫

𝑏

𝑎

𝐻(𝑥, 𝑡) 𝐹 (𝑢 (𝑡)) 𝑑𝑡,

𝑎 ≤ 𝑥 ≤ 𝑏.

(126)

If 𝑢 is a solution of (121), then it is also solution of (126). By
using trapezoid rule for (126) and replacing 𝑥 = 𝑥𝑖, we get

𝑢
󸀠
(𝑥𝑖) = 𝑓

󸀠
(𝑥𝑖)

+
ℎ

2
𝐻 (𝑥𝑖, 𝑡0) 𝐹 (𝑢0)

+ ℎ

𝑛−1

∑

𝑗=1

𝐻(𝑥𝑖, 𝑡𝑗) 𝐹 (𝑢𝑗)

+
ℎ

2
𝐻 (𝑥𝑖, 𝑡𝑛) 𝐹 (𝑢𝑛) ,

(127)

for 𝑖 = 0, 1, . . . , 𝑛. In case of 𝑖 = 0, 𝑛 from system (127), we
obtain two equations.

Now (127) combined with (125) generates the nonlinear
system of equations as follows:

𝑢 (𝑥𝑖) = (
ℎ

2
𝐾 (𝑥𝑖, 𝑡0) +

ℎ
2

12
𝐽 (𝑥𝑖, 𝑡0))𝐹 (𝑢0)

+ ℎ

𝑛−1

∑

𝑗=1

𝐾(𝑥𝑖, 𝑡𝑗) 𝐹 (𝑢𝑗)

+ (
ℎ

2
𝐾 (𝑥𝑖, 𝑡𝑛) −

ℎ
2

12
𝐽 (𝑥𝑖, 𝑡𝑛))𝐹 (𝑢𝑛)

+
ℎ
2

12
(𝐾 (𝑥𝑖, 𝑡0) 𝑢

󸀠

0
𝐹
󸀠
(𝑢0)

−𝐾 (𝑥𝑖, 𝑡𝑛) 𝑢
󸀠

𝑛
𝐹
󸀠
(𝑢𝑛)) ,

𝑢
󸀠
(𝑥0) = 𝑓

󸀠
(𝑥0)

+
ℎ

2
𝐻 (𝑥0, 𝑡0) 𝐹 (𝑢0)

+ ℎ

𝑛−1

∑

𝑗=1

𝐻(𝑥0, 𝑡𝑗) 𝐹 (𝑢𝑗)

+
ℎ

2
𝐻 (𝑥0, 𝑡𝑛) 𝐹 (𝑢𝑛) ,
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𝑢
󸀠
(𝑥𝑛) = 𝑓

󸀠
(𝑥𝑛)

+
ℎ

2
𝐻 (𝑥𝑛, 𝑡0) 𝐹 (𝑢0)

+ ℎ

𝑛−1

∑

𝑗=1

𝐻(𝑥𝑛, 𝑡𝑗) 𝐹 (𝑢𝑗)

+
ℎ

2
𝐻 (𝑥𝑛, 𝑡𝑛) 𝐹 (𝑢𝑛) .

(128)

By solving this system with (𝑛 + 3) nonlinear equations and
(𝑛 + 3) unknowns, we can obtain the solution of (109).

5.3.Wavelet GalerkinMethod. In this section, the continuous
Legendre wavelets [12], constructed on the interval [0, 1], are
applied to solve the nonlinear Fredholm integral equation of
the second kind.The nonlinear part of the integral equation is
approximated by Legendre wavelets, and the nonlinear inte-
gral equation is reduced to a system of nonlinear equations.

We have the following family of continuous wavelets with
dilation parameter 𝑎 and the translation parameter 𝑏

𝜓𝑎,𝑏 (𝑡) = |𝑎|
−1/2
𝜓(

𝑡 − 𝑏

𝑎
) ,

𝑎, 𝑏 ∈ 𝑅, 𝑎 ̸= 0.

(129)

Legendre wavelets 𝜓𝑚,𝑛(𝑡) = 𝜓(𝑘, 𝑛,𝑚, 𝑡) have four argu-
ments; 𝑘 = 2, 3, . . ., 𝑛 = 2𝑛 − 1, 𝑛 = 1, 2, . . . , 2𝑘−1, 𝑚 is the
order for Legendre polynomials and 𝑡 is the normalized time.

Legendre wavelets are defined on [0, 1) by

𝜓𝑚,𝑛 (𝑡)

=
{

{

{

(𝑚 +
1

2
)

1/2

2
𝑘/2
𝐿𝑚 (2

𝑘
𝑡 − 𝑛) ,

𝑛 − 1

2𝑘
≤ 𝑡 <

𝑛 + 1

2𝑘
,

0, otherwise,
(130)

where 𝐿𝑚(𝑡) are the well-known Legendre polynomials of
order m, which are orthogonal with respect to the weight
function𝑤(𝑡) = 1 and satisfy the following recursive formula:

𝐿0 (𝑡) = 1,

𝐿1 (𝑡) = 𝑡,

𝐿𝑚+1 (𝑡) =
2𝑚 + 1

𝑚 + 1
𝑡𝐿𝑚 (𝑡)

−
𝑚

𝑚 + 1
𝐿𝑚−1 (𝑡) , 𝑚 = 1, 2, 3, . . . .

(131)

The set of Legendre wavelets are an orthonormal set.

5.3.1. Function Approximation. A function 𝑓(𝑥) ∈ 𝐿2[0, 1]
can be expanded as

𝑓 (𝑥) =

∞

∑

𝑛=1

∞

∑

𝑚=0

𝑐𝑛,𝑚𝜓𝑛,𝑚 (𝑥) , (132)

where

𝑐𝑛,𝑚 = ⟨𝑓 (𝑥) , 𝜓𝑛,𝑚 (𝑥)⟩ . (133)

If the infinite series in (132) is truncated, then (132) can be
written as

𝑓 (𝑥) ≈

2
𝑘−1

∑

𝑛=1

𝑀−1

∑

𝑚=0

𝑐𝑛,𝑚𝜓𝑛,𝑚 (𝑥) = 𝐶
𝑇
Ψ (𝑥) , (134)

where 𝐶 and Ψ(𝑥) are 2𝑘−1𝑀× 1matrices given by

𝐶 = [𝑐1,0, 𝑐1,1, . . . , 𝑐1,𝑀−1, 𝑐2,0, . . . ,

𝑐2,𝑀−1, . . . , 𝑐2𝑘−1 ,0, . . . , 𝑐2𝑘−1 ,𝑀−1]
𝑇
,

(135)

Ψ (𝑥) = [𝜓1,0 (𝑥) , . . . , 𝜓1,𝑀−1 (𝑥) ,

𝜓2,0 (𝑥) , . . . , 𝜓2,𝑀−1 (𝑥) , . . . ,

𝜓2𝑘−1 ,0 (𝑥) , . . . , 𝜓2𝑘−1 ,𝑀−1 (𝑥)]
𝑇
.

(136)

Similarly, a function 𝑘(𝑥, 𝑡) ∈ 𝐿
2
([0, 1] × [0, 1]) can be

approximated as

𝑘 (𝑥, 𝑡) ≈ Ψ
𝑇
(𝑡) 𝐾Ψ (𝑥) , (137)

where𝐾 is (2𝑘−1𝑀× 2
𝑘−1
𝑀)matrix, with

𝐾𝑖,𝑗 = ⟨𝜓𝑖 (𝑡) , ⟨𝑘 (𝑥, 𝑡) , 𝜓𝑗 (𝑥)⟩⟩ . (138)

Also, the integer power of a function can be approximated as

[𝑦 (𝑥)]
𝑝
= [𝑌
𝑇
Ψ (𝑥)]

𝑝

= 𝑌
∗

𝑝

𝑇
Ψ (𝑥) , (139)

where 𝑌∗
𝑝
is a column vector, whose elements are nonlinear

combinations of the elements of the vector 𝑌. 𝑌∗
𝑝
is called the

operational vector of the 𝑝th power of the function 𝑦(𝑥).

5.3.2.The Operational Matrices. The integration of the vector
Ψ(𝑥) defined in (136) can be obtained as

∫

𝑡

0

Ψ(𝑡
󸀠
) 𝑑𝑡
󸀠
= 𝑃Ψ (𝑡) , (140)

where 𝑃 is the (2𝑘−1𝑀 × 2
𝑘−1
𝑀) operational matrix for

integration and is given in [23] as

𝑃 =

[
[
[
[
[
[

[

𝐿 𝐻 ⋅ ⋅ ⋅ 𝐻 𝐻

0 𝐿 ⋅ ⋅ ⋅ 𝐻 𝐻

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 𝐿 𝐻

0 0 ⋅ ⋅ ⋅ 0 𝐿

]
]
]
]
]
]

]

. (141)

In (141),𝐻 and 𝐿 are (𝑀 ×𝑀)matrices given in [23] as
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𝐻 =
1

2𝑘

[
[
[
[

[

2 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 0

]
]
]
]

]

,

𝐿 =
1

2𝑘

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1
1

√3
0 0 ⋅ ⋅ ⋅ 0 0

−
√3

3
0

√3

3√5
0 ⋅ ⋅ ⋅ 0 0

0 −
√5

5√3
0

√5

5√7
⋅ ⋅ ⋅ 0 0

0 0 −
√7

7√5
0 ⋅ ⋅ ⋅ 0 0

...
...

...
... d

...

0 0 0 0 ⋅ ⋅ ⋅ 0
√2𝑀 − 3

(2𝑀 − 3)√2𝑀 − 1

0 0 0 0 ⋅ ⋅ ⋅
−√2𝑀 − 1

(2𝑀 − 1)√2𝑀 − 3
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(142)

The integration of the product of two Legendre wavelets
vector functions is obtained as

∫

1

0

Ψ (𝑡)Ψ
𝑇
(𝑡) 𝑑𝑡 = 𝐼, (143)

where 𝐼 is an identity matrix.
The product of two Legendre wavelet vector functions is

defined as

Ψ (𝑡) Ψ
𝑇
(𝑡) 𝐶 = 𝐶

𝑇
Ψ (𝑡) , (144)

where 𝐶 is a vector given in (135) and 𝐶 is (2𝑘−1𝑀 × 2
𝑘−1
𝑀)

matrix, which is called the product operation of Legendre
wavelet vector functions [23, 24].

5.3.3. Solution of Fredholm Integral Equation of Second Kind.
Consider the nonlinear Fredholm-Hammerstein integral
equation of second kind of the form

𝑦 (𝑥) = 𝑓 (𝑥) + ∫

1

0

𝑘 (𝑥, 𝑡) [𝑦 (𝑡)]
𝑝
𝑑𝑡, (145)

where 𝑓 ∈ 𝐿2[0, 1], 𝑘 ∈ 𝐿2([0, 1] × [0, 1]), 𝑦 is an unknown
function, and 𝑝 is a positive integer.

We can approximate the following functions as

𝑓 (𝑥) ≈ 𝐹
𝑇
Ψ (𝑥) ,

𝑦 (𝑥) ≈ 𝑌
𝑇
Ψ (𝑥) ,

𝑘 (𝑥, 𝑡) ≈ Ψ
𝑇
(𝑡) 𝐾Ψ (𝑥) ,

[𝑦 (𝑥)]
𝑝
≈ 𝑌
∗𝑇
Ψ (𝑥) .

(146)

Substituting (146) into (145), we have

𝑌
𝑇
Ψ (𝑥) = 𝐹

𝑇
Ψ (𝑥)

+ ∫

1

0

𝑌
∗𝑇
Ψ (𝑡) Ψ

𝑇
(𝑡) 𝐾Ψ (𝑥) 𝑑𝑡

= 𝐹
𝑇
Ψ (𝑥)

+ 𝑌
∗𝑇
(∫

1

0

Ψ (𝑡) Ψ
𝑇
(𝑡) 𝑑𝑡)𝐾Ψ (𝑥)

= 𝐹
𝑇
Ψ (𝑥) + 𝑌

∗𝑇
𝐾Ψ (𝑥)

= (𝐹
𝑇
+ 𝑌
∗𝑇
𝐾)Ψ (𝑥)

󳨐⇒ 𝑌
𝑇
− 𝑌
∗𝑇
𝐾 − 𝐹

𝑇
= 0.

(147)

Equation (147) is a system of algebraic equations. Solving
(147), we can obtain the solution 𝑦(𝑥) ≈ 𝑌𝑇Ψ(𝑥).

5.4. Homotopy Perturbation Method. Consider the following
nonlinear Fredholm integral equation of second kind of the
form

𝑢 (𝑥) = 𝑓 (𝑥) + ∫

1

0

𝐾 (𝑥, 𝑡) 𝐹 (𝑢 (𝑡)) 𝑑𝑡,

0 ≤ 𝑥 ≤ 1.

(148)

For solving (148) by Homotopy perturbation method (HPM)
[14–16], we consider (148) as

𝐿 (𝑢) = 𝑢 (𝑥) − 𝑓 (𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡) 𝐹 (𝑢 (𝑡)) 𝑑𝑡 = 0. (149)
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As a possible remedy, we can define𝐻(𝑢, 𝑝) by

𝐻(𝑢, 0) = 𝑁 (𝑢) ,

𝐻 (𝑢, 1) = 𝐿 (𝑢) ,

(150)

where𝑁(𝑢) is an integral operator with known solution 𝑢0.
We may choose a convex homotopy by

𝐻(𝑢, 𝑝) = (1 − 𝑝)𝑁 (𝑢) + 𝑝𝐿 (𝑢) = 0 (151)

and continuously trace an implicitly defined curve from a
starting point 𝐻(𝑢0, 0) to a solution function 𝐻(𝑈, 1). The
embedding parameter 𝑝 monotonically increases from zero
to unit as the trivial problem 𝐿(𝑢) = 0. The embedding
parameter 𝑝 ∈ (0, 1] can be considered as an expanding
parameter. The HPM uses the homotopy parameter 𝑝 as an
expanding parameter; that is,

𝑢 = 𝑢0 + 𝑝𝑢1 + 𝑝
2
𝑢2 + ⋅ ⋅ ⋅ . (152a)

When 𝑝 → 1, (152a) corresponding to (151) become the
approximate solution of (149) as follows:

𝑈 = lim
𝑝→1

𝑢 = 𝑢0 + 𝑢1 + 𝑢2 + ⋅ ⋅ ⋅ . (152b)

The series in (152b) converges in most cases, and the rate of
convergence depends on 𝐿(𝑢) [14].

Consider

𝑁(𝑢) = 𝑢 (𝑥) − 𝑓 (𝑥) . (153)

The nonlinear term 𝐹(𝑢) can be expressed in He polynomials
[25] as

𝐹 (𝑢) =

∞

∑

𝑚=0

𝑝
𝑚
𝐻𝑚 (𝑢0, 𝑢1, . . . , 𝑢𝑚)

= 𝐻0 (𝑢0) + 𝑝𝐻1 (𝑢0, 𝑢1)

+ ⋅ ⋅ ⋅ + 𝑝
𝑚
𝐻𝑚 (𝑢0, 𝑢1, . . . 𝑢𝑚) + ⋅ ⋅ ⋅ ,

(154)

where
𝐻𝑚 (𝑢0, 𝑢1, . . . , 𝑢𝑚)

=
1

𝑚!

𝜕
𝑚

𝜕𝑝𝑚
(𝐹(

𝑚

∑

𝑘=0

𝑝
𝑘
𝑢𝑘))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑝=0

, 𝑚 ≥ 0.

(155)

Substituting (152a), (153), and (154) into (151), we have

(1 − 𝑝) ((𝑢0 + 𝑝𝑢1 + ⋅ ⋅ ⋅ ) − 𝑓 (𝑥))

+ 𝑝( (𝑢0 + 𝑝𝑢1 + ⋅ ⋅ ⋅ ) − 𝑓 (𝑥)

−∫

1

0

𝐾 (𝑥, 𝑡)

∞

∑

𝑚=0

𝑝
𝑚
𝐻𝑚 (𝑢0, 𝑢1, . . . , 𝑢𝑚) 𝑑𝑡) = 0

󳨐⇒ (𝑢0 + 𝑝𝑢1 + ⋅ ⋅ ⋅ ) − 𝑓 (𝑥)

− 𝑝∫

1

0

𝐾 (𝑥, 𝑡)

∞

∑

𝑚=0

𝑝
𝑚
𝐻𝑚 (𝑢0, 𝑢1, . . . , 𝑢𝑚) 𝑑𝑡 = 0.

(156)

Equating the termswith identical power of𝑝 in (156), we have

𝑝
0
: 𝑢0 (𝑥) − 𝑓 (𝑥) = 0 󳨐⇒ 𝑢0 (𝑥) = 𝑓 (𝑥)

𝑝
1
: 𝑢1 (𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡)𝐻0𝑑𝑡 = 0 󳨐⇒ 𝑢1 (𝑥)

= ∫

1

0

𝐾 (𝑥, 𝑡)𝐻0𝑑𝑡

𝑝
2
: 𝑢2 (𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡)𝐻1𝑑𝑡 = 0 󳨐⇒ 𝑢2 (𝑥)

= ∫

1

0

𝐾 (𝑥, 𝑡)𝐻1𝑑𝑡

...

(157)

and in general form we have

𝑢0 (𝑥) = 𝑓 (𝑥) ,

𝑢𝑛+1 (𝑥) = ∫

1

0

𝐾 (𝑥, 𝑡)𝐻𝑛𝑑𝑡, 𝑛 = 0, 1, 2, . . . .

(158)

Hence, we can obtain the approximate solution of aforesaid
equation (148) from (152b).

5.5. Adomian Decomposition Method. Adomian decomposi-
tion method (ADM) [16–18] has been applied to a wide class
of functional equations. This method gives the solution as
an infinite series usually converging to an accurate solution.
Let us consider the nonlinear Fredholm integral equation of
second kind as follows:

𝑢 (𝑥) = 𝑓 (𝑥) + ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) (𝐿𝑢 (𝑡) + 𝑁𝑢 (𝑡)) 𝑑𝑡,

𝑎 ≤ 𝑥 ≤ 𝑏,

(159)

where 𝐿(𝑢(𝑡)) and𝑁(𝑢(𝑡)) are the linear and nonlinear terms,
respectively.

The Adomian decomposition method (ADM) consists of
representing 𝑢(𝑥) as a series

𝑢 (𝑥) =

∞

∑

𝑚=0

𝑢𝑚 (𝑥) . (160)

In the view of ADM, the nonlinear term 𝑁𝑢 can be repre-
sented as

𝑁𝑢 =

∞

∑

𝑛=0

𝐴𝑛, (161)

where 𝐴𝑛 =
1

𝑛!
(
𝜕
𝑛

𝜕𝜆𝑛
𝑁(

∞

∑

𝑘=0

𝜆
𝑘
𝑢𝑘))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=0

. (162)
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Now substituting (160) and (161) into (159), we have

∞

∑

𝑚=0

𝑢𝑚 (𝑥) = 𝑓 (𝑥)

+ ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) (𝐿(

∞

∑

𝑚=0

𝑢𝑚 (𝑡)) +

∞

∑

𝑚=0

𝐴𝑚)𝑑𝑡,

(163)

and, then, ADM uses the recursive relations

𝑢0 (𝑥) = 𝑓 (𝑥) ,

𝑢𝑚 (𝑥) = ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) (𝐿 (𝑢𝑚−1 (𝑡)) + 𝐴𝑚−1 (𝑡)) 𝑑𝑡,

𝑚 ≥ 1,

(164)

where 𝐴𝑚 is so-called Adomian polynomial.
Therefore, we obtain the 𝑛-terms approximate solution as

𝜑𝑛 = 𝑢0 + 𝑢1 + ⋅ ⋅ ⋅ + 𝑢𝑛 (165)

with

𝑢 (𝑥) = lim
𝑛→∞

𝜑𝑛. (166)

6. Conclusion and Discussion

In this work, we have examined many numerical methods
to solve Fredholm integral equations. Using these methods
except variational iteration method, the Fredholm integral
equations have been reduced to a system of algebraic equa-
tions and this system can be easily solved by any usual
methods. In this work, we have applied compactly supported
semiorthogonal B-spline wavelets along with their dual
wavelets for solving both linear and nonlinear Fredholm inte-
gral equations of second kind.The problem has been reduced
to solve a system of algebraic equations. In order to increase
the accuracy of the approximate solution, it is necessary to
apply higher-order B-spline wavelet method. The method of
moments based on compactly supported semiorthogonal B-
spline wavelets via Galerkin method has been used to solve
Fredholm integral equation of second kind. This method
determines a strong reduction in the computation time and
memory requirement in inverting the matrix. Variational
iteration method has been successfully applied to find the
approximate solution of Fredholm integral equation of both
linear and nonlinear types. Taylor series expansion method
reduces the system of integral equations to a linear system of
ordinary differential equation. After including the required
boundary conditions, this system reduces to a system of
algebraic equations that can be solved easily. Block-Pulse
functions and Haar wavelet method can be applied to the
system of Fredholm integral equations by reducing into a
system of algebraic equations. These methods give more
accuracy if we increase their order. Quadrature method can
be applied to solve the nonlinear Fredholm-Hammerstein
integral equation of second kind by reducing it to a system of
algebraic equations. Homotopy perturbationmethod (HPM)

and Adomian decomposition method (ADM) can be also
applied to approximate the solution of nonlinear Fredholm
integral equation of second kind. The solutions obtained by
HPM and ADM are applicable for not only weakly nonlinear
equations, but also strong ones.The approximate solutions by
these aforesaid methods highly agree with exact solutions.
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