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We establish a new existence result on homoclinic solutions for a second-order nonperiodic Hamiltonian systems.This homoclinic
solution is obtained as a limit of solutions of a certain sequence of nil-boundary value problems which are obtained by theminimax
methods. Some recent results in the literature are generalized and extended.

1. Introduction

Consider the following second-order Hamiltonian system:

�̈� (𝑡) + ∇𝑉 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ R, (HS)

where 𝑢 = (𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑁
) ∈ R𝑁, 𝑉(𝑡, 𝑢) = −𝐾(𝑡, 𝑢) +

𝑊(𝑡, 𝑢), 𝐾,𝑊 : R × R𝑁
→ R are 𝐶1 maps. We will say

that a solution 𝑢 : R → R𝑁 of (HS) is homoclinic (to 0), if
𝑢(𝑡) → 0, as |𝑡| → ∞. In addition, if 𝑢 ̸≡ 0, then 𝑢 is called
a nontrivial homoclinic solution.

Inspired by the excellent monographs [1, 2], by now, the
existence and multiplicity of homoclinic solutions for Ham-
iltonian systems have been extensively investigated in many
papers via variational methods; see [3–7] for the first order
systems and [8–19] for the second systems, and most of them
treat the following system:

�̈� (𝑡) − 𝐿 (𝑡) 𝑢 (𝑡) + ∇𝑊(𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ R, (1)

where 𝐿(𝑡) is a symmetric matrix-valued function and 𝑊 ∈

𝐶

1
(R,R𝑁

).
For the periodic case, the periodicity is used to control the

lack of compactness due to the fact that (1) is set on all R. In
1990, Rabinowitz [12] first proved that (1) has a 2𝑘𝑇-periodic
solution 𝑢

𝑘
, which is bounded uniformly for 𝑘, and obtained a

homoclinic solution for (1) as a limit of 2𝑘𝑇-periodic solution.

For the nonperiodic case, the problem is quite different
from the one described in nature. Rabinowitz andTanaka [13]
introduced a type of coercive condition on the matrix 𝐿:
(L

1
) 𝑙(𝑡) := inf

|𝑥|=1
𝐿(𝑡)𝑥 ⋅ 𝑥 → +∞, as |𝑡| → ∞.

They first obtained the existence of homoclinic solution
for the nonperiodic system (1) under the well-known (AR)
growth condition by using Ekeland’s variational principle.

In 1995, Ding [8] strengthened condition (L
1
) by

(L2) there exists a constant 𝛼 > 0 such that
𝑙 (𝑡) |𝑡|

−𝛼
→ +∞ as |𝑡| → ∞. (2)

Under the condition (L
2
) and some subquadratic conditions

on 𝑊(𝑡, 𝑢), Ding proved the existence and multiplicity of
homoclinic solutions for the system (1). From then on, the
condition (L

1
) or (L

2
) is extensively used in nonperiodic

second-order Hamiltonian systems. However, the assump-
tion (L

1
) or (L

2
) is a rather restrictive and not very natural

condition as it excludes, for example, the case of constant
matrices 𝐼

𝑁
.

In 2005, Izydorek and Janczewska [9] first presented the
“pinching” condition (see the following (V

2
)) and relaxed the

conditions (L
1
) and (L

2
). They studied the general periodic

Hamiltonian system
�̈� (𝑡) + ∇𝑉 (𝑡, 𝑢 (𝑡)) = 𝑓 (𝑡) , 𝑡 ∈ R, (3)

where 𝑉(𝑡, 𝑢) = −𝐾(𝑡, 𝑢) + 𝑊(𝑡, 𝑢) and obtained the follow-
ing result.
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Theorem A (see [9]). Let the following conditions hold:

(V1) 𝑉(𝑡, 𝑢) = −𝐾(𝑡, 𝑢) + 𝑊(𝑡, 𝑢), where 𝑉 is continuous
and 𝑇 periodic with respect to 𝑡, 𝑇 > 0;

(V2) there exist 𝑏
1
, 𝑏

2
> 0 such that

𝑏

1|
𝑢|

2
≤ 𝐾 (𝑡, 𝑢) ≤ 𝑏

2|
𝑢|

2
, ∀ (𝑡, 𝑢) ∈ R ×R

𝑁
; (4)

(V3) 𝐾(𝑡, 𝑢) ≤ (𝑢, ∇𝐾(𝑡, 𝑢)) ≤ 2𝐾(𝑡, 𝑢) for all (𝑡, 𝑢) ∈ R ×

R𝑁;
(V4) ∇𝑊(𝑡, 𝑢) = 𝑜(|𝑢|) as 𝑢 → 0 uniformly in 𝑡;
(V5) there is a constant 𝜇 > 2 such that

0 < 𝜇𝑊 (𝑡, 𝑢) ≤ (∇𝑊 (𝑡, 𝑢) , 𝑢) , ∀ (𝑡, 𝑢) ∈ R ×R
𝑁
; (5)

(V6) 𝑏

1
:= min{1, 2𝑏

1
} > 2𝑀 and ‖𝑓‖

𝐿
2 < (𝑏

1
− 2𝑀)/2𝐶

∗,
where𝑀 = sup{𝑊(𝑡, 𝑢) : 𝑡 ∈ [0, 𝑇], |𝑢| = 1} and 𝐶∗ is
a positive constant depending on 𝑇.

Then the system (3) possesses a nontrivial homoclinic solution
𝑢 ∈ 𝑊

1,2
(R,R𝑁

) such that �̇�(𝑡) → 0 as 𝑡 → ±∞.

From then on, following the idea of [9], some researchers
are devoted to relaxing the conditions (L

1
) and (L

2
) and

studying the existence of homoclinic solutions of system (HS)
or (3) under the periodicity assumption of the potential, such
as [10, 11, 16, 19].

Very recently, Daouas [3] removed the periodicity con-
dition and studied the existence of homoclinic solutions for
the nonperiodic system (3), when 𝑊 is superquadratic at
the infinity. Motivated by [3], in this work, we will study
the existence of homoclinic solutions of the nonperiodic
system (HS), when 𝑊 satisfies the asymptotically quadratic
condition at the infinity. It is worth noticing that there are
few works concerning this case for system (HS) or (3) up to
now.

Our result is presented as follows.

Theorem 1. Let 𝐴 := sup{𝐾(𝑡, 𝑢) : 𝑡 ∈ R, |𝑢| ≤ 1} < +∞

hold. Moreover, assume that the following conditions hold:

(H1) 𝐾(𝑡, 0) ≡ 0, and there exists a constant 𝑎 > 0 such that

𝐾 (𝑡, 𝑢) ≥ 𝑎|𝑢|

2
, ∀ (𝑡, 𝑢) ∈ R ×R

𝑁
; (6)

(H2) there exists 𝛽 ∈ (1, 2] such that

𝐾 (𝑡, 𝑢) ≤ (𝑢, ∇𝐾 (𝑡, 𝑢)) ≤ 𝛽𝐾 (𝑡, 𝑢) , ∀ (𝑡, 𝑢) ∈ R ×R
𝑁
;

(7)

(H3) 𝑊(𝑡, 0) ≡ 0 and ∇𝑊(𝑡, 𝑢) = 𝑜(|𝑢|) as 𝑢 → 0

uniformly in 𝑡, and there exist,𝑀
0
> 0 such that

|∇𝑊 (𝑡, 𝑢)|

|𝑢|

≤ 𝑀

0
, (8)

for any 𝑡 ∈ R and 𝑢 ∈ R𝑁;
(H4) 𝑊(𝑡, 𝑢) − 𝑤(𝑡)|𝑢|

2
= 𝑜(|𝑢|

2
) as |𝑢| → ∞ uniformly in

𝑡, where 𝑤 ∈ 𝐿

∞
(R,R) with 𝑤

∞
:= inf

𝑡∈R𝑤(𝑡) > 2𝐴;

(H5) ̃

𝑊(𝑡, 𝑢) := (1/2)(∇𝑊(𝑡, 𝑢), 𝑢) − 𝑊(𝑡, 𝑢) → +∞ as
|𝑢| → +∞, and

inf {
̃

𝑊(𝑡, 𝑢)

|𝑢|

2
: 𝑡 ∈ R with 𝑐 ≤ |𝑢| < 𝑑} > 0, (9)

for any 𝑐, 𝑑 > 0.

Then the system (HS) possesses a nontrivial homoclinic solution
𝑢 ∈ 𝑊

1,2
(R,R𝑁

) such that �̇�(𝑡) → 0 as 𝑡 → ±∞.

Remark 2. Theorem 1 treats the asymptotically quadratic case
on𝑊. Consider the functions

𝐾 (𝑡, 𝑢) = (1 + 𝑒

−|𝑡|
) |𝑢|

2
,

𝑊 (𝑡, 𝑢) = 𝑑 (𝑡) |𝑢|

2
(1 −

1

ln (𝑒 + |𝑢|)

) ,

(10)

where 𝑑 ∈ 𝐿

∞
(R,R) and inf

𝑡∈R𝑑(𝑡) > 4 + 32𝜋

2.
A straightforward computation shows that 𝐾 and 𝑊

satisfy the assumptions of Theorem 1, but 𝐾 does not satisfy
the conditions (L

1
) and (L

2
). Hence, Theorem 1 also extends

the results in [8, 13].

The remainder of this paper is organized as follows.
In Section 2, some preliminary results are presented. In
Section 3, we give the proof of Theorem 1.

2. Preliminaries

Following the similar idea of [20], consider the following nil-
boundary value problems:

�̈� (𝑡) + ∇𝑉 (𝑡, 𝑢 (𝑡)) = 0, ∀𝑡 ∈ [−𝑇, 𝑇] ,

𝑢 (−𝑇) = 𝑢 (𝑇) = 0.

(11)

For each 𝑇 > 0, let 𝐸
𝑇
= 𝑊

1,2
([−𝑇, 𝑇],R𝑁

), where

𝑊

1,2
([−𝑇, 𝑇] ,R

𝑁
)

={𝑢 : [−𝑇, 𝑇]→R
𝑁 is an absolutely continuous function,

𝑢 (−𝑇) = 𝑢 (𝑇) = 0 and �̇� ∈ 𝐿

2
([−𝑇, 𝑇] ,R

𝑁
)} ,

(12)

equipped with the norm

‖𝑢‖ = (∫

𝑇

−𝑇

[|�̇� (𝑡)|

2
+ |𝑢 (𝑡)|

2
] 𝑑𝑡)

1/2

.

(13)

Furthermore, for 𝑝 > 1, let 𝐿𝑝
𝑇

= 𝐿

𝑝
([−𝑇, 𝑇],R𝑁

) and
𝐿

∞

𝑇
= 𝐿

∞
([−𝑇, 𝑇],R𝑁

) under their habitual norms. We need
the following result.

Proposition 3 (see [9]). There is a positive constant 𝐶 such
that for each 𝑇 > 0 and 𝑢 ∈ 𝐸

𝑇
the following inequality holds:

‖𝑢‖𝐿
∞

𝑇

≤ 𝐶 ‖𝑢‖ . (14)
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Note that the inequality (14) holds true with constant𝐶 =

√
2 if 𝑇 ≥ 1/2 (see [9]). Subsequently, we may assume this

condition is fulfilled.
Consider a functional 𝐼 : 𝐸

𝑇
→ R defined by

𝐼 (𝑢) = ∫

𝑇

−𝑇

[

1

2

|�̇� (𝑡)|

2
− 𝑉 (𝑡, 𝑢 (𝑡))] 𝑑𝑡

=

1

2

∫

𝑇

−𝑇

|�̇� (𝑡)|

2
𝑑𝑡 + ∫

𝑇

−𝑇

𝐾 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

− ∫

𝑇

−𝑇

𝑊(𝑡, 𝑢 (𝑡)) 𝑑𝑡.

(15)

Then 𝐼 ∈ 𝐶

1
(𝐸

𝑇
,R), and it is easy to show that for all 𝑢, 𝑣 ∈

𝐸

𝑇
, we have

𝐼


(𝑢) 𝑣 = ∫

𝑇

−𝑇

[(�̇� (𝑡) , �̇� (𝑡))−(𝑊(𝑡, 𝑢(𝑡)), ∇𝑉 (𝑡, 𝑢 (𝑡)) , 𝑣 (𝑡))] 𝑑𝑡

= ∫

𝑇

−𝑇

[(�̇� (𝑡) , �̇� (𝑡)) + (∇𝐾 (𝑡, 𝑢 (𝑡)) , 𝑣 (𝑡))

− (∇𝑊 (𝑡, 𝑢 (𝑡)) , 𝑣 (𝑡))] 𝑑𝑡.

(16)

It is well known that critical points of 𝐼 are classical solutions
of the problem (11). We will obtain a critical point of 𝐼 by
using an improved version of the Mountain Pass Theorem.
For completeness, we give this theorem.

Recall that a sequence {𝑢

𝑗
} is a (𝐶)-sequence for the

functional 𝜑 if 𝜑(𝑢
𝑗
) is bounded and (1 + ‖𝑢

𝑗
‖)𝜑


(𝑢

𝑗
) → 0.

A functional 𝜑 satisfies the (𝐶)-condition if and only if any
(𝐶)-sequence for 𝜑 contains a convergent subsequence.

Theorem4 (see [21]). Let𝐸 be a real Banach space, and let𝜑 ∈

𝐶

1
(𝐸,R) satisfy the (C)-condition and 𝜑(0) = 0. If 𝜑 satisfies

the following conditions:

(A1) there exist constants 𝜌, 𝛼 > 0 such that 𝜑|
𝜕𝐵
𝜌
(0)

≥ 𝛼;

(A2) there exists 𝑒 ∈ 𝐸 \ 𝐵

𝜌
(0) such that 𝜑(𝑒) ≤ 0, then 𝜑

possesses a critical value 𝑐 ≥ 𝛼 given by

𝑐 = inf
𝑔∈Γ

max
𝑠∈[0,1]

𝜑 (𝑓 (𝑠)) , (17)

where 𝐵
𝜌
(0) is an open ball in 𝐸 of radius 𝜌 at about 0,

and

Γ = {𝑓 ∈ 𝐶 ([0, 1] , 𝐸) : 𝑓 (0) = 0, 𝑓 (1) = 𝑒} . (18)

Proof. As shown in Bartolo et al. [22], a deformation lemma
can be proved with the (𝐶)-condition replacing the usual
(𝑃𝑆)-condition, and it turns out that the standard version
Mountain Pass Theorem (see Rabinowitz [21]) holds true
under the (𝐶)-condition.

Lemma 5. Assume that (𝐻
2
) holds, then

𝐾 (𝑡, 𝑢) ≤ 𝐾(𝑡,

𝑢

|𝑢|

) |𝑢|

𝛽
, ∀𝑡 ∈ R, |𝑢| ≥ 1. (19)

Proof. From (H
2
) it follows that for 𝑢 ̸= 0 a map given by

(0,∞) ∋ 𝜈 → 𝑊(𝑡, 𝜈

−1
𝑢) (20)

is nondecreasing. Similar to the proof in [12], we can get the
conclusion.

Lemma 6 (see [9]). Let 𝑢 : R → R𝑁 be a continuous map
such that �̇� is locally square integrable. Then, for all 𝑡 ∈ R, one
has

|𝑢 (𝑡)| ≤

√

2(∫

𝑡+1/2

𝑡−1/2

(|𝑢 (𝑠)|

2
+ |�̇� (𝑠)|

2
) 𝑑𝑠)

1/2

.

(21)

3. Proof of Theorem 1

Lemma 7. Under the assumptions of Theorem 1, the problem
(11) possesses a nontrivial solution.

Proof. It suffices to prove that the functional 𝐼 satisfies all the
assumptions of Theorem 4.

Step 1. We show that the functional 𝐼 satisfies the (𝐶)-
condition. Let

𝐼 (𝑢

𝑗
) be bounded and (1 +











𝑢

𝑗











) 𝐼


(𝑢

𝑗
) → 0. (22)

Observe that, for 𝑗 large, it follows from (H
1
) and (H

2
) that

there exists a constant 𝐶
0
such that

𝐶

0
≥ 𝐼 (𝑢

𝑗
) −

1

2

𝐼


(𝑢

𝑗
) 𝑢

𝑗

= ∫

𝑇

−𝑇

[

1

2

(∇𝑊(𝑡, 𝑢

𝑗
) , 𝑢

𝑗
) −𝑊(𝑡, 𝑢

𝑗
)] 𝑑𝑡

+ ∫

𝑇

−𝑇

[𝐾 (𝑡, 𝑢

𝑗
) −

1

2

(∇𝐾 (𝑡, 𝑢

𝑗
) , 𝑢

𝑗
)] 𝑑𝑡

≥ ∫

𝑇

−𝑇

̃

𝑊(𝑡, 𝑢) 𝑑𝑡.

(23)

Arguing indirectly, assume as a contradiction that ‖𝑢
𝑗
‖ →

∞. Setting 𝑣
𝑗
= 𝑢

𝑗
/‖𝑢

𝑗
‖, then ‖𝑣

𝑗
‖ = 1, and by Proposition 3,

one has










𝑣

𝑗









𝐿
∞

𝑇

≤

√

2











𝑣

𝑗











=

√

2. (24)

Note that

𝐼


(𝑢

𝑗
) 𝑢

𝑗
=











�̇�

𝑗











2

𝐿
2

𝑇

+ ∫

𝑇

−𝑇

(∇𝐾 (𝑡, 𝑢

𝑗
) , 𝑢

𝑗
) 𝑑𝑡

− ∫

𝑇

−𝑇

(∇𝑊(𝑡, 𝑢

𝑗
) , 𝑢

𝑗
) 𝑑𝑡

≥











�̇�

𝑗











2

𝐿
2

𝑇

+ ∫

𝑇

−𝑇

𝐾(𝑡, 𝑢

𝑗
) 𝑑𝑡

− ∫

𝑇

−𝑇

(∇𝑊(𝑡, 𝑢

𝑗
) , 𝑢

𝑗
) 𝑑𝑡

≥ 𝐶

1











𝑢

𝑗











2

− ∫

𝑇

−𝑇











∇𝑊(𝑡, 𝑢

𝑗
)





















𝑢

𝑗











𝑑𝑡,

(25)



4 Abstract and Applied Analysis

where 𝐶
1
= min{1, 𝑎} > 0. This implies that

∫

𝑇

−𝑇











∇𝑊(𝑡, 𝑢

𝑗
)





















𝑢

𝑗





















𝑢

𝑗











2
𝑑𝑡 = ∫

𝑇

−𝑇











∇𝑊(𝑡, 𝑢

𝑗
)





















𝑣

𝑗











2











𝑢

𝑗











𝑑𝑡 → 𝐶

1
.

(26)

Set for 𝑠 ≥ 0

ℎ (𝑠) := inf {̃𝑊(𝑡, 𝑢) : 𝑡 ∈ [−𝑇, 𝑇] , 𝑢 ∈ R
𝑁 with |𝑢| ≥ 𝑠} .

(27)

By (H
5
), ℎ(𝑠) → ∞ as 𝑠 → ∞.

For 0 ≤ 𝑙 < 𝑚, let

Ω

𝑗
(𝑙, 𝑚) = {𝑡 ∈ [−𝑇, 𝑇] : 𝑙 ≤











𝑢

𝑗
(𝑡)











< 𝑚} ,

𝐶

𝑚

𝑙
= inf {

̃

𝑊(𝑡, 𝑢)

|𝑢|

2
: 𝑡 ∈ [−𝑇, 𝑇] with 𝑙 ≤ |𝑢 (𝑡)| < 𝑚} .

(28)

Then by (H
5
), 𝐶𝑚

𝑙
> 0. One has

̃

𝑊(𝑡, 𝑢

𝑗
) ≥ 𝐶

𝑚

𝑙











𝑢

𝑗











2

, ∀𝑡 ∈ Ω

𝑗
(𝑙, 𝑚) .

(29)

It follows from (23) that

𝐶

0
≥ ∫

Ω
𝑗
(0,𝑙)

̃

𝑊(𝑡, 𝑢

𝑗
) 𝑑𝑡 + ∫

Ω
𝑗
(𝑙,𝑚)

̃

𝑊(𝑡, 𝑢

𝑗
) 𝑑𝑡

+ ∫

Ω
𝑗
(𝑚,∞)

̃

𝑊(𝑡, 𝑢

𝑗
) 𝑑𝑡

≥ ∫

Ω
𝑗
(0,𝑙)

̃

𝑊(𝑡, 𝑢

𝑗
) 𝑑𝑡 + 𝐶

𝑚

𝑙
∫

Ω
𝑗
(𝑙,𝑚)











𝑢

𝑗











2

𝑑𝑡

+ ℎ (𝑚)











Ω

𝑗
(𝑚,∞)











(30)

which implies that











Ω

𝑗
(𝑚,∞)











≤

𝐶

0

ℎ (𝑚)

→ 0 (31)

as𝑚 → ∞ uniformly in 𝑗, and for any fixed 0 < 𝑙 < 𝑚

∫

Ω
𝑗
(𝑙,𝑚)











𝑣

𝑗











2

𝑑𝑡 =

1











𝑢

𝑗











2
∫

Ω
𝑗
(𝑙,𝑚)











𝑢

𝑗











2

𝑑𝑡 ≤

𝐶

0

𝐶

𝑚

𝑙











𝑢

𝑗











2
→ 0

(32)

as 𝑗 → ∞. Using (14) and (31), we have

∫

Ω
𝑗
(𝑚,∞)











𝑣

𝑗











2

𝑑𝑡≤











𝑣

𝑗











2

𝐿
∞

𝑇

⋅











Ω

𝑗
(𝑚,∞)











≤2











Ω

𝑗
(𝑚,∞)











→0

(33)

as𝑚 → ∞ uniformly in 𝑗.
Let 0 < 𝜖 < 𝐶

1
/3. By (H

3
) there is 𝑙

𝜖
> 0 such that

|∇𝑊 (𝑡, 𝑢)| <

𝜖

4𝑇

|𝑢| (34)

for all |𝑡| ≤ 𝑙

𝜖
. Consequently,

∫

Ω
𝑗
(0,𝑙
𝜖
)











∇𝑊(𝑡, 𝑢

𝑗
)





















𝑣

𝑗











2











𝑢

𝑗











𝑑𝑡 ≤

𝜖

4𝑇

∫

Ω
𝑗
(0,𝑙
𝜖
)











𝑣

𝑗











2

𝑑𝑡

≤

𝜖

4𝑇











𝑣

𝑗











2

𝐿
∞

𝑇

2𝑇 < 𝜖

(35)

for all 𝑗.
By (31), we can take𝑚

𝜖
large such that

∫

Ω
𝑗
(𝑚
𝜖
,∞)











𝑣

𝑗











2

𝑑𝑡 <

𝜖

𝑀

0

. (36)

Hence, by (H
3
) one has

∫

Ω
𝑗
(𝑚
𝜖
,∞)











∇𝑊(𝑡, 𝑢

𝑗
)





















𝑣

𝑗











2











𝑢

𝑗











𝑑𝑡 ≤ 𝑀

0
∫

Ω
𝑗
(𝑚
𝜖
,∞)











𝑣

𝑗











2

𝑑𝑡 < 𝜖

(37)

for all 𝑗. By (32) there exists 𝑗
0
such that

∫

Ω
𝑗
(𝑙
𝜖
,𝑚
𝜖
)











∇𝑊(𝑡, 𝑢

𝑗
)





















𝑣

𝑗











2











𝑢

𝑗











𝑑𝑡 ≤ 𝑀

0
∫

Ω
𝑗
(𝑙
𝜖
,𝑚
𝜖
)











𝑣

𝑗











2

𝑑𝑡 < 𝜖

(38)

for all 𝑗 ≥ 𝑗

0
. By (35)–(38), one has

lim sup
𝑗→∞

∫

𝑇

−𝑇











∇𝑊(𝑡, 𝑢

𝑗
)





















𝑣

𝑗











2











𝑢

𝑗











𝑑𝑡 ≤ 3𝜖 < 𝐶

1
(39)

which contradicts with (26). So {𝑢

𝑗
} is bounded in 𝐸

𝑇
. In a

similar way to Proposition B. 35 in [21], we can prove that
{𝑢

𝑗
} has a convergent subsequence. Hence 𝐼 satisfies the (𝐶)-

condition.

Step 2. We show that the functional 𝐼 satisfies the condition
(A

1
) of Theorem 4.
Observe that, by (H

3
) and (H

4
), given 0 < 𝜖 < 𝑎, there

exists some 𝐶
𝜖
> 0 such that

|𝑊 (𝑡, 𝑢)| ≤ 𝜀|𝑢|

2
+ 𝐶

𝜀|
𝑢|

𝑝 (40)

for all 𝑢 ∈ R𝑁 and 𝑡 ∈ [−𝑇, 𝑇], where 𝑝 > 2. It follows from
(H

1
), (40), and Proposition 3 that

𝐼 (𝑢) =

1

2

∫

𝑇

−𝑇

|�̇� (𝑡)|

2
𝑑𝑡 + ∫

𝑇

−𝑇

𝐾 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

− ∫

𝑇

−𝑇

𝑊(𝑡, 𝑢 (𝑡)) 𝑑𝑡

≥

1

2

‖�̇�‖

2

𝐿
2

𝑇

+ 𝑎‖𝑢‖

2

𝐿
2

𝑇

− 𝜖‖𝑢‖

2

𝐿
2

𝑇

− 𝐶

𝜖
∫

𝑇

−𝑇

|𝑢 (𝑡)|

𝑝
𝑑𝑡

≥

1

2

‖�̇�‖

2

𝐿
2

𝑇

+ 𝑎‖𝑢‖

2

𝐿
2

𝑇

− 𝜖‖𝑢‖

2

𝐿
2

𝑇

− 2𝑇𝐶

𝜖‖
𝑢‖

𝑝

𝐿
∞

𝑇

≥ min {1
2

, 𝑎 − 𝜖} ‖𝑢‖

2
− 2

𝑝/2+1
𝑇𝐶

𝜖‖
𝑢‖

𝑝
.

(41)
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Hence there exist 𝛼 > 0 and 𝜌 > 0 such that 𝐼(𝑢) ≥ 𝛼 for all
𝑢 ∈ 𝐸

𝑇
with ‖𝑢‖ = 𝜌.

Step 3. We show that the functional 𝐼 satisfies the condition
(A

2
) of Theorem 4.
By (H

4
), there exists 𝐵 > 0 such that

𝑊(𝑡, 𝑢) ≥ 𝑤

∞|𝑢|

2
− 𝐵, ∀𝑡 ∈ [−𝑇, 𝑇] , 𝑢 ∈ R

𝑁
. (42)

Let

𝑒 (𝑡) = 𝜁 |sin (𝜔𝑡)| 𝑒0, 𝑡 ∈ [−𝑇, 𝑇] , (43)

where 𝜔 = 2𝜋/𝑇 and 𝑒

0
= (1, 0, . . . , 0). Clearly, 𝑒 ∈ 𝐸

𝑇
. By

(15), (42), and Lemma 5, one has

𝐼 (𝑒) =

𝜁

2
𝜔

2

2

∫

𝑇

−𝑇

|cos (𝜔𝑡)|2𝑑𝑡+∫
{𝑡∈[−𝑇,𝑇];|𝑒(𝑡)|≤1}

𝐾 (𝑡, 𝑒 (𝑡)) 𝑑𝑡

+∫

{𝑡∈[−𝑇,𝑇];|𝑒(𝑡)|≥1}

𝐾 (𝑡, 𝑒 (𝑡)) 𝑑𝑡 − ∫

𝑇

−𝑇

𝑊(𝑡, 𝑒 (𝑡)) 𝑑𝑡

≤

𝑇𝜁

2
𝜔

2

2

+ 2𝑇𝐴 + 𝐴∫

{𝑡∈[−𝑇,𝑇];|𝑒(𝑡)|≥1}

|𝑒 (𝑡)|

𝛽
𝑑𝑡

− 𝑤

∞
𝜁

2
∫

𝑇

−𝑇

|sin (𝜔𝑡)|2𝑑𝑡 + 2𝑇𝐵

=

𝑇𝜁

2
𝜔

2

2

+ 2𝑇𝐴 + 𝐴𝜁

2
∫

𝑇

−𝑇

|sin (𝜔𝑡)|2𝑑𝑡 − 𝑇𝑤

∞
𝜁

2

+ 2𝑇𝐵

= 𝑇(

𝜔

2

2

+ 𝐴 − 𝑤

∞
)𝜁

2
+ 2𝑇 (𝐴 + 𝐵) .

(44)

Since 𝑤
∞

> 2𝐴 + 32𝜋

2 and 𝑇 >
√
2/𝐴𝜋, then 𝜔

2
/2 + 𝐴 −

𝑤

∞
< 0. So 𝐼(𝑒) → −∞ as |𝜁| → ∞. So, we can choose

large enough 𝜁 ∈ R such that ‖𝑒‖ > 𝜌 and 𝐼(𝑒) < 0.
Clearly 𝐼(0) = 0; then, by application ofTheorem 4, there

exists a critical point 𝑢
𝑇
∈ 𝐸

𝑇
of 𝐼 such that 𝐼(𝑢

𝑇
) ≥ 𝛼 for all

𝑇 >
√
2/𝐴𝜋.

Lemma 8. 𝑢
𝑇
is bounded uniformly in 𝑇 >

√
2/𝐴𝜋.

Proof. Define the set of paths

Γ

𝑇
= {𝑓 ∈ 𝐶 ([0, 1] , 𝐸𝑇

) | 𝑓 (0) = 0, 𝑓 (1) = 𝑒} . (45)

It follows from Lemma 7 that there exists a solution 𝑢

𝑇
of

problem (11) at which

inf
𝑓∈Γ
𝑇

max
𝑠∈[0,1]

𝐼 (𝑓 (𝑠)) ≡ 𝐷

𝑇 (46)

is achieved. Let 𝑇 > 𝑇. Since any function in 𝐸

𝑇
can be

regarded as belonging to 𝐸

𝑇
if one extends it by zero in

[−𝑇, 𝑇] \ [−𝑇, 𝑇], then Γ

𝑇
⊂ Γ

𝑇
. Therefore, for any solution

𝑢

𝑇
of problem (11), we obtain

𝐼 (𝑢

𝑇
) = 𝐷

𝑇
≤ 𝐷

1/2
uniformly in 𝑇 >

√

2

𝐴

𝜋.

(47)

Notice that 𝐼(𝑢
𝑇
) = 0, and together with (47), one has

𝐼 (𝑢

𝑇
) ≤ 𝐷

1/2
, (1 + 𝑢

𝑇
)











𝐼


(𝑢

𝑇
)











= 0. (48)

The rest of the proof is similar to that of Step 1 in Lemma 7.
Hence there exists a constant𝑀

1
> 0, independent of 𝑇 such

that









𝑢

𝑇









≤ 𝑀

1
, ∀𝑇 >

√

2

𝐴

𝜋.

(49)

The proof is complete.

Take a sequence 𝑇

𝑛
→ ∞, and consider the problem

(11) on the interval [−𝑇
𝑛
, 𝑇

𝑛
]. By Lemma 7, there exists a

nontrivial solution 𝑢

𝑛
:= 𝑢

𝑇
𝑛

of problem (11).

Lemma9. Let {𝑢
𝑛
}

𝑛∈N be the sequence given above.Then there
exists a subsequence {𝑢

𝑛
𝑗

}

𝑗∈N convergent to 𝑢
0
in 𝐶

1

loc(R,R
𝑁
).

Proof. First we prove that the sequences ‖𝑢
𝑛
‖

𝐿
∞

𝑇𝑛

, ‖�̇�
𝑛
‖

𝐿
∞

𝑇𝑛

, and
‖�̈�

𝑛
‖

𝐿
∞

𝑇𝑛

are bounded. From (14) and (49), for 𝑛 large enough,
one has









𝑢

𝑛







𝐿
∞

𝑇𝑛

≤ 𝐶𝑀

1
:= 𝑀

2
. (50)

By (11) and (50), for all 𝑡 ∈ [−𝑇

𝑛
, 𝑇

𝑛
], there exists 𝑀

3
> 0

independent of 𝑛 such that









�̈�

𝑛







𝐿
∞

𝑇𝑛

≤ 𝑀

3
. (51)

It follows from theMean ValueTheorem that for every 𝑛 ∈ 𝑁

and 𝑡 ∈ R, there exists 𝜏
𝑛
∈ [𝑡 − 1, 𝑡] such that

�̇�

𝑛
(𝜏

𝑛
) = ∫

𝑡

𝑡−1

�̇�

𝑛
(𝑠) 𝑑𝑠 = 𝑢

𝑛
(𝑡) − 𝑢

𝑛
(𝑡 − 1) .

(52)

Combining the above with (50), and (51) we get









�̇�

𝑛
(𝑡)









=



















∫

𝑡

𝜏
𝑛

�̈�

𝑛
(𝑠) 𝑑𝑠 + �̇�

𝑛
(𝜏

𝑛
)



















≤ ∫

𝑡

𝑡−1









�̈�

𝑛
(𝑠)









𝑑𝑠 +









𝑢

𝑛
(𝑡) − 𝑢

𝑛
(𝑡 − 1)









≤ 𝑀

3
+ 2𝑀

2
:= 𝑀

4

(53)

and hence for 𝑛 large enough









�̇�

𝑛







𝐿
∞

𝑇𝑛

≤ 𝑀

4
. (54)

Second we show that the sequences {𝑢
𝑛
}

𝑛∈N and {�̇�

𝑛
}

𝑛∈N are
equicontinuous. Indeed, for any 𝑛 ∈ N and 𝑡

1
, 𝑡

2
∈ R, by (54),

we have









𝑢

𝑛
(𝑡

1
) − 𝑢

𝑛
(𝑡

2
)









=



















∫

𝑡
1

𝑡
2

�̇�

𝑛
(𝑠) 𝑑𝑠



















≤ ∫

𝑡
1

𝑡
2









�̇�

𝑛
(𝑠)









𝑑𝑠

≤ 𝑀

3









𝑡

1
− 𝑡

2









.

(55)
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Similarly, by (51), one gets








�̇�

𝑛
(𝑡

1
) − �̇�

𝑛
(𝑡

2
)









≤ 𝑀

2









𝑡

1
− 𝑡

2









. (56)

By using the Arzelà-Ascoli Theorem, we obtain the existence
of a subsequence {𝑢

𝑛
𝑗

}

𝑗∈N and a function 𝑢

0
such that

𝑢

𝑛
𝑗

→ 𝑢

0
, as 𝑗 → ∞ in 𝐶

1

loc (R,R
𝑁
) . (57)

The proof is complete.

Lemma 10. Let 𝑢
0
: R → R𝑁 be the function given by (57).

Then 𝑢

0
is the homoclinic solution of (HS).

Proof. First we show that 𝑢
0
is a solution of (HS). Let {𝑢

𝑛
𝑗

}

𝑗∈N

be the sequence given by Lemma 9, then

�̈�

𝑛
𝑗
(𝑡) + ∇𝑉(𝑡, 𝑢

𝑛
𝑗
(𝑡)) = 0 (58)

for every 𝑗 ∈ N and 𝑡 ∈ [−𝑇

𝑛
𝑗

, 𝑇

𝑛
𝑗

]. Take 𝑏, 𝑐 ∈ R with 𝑏 < 𝑐.
There exists 𝑗

0
∈ N such that for all 𝑗 > 𝑗

0
; we get [𝑏, 𝑐] ⊂

[−𝑇

𝑛
𝑗

, 𝑇

𝑛
𝑗

] and

�̈�

𝑛
𝑗
(𝑡) = −∇𝑉(𝑡, 𝑢

𝑛
𝑗
(𝑡)) , ∀𝑡 ∈ [𝑏, 𝑐] . (59)

Integrating (59) from 𝑏 to 𝑡 ∈ [𝑏, 𝑐], we have

�̇�

𝑛
𝑗
(𝑡) − �̇�

𝑛
𝑗
(𝑏) = −∫

𝑡

𝑏

∇𝑉(𝑠, 𝑢

𝑛
𝑗
(𝑠)) 𝑑𝑠, ∀𝑡 ∈ [𝑏, 𝑐] .

(60)

Since 𝑢
𝑛
𝑗

→ 𝑢

0
uniformly on [𝑏, 𝑐] and �̇�

𝑛
𝑗

→ �̇�

0
uniformly

on [𝑏, 𝑐] as 𝑗 → ∞, then, from (60), we obtain

�̇�

0
(𝑡) − �̇�

0
(𝑏) = −∫

𝑡

𝑏

∇𝑉 (𝑠, 𝑢

0
(𝑠)) 𝑑𝑠, ∀𝑡 ∈ [𝑏, 𝑐] .

(61)

Because of the arbitrariness of 𝑏 and 𝑐, we conclude that 𝑢
0

satisfies (HS).
Second we prove that 𝑢

0
(𝑡) → 0, as |𝑡| → ∞. Note that,

by (49), for 𝑘 ∈ N, there exists 𝑗
0
∈ N such that, for all 𝑗 > 𝑗

0
,

one has

∫

𝑇
𝑛𝑗

−𝑇
𝑛𝑗

[













𝑢

𝑛
𝑗
(𝑡)













2

+













�̇�

𝑛
𝑗
(𝑡)













2

] 𝑑𝑡 ≤













𝑢

𝑛
𝑗













2

≤ 𝑀

2

1
. (62)

Letting 𝑗 → ∞, one gets

∫

𝑇
𝑛𝑗

−𝑇
𝑛𝑗

[









𝑢

0
(𝑡)









2

+









�̇�

0
(𝑡)









2

] 𝑑𝑡 ≤ 𝑀

2

1 (63)

and letting 𝑗 → ∞, we have

∫

+∞

−∞

[









𝑢

0
(𝑡)









2

+









�̇�

0
(𝑡)









2

] 𝑑𝑡 ≤ 𝑀

2

1
(64)

and so

∫

|𝑡|≥𝑟

[









𝑢

0
(𝑡)









2

+









�̇�

0
(𝑡)









2

] 𝑑𝑡 → 0. (65)

From Lemma 6 and (65), we obtain 𝑢

0
(𝑡) → 0 as |𝑡| → ∞.

Next we show that �̇�
0
(𝑡) → 0 as |𝑡| → ∞. Indeed,

applying again Lemma 6 to �̇�
0
, we obtain









�̇�

0
(𝑡)









≤

√

2(∫

𝑡+1/2

𝑡−1/2

(









�̇�

0
(𝑠)









2

+









�̈�

0
(𝑠)









2

) 𝑑𝑠)

1/2

.

(66)

Also, from (65), we get

∫

𝑡+1/2

𝑡−1/2









�̇�

0
(𝑠)









2

𝑑𝑠 → 0, as |𝑡| → ∞. (67)

Hence, it is enough to prove that

∫

𝑡+1/2

𝑡−1/2









�̈�

0
(𝑠)









2

𝑑𝑠 → 0, as |𝑡| → ∞. (68)

Since 𝑢
0
is a solution of (HS), one has

∫

𝑡+1/2

𝑡−1/2









�̈�

0
(𝑠)









2

𝑑𝑠 = ∫

𝑡+1/2

𝑡−1/2









∇𝑉 (𝑠, 𝑢

0
(𝑠))









2

𝑑𝑠. (69)

Since ∇𝑉(𝑡, 0) = 0 for all 𝑡 ∈ R and 𝑢

0
(𝑡) → 0, as |𝑡| → ∞,

(68) follows from (69).
Finally, similar to the proof in [12], we can prove that 𝑢

0

is nontrivial, and we omit it here. The proof of Theorem 1 is
complete.
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