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Stage-structured predator-prey models with disease in the prey are constructed. For the purpose of integrated pest management,
two types of impulsive control strategies (impulsive release of infective prey and impulsive release of predator) are used. For Case 1,
infective prey applications are more frequent than releases of predator (natural enemies). For Case 2, predator (natural enemies)
releases are more frequent than infective prey applications. In both cases, we get the sufficient conditions for the global attractivity
of the susceptible prey-eradication periodic solution. In addition, the persistence of the systems is also discussed. At last, the results
are discussed and some possible future work is put forward.

1. Introduction

Pests, such as insects, mice and other animals, unwanted
plants (weeds), fungi, microorganisms, and so forth, are
living organisms that occur where they are not wanted or that
cause damage to crops or other animals. How to minimize
the loss caused by the injurious insects and injurious germ
carrier to the important plants, animals, and human being is
always the common problem concerned by the entomologists
and society. Human has adopted some advanced andmodern
weapons such as chemical pesticides, biological pesticides,
remote sensing and measuring, and so on to deal with pests,
and some great achievements have been obtained [1–7].

The traditional chemical control only care about the
current effect, but seldom take the influence on the ecosystem
into consideration. And it caused many problems such as
environment pollution, pest resistance to the pesticide and
pest reemergence, and the like. In this regard, it has been
observed that beneficial insects are often more susceptible to
chemical pesticides than the target pests are. In the same time,
the concentration of the pesticides in use tends to increase
with time and usage, since many pests develop resistance

to these chemicals. This kind of pest management strategy
was considered by many authors [8–12]. At present more
and more people are concerned about the effects of pesticide
residues on human health and on the environment.

Compared to chemical treatment, nonchemical methods
are safer to man and are generally effective for longer periods
of time. One example of nonchemical pest control methods
is biological treatment [13–17], including microbial control
with pathogens, as disease can be important natural controls
of some pests. Insects, like humans and other animals, can
be infected by disease-causing organisms such as bacteria,
viruses, and fungi.

People also use natural enemy to control pest or regulate it
to densities below the threshold for economic damage. Often
with augmentation or release, the natural enemy is applied
like a pesticide after the pest has reached or exceeded the
economic threshold. There are many literatures concerning
natural enemy for pest control [18–25].

Many kinds of predator-prey models have been studied
extensively [1, 2, 6, 20, 26–28]. In the natural world there are
many species whose individual members have a life history
that takes them through two stages: immature and mature.
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In particular, we have in mind mammalian populations and
some amphibious animals, which exhibit these two stages. In
recent years, stage-structuredmodels, with or without delays,
have been studied by several authors [26–33]. In addition,
there are many control methods and results for complex
dynamical network model [34–38], from which we can learn
for the proof of our main results.

Motivated by [1, 14, 24, 25, 33, 34], in this paper, we will
consider predator-prey models with stage structure in the
prey.The prey stands for the pest population and the predator
stands for the natural enemy population. That is, we call the
pest and natural enemy as prey and predator, respectively.
Here, the pest population will be controlled by releasing
natural enemy and infective pests together.The infective pests
can be cultivated in the laboratory and the natural enemy can
be migrated from other regions. Once the susceptible pest
meets with the infective pest, there is a chance to be infected.
The infective pests have more possibility of death due to the
disease and have less damage to the crops and environment.
In fact, there is such example: salt cedar leaf beetle is a pest,
and it is hatched from eggs.We call the egg stage as immature
pest, andmature pest after it is hatched. In view of its eggshell,
pathogens may not be effective against pest eggs. That is, the
disease only attacks the mature susceptible pest. Birds are the
natural enemy of the beetle, and we call them predator.

The organization of this paper is as follows. In the
next section, the main biological assumptions on which the
models rely are formulated and the models are constructed.
In Section 3, to prove our main results we give several
definitions, notations, and lemmas. In Section 4, we analyze
the first case and determine the sufficient conditions for the
global attractivity of the susceptible pest-eradication periodic
solution and permanence of the system (5). In Section 5, we
analyze the second case by similar method and obtain the
sufficient conditions for the global attractivity of the suscepti-
ble pest-eradication periodic solution and permanence of the
system (6). In the last section, a brief discussion and some
possible future work for pest management are provided.

2. Model Formulation

We assume that the life time of the prey population has two
stages, immature stage and mature stage. 𝑥(𝑡) represents the
density of the immature prey (pest) population. 𝑆(𝑡), 𝐼(𝑡)

represent the densities of the susceptible and infectivemature
prey (pest) population, respectively. The predator population
has only one life time stage. 𝑦(𝑡) is the density of the predator
(natural enemy) population. And the following assumptions
hold.

(𝐻
1
) We suppose that the infective prey can neither pro-
duce offspring nor attack crops due to the disease,
and only the susceptible prey can reproduce. At any
time 𝑡 > 0, birth into the immature prey population
is proportional to the existing susceptible mature
prey populationwith proportionality 𝑟.The immature
prey population will transfer to the mature prey class
after its birth with a maturity period of 𝜏. The term
𝑟𝑒
−𝑑
1
𝜏
𝑆(𝑡 − 𝜏) represents the immature prey that

were born at time 𝑡 − 𝜏 (i.e., 𝑟𝑆(𝑡 − 𝜏)) and still
survive at time 𝑡 (with the immature prey death rate
𝑑
1
), and therefore represent the transformation from

immature prey to mature prey.

(𝐻
2
) The immature prey population has the natural death
rate 𝑑

1
. The parameters 𝑑

2
, 𝑑
3
are the death rate for

the susceptible and infectivemature prey, respectively.
The predator population has the natural death rate 𝑑

4
.

(𝐻
3
) We also suppose the natural enemy only capture
the susceptible mature prey population, since the
immature and infective prey population are hidden in
the sanctuary, and the predation functional response
is type Holling II, 𝛿 (0 < 𝛿 < 1) is the conversion
rate for predation.Themature prey is divided into two
classes, susceptible and infective.The incidence rate is
classic bilinear 𝛽𝑆(𝑡)𝐼(𝑡), and 𝛽 is the contact number
per unit time for every infective prey with susceptible
prey.

(𝐻
4
) We assume 𝜏

𝑛
(𝑛 = 1, 2, . . .) and 𝜆

𝑚
(𝑚 = 1, 2, . . .)

are impulsive point series at which the infective prey
and natural enemies are released, with the releasing
amounts 𝑞

1
and 𝑞

2
, respectively. According to the

above assumptions, we have two different cases as
follows.

Case 1. The releases of infective pests are more frequent than
releases of natural enemies.

We release the natural enemies impulsively with releasing
amount 𝑞

2
at time 𝜆

𝑚
. Assume 𝜆

𝑚+1
− 𝜆
𝑚

= 𝑇
𝑁
holds for

all 𝑚 (𝑚 ∈ 𝑍
+
), where 𝑇

𝑁
is the period of releasing natural

enemies. During the period, 𝑝 times of the infective pests are
released. That is, there exists an integer 𝑝, such that 0 < 𝜏

1
<

𝜏
2

< 𝜏
3

⋅ ⋅ ⋅ < 𝜏
𝑝

< 𝑇
𝑁
. For the convenience of calculation and

research, we assume that 𝜏
1

= 𝜏
2
−𝜏
1

= 𝜏
3
−𝜏
2

= ⋅ ⋅ ⋅ = 𝑇
𝑁

−𝜏
𝑝
.

Accordingly, the mathematical model will be

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑟𝑆 (𝑡) − 𝑑
1
𝑥 (𝑡) − 𝑟𝑒

−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) ,

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) − 𝑑

2
𝑆 (𝑡) − 𝛼𝑆

2
(𝑡)

−𝛽𝑆 (𝑡) 𝐼 (𝑡) −

𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑
3
𝐼 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡

=

𝛿𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) − 𝑑
4
𝑦 (𝑡) ,

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

}

𝑡 ̸= 𝜆
𝑚

,

𝑡 ̸= 𝜆
𝑚

+ 𝜏
𝑖
,

Δ𝑥 (𝑡) = 0, Δ𝑆 (𝑡) = 0, Δ𝐼 (𝑡) = 𝑞
1
,

Δ𝑦 (𝑡) = 0, 𝑡 = 𝜆
𝑚

+ 𝜏
𝑖
, 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑍

+
,

Δ𝑥 (𝑡) = 0, Δ𝑆 (𝑡) = 0, Δ𝐼 (𝑡) = 0,

Δ𝑦 (𝑡) = 𝑞
2
, 𝑡 = 𝜆

𝑚
, 𝑚 ∈ 𝑍

+
,

(1)
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where we denote 𝑃 = {1, 2, . . . , 𝑝} and 𝑃
1

= {1, 2, . . . , 𝑝 − 1}

throughout the paper.

Case 2. Natural enemies releases are more frequent than the
release of the infective pests.

We release the infective pests impulsively with releasing
amount 𝑞

1
. Assume that 𝜏

𝑛+1
− 𝜏
𝑛

≡ 𝑇
𝑘
holds for all 𝑛 ∈ 𝑍

+
,

where 𝑇
𝑘
is the period of releasing the infective pests. During

the period, 𝑝 times of natural enemy releases are applied.
That is, there exists an integer 𝑝, such that 0 < 𝜆

1
< 𝜆
2

<

𝜆
3

⋅ ⋅ ⋅ < 𝜆
𝑝

< 𝑇
𝑘
. For the simplicity of calculation and

research, we assume that 𝜆
1

= 𝜆
2

− 𝜆
1

= 𝜆
3

− 𝜆
2

=

⋅ ⋅ ⋅ = 𝑇
𝑘

− 𝜆
𝑝
. Accordingly, the mathematical model will

be

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑟𝑆 (𝑡) − 𝑑
1
𝑥 (𝑡) − 𝑟𝑒

−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) ,

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) − 𝑑

2
𝑆 (𝑡) − 𝛼𝑆

2
(𝑡)

−𝛽𝑆 (𝑡) 𝐼 (𝑡) −

𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑
3
𝐼 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡

=

𝛿𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) − 𝑑
4
𝑦 (𝑡) ,

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

}

𝑡 ̸= 𝜏
𝑛
,

𝑡 ̸= 𝜏
𝑛

+ 𝜆
𝑖
,

Δ𝑥 (𝑡) = 0, Δ𝑆 (𝑡) = 0, Δ𝐼 (𝑡) = 0,

Δ𝑦 (𝑡) = 𝑞
2
, 𝑡 = 𝜏

𝑛
+ 𝜆
𝑖
, 𝑖 ∈ 𝑃 , 𝑛 ∈ 𝑍

+
,

Δ𝑥 (𝑡) = 0, Δ𝑆 (𝑡) = 0, Δ𝐼 (𝑡) = 𝑞
1
,

Δ𝑦 (𝑡) = 0, 𝑡 = 𝜏
𝑛
, 𝑛 ∈ 𝑍

+
.

(2)

(𝐻
5
) For ecological reasons, we always assume that the
initial values Φ = (𝜙

1
, 𝜙
2
, 𝜙
3
, 𝜙
4
) for system (1) and

(2) satisfy

𝜙
𝑖
∈ 𝐶 ([−𝜏, 0] , 𝑅

4

+
) , 𝜙

𝑖
(0) > 0, 𝑖 = 1, 2, 3, 4, (3)

where 𝑅
4

+
= {(𝑥, 𝑆, 𝐼, 𝑦) : 𝑥 ≥ 0, 𝑆 ≥ 0, 𝐼 ≥ 0, 𝑦 ≥ 0}.

For continuity of initial conditions, we require

𝜙
1

(0) = ∫

0

−𝜏

𝑟𝜙
2

(𝑠) 𝑒
𝑑
1
𝑠
𝑑𝑠, (4)

where 𝜙
1
(0) represents the accumulated survivors of

those prey members who were born between time −𝜏

and 0.

For the above two models, note that 𝑥(𝑡) will not have
impulsive perturbation, and it is not included in the other

equations of system (1) and (2), so we only need to consider
the following subsystems:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) − 𝑑

2
𝑆 (𝑡) − 𝛼𝑆

2
(𝑡)

−𝛽𝑆 (𝑡) 𝐼 (𝑡) −

𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑
3
𝐼 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡

=

𝛿𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) − 𝑑
4
𝑦 (𝑡) ,

}
}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}
}

}

𝑡 ̸= 𝜆
𝑚

,

𝑡 ̸= 𝜆
𝑚

+ 𝜏
𝑖
,

Δ𝑆 (𝑡) = 0, Δ𝐼 (𝑡) = 𝑞
1
,

Δ𝑦 (𝑡) = 0, 𝑡 = 𝜆
𝑚

+ 𝜏
𝑖
, 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑍

+
,

Δ𝑆 (𝑡) = 0, Δ𝐼 (𝑡) = 0,

Δ𝑦 (𝑡) = 𝑞
2
, 𝑡 = 𝜆

𝑚
, 𝑚 ∈ 𝑍

+
,

(5)

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) − 𝑑

2
𝑆 (𝑡) − 𝛼𝑆

2
(𝑡)

−𝛽𝑆 (𝑡) 𝐼 (𝑡) −

𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑
3
𝐼 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡

=

𝛿𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) − 𝑑
4
𝑦 (𝑡) ,

}
}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}
}

}

𝑡 ̸= 𝜏
𝑛
,

𝑡 ̸= 𝜏
𝑛

+ 𝜆
𝑖
,

Δ𝑆 (𝑡) = 0, Δ𝐼 (𝑡) = 0,

Δ𝑦 (𝑡) = 𝑞
2
, 𝑡 = 𝜏

𝑛
+ 𝜆
𝑖
, 𝑖 ∈ 𝑃, 𝑛 ∈ 𝑍

+
,

Δ𝑆 (𝑡) = 0, Δ𝐼 (𝑡) = 𝑞
1
,

Δ𝑦 (𝑡) = 0, 𝑡 = 𝜏
𝑛
, 𝑛 ∈ 𝑍

+
.

(6)

Accordingly, the initial condition of systems (5) and (6)
becomes

𝜙
𝑖
∈ 𝐶 ([−𝜏, 0] , 𝑅

3

+
) , 𝜙

𝑖
(0) > 0, 𝑖 = 1, 2, 3. (7)

3. Preliminary

Wegive some definitions and lemmas which will be useful for
stating and proving our main results.

Definition 1. System (5) and (6) are said to be permanent
if there are constants 𝑚, 𝑀 > 0 (independent of the
initial values) and a finite time 𝑇

0
such that for all solution

(𝑆(𝑡), 𝐼(𝑡), 𝑦(𝑡)) with initial conditions (7), 𝑚 ≤ 𝑆(𝑡) ≤

𝑀, 𝑚 ≤ 𝐼(𝑡) ≤ 𝑀, 𝑚 ≤ 𝑦(𝑡) ≤ 𝑀 hold for all 𝑡 ≥ 𝑇
0
. Here 𝑇

0

may depend on the initial values.

Lemma 2 (see [39]). Consider the following equation:

𝑑𝑥

𝑑𝑡

= 𝑎𝑥 (𝑡 − 𝜏) − 𝑏𝑥 (𝑡) − 𝑐𝑥
2

(𝑡) , (8)
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where 𝑎, 𝑏, 𝑐, 𝜏 are positive constants, and 𝑥(𝑡) > 0 for −𝜏 ≤ 𝑡 ≤

0, then one has the following.
(i) If 𝑎 > 𝑏, then lim

𝑡→∞
𝑥(𝑡) = (𝑎 − 𝑏)/𝑐.

(ii) If 𝑎 ≤ 𝑏, then lim
𝑡→∞

𝑥(𝑡) = 0.

Lemma 3 (see [40]). Let 𝑉 : 𝑅
+

× 𝑅
𝑛

→ 𝑅 and 𝑉 ∈ 𝑉
0
.

Assume that
𝐷
+
𝑉 (𝑡, 𝑋) ≤ 𝑔 (𝑡, 𝑉 (𝑡, 𝑋)) , 𝑡 ̸= 𝑘𝜏,

𝑉 (𝑡, 𝑋 (𝑡
+
)) ≤ Ψ

𝑛
(𝑉 (𝑡, 𝑋 (𝑡))) , 𝑡 = 𝑘𝜏,

(9)

where 𝑔 : 𝑅
+

× 𝑅
𝑛

+
→ 𝑅
𝑛 is continuous in (𝑘𝜏, (𝑘 + 1)𝜏] × 𝑅

𝑛

+

and for each 𝑣 ∈ 𝑅
𝑛

+
, 𝑛 ∈ 𝑍

+

lim
(𝑡,𝑦)→ (𝑘𝜏

+
,𝑣)

𝑔 (𝑡, 𝑦) = 𝑔 (𝑘𝜏
+
, 𝑣) (10)

exists and is finite. 𝑔(𝑡, 𝑈) is quasi-monotone nondecreasing in
𝑈 and Ψ

𝑛
: 𝑅
𝑛

+
→ 𝑅
𝑛

+
is nondecreasing. Let 𝑅(𝑡) = 𝑅(𝑡, 0, 𝑈

0
)

be the maximal solution of the scalar impulsive differential
equation

𝑈

(𝑡) = 𝑔 (𝑡, 𝑈) , 𝑡 ̸= 𝑘𝜏,

𝑈 (𝑡
+
) = Ψ
𝑛

(𝑈 (𝑡)) , 𝑡 = 𝑘𝜏,

𝑈 (0
+
) = 𝑈
0

> 0,

(11)

defined on [0, ∞).Then𝑉(0
+
, 𝑋
0
) ≤ 𝑈
0
implies that𝑉(𝑡, 𝑋(𝑡))

≤ 𝑅(𝑡), t ≥ 0, where 𝑋(𝑡) is any solution of system (1) existing
on [0, ∞).

Note that if one has some smoothness conditions of 𝑔 to
guarantee the existence and uniqueness of solutions for (11),
then 𝑅(𝑡) is exactly the unique solution of (11).

Lemma 4 (see [1]). System

𝑧

(𝑡) = −𝑑𝑧 (𝑡) , 𝑡 ̸= 𝑛𝑇,

Δ𝑧 (𝑡) = 𝜃, 𝑡 = 𝑛𝑇,

(12)

has a positive periodic solution 𝑧
∗
(𝑡), and for every solution 𝑧(𝑡)

of system (12) with positive initial value 𝑧(0
+
), one has |𝑧(𝑡) −

𝑧
∗
(𝑡)| → 0 as 𝑡 → +∞, where 𝑧

∗
(𝑡) = 𝜃𝑒

−𝑑(𝑡−𝑛𝑇)
/(1 − 𝑒

−𝑑𝑇
)

for 𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇], and 𝑧
∗
(0
+
) = 𝜃/(1 − 𝑒

−𝑑𝑇
).

Lemma 5. There exists a positive constant 𝑀 such that 𝑆(𝑡) ≤

𝑀, 𝐼(𝑡) ≤ 𝑀, 𝑦(𝑡) ≤ 𝑀, for each solution (𝑆(𝑡), 𝐼(𝑡), 𝑦(𝑡))

of system (5) with positive initial values (7), where 𝑡 is large
enough.

Proof. Define a function 𝑉 such that
𝑉 (𝑡) = 𝛿𝑆 (𝑡) + 𝛿𝐼 (𝑡) + 𝑦 (𝑡) . (13)

By simple computation, we see that when 𝑡 ̸= 𝜆
𝑚
, 𝑡 ̸= 𝜆

𝑚
+ 𝜏
𝑖
,

𝐷
+
𝑉




(5)

+ 𝑑𝑉

= 𝛿𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) + 𝛿 (𝑑 − 𝑑

1
) 𝑆 (𝑡)

+ 𝛿 (𝑑 − 𝑑
1
) 𝐼 (𝑡) + 𝛿 (𝑑 − 𝑑

1
) 𝑦 (𝑡) − 𝛿𝑎𝑆

2
(𝑡)

≤ 𝛿𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) − 𝛿𝑎𝑆

2
(𝑡) .

(14)

Since the right-hand side of the above inequality is a quadratic
with negative quadratic coefficient, it is bounded from above
for all (𝑆(𝑡), 𝐼(𝑡), 𝑦(𝑡)) ∈ 𝑅

3

+
. Hence there exists a positive

constant 𝑀
0

= 𝑟𝑒
−𝑑
1
𝜏
/𝑎, such that

𝐷
+
𝑉




(5)

≤ −𝑑𝑉 (𝑡) + 𝑀
0
, for 𝑡 ̸= 𝜆

𝑚
, 𝑡 ̸= 𝜆

𝑚
+ 𝜏
𝑖
. (15)

Obviously, we know

𝑉 (𝑡
+
) = 𝑉 (𝑡) + 𝑞

1
, for 𝑡 = 𝜆

𝑚
+ 𝜏
𝑖
, 𝑖 ∈ 𝑃

𝑉 (𝑡
+
) = 𝑉 (𝑡) + 𝑞

2
, for 𝑡 = 𝜆

𝑚
, 𝑚 ∈ 𝑍

+
.

(16)

Consider system

𝐷
+
𝑉 (𝑡) ≤ −𝑑𝑉 (𝑡) + 𝑀

0
, 𝑡 ̸= 𝜆

𝑚
, 𝑡 ̸= 𝜆

𝑚
+ 𝜏
𝑖
,

𝑉 (𝑡
+
) ≤ 𝑉 (𝑡) + 𝑞, 𝑡 = 𝜆

𝑚
, or 𝑡 = 𝜆

𝑚
+ 𝜏
𝑖
,

(17)

where 𝑑 = min{𝑑
2
, 𝑑
3
, 𝑑
4
}, 𝑞 = max{𝑞

1
, 𝑞
2
}.

According to Lemmas 3 and 4, we derive

𝑉 (𝑡) ≤ (𝑉 (0
+
) −

𝑀
0

𝑑

−

𝑞

1 − 𝑒
−𝑑𝑇
𝑁

) 𝑒
−𝑑𝑡

+

𝑀
0

𝑑

+

𝑞𝑒
−𝑑(𝑡−𝜆

𝑚
)

1 − 𝑒
−𝑑𝑇
𝑁

→

𝑀
0

𝑑

+

𝑞

1 − 𝑒
𝑑𝑇
𝑁

, as 𝑡 → ∞.

(18)

Consequently, by the definition of 𝑉(𝑡) we obtain that each
solution of (5) with positive initial values is uniformly
ultimately bounded above. This completes the proof.

Remark 6. For system (6) with initial value (7), we have
similar result as Lemma 5.

4. Analysis of System (5)
In this section, we determine the global attractive condition
for the susceptible pest-eradication periodic solution and
permanence of system (5).

If 𝑆(𝑡) ≡ 0 for all 𝑡 ≥ 0, then we get the following
subsystem of system (5):

𝑑𝐼 (𝑡)

𝑑𝑡

= −𝑑
3
𝐼 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡

= −𝑑
4
𝑦 (𝑡) ,

}
}

}
}

}

𝑡 ̸= 𝜆
𝑚

, 𝑡 ̸= 𝜆
𝑚

+ 𝜏
𝑖
,

Δ𝐼 (𝑡) = 𝑞
1
, 𝑡 = 𝜆

𝑚
+ 𝜏
𝑖
, 𝑖 ∈ 𝑃,

Δ𝑦 (𝑡) = 𝑞
2
, 𝑡 = 𝜆

𝑚
, 𝑚 ∈ 𝑍

+
.

(19)



Abstract and Applied Analysis 5

By Lemma 4, system (19) has a unique positive periodic
solution as follows:

𝐼
∗

(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝐼
∗
𝑒
−𝑑
3
(𝑡−𝜆
𝑚
)
, 𝑡 ∈ (𝜆

𝑚
, 𝜆
𝑚

+ 𝜏
1
] ,

𝐼
∗
𝑒
−𝑑
3
(𝑡−𝜆
𝑚
)
+ 𝑞
1

𝑗=𝑖

∑

𝑗=1

𝑒
−𝑑
3
(𝑡−𝜆
𝑚
−𝜏
𝑗
)
,

𝑡 ∈ (𝜆
𝑚

+ 𝜏
𝑖
, 𝜆
𝑚

+ 𝜏
𝑖+1

] , 𝑖 ∈ 𝑃
1
,

...

𝐼
∗
𝑒
−𝑑
3
(𝑡−𝜆
𝑚
)
+ 𝑞
1

𝑗=𝑝

∑

𝑗=1

𝑒
−𝑑
3
(𝑡−𝜆
𝑚
−𝜏
𝑗
)
,

𝑡 ∈ (𝜆
𝑚

+ 𝜏
𝑝
, 𝜆
𝑚+1

] ,

𝑦
∗

(𝑡) = 𝑦
∗
𝑒
−𝑑
4
(𝑡−𝜆
𝑚
)
, 𝑡 ∈ (𝜆

𝑚
, 𝜆
𝑚+1

] ,

(20)

where

𝐼
∗

=

𝑞
1

∑
𝑗=𝑝

𝑗=1
𝑒
−𝑑
3
(𝑇
𝑁
−𝜏
𝑗
)

1 − 𝑒
−𝑑
3
𝑇
𝑁

, 𝑦
∗

=

𝑞
2

1 − 𝑒
−𝑑
4
𝑇
𝑁

.
(21)

Thus, we get the presentation of the susceptible pest-eradica-
tion periodic solution of system (5) as (0, 𝐼

∗
(𝑡), 𝑦
∗
(𝑡)). And

we have the following results about this periodic solution.

Theorem 7. The susceptible pest-eradication periodic solution
of system (5) is globally attractive provided that

𝑟𝑒
−𝑑
1
𝜏

< 𝑑
2

+ 𝛽𝐼
∗
𝑒
−𝑑
3
𝜏
1

+

𝑎𝑞
2

(1 + 𝑏𝑀) (𝑒
𝑑
4
𝑇
𝑁 − 1)

. (22)

Proof. Since (22) holds, we can choose a sufficiently small 𝜖 >

0 such that

𝑟𝑒
−𝑑
1
𝜏

< 𝑑
2

+ 𝛽 (𝐼
∗
𝑒
−𝑑
3
𝜏
1

− 𝜖)

+

𝑎 ((𝑞
2
𝑒
−𝑑
4
𝑇
𝑁
/ (1 − 𝑒

−𝑑
4
𝑇
𝑁
)) − 𝜖)

1 + 𝑏𝑀

.

(23)

Let (𝑆(𝑡), 𝐼(𝑡), 𝑦(𝑡)) be any solution of system (5) with positive
initial values. From system (5), we have

𝑑𝐼 (𝑡)

𝑑𝑡

≥ −𝑑
3
𝐼 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡

≥ −𝑑
4
𝑦 (𝑡) ,

}
}

}
}

}

𝑡 ̸= 𝜆
𝑚

, 𝑡 ̸= 𝜆
𝑚

+ 𝜏
𝑖
,

Δ𝐼 (𝑡) = 𝑞
1
, 𝑡 = 𝜆

𝑚
+ 𝜏
𝑖
, 𝑖 ∈ 𝑃,

Δ𝑦 (𝑡) = 𝑞
2
, 𝑡 = 𝜆

𝑚
, 𝑚 ∈ 𝑍

+
.

(24)

According to Lemmas 3 and 4, for the above 𝜖, there exists
𝑛
1

∈ 𝑍
+
, such that

𝐼 (𝑡) ≥ 𝐼
∗

(𝑡) − 𝜖 ≥ 𝐼
∗
𝑒
−𝑑
3
𝜏
1

− 𝜖 ≜ 𝜂
1
,

𝑦 (𝑡) ≥ 𝑦
∗

(𝑡) − 𝜖 ≥

𝑞
2
𝑒
−𝑑
4
𝑇
𝑁

1 − 𝑒
−𝑑
4
𝑇
𝑁

− 𝜖 ≜ 𝜂
2

(25)

hold for all 𝑡 > 𝑛
1
𝑇
𝑁
.

Thus, for 𝑡 > 𝑛
1
𝑇
𝑁

+ 𝜏, we have

̇𝑆 (𝑡) = 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) − 𝑑

2
𝑆 (𝑡)

− 𝛼𝑆
2

(𝑡) − 𝛽𝑆 (𝑡) 𝐼 (𝑡) −

𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) ,

≤ 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏)

− [𝑑
2

+ 𝛽𝜂
1

+

𝑎𝜂
2

1 + 𝑏𝑀

] 𝑆 (𝑡) − 𝛼𝑆
2

(𝑡) .

(26)

Consider the following comparison equation:

�̇�
1

(𝑡) = 𝑟𝑒
−𝑑
1
𝜏
𝑧
1

(𝑡 − 𝜏)

− [𝑑
2

+ 𝛽𝜂
1

+

𝑎𝜂
2

1 + 𝑏𝑀

] 𝑧
1

(𝑡) − 𝛼𝑧
2

1
(𝑡) .

(27)

By Lemma 2, we have lim
𝑡→∞

𝑧
1
(𝑡) = 0. And by Lemma 3,

we have 𝑆(𝑡) < 𝑧
1
(𝑡), for 𝑡 > 𝑛

1
𝑇
𝑁

+ 𝜏 from which we get
lim
𝑡→∞

𝑆(𝑡) = 0. Therefore, for any positive constant 𝜖
1
small

enough (0 < 𝜖
1

< min((𝑑
3
/𝛽), (𝑑

4
/(𝛿𝑎 − 𝑏𝑑

4
)))), there exists

an integer 𝑛
2

(𝑛
2
𝑇
𝑁

> 𝑛
1
𝑇
𝑁

+ 𝜏) such that 0 < 𝑆(𝑡) < 𝜖
1
for

all 𝑡 > 𝑛
2
𝑇
𝑁
.

From system (5), for all 𝑡 > 𝑛
2
𝑇
𝑁
we have,

𝑑𝐼 (𝑡)

𝑑𝑡

≤ (𝛽𝜖
1

− 𝑑
3
) 𝐼 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡

≤ (

𝛿𝑎𝜖
1

1 + 𝑏𝜖
1

− 𝑑
4
) 𝑦 (𝑡) ,

}
}
}

}
}
}

}

𝑡 ̸= 𝜆
𝑚

, 𝑡 ̸= 𝜆
𝑚

+ 𝜏
𝑖
,

Δ𝐼 (𝑡) = 𝑞
1
, 𝑡 = 𝜆

𝑚
+ 𝜏
𝑖
, 𝑖 ∈ 𝑃,

Δ𝑦 (𝑡) = 𝑞
2
, 𝑡 = 𝜆

𝑚
, 𝑚 ∈ 𝑍

+
.

(28)

From Lemmas 3 and 4, for any sufficiently small positive 𝜖
2
,

there exists an integer 𝑛
3

(𝑛
3

> 𝑛
2
) such that

𝐼 (𝑡) ≤ 𝜔
∗

1
(𝑡) + 𝜖

2
,

𝑦 (𝑡) ≤ 𝜔
∗

2
(𝑡) + 𝜖

2

(29)

for all 𝑡 > 𝑛
3
𝑇
𝑁
, where

𝜔
∗

1
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜔
∗

1
𝑒
(𝛽𝜖
1
−𝑑
3
)(𝑡−𝜆

𝑚
)
, 𝑡 ∈ (𝜆

𝑚
, 𝜆
𝑚

+ 𝜏
1
] ,

𝜔
∗

1
𝑒
(𝛽𝜖
1
−𝑑
3
)(𝑡−𝜆

𝑚
)
+ 𝑞
1

𝑗=𝑖

∑

𝑗=1

𝑒
(𝛽𝜖
1
−𝑑
3
)(𝑡−𝜆

𝑚
−𝜏
𝑗
)
,

𝑡 ∈ (𝜆
𝑚

+ 𝜏
𝑖
, 𝜆
𝑚

+ 𝜏
𝑖+1

] , 𝑖 ∈ 𝑃
1
,

...

𝜔
∗

1
𝑒
(𝛽𝜖
1
−𝑑
3
)(𝑡−𝜆

𝑚
)
+ 𝑞
1

𝑗=𝑝

∑

𝑗=1

𝑒
(𝛽𝜖
1
−𝑑
3
)(𝑡−𝜆

𝑚
−𝜏
𝑗
)

𝑡 ∈ (𝜆
𝑚

+ 𝜏
𝑝
, 𝜆
𝑚+1

] ,

𝜔
∗

2
(𝑡) = 𝜔

∗

2
𝑒
((𝛿𝑎𝜖
1
/(1+𝜖

1
))−𝑑
4
)(𝑡−𝜆

𝑚
)
, 𝑡 ∈ (𝜆

𝑚
, 𝜆
𝑚+1

] ,

𝜔
∗

1
=

𝑞
1

∑
𝑗=𝑝

𝑗=1
𝑒
(𝛽𝜖
1
−𝑑
3
)(𝑇
𝑁
−𝜏
𝑗
)

1 − 𝑒
−𝑑
3
𝑇
𝑁

,

𝜔
∗

2
=

𝑞
2

1 − 𝑒
((𝛿𝑎𝜖
1
/(1+𝜖

1
))−𝑑
4
)𝑇
𝑁

(30)
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are the solutions of the following comparison system:

𝑑𝜔
1

(𝑡)

𝑑𝑡

= (𝛽𝜖
1

− 𝑑
3
) 𝜔
1

(𝑡) ,

𝑑𝜔
2

(𝑡)

𝑑𝑡

= (

𝛿𝑎𝜖
1

1 + 𝑏𝜖
1

− 𝑑
4
) 𝜔
2

(𝑡) ,

}
}
}

}
}
}

}

𝑡 ̸= 𝜆
𝑚

,

𝑡 ̸= 𝜆
𝑚

+ 𝜏
𝑖
,

Δ𝜔
1

(𝑡) = 𝑞
1
, 𝑡 = 𝜆

𝑚
+ 𝜏
𝑖
, 𝑖 ∈ 𝑃,

Δ𝜔
2

(𝑡) = 𝑞
2
, 𝑡 = 𝜆

𝑚
, 𝑚 ∈ 𝑍

+
,

𝜔
1

(𝑛
3
𝑇
+

𝑁
) = 𝐼 (𝑛

3
𝑇
+

𝑁
) > 0,

𝜔
2

(𝑛
3
𝑇
+

𝑁
) = 𝑦 (𝑛

3
𝑇
+

𝑁
) > 0.

(31)

Since 𝜖, 𝜖
1
, 𝜖
2
can be small enough, we have 𝜔

∗

1
(𝑡) → 𝐼

∗
(𝑡),

𝜔
∗

2
(𝑡) → 𝑦

∗
(𝑡) as 𝜖, 𝜖

1
, 𝜖
2

→ 0. From (25) and (29), we
deduce that 𝑆(𝑡) → 0, 𝐼(𝑡) → 𝐼

∗
(𝑡), 𝑦(𝑡) → 𝑦

∗
(𝑡) as

𝑡 → ∞. Therefore, (0, 𝐼
∗
(𝑡), 𝑦
∗
(𝑡)) is globally attractive.This

completes the proof.

Corollary 8. (1) If 𝑞
1

= 0, then the condition (22) of
Theorem 7 becomes

𝑞
2

>

(𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2
) (1 + 𝑏𝑀) (𝑒

𝑑
4
𝑇
𝑁

− 1)

𝑎

≜ 𝑞
2∗

(32)

which means that if only natural enemies are released impul-
sively, then the release amountmust be larger than 𝑞

2∗
to ensure

the eradication of the susceptible pest.
(2) If 𝑞

2
= 0, then the condition (22) ofTheorem 7 becomes

𝑞
1

>

(𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2
) (1 − 𝑒

−𝑑
3
𝑇
𝑁
)

𝛽 ∑
𝑗=𝑝

𝑗=1
𝑒
−𝑑
3
(𝑇
𝑁
−(𝜏
𝑗
−𝜏
1
))

≜ 𝑞
1∗ (33)

whichmeans that if only infective pests are released impulsively,
then the release amount must be larger than 𝑞

1∗
to ensure the

eradication of the susceptible pest.

Through Theorem 7 and Corollary 8, we can get the
sufficient conditions for global attractivity of the susceptible
pests-eradication periodic solution. That is, the susceptible
pest population is eradicated totally. But in practice, from
the view point of keeping ecosystem balance and preserving
biological resources, it is not necessary to eradicate the
susceptible pest population completely. In fact we hope the
susceptible pests and natural enemies can coexist, and at the
same time the susceptible pests do not cause immense eco-
nomic loss. Thus, it is meaningful to study the permanence
of system (5).

Theorem 9. The system (5) is permanent provided that

𝑟𝑒
−𝑑
1
𝜏

> 𝑑
2

+ 𝛽𝑞
1

𝑝

∑

𝑗=1

𝑒
−𝑑
3
(𝜏
𝑝
−𝜏
𝑗
)

1 − 𝑒
−𝑑
3
𝑇
𝑁

+

𝑎𝑞
2

1 − 𝑒
−𝑑
4
𝑇
𝑁

. (34)

Proof. Since (34) holds, we can choose sufficiently small
positive number 𝜖, 𝜂

4
(0 < 𝜂

4
< min((𝑑

3
/𝛽), (𝑑

4
/(𝛿𝑎 −

𝑏𝑑
4
)))) such that

𝜉 = 𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝜂
4

− 𝛽 (

𝑞
1

∑
𝑗=𝑝

𝑗=1
𝑒
(𝛽𝜂
4
−𝑑
3
)(𝜏
𝑝
−𝜏
𝑗
)

1 − 𝑒
(𝛽𝜂
4
−𝑑
3
)𝑇
𝑁

+ 𝜖)

− 𝑎 (

𝑞
2

1 − 𝑒
((𝛿𝑎𝜂
4
/(1+𝑏𝜂

4
))−𝑑
4
)𝑇
𝑁

+ 𝜖) > 0.

(35)

Suppose 𝑋(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑦(𝑡)) is a solution of system (5)
with initial values 𝑋(0

+
) > 0. By Lemma 5, there exists a

positive constant 𝑀 such that 𝑆(𝑡) < 𝑀, 𝐼(𝑡) < 𝑀, 𝑦(𝑡) < 𝑀

for all 𝑡 large enough. From (25), we know that 𝐼(𝑡), 𝑦(𝑡) are
positive lower bound. Thus we only need to find 𝜂

3
> 0 such

that 𝑆(𝑡) > 𝜂
3
for all 𝑡 large enough.

We claim that for any 𝑡
0

> 0, it is impossible that 𝑆(𝑡) < 𝜂
4

for all 𝑡 ≥ 𝑡
0
. Suppose that the claim is not true. Then there is

a 𝑡
0

> 0 such that 𝑆(𝑡) < 𝜂
4
for all 𝑡 ≥ 𝑡

0
.

Then, from system (5) we have

̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑
3
𝐼 (𝑡)

≤ (𝛽𝜂
4

− 𝑑
3
) 𝐼 (𝑡) ,

̇𝑦 (𝑡) =

𝛿𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) − 𝑑
4
𝑦 (𝑡)

≤ (

𝛿𝑎𝜂
4

1 + 𝑏𝜂
4

− 𝑑
4
) 𝑦 (𝑡) ,

}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}

}

𝑡 ̸= 𝜆
𝑚

,

𝑡 ̸= 𝜆
𝑚

+ 𝜏
𝑖
,

Δ𝐼 (𝑡) = 𝑞
1
, 𝑡 = 𝜆

𝑚
+ 𝜏
𝑖
,

Δ𝑦 (𝑡) = 𝑞
2
, 𝑡 = 𝜆

𝑚
.

(36)

From Lemmas 3 and 4, for the above selected 𝜖 in (35), there
exists a time 𝑇

1
> 𝑡
0

+ 𝜏 such that for all 𝑡 ≥ 𝑇
1
we have

𝐼 (𝑡) ≤ 𝑢
∗

1
(𝑡) + 𝜖

<

𝑞
1

∑
𝑗=𝑝

𝑗=1
𝑒
(𝛽𝜂
4
−𝑑
3
)(𝜏
𝑝
−𝜏
𝑗
)

1 − 𝑒
(𝛽𝜂
4
−𝑑
3
)𝑇
𝑁

+ 𝜖 ≜ 𝜉
1
,

𝑦 (𝑡) ≤ 𝑢
∗

2
(𝑡) + 𝜖

<

𝑞
2

1 − 𝑒
((𝛿𝑎𝜂
4
/(1+𝑏𝜂

4
))−𝑑
4
)𝑇
𝑁

+ 𝜖 ≜ 𝜉
2
,

(37)
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where 𝑢
∗

1
(𝑡), 𝑢
∗

2
(𝑡) are the solutions of the following compar-

ison system:

�̇�
1

(𝑡) = (𝛽𝜂
4

− 𝑑
3
) 𝑢
1

(𝑡) ,

�̇�
2

(𝑡) = (

𝛿𝑎𝜂
4

1 + 𝑏𝜂
4

− 𝑑
4
) 𝑢
2

(𝑡) ,

}
}

}
}

}

𝑡 ̸= 𝜆
𝑚

,

𝑡 ̸= 𝜆
𝑚

+ 𝜏
𝑖
,

Δ𝑢
1

(𝑡) = 𝑞
1
, 𝑡 = 𝜆

𝑚
+ 𝜏
𝑖
,

Δ𝑢
2

(𝑡) = 𝑞
2
, 𝑡 = 𝜆

𝑚
,

𝑢
1

(𝑇
+

1
) = 𝐼 (𝑇

+

1
) > 0,

𝑢
2

(𝑇
+

1
) = 𝑦 (𝑇

+

1
) > 0,

𝑢
∗

1
(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑢
∗

1
𝑒
(𝛽𝜂
4
−𝑑
3
)(𝑡−𝜆

𝑚
)
, 𝑡 ∈ (𝜆

𝑚
, 𝜆
𝑚

+ 𝜏
1
] ,

𝑢
∗

1
𝑒
(𝛽𝜂
4
−𝑑
3
)(𝑡−𝜆

𝑚
)
+ 𝑞
1

𝑗=𝑖

∑

𝑗=1

𝑒
(𝛽𝜂
4
−𝑑
3
)(𝑡−𝜆

𝑚
−𝜏
𝑗
)
,

𝑡 ∈ (𝜆
𝑚

+ 𝜏
𝑖
, 𝜆
𝑚

+ 𝜏
𝑖+1

] ,

...

𝑢
∗

1
𝑒
(𝛽𝜂
4
−𝑑
3
)(𝑡−𝜆

𝑚
)
+ 𝑞
1

𝑗=𝑝

∑

𝑗=1

𝑒
(𝛽𝜂
4
−𝑑
3
)(𝑡−𝜆

𝑚
−𝜏
𝑗
)
,

𝑡 ∈ (𝜆
𝑚

+ 𝜏
𝑝
, 𝜆
𝑚+1

] ,

𝑢
∗

2
(𝑡) = 𝑢

∗

2
𝑒
((𝛿𝑎𝜂
4
/(1+𝑏𝜂

4
))−𝑑
4
)(𝑡−𝜆

𝑚
)
, 𝑡 ∈ (𝜆

𝑚
, 𝜆
𝑚+1

] ,

𝑢
∗

1
=

𝑞
1

∑
𝑗=𝑝

𝑗=1
𝑒
(𝛽𝜂
4
−𝑑
3
)(𝑇
𝑁
−𝜏
𝑗
)

1 − 𝑒
(𝛽𝜂
4
−𝑑
3
)𝑇
𝑁

,

𝑢
∗

2
=

𝑞
2

1 − 𝑒
((𝛿𝑎𝜂
4
/(1+𝑏𝜂

4
))−𝑑
4
)𝑇
𝑁

.

(38)

Note that the first equation of system (5) can be rewritten as

̇𝑆 (𝑡) = 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) − 𝑑

2
𝑆 (𝑡) − 𝛼𝑆

2
(𝑡)

− 𝛽𝑆 (𝑡) 𝐼 (𝑡) −

𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) ,

= [𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝑆 (𝑡) − 𝛽𝐼 (𝑡) −

𝑎𝑦 (𝑡)

1 + 𝑏𝑆 (𝑡)

] 𝑆 (𝑡)

− 𝑟𝑒
−𝑑
1
𝜏 𝑑

𝑑𝑡

(∫

𝑡

𝑡−𝜏

𝑆 (𝑢) 𝑑𝑢) .

(39)

In the following we define a Liapunov functional as

𝑈 (𝑡) = 𝑆 (𝑡) + 𝑟𝑒
−𝑑
1
𝜏

∫

𝑡

𝑡−𝜏

𝑆 (𝑢) 𝑑𝑢. (40)

Then the derivative of 𝑈(𝑡) with respect to the solution of
system (5) is

�̇� (𝑡) = 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡) − 𝑑

2
𝑆 (𝑡) − 𝛼𝑆

2
(𝑡)

− 𝛽𝑆 (𝑡) 𝐼 (𝑡) −

𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) ,

= [𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝑆 (𝑡) − 𝛽𝐼 (𝑡) −

𝑎𝑦 (𝑡)

1 + 𝑏𝑆 (𝑡)

] 𝑆 (𝑡) .

(41)

From (37) and (41) we have

�̇� (𝑡) = [𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝑆 (𝑡) − 𝛽𝐼 (𝑡) −

𝑎𝑦 (𝑡)

1 + 𝑏𝑆 (𝑡)

] 𝑆 (𝑡)

≥ [𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝑆 (𝑡) − 𝛽 (𝑢
∗

1
(𝑡) + 𝜖)

−𝑎 (𝑢
∗

2
(𝑡) + 𝜖) ] 𝑆 (𝑡) .

(42)

Let min
𝑡∈[𝑇
1
,𝑇
1
+𝜏]

𝑆(𝑡) = 𝑆
0

> 0.
We will show that 𝑆(𝑡) ≥ 𝑆

0
for all 𝑡 > 𝑇

1
. Otherwise

there exists a nonnegative constant 𝑇
2
such that 𝑆(𝑡) ≥ 𝑆

0
for

𝑡 ∈ [𝑇
1
, 𝑇
1
+𝜏+𝑇

2
], 𝑆(𝑇
1
+𝜏+𝑇

2
) = 𝑆
0
and ̇𝑆(𝑇

1
+𝜏+𝑇

2
) ≤ 0.

Thus from the first equation of system (5) and (35) we easily
see that

̇𝑆 (𝑇
1

+ 𝜏 + 𝑇
2
)

= 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑇
1

+ 𝑇
2
) − 𝑑
2
𝑆 (𝑇
1

+ 𝜏 + 𝑇
2
)

− 𝛼𝑆
2

(𝑇
1

+ 𝜏 + 𝑇
2
) − 𝛽S (𝑇

1
+ 𝜏 + 𝑇

2
)

× 𝐼 (𝑇
1

+ 𝜏 + 𝑇
2
) −

𝑎𝑆 (𝑇
1

+ 𝜏 + 𝑇
2
)

1 + 𝑏𝑆 (𝑇
1

+ 𝜏 + 𝑇
2
)

× 𝑦 (𝑇
1

+ 𝜏 + 𝑇
2
) ,

≥ 𝑆
0

[𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝜂
4

− 𝛽 (𝑢
∗

1
(𝑡) + 𝜖)

−𝑎 (𝑢
∗

2
(𝑡) + 𝜖) ] > S

0
𝜉 > 0

(43)

which is a contradiction. Hence we get that 𝑆(𝑡) ≥ 𝑆
0

> 0 for
all 𝑡 ≥ 𝑇

1
.

From (37) we have for all 𝑡 > 𝑇
1

�̇� (𝑡) = 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡) − 𝑑

2
𝑆 (𝑡) − 𝛼𝑆

2
(𝑡)

− 𝛽𝑆 (𝑡) 𝐼 (𝑡) −

𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) ,

= [𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝑆 (𝑡) − 𝛽𝐼 (𝑡) −

𝑎𝑦 (𝑡)

1 + 𝑏𝑆 (𝑡)

] 𝑆 (𝑡)

> 𝑆
0

[𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝜂
4

−𝛽 (𝑢
∗

1
(𝑡) + 𝜖) − 𝑎 (𝑢

∗

2
(𝑡) + 𝜖) ]

> S
0
𝜉 > 0,

(44)

which implies 𝑈(𝑡) → ∞ as 𝑡 → ∞. This is a contradiction
to 𝑈(𝑡) ≤ 𝑀 + 𝑟𝜏𝑀𝑒

−𝑑
1
𝜏. Therefore for any positive constant

𝑡
0
the inequality 𝑆(𝑡) < 𝜂

4
cannot hold for all 𝑡 ≥ 𝑡

0
.

By the claim, we need to consider two cases.

Case 1. (𝑆(𝑡) > 𝜂
4
) for all large 𝑡, then our aim is obtained.

Case 2. (𝑆(𝑡)) oscillates about 𝜂
4
for all large 𝑡. Denote

𝜂
3

= min(

𝜂
4

2

, 𝜂
4
𝑒
−(𝑑
2
+𝛼𝑀+𝛽𝜉

1
+𝑎𝜉
2
)𝜏

) . (45)
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In the following we will show that 𝑆(𝑡) ≥ 𝜂
3
. Since 𝑆(𝑡)

oscillates about 𝜂
4
, there exist positive constants 𝑡 and 𝜃, such

that

𝑆 (𝑡) = 𝑆 (𝑡 + 𝜃) = 𝜂
4
,

𝑆 (𝑡) < 𝜂
4
, 𝑡 < 𝑡 < 𝑡 + 𝜃,

(46)

where 𝑡 is sufficiently large, and the inequalities (37) hold for
𝑡 < 𝑡 < 𝑡 + 𝜃. Since 𝑆(𝑡) is continuous and bounded, and it is
not effected by impulse. So there exists a constant 𝑇

3
(where

0 < 𝑇
3

< 𝜏 and 𝑇
3
is independent of the choice of 𝑡) such that

𝑆(𝑡) > 𝜂
4
/2 for all 𝑡 ≤ 𝑡 ≤ 𝑡 + 𝑇

3
.

If 𝜃 ≤ 𝑇
3
, our aim is obtained.

If 𝑇
3

< 𝜃 < 𝜏, from the first equation of system (5) we
have, for 𝑡 ≤ 𝑡 ≤ 𝑡 + 𝜃

̇𝑆 (𝑡) ≥ (−𝑑
2

− 𝛼𝑆 (𝑡) − 𝛽𝐼 (𝑡) − 𝑎𝑦 (𝑡)) 𝑆 (𝑡)

≥ − (𝑑
2

+ 𝛼𝑀 + 𝛽𝜉
1

+ 𝑎𝜉
2
) 𝑆 (𝑡) ,

(47)

then

𝑆 (𝑡) ≥ 𝜂
4
𝑒
−(𝑑
2
+𝛼𝑀+𝛽𝜉

1
+𝑎𝜉
2
)𝜏 for 𝑡 ≤ 𝑡 ≤ 𝑡 + 𝜃 ≤ 𝑡 + 𝜏. (48)

It is clear that 𝑆(𝑡) ≥ 𝜂
3
for 𝑡 ≤ 𝑡 ≤ 𝑡 + 𝜃.

If 𝜃 > 𝜏, then we have that 𝑆(𝑡) ≥ 𝜂
3
for 𝑡 ≤ 𝑡 ≤ 𝑡+𝜏.Then,

proceeding exactly as the proof for above claim, we see that
𝑆(𝑡) ≥ 𝜂

3
for 𝑡+𝜏 ≤ 𝑡 ≤ 𝑡+𝜃. Since this kind of interval [𝑡, 𝑡+𝜃]

is arbitrarily chosen (we only need 𝑡 to be large), we can get
that 𝑆(𝑡) ≥ 𝜂

3
for all 𝑡 large enough. In view of our arguments

above, the choice of 𝜂
3
is independent of the positive solution

of system (5)which satisfies that 𝑆(𝑡) ≥ 𝜂
3
for sufficiently large

𝑡. This completes the proof of the theorem.

Corollary 10. (1) If 𝑞
1

= 0, then condition (34) of Theorem 9
becomes

𝑞
2

<

(𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2
) (1 − 𝑒

𝑑
4
𝑇
𝑁
)

𝑎

= 𝑞
∗

2

(49)

which means that if only natural enemies are released impul-
sively, and the release amount is less than 𝑞

∗

2
, then system (5) is

permanent. That is, the pest and natural enemy will coexist.
(2) If 𝑞

2
= 0, then condition (34) of Theorem 9 becomes

𝑞
1

<

𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

𝛽 ∑
𝑝

𝑗=1
(𝑒
−𝑑
3
(𝜏
𝑝
−𝜏
𝑗
)
/ (1 − 𝑒

−𝑑
3
𝑇
𝑁))

= 𝑞
∗

1 (50)

whichmeans that if only infective pests are released impulsively,
and the release amount is less than 𝑞

∗

1
, then system (5) is

permanent. That is, the pest and natural enemy will coexist.

5. Analysis of System (6)
In this sectionwewill discuss system (6), the condition for the
global attractive of the susceptible pest-eradication periodic
solution, and the permanence of system (6) will be obtained.

If 𝑆(𝑡) ≡ 0 for all 𝑡 ≥ 0, then we get the following
subsystem of system (6):

̇𝐼 (𝑡) ≥ −𝑑
3
𝐼 (𝑡) ,

̇𝑦 (𝑡) ≥ −𝑑
4
𝑦 (𝑡) ,

} 𝑡 ̸= 𝜏
𝑛
, 𝑡 ̸= 𝜏

𝑛
+ 𝜆
𝑖
,

Δ𝑦 (𝑡) = 𝑞
2
, 𝑡 = 𝜏

𝑛
+ 𝜆
𝑖
, 𝑖 ∈ 𝑃,

Δ𝐼 (𝑡) = 𝑞
1
, 𝑡 = 𝜏

𝑛
, 𝑛 ∈ 𝑧

+
.

(51)

By Lemma 4, we know that the system (51) has a unique
positive periodic solution as follows:

𝑦
∗

(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑦
∗
𝑒
−𝑑
4
(𝑡−𝜏
𝑛
)
, 𝑡 ∈ (𝜏

𝑛
, 𝜏
𝑛

+ 𝜆
1
] ,

𝑦
∗
𝑒
−𝑑
4
(𝑡−𝜏
𝑛
)
+ 𝑞
2

𝑗=𝑖

∑

𝑗=1

𝑒
−𝑑
4
(𝑡−𝜏
𝑛
−𝜆
𝑗
)
,

𝑡 ∈ (𝜏
𝑛

+ 𝜆
𝑖
, 𝜏
𝑛

+ 𝜆
𝑖+1

] ,

...

𝑦
∗
𝑒
−𝑑
4
(𝑡−𝜏
𝑛
)
+ 𝑞
2

𝑗=𝑝

∑

𝑗=1

𝑒
−𝑑
4
(𝑡−𝜏
𝑛
−𝜆
𝑗
)
,

𝑡 ∈ (𝜏
𝑛

+ 𝜆
𝑝
, 𝜏
𝑛+1

] ,

𝐼
∗

(𝑡) = 𝐼
∗
𝑒
−𝑑
3
(𝑡−𝜏
𝑛
)
, 𝑡 ∈ (𝜏

𝑛
, 𝜏
𝑛+1

] ,

𝑦
∗

=

𝑞
2

∑
𝑗=𝑝

𝑗=1
𝑒
−𝑑
4
(𝑇
𝑘
−𝜆
𝑗
)

1 − 𝑒
−𝑑
4
𝑇
𝑘

, 𝐼
∗

=

𝑞
1

1 − 𝑒
−𝑑
3
𝑇
𝑘

.

(52)

Thus, system (6) has a unique nonnegative periodic solu-
tion (0, 𝐼

∗
(𝑡), 𝑦
∗
(𝑡)), which is called as the susceptible pest-

eradication periodic solution. Next, we will discuss the global
attractivity of this periodic solution and the permanence of
system (6).

Theorem 11. The susceptible pest-eradication periodic solution
of system (6) is attractive provided that

𝑟𝑒
−𝑑
1
𝜏

< 𝑑
2

+

𝑞
1
𝛽

𝑒
𝑑
3
𝑇
𝑘 − 1

+

𝑎𝑦
∗
𝑒
−𝑑
4
𝜆
1

1 + 𝑏𝑀

. (53)

Proof. Since (53) holds, we can choose a sufficiently small 𝜖 >

0 such that

𝑟𝑒
−𝑑
1
𝜏

< 𝑑
2

+ 𝛽 (𝐼
∗
(𝑡) − 𝜖) +

𝑎 (𝑦
∗

(𝑡) − 𝜖)

1 + 𝑏𝑀

. (54)

Let (𝑆(𝑡), 𝐼(𝑡), 𝑦(𝑡)) be any solution of system (6) with initial
values (7). From system (6), we have

̇𝐼 (𝑡) ≥ −𝑑
3
𝐼 (𝑡) ,

̇𝑦 (𝑡) ≥ −𝑑
4
𝑦 (𝑡) ,

} 𝑡 ̸= 𝜏
𝑛
, 𝑡 ̸= 𝜏

𝑛
+ 𝜆
𝑖
,

Δ𝑦 (𝑡) = 𝑞
2
, 𝑡 = 𝜏

𝑛
+ 𝜆
𝑖
, 𝑖 ∈ 𝑃,

Δ𝐼 (𝑡) = 𝑞
1
, 𝑡 = 𝜏

𝑛
, 𝑛 ∈ 𝑧

+
.

(55)

From Lemmas 3 and 4, for the above selected 𝜖, there exists
𝑛
1

∈ 𝑍
+
, such that for all 𝑡 > 𝑛

1
𝑇
𝑘
we have

𝐼 (𝑡) ≥ 𝐼
∗

(𝑡) − 𝜖 ≥

𝑞
1
𝑒
−𝑑
3
𝑇
𝑘

1 − 𝑒
−𝑑
3
𝑇
𝑘

− 𝜖 =̇ ℎ
1
,

𝑦 (𝑡) ≥ 𝑦
∗

(𝑡) − 𝜖 ≥ 𝑦
∗
𝑒
−𝑑
4
𝜆
1

− 𝜖 =̇ ℎ
2
.

(56)
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Thus, for 𝑡 > 𝑛
1
𝑇
𝑘

+ 𝜏, we have

̇𝑆 (𝑡) = 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) − 𝑑

2
𝑆 (𝑡) − 𝛼𝑆

2
(𝑡)

− 𝛽𝑆 (𝑡) 𝐼 (𝑡) −

𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) ,

≤ 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) − [𝑑

2
+ 𝛽ℎ
1

+

𝑎ℎ
2

1 + 𝑏𝑀

] 𝑆 (𝑡) − 𝛼𝑆
2

(𝑡) .

(57)

Consider the following comparison equation:

�̇�
2

(𝑡) = 𝑟𝑒
−𝑑
1
𝜏
𝑧
2

(𝑡 − 𝜏)

− (𝑑
2

+ 𝛽ℎ
1

+

𝑎ℎ
2

1 + 𝑏𝑀

) 𝑧
1

(𝑡) − 𝛼𝑧
2

2
(𝑡) .

(58)

By Lemma 2, we have lim
𝑡→∞

𝑧
2
(𝑡) = 0 and by Lemma 3,

we have 𝑆(𝑡) < 𝑧
1
(𝑡), for large 𝑡, that is lim

𝑡→∞
𝑆(𝑡) = 0.

Therefore, for any positive constant 𝜖
1
small enough (0 < 𝜖

1
<

min(𝑑
3
/𝛽, 𝑑
4
/(𝛿𝑎 − 𝑏𝑑

4
))), there exists an integer 𝑛

2
(𝑛
2
𝑇
𝑘

>

𝑛
1
𝑇
𝑘

+ 𝜏) such that 0 < 𝑆(𝑡) < 𝜖
1
for all 𝑡 > 𝑛

2
𝑇
𝑘
.

Thus, from system (6), for all 𝑡 > 𝑛
2
𝑇
𝑘
we have

̇𝐼 (𝑡) ≤ (𝛽𝜖 − 𝑑
3
) 𝐼 (𝑡) ,

̇𝑦 (𝑡) ≤ (

𝛿𝑎𝜖

1 + 𝑏𝜖

− 𝑑
4
) 𝑦 (𝑡) ,

}

}

}

𝑡 ̸= 𝜏
𝑛
, 𝑡 ̸= 𝜏

𝑛
+ 𝜆
𝑖
,

Δ𝑦 (𝑡) = 𝑞
2
, 𝑡 = 𝜏

𝑛
+ 𝜆
𝑖
, 𝑖 ∈ 𝑃,

Δ𝐼 (𝑡) = 𝑞
1
, 𝑡 = 𝜏

𝑛
, 𝑛 ∈ 𝑧

+
.

(59)

From Lemmas 3 and 4, for a sufficiently small 𝜖
2

> 0, there
exists an integer 𝑛

3
(𝑛
3

> 𝑛
2
) such that

𝐼 (𝑡) ≤ 𝜗
∗

1
(𝑡) + 𝜖

2
,

𝑦 (𝑡) ≤ 𝜗
∗

2
(𝑡) + 𝜖

2
,

(60)

for all 𝑡 > 𝑛
3
𝑇
𝑘
, where

𝜗
∗

1
(𝑡) = 𝜗

∗

1
𝑒
(𝛽𝜖−𝑑

3
)(𝑡−𝜏
𝑛
)
, 𝑡 ∈ (𝜏

𝑛
, 𝜏
𝑛+1

] , 𝜗
∗

1
=

𝑞
1

1 − 𝑒
(𝛽𝜖−𝑑

3
)𝑇
𝑘

,

𝜗
∗

2
(𝑡) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝜗
∗

2
𝑒
((𝛿𝑎𝜖/(1+𝑏𝜖))−𝑑

4
)(𝑡−𝜏
𝑛
)
, 𝑡 ∈ (𝜏

𝑛
, 𝜏
𝑛

+ 𝜆
1
] ,

𝜗
∗

2
𝑒
((𝛿𝑎𝜖/(1+𝑏𝜖))−𝑑

4
)(𝑡−𝜏
𝑛
)
+ 𝑞
2

𝑗=𝑖

∑

𝑗=1

𝑒
((𝛿𝑎𝜖/(1+𝑏𝜖))−𝑑

4
)(𝑡−𝜏
𝑛
−𝜆
𝑗
)
, 𝑡 ∈ (𝜏

𝑛
+ 𝜏
𝑖
, 𝜏
𝑛

+ 𝜆
𝑖+1

] , 𝑖 ∈ 𝑃
1
,

...

𝜗
∗

2
𝑒
((𝛿𝑎𝜖/(1+𝑏𝜖))−𝑑

4
)(𝑡−𝜏
𝑛
)
+ 𝑞
2

𝑗=𝑖

∑

𝑗=1

𝑒
((𝛿𝑎𝜖/(1+𝑏𝜖))−𝑑

4
)(𝑡−𝜏
𝑛
−𝜆
𝑗
)
, 𝑡 ∈ (𝜏

𝑛
+ 𝜏
𝑝
, 𝜏
𝑛+1

] ,

𝜗
∗

2
=

𝑞
2

∑
𝑗=𝑝

𝑗=1
𝑒
((𝛿𝑎𝜖/(1+𝑏𝜖))−𝑑

4
)(𝑇
𝑘
−𝜆
𝑗
)

1 − 𝑒
((𝛿𝑎𝜖/(1+𝑏𝜖))−𝑑

4
)𝑇
𝑘

(61)

is the solution of the following comparison system:

̇
𝜗
1

(𝑡) = (𝛽𝜖 − 𝑑
3
) 𝜗
1

(𝑡) ,

̇
𝜗
2

(t) = (

𝛿𝑎𝜖

1 + 𝑏𝜖

− 𝑑
4
) 𝜗
2

(𝑡) ,

}
}
}

}
}
}

}

𝑡 ̸= 𝜏
𝑛
,

𝑡 ̸= 𝜏
𝑛

+ 𝜆
𝑖
,

Δ𝜗
2

(𝑡) = 𝑞
2
, 𝑡 = 𝜏

𝑛
+ 𝜆
𝑖
, 𝑖 ∈ 𝑃,

Δ𝜗
1

(𝑡) = 𝑞
1
, 𝑡 = 𝜏

𝑛
, 𝑛 ∈ 𝑧

+
,

𝜗
1

(𝑛
3
𝑇
+

𝑘
) = 𝐼 (𝑛

3
𝑇
+

𝑘
) ,

𝜗
2

(𝑛
3
𝑇
+

𝑘
) = 𝑦 (𝑛

3
𝑇
+

𝑘
) .

(62)

Since 𝜖, 𝜖
1
, 𝜖
2
can be small enough, we have 𝜗

∗

1
(𝑡) → 𝐼

∗
(𝑡),

𝜗
∗

2
(𝑡) → 𝑦

∗
(𝑡) as 𝜖, 𝜖

1
, 𝜖
2

→ 0. From (56) and (60) we get
𝐼(𝑡) → 𝐼

∗
(𝑡), 𝑦(𝑡) → 𝑦

∗
(𝑡) as 𝑡 → +∞. Together with

𝑆(𝑡) → 0, we obtain that (0, 𝐼
∗
(𝑡), 𝑦
∗
(𝑡)) is globally attractive.

This completes the proof.

Corollary 12. (1) If 𝑞
1

= 0, then condition (53) of Theorem 11
becomes

𝑞
2

>

(𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2
) (1 + 𝑏𝑀) (1 − 𝑒

−𝑑
4
𝑇
𝑘
)

𝑎 ∑
𝑗=𝑝

𝑗=1
𝑒
−𝑑
4
(𝑇
𝑘
−(𝜆
𝑗
−𝜆
1
))

=̇ 𝑞
2∗

, (63)

which means that if only natural enemies are released impul-
sively, then the release amountmust be larger than 𝑞

2∗
to ensure

the eradication of the susceptible pest.
(2) If 𝑞

2
= 0, then condition (53) of Theorem 11 becomes

𝑞
1

>

(𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2
) (𝑒
𝑑
3
𝑇
𝑘

− 1)

𝛽

=̇ 𝑞
1∗

, (64)

whichmeans that if only infective pests are released impulsively,
then the release amount must be larger than 𝑞

1∗
to ensure the

eradication of the susceptible pest.
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Through Theorem 11 and Corollary 12, we can get the
sufficient conditions for the susceptible pests-eradication
periodic solution; that is, the susceptible pest population
is eradicated totally. But in practice, from the view point
of keeping ecosystem balance and preserving biological
resources, it is not necessary to eradicate the susceptible pest
population. In fact we hope the susceptible pests and enemies
can coexist when the susceptible pests do not cause immense
economic loss.Thus, it is necessary to discuss the permanence
of system (6).

Theorem 13. System (6) is permanent provided that

𝑟𝑒
−𝑑
1
𝜏

> 𝑑
2

+

𝛽𝑞
1

1 − 𝑒
𝑑
3
𝑇
𝑘

+

𝑎𝑞
2

∑
𝑗=𝑝

𝑗=1
𝑒
−𝑑
4
(𝜆
𝑝
−𝜆
𝑗
)

1 − 𝑒
−𝑑
4
𝑇
𝑘

.
(65)

Proof. Since (65) holds, we can choose sufficiently small pos-
itive number 𝜖, ℎ

4
(ℎ
4

< min(𝑑
3
/𝛽, 𝑑
4
/(𝛿𝑎 − 𝑏𝑑

4
)) such that

𝜂 = 𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼ℎ
4

− 𝛽 (

𝑞
1

1 − 𝑒
(𝛽ℎ
4
−𝑑
3
)𝑇
𝑘

+ 𝜖)

− 𝑎 (

𝑞
2

∑
𝑗=𝑝

𝑗=1
𝑒
((𝛿𝑎ℎ
4
/(1+𝑏ℎ

4
))−𝑑
4
)(𝜆
𝑝
−𝜆
𝑗
)

1 − 𝑒
((𝛿𝑎ℎ
4
/(1+𝑏ℎ

4
))−𝑑
4
)𝑇
𝑘

+ 𝜖) > 0.

(66)

Suppose (𝑆(𝑡), 𝐼(𝑡), 𝑦(𝑡)) is any solution of system (6) with
initial values (7). By Lemma 4, there exists a positive constant
𝑀 such that 𝑆(𝑡) < 𝑀, 𝐼(𝑡) < 𝑀, 𝑦(𝑡) < 𝑀 for 𝑡 large
enough. From (56), we know that 𝐼(𝑡), 𝑦(𝑡) are positively
lower bounded.

Thus we only need to find ℎ
3

> 0 such that 𝑆(𝑡) > ℎ
3
for

𝑡 large enough. We claim that for any 𝑡
0

> 0, it is impossible
that 𝑆(𝑡) < ℎ

4
for all 𝑡 ≥ 𝑡

0
. Suppose that the claim is not true.

Then there is a 𝑡
0

> 0 such that 𝑆(𝑡) < ℎ
4
for all 𝑡 ≥ 𝑡

0
. Then,

from system (6) for all 𝑡 ≥ 𝑡
0
we have

̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝑑
3
𝐼 (𝑡)

≤ (𝛽ℎ
4

− 𝑑
3
) 𝐼 (𝑡) ,

̇𝑦 (𝑡) =

𝛿𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) − 𝑑
4
𝑦 (𝑡)

≤ (

𝛿𝑎ℎ
4

1 + 𝑏ℎ
4

− 𝑑
4
) 𝑦 (𝑡) ,

}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}

}

𝑡 ̸= 𝜏
𝑛
,

𝑡 ̸= 𝜏
𝑛

+ 𝜆
𝑖
,

Δ𝑦 (𝑡) = 𝑞
2
, 𝑡 = 𝜏

𝑛
+ 𝜆
𝑖
, 𝑖 ∈ 𝑃,

Δ𝐼 (𝑡) = 𝑞
1
, 𝑡 = 𝜏

𝑛
, 𝑛 ∈ 𝑧

+
.

(67)

From Lemmas 3 and 4, for the above selected 𝜖 > 0, there
exists a time 𝑇

1
> 𝑡
0

+ 𝜏 such that

𝐼 (𝑡) ≤ 𝜑
∗

1
(𝑡) + 𝜖 <

𝑞
1

1 − 𝑒
(𝛽ℎ
4
−𝑑
3
)𝑇
𝑘

+ 𝜖 = 𝜂
1
,

𝑦 (𝑡) ≤ 𝜑
∗

2
(𝑡) + 𝜖 <

𝑞
2

∑
𝑗=𝑝

𝑗=1
𝑒
((𝛿𝑎ℎ
4
/(1+𝑏ℎ

4
))−𝑑
4
)(𝜆
𝑝
−𝜆
𝑗
)

1 − 𝑒
((𝛿𝑎ℎ
4
/(1+𝑏ℎ

4
))−𝑑
4
)𝑇
𝑘

+ 𝜖 = 𝜂
2

(68)

hold for all 𝑡 ≥ 𝑇
1
, where 𝜑

∗

1
(𝑡), 𝜑
∗

2
(𝑡) are the solution of

�̇�
1

(𝑡) = (𝛽ℎ
4

− 𝑑
3
) 𝜑
1

(𝑡) ,

�̇�
2

(𝑡) = (

𝛿𝑎ℎ
4

1 + 𝑏ℎ
4

− 𝑑
4
) 𝜑
2

(𝑡) ,

}
}

}
}

}

𝑡 ̸= 𝜏
𝑛
, 𝑡 ̸= 𝜏

𝑛
+ 𝜆
𝑖
,

Δ𝜑
2

(𝑡) = 𝑞
2
, 𝑡 = 𝜏

𝑛
+ 𝜆
𝑖
, 𝑖 ∈ 𝑃,

Δ𝜑
1

(𝑡) = q
1
, 𝑡 = 𝜏

𝑛
, 𝑛 ∈ 𝑧

+
,

𝜑
1

(𝑇
+

1
) = 𝐼 (𝑇

+

1
) > 0, 𝜑

2
(𝑇
+

1
) = 𝑦 (𝑇

+

1
) > 0,

𝜑
∗

1
(𝑡) = 𝜑

∗

1
𝑒
(𝛽ℎ
4
−𝑑
3
)(𝑡−𝜏
𝑛
)
, 𝑡 ∈ (𝜏

𝑛
, 𝜏
𝑛+1

] , 𝜑
∗

1
=

𝑞
1

1 − 𝑒
(𝛽ℎ
4
−𝑑
3
)𝑇
𝑘

,

𝜑
∗

2
(𝑡) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝜑
∗

2
𝑒
((𝛿𝑎ℎ
4
/(1+𝑏ℎ

4
))−𝑑
4
)(𝑡−𝜏
𝑛
)
, 𝑡 ∈ (𝜏

𝑛
, 𝜏
𝑛

+ 𝜆
1
] ,

𝜑
∗

2
𝑒
((𝛿𝑎ℎ
4
/(1+𝑏ℎ

4
))−𝑑
4
)(𝑡−𝜏
𝑛
)
+ 𝑞
2

𝑗=𝑖

∑

𝑗=1

e((𝛿𝑎ℎ4/(1+𝑏ℎ4))−𝑑4)(𝑡−𝜏𝑛−𝜆𝑗), 𝑡 ∈ (𝜏
𝑛

+ 𝜆
𝑖
, 𝜏
𝑛

+ 𝜆
𝑖+1

] ,

...

𝜑
∗

2
𝑒
((𝛿𝑎ℎ
4
/(1+𝑏ℎ

4
))−𝑑
4
)(𝑡−𝜏
𝑛
)
+ 𝑞
2

𝑗=𝑝

∑

𝑗=1

𝑒
((𝛿𝑎ℎ
4
/(1+𝑏ℎ

4
))−𝑑
4
)(𝑡−𝜏
𝑛
−𝜆
𝑗
)
, 𝑡 ∈ (𝜏

𝑛
+ 𝜆
𝑝
, 𝜏
𝑛+1

] ,

𝜑
∗

2
=

𝑞
2

∑
𝑗=𝑝

𝑗=1
𝑒
((𝛿𝑎ℎ
4
/(1+𝑏ℎ

4
))−𝑑
4
)(𝑇
𝑘
−𝜆
𝑗
)

1 − 𝑒
((𝛿𝑎ℎ
4
/(1+𝑏ℎ

4
))−𝑑
4
)𝑇
𝑘

.

(69)
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Note that the first equation of system (6) can be rewritten as

̇𝑆 (𝑡) = 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡 − 𝜏) − 𝑑

2
𝑆 (𝑡) − 𝛼𝑆

2
(𝑡)

− 𝛽𝑆 (𝑡) 𝐼 (𝑡) −

𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡)

= [𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝑆 (𝑡) − 𝛽𝐼 (𝑡) −

𝑎𝑦 (𝑡)

1 + 𝑏𝑆 (𝑡)

] 𝑆 (𝑡)

− 𝑟𝑒
−𝑑
1
𝜏 𝑑

𝑑𝑡

(∫

𝑡

𝑡−𝜏

𝑆 (𝑢) 𝑑𝑢) .

(70)

In the following we define a Liapunov functional as

𝑉 (𝑡) = 𝑆 (𝑡) + 𝑟𝑒
−𝑑
1
𝜏

∫

𝑡

𝑡−𝜏

𝑆 (𝑢) 𝑑𝑢. (71)

Then the derivative of 𝑉(𝑡) with respect to the solution of
system (6) is

�̇� (𝑡) |
(6)

= 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡) − 𝑑

2
𝑆 (𝑡) − 𝛼𝑆

2
(𝑡)

− 𝛽𝑆 (𝑡) 𝐼 (𝑡) −

𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡)

= [𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝑆 (𝑡) − 𝛽𝐼 (𝑡) −

𝑎𝑦 (𝑡)

1 + 𝑏𝑆 (𝑡)

] 𝑆 (𝑡) .

(72)

From (68) and (72) we have

�̇� (𝑡) |
(6)

= [𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝑆 (𝑡) − 𝛽𝐼 (𝑡) −

𝑎𝑦 (𝑡)

1 + 𝑏𝑆 (𝑡)

] 𝑆 (𝑡)

≥ [𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝑆 (𝑡) − 𝛽 (𝜑
∗

1
(𝑡) + 𝜖)

−𝑎 (𝜑
∗

2
(𝑡) + 𝜖) ] 𝑆 (𝑡) .

(73)

Let 𝑆
0∗

= min
𝑡∈[𝑇
1
,𝑇
1
+𝜏]

𝑆(𝑡) > 0.
We will show that 𝑆(𝑡) ≥ 𝑆

0∗
for all 𝑡 > 𝑇

1
. Otherwise

there exists a nonnegative constant𝑇
2
such that 𝑆(𝑡) ≥ 𝑆

0∗
for

𝑡 ∈ [𝑇
1
, 𝑇
1
+𝜏+𝑇

2
], 𝑆(𝑇
1
+𝜏+𝑇

2
) = 𝑆
0∗

and ̇𝑆(𝑇
1
+𝜏+𝑇

2
) ≤ 0.

Thus from the first equation of system (6) and (66) we easily
see that

̇𝑆 (𝑇
1

+ 𝜏 + 𝑇
2
) = 𝑟𝑒

−𝑑
1
𝜏
𝑆 (𝑇
1

+ 𝑇
2
)

− 𝑑
2
𝑆 (𝑇
1

+ 𝜏 + 𝑇
2
) − 𝛼𝑆

2
(𝑇
1

+ 𝜏 + 𝑇
2
)

− 𝛽𝑆 (𝑇
1

+ 𝜏 + 𝑇
2
) 𝐼 (𝑇
1

+ 𝜏 + 𝑇
2
)

−

𝑎𝑆 (𝑇
1

+ 𝜏 + 𝑇
2
)

1 + 𝑏𝑆 (𝑇
1

+ 𝜏 + 𝑇
2
)

𝑦 (𝑇
1

+ 𝜏 + 𝑇
2
)

> 𝑆
0∗

[𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼ℎ
4

−𝛽 (𝜑
∗

1
(𝑡) + 𝜖) − 𝑎 (𝜑

∗

2
(𝑡) + 𝜖) ]

> 𝑆
0∗

𝜂 > 0,

(74)

which is a contradiction. Hence we get that 𝑆(𝑡) ≥ 𝑆
0∗

> 0

for all 𝑡 ≥ 𝑇
1
. From (68), for all 𝑡 > 𝑇

1
we have

�̇� (𝑡) = 𝑟𝑒
−𝑑
1
𝜏
𝑆 (𝑡) − 𝑑

2
𝑆 (𝑡) − 𝛼𝑆

2
(𝑡)

− 𝛽𝑆 (𝑡) 𝐼 (𝑡) −

𝑎𝑆 (𝑡)

1 + 𝑏𝑆 (𝑡)

𝑦 (𝑡) ,

= [𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼𝑆 (𝑡) − 𝛽𝐼 (𝑡) −

𝑎𝑦 (𝑡)

1 + 𝑏𝑆 (𝑡)

] 𝑆 (𝑡)

> 𝑆
0∗

[𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2

− 𝛼ℎ
4

− 𝛽 (𝜑
∗

1
(𝑡) + 𝜖)

−𝑎 (𝜑
∗

2
(𝑡) + 𝜖) ]

> S
0∗

𝜂 > 0,

(75)

which implies 𝑉(𝑡) → ∞ as 𝑡 → ∞. This is a contradiction
to 𝑉(𝑡) ≤ 𝑀 + 𝑟𝜏𝑀𝑒

−𝑑
1
𝜏. Therefore for any positive constant

𝑡
0
the inequality 𝑆(𝑡) < ℎ

4
cannot hold for all 𝑡 ≥ 𝑡

0
.

By the claim, we need to consider two cases.

Case 1. 𝑆(𝑡) > ℎ
4
for all large 𝑡, then our aim is obtained.

Case 2. 𝑆(𝑡) oscillates about ℎ
4
for all large 𝑡. Denote

ℎ
3

= min(

ℎ
4

2

, ℎ
4
𝑒
−(𝑑
2
+𝛼𝑀+𝛽𝜂

2
+𝑎𝜂
2
)𝜏

) . (76)

In the following we will show that 𝑆(𝑡) > ℎ
3
. Since 𝑆(𝑡)

oscillates about ℎ
4
, there exist positive constants 𝑡 and 𝜃, such

that

𝑆 (𝑡) = 𝑆 (𝑡 + 𝜃) = ℎ
4
,

𝑆 (𝑡) < ℎ
4
, 𝑡 < 𝑡 < 𝑡 + 𝜃,

(77)

where 𝑡 is sufficiently large, and the inequalities (68) hold for
𝑡 ≤ 𝑡 ≤ 𝑡 + 𝜃. Since 𝑆(𝑡) is continuous and bounded, and it
is not effected by impulse, there exists a constant 𝑇

3
(where

0 < 𝑇
3

< 𝜏 and 𝑇
3
is independent of the choice of 𝑡) such that

𝑆(𝑡) > ℎ
4
/2 for all 𝑡 < 𝑡 < 𝑡 + 𝑇

3
.

If 𝜃 < 𝑇
3
, then our aim is obtained.

If 𝑇
3

< 𝜃 < 𝜏, from the first equation of system (6) we
have

̇𝑆 (𝑡) ≥ (−𝑑
2

− 𝛼𝑆 (𝑡) − 𝛽𝐼 (𝑡) − 𝑎𝑦 (𝑡)) 𝑆 (𝑡) ,

≥ − (𝑑
2

+ 𝛼𝑀 + 𝛽𝜂
1

+ 𝑎𝜂
2
) 𝑆 (𝑡) for 𝑡 ≤ 𝑡 ≤ 𝑡 + 𝜃,

(78)

and then we have

𝑆 (𝑡) ≥ ℎ
4
𝑒
−(𝑑
2
+𝛼𝑀+𝛽𝜂

1
+𝑎𝜂
2
)𝜏

, for 𝑡 ≤ 𝑡 ≤ 𝑡 + 𝜃 < 𝑡 + 𝜏,

(79)

and it is clear that 𝑆(𝑡) ≥ ℎ
3
for 𝑡 ≤ 𝑡 ≤ 𝑡 + 𝜃.

If 𝜃 > 𝜏, then we have that 𝑆(𝑡) ≥ ℎ
3
for 𝑡 ≤ 𝑡 ≤ 𝑡+𝜏.Then,

proceeding exactly as the proof for above claim, we see that
𝑆(𝑡) ≥ ℎ

3
for 𝑡+𝜏 ≤ 𝑡 ≤ 𝑡+𝜃. Since this kind of interval [𝑡, 𝑡+𝜃]
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is arbitrarily chosen (we only need 𝑡 to be large), we can get
that 𝑆(𝑡) ≥ ℎ

3
for all 𝑡 large enough. In view of our arguments

above, the choice of ℎ
3
is independent of the positive solution

of system (6) which satisfies that 𝑆(𝑡) ≥ ℎ
3
for sufficiently

large 𝑡. This completes the proof of the theorem.

Corollary 14. (1) If 𝑞
1

= 0, then condition (65) of Theorem 13
becomes

𝑞
2

<

(𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2
) (1 − 𝑒

−𝑑
4
𝑇
𝑘
)

𝑎 ∑
𝑗=𝑝

𝑗=1
𝑒
−𝑑
4
(𝜆
𝑝
−𝜆
𝑗
)

= 𝑞
2∗

, (80)

which means that if only natural enemies are released impul-
sively, and the release amount is less than 𝑞

2∗
, then system (6)

is permanent. That is, the pest and natural enemy will coexist.
(2) If 𝑞

2
= 0, then the condition (65) ofTheorem 13 becomes

𝑞
1

<

(𝑟𝑒
−𝑑
1
𝜏

− 𝑑
2
) (1 − 𝑒

𝑑
3
𝑇
𝑘
)

𝛽

= 𝑞
1∗

, (81)

whichmeans that if only infective pests are released impulsively,
and the release amount is less than 𝑞

1∗
, then system (6) is

permanent. That is, the pest and natural enemy will coexist.

6. Discussion

In this paper, a stage-structured predator-prey model with
disease in the prey is considered. The prey stands for the pest
population, and the predator stands for the natural enemy
population. For the purpose of integrated pest management,
two types of impulsive control strategies are used. In Case
1, infective prey applications are more frequent than releases
of natural enemies. In Case 2, natural enemies releases are
more frequent than releases of infected prey. In both cases,
we analyzed the global attractivity of the susceptible pest-
eradication periodic solution of the systems, and we also
obtained the condition for the permanence of the systems.

In Section 4, the first case is analyzed. By Theorem 7, the
sufficient condition for the global attraction of the susceptible
pest-eradication periodic solution is obtained, which means
that if the release amount of infective pest and natural enemy
satisfy certain conditions, then the susceptible pest will be
doomed. By the result of Theorem 9, the sufficient condition
for the permanence of system (5) is also obtained, which
means that the pest and the natural enemy will coexist for
all time, if the release amounts of infective pest and natural
enemy meet some critical values. Corollary 8 and 10 show
that if only one control measure is taken, that is, either
only infective pests are released or only natural enemies
are released, then the release amount must satisfy certain
conditions.

In Section 5, we use similar method to analyze the
second case. In Theorem 11, the sufficient condition for the
global attraction of the susceptible pest-eradication periodic
solution is obtained, which means that if the release amounts
of infective pest and natural enemy meet certain conditions,
then the susceptible pest will be doomed. By the result of
Theorem 13, the sufficient condition for the permanence of
system (6) is also obtained, whichmeans that the pest and the

natural enemy will coexist for all time, if the release amounts
of infective pest and natural enemymeet some critical values.
Corollary 12 and 14 show that if only one measure is taken,
that is, either only infective pests are released or only natural
enemies are released, then the release amount must satisfy
certain conditions.

From the above theoretical results obtained in Sections 4
and 5, we can choose different control strategies to control
pest. We can do it by releasing infected pest more frequently
than releasing natural enemy, or vice versa. However, in prac-
tice, every control measure needs certain cost, and we must
think about the cost before adopting a measure. For example,
the infective prey (pest) being cultivated in the laboratory
and the natural enemy (predator) being migrated from other
regions all need some cost. We can choose different pest
management methods with different costs. In both models,
different parametersmeandifferent cost for controlmeasures.
Therefore, we have an interesting problem. In the view point
of economy, under the premise of controlling the pest, which
kind of control method is more suitable? This will be an
optimal control problem, and we leave it as our future work.
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