
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 414353, 7 pages
http://dx.doi.org/10.1155/2013/414353

Research Article
Improved (𝐺󸀠/𝐺)-Expansion Method for the Space and Time
Fractional Foam Drainage and KdV Equations

Ali Akgül,1,2 Adem KJlJçman,3 and Mustafa Inc4

1 Department of Mathematics, Education Faculty, Dicle University, 21280 Diyarbakır, Turkey
2Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409-0020, USA
3Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
4Department of Mathematics, Science Faculty, Fırat University, 23119 Elazığ, Turkey
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The fractional complex transformation is used to transform nonlinear partial differential equations to nonlinear ordinary
differential equations. The improved (𝐺󸀠/𝐺)-expansion method is suggested to solve the space and time fractional foam drainage
andKdVequations.Theobtained results show that the presentedmethod is effective and appropriate for solving nonlinear fractional
differential equations.

1. Introduction

The soliton solutions of nonlinear evolution equations have
made a major impact in the flesh. These solitons appear in
various areas of physical and biological sciences. They show
up in nonlinear optics, plasma physics, fluid dynamics, bio-
chemistry, and mathematical chemistry. Fractional partial
differential equations (FPDEs) have received considerable
interest in recent years and have been extensively investi-
gated. These equations were applied for many real problems
which are modeled in various areas, for example, in mathe-
matical physics [1], fluid and continuummechanics [2], visco-
plastic and viscoelastic flow [3], biology, chemistry, acoustics,
and psychology [4, 5]. Some FPDEs do not have exact solu-
tions, so approximation and numerical techniques must be
used. There are several approximation and numerical meth-
ods.Themost commonly used ones are the homotopy pertur-
bation method [6, 7], the Adomian decomposition method
[8, 9], the variational iterationmethod [10–12], the homotopy
analysis method [13, 14], the generalized differential trans-
form method [15], the finite difference method [16], and the
finite elementmethod [17]. In recent years, some authors have
got exact solutions of FPDEs by using analytical methods. S.
Zhang and H.-Q. Zhang [18] proposed to solve the nonlinear
time fractional biological population model and (4 + 1)-
dimensional space-time fractional Fokas equation by using

the fractional subequation method. Guo et al. [19] presented
the improved subequation method to solve the space-time
fractional Whitham-Broer-Kaup and the generalized Hirota-
Satsuma coupled KdV equations. Tang et al. [20] used the
generalized fractional subequation method to obtain exact
solutions of the space-time fractional Gardner equation with
variable coefficients. Lu [21] investigated the exact solutions
of the nonlinear fractional Klein-Gordon equation, the gen-
eralized time fractionalHirota-Satsuma coupledKdV system,
and the nonlinear fractional Sharma-Tasso-Olver equation.
Bin [22] solved the time-space fractional generalized Hirota-
Satsuma coupled KdV equations and the time fractional fifth-
order Sawada-Kotera equation by using the (𝐺

󸀠
/𝐺)-expan-

sion method. Omran and Gepreel [23] used the improved
(𝐺
󸀠
/𝐺)-expansion method to calculate the exact solutions to

the time-space fractional foam drainage and KdV equations.
In this paper, we will apply the improved (𝐺

󸀠
/𝐺)-expansion

method to obtain the exact solutions for the time-space frac-
tional foam drainage and KdV equations with the modified
Riemann-Liouville derivative defined by Jumarie [24–27]:
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(2)

where 𝛼 is arbitrary constant. This paper is organized
as follows. In Section 2, we introduce some basic defini-
tions of Jumarie’s modified Riemann-Liouville derivative. In
Section 3, the main steps of the improved (𝐺

󸀠
/𝐺)-expansion

method are given. In Section 4, we construct the exact
solutions of (1) and (2) by the proposed method. Some
conclusions are given in Section 5.

2. Preliminaries

There are several definitions for fractional differential equa-
tions. These definitions include Riemann-Liouville, Weyl,
Grünwald-Letnikov, Riesz, and Jumarie fractional deriva-
tives. The Riemann-Liouville fractional derivative of a con-
stant is not zero. So the fractional derivative is only defined for
differentiable function. In order to deal with nondifferen-
tiable functions, Jumarie [24–27] presented a modification of
the Riemann-Liouville definition which appears to provide a
framework for a fractional calculus. This modification was
successfully applied in the probability calculus, fractional
Laplace problem, exact solutions of the nonlinear fractional
differential equations, and many other types of linear and
nonlinear fractional differential equations [28–30].

Definition 1. The Riemann-Liouville fractional integral is
defined [31] as

0
𝐼
𝛼

𝑥
𝑓 (𝑥) = 𝐼

𝛼
𝑓 (𝑥)

=
1

Γ (𝛼)

∫

𝑥

0

𝑓 (𝜉) (𝑥 − 𝜉)
𝛼−1

𝑑𝜉, 𝛼 > 0,

𝐼
0
𝑓 (𝑥) = 𝑓 (𝑥) .

(3)

Definition 2. Jumarie [24–27] defined the fractional deriva-
tive in the limit form by

𝑓
(𝛼)

(𝑥) = lim
ℎ→0

Δ
𝛼
[𝑓 (𝑥) − 𝑓 (0)]

ℎ
𝛼

, (4)

where 𝑓(𝑥) should be a continuous (but not necessarily dif-
ferentiable) function and ℎ > 0 denotes a constant discreti-
zation span. So, the modified form of the Riemann-Liouville
derivative is defined as
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(5)

where 𝑥 ∈ [0, 1], 𝑛 − 1 ≤ 𝛼 < 𝑛 and 𝑛 ≥ 1.

Lemma3. The integral with respect to (𝑑𝑥)𝛼 is defined by Jum-
arie [24, 25] as follows:
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(6)

Theorem 4. Assume that the continuous function 𝑓(𝑥) has a
fractional derivative of order 𝛼; then
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(7)

hold.

3. Description of the Improved (𝐺
󸀠
/𝐺)-

Expansion Method

In this section, we give the description of the improved
(𝐺
󸀠
/𝐺)-expansion method for solving the nonlinear FPDEs
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0 < 𝛼, 𝛽, 𝛾, 𝛿 ≤ 1,

(8)

where 𝑢 is an unknown function and 𝐹 is a polynomial of 𝑢
and its partial fractional derivatives, in which the highest
order derivatives and nonlinear terms are involved. We offer
an improved (𝐺

󸀠
/𝐺)-expansion method [32]. The essential

steps of this method are described as follows.

Step 1. Li and He [33] and He and Li [34] presented a frac-
tional complex transform to transform fractional differential
equations into ordinary differential equations. So, all ana-
lytical methods devoted to advanced calculus can be easily
dedicated to fractional calculus. The traveling wave variable
is given as

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢 (𝜉) ,

𝜉 =
𝐾𝑥
𝛽

Γ (𝛽 + 1)

+

𝑁𝑦
𝛾
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+
𝐿𝑡
𝛼

Γ (𝛼 + 1)

,

(9)

where 𝐾,𝑁, and 𝐿 are nonzero arbitrary constants. So, (9) is
reduced to (10):

𝑝 (𝑢, 𝑢
󸀠
, 𝑢
󸀠󸀠
, 𝑢
󸀠󸀠󸀠
, . . .) = 0, (10)

where 𝑢 = 𝑢(𝜉).

Step 2. Suppose that (10) has the solution (11):

𝑢 (𝜉) =

𝑛

∑

𝑖=0

𝑎
𝑖
𝐹
𝑖

(𝜉) , (11)

where 𝑎
𝑖
(𝑖 = 0, 1, . . . , 𝑛) are real constants to be determined,

the balancing number 𝑛 is a positive integer which can be
determined by balancing the highest derivative terms with
the highest power nonlinear terms in (10). More precisely, we
define the degree of 𝑢(𝜉) as 𝐷[𝑢(𝜉)] = 𝑚, which gives rise to
the degrees of other expressions, as follows:
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𝑞
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𝑞
] = 𝑚 + 𝑞,
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𝑠

] = 𝑚𝑝 + 𝑠 (𝑞 + 𝑚) .

(12)

Therefore, we can obtain the value of𝑚 in (11).
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Step 3. 𝐹(𝜉) is

𝐹 (𝜉) =
𝐺
󸀠
(𝜉)

𝐺 (𝜉)

, (13)

where 𝐺(𝜉) expresses the solution of the following auxiliary
ordinary differential equation

𝐺 (𝜉) 𝐺
󸀠󸀠

(𝜉) = 𝐴𝐺
2

(𝜉) + 𝐵𝐺 (𝜉) 𝐺
󸀠

(𝜉) + 𝐶[𝐺 (𝜉)]
2

, (14)

where the prime denotes derivative with respect to 𝜉. 𝐴, 𝐵,
and 𝐶 are real parameters.

Step 4. Substituting (13) into (10), using (14), collecting all
terms with the same order of (𝐺󸀠(𝜉)/𝐺(𝜉)) together, and then
equating each coefficient of the resulting polynomial to zero,
we obtain a set of algebraic equations for 𝑎

𝑖
(𝑖 = 0, 1, . . . , 𝑛),

𝐴, 𝐵, 𝐶, 𝐾,𝑁, and 𝐿.

Step 5. Using the general solutions of (14), with the aid of
Mathematica, we have the following four solutions of (13).

Case 1. If 𝐵 ̸= 0 and Δ = 𝐵
2
+ 4𝐴 − 4𝐴𝐶 ≥ 0, then
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.

(15)

Case 2. If 𝐵 ̸= 0 and Δ = 𝐵
2
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.
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Case 3. If 𝐵 = 0 and Δ = 𝐴(𝐶 − 1) ≥ 0, then
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√Δ
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Case 4. If 𝐵 = 0 and Δ = 𝐴(𝐶 − 1) < 0, then

𝐹 (𝜉) =

√−Δ
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where

𝜉 =
𝐾𝑥
𝛽

Γ (𝛽 + 1)

+

𝑁𝑦
𝛾

Γ (𝛾 + 1)

+
𝐿𝑡
𝛼

Γ (𝛼 + 1)

(19)

and 𝐴, 𝐵, 𝐶, 𝑐
1
, and 𝑐

2
are real parameters.

4. Applications

We use the improved (𝐺󸀠/𝐺)-expansionmethod on the time-
space fractional nonlinear foam drainage equation and the
time-space fractional nonlinear KdV equation in this section.

4.1. The Time and Space-Fractional Nonlinear Foam Drainage
Equation. We apply the improved (𝐺󸀠/𝐺)-expansionmethod
to construct the exact solutions for the time-space fractional
nonlinear foam drainage equation in this subsection. Foams
are of great importance in many technological processes and
applications. Their properties are subject of intensive studies
frompractical and scientific points of view [27, 35–37]. Liquid
foam is an example of soft matter with a very well-defined
structure, described by Joseph Plateau in the 19th century.
Foams are common in foods and personal care products
such as lotions and creams.They have important applications
in food and chemical industries, mineral processing, fire
fighting, and structural material sciences [27, 35–37]. This
equation is numerically and analytically taken into account by
different authors [38–40]. The space-time fractional nonlin-
ear foam drainage equation is solved analytically only by
Omran and Gepreel [23]. We can see the fractional complex
transform as

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) ,

𝜉 =
𝐾𝑥
𝛽

Γ (𝛽 + 1)

+
𝐿𝑡
𝛼

Γ (𝛼 + 1)

,

(20)

where𝐾 and 𝐿 are constants. So, (20) reduces to (21):
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Balancing the highest order nonlinear term and the high-
est order linear term, we get 𝑛 = 1. Thus, we obtain
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1
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1
will be determined constants. Substituting

(22) into (21), using (14), collecting all the terms of powers of
(𝐺
󸀠
/𝐺), and setting each coefficient to zero, we have the fol-

lowing system of algebraic equations:
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(
𝐺
󸀠

𝐺
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𝑎
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3

1
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0
𝑎
2

1
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+ 𝑎
0
𝑎
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−
7

2

𝑎
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1
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𝑎
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+
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2

𝑎
2

1
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𝑎
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2
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(
𝐺
󸀠

𝐺
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: − 2𝑎
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1
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1
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𝐾
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1
𝐶
2
𝐾
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(23)

Solving the set of the above algebraic equations, we get the fol-
lowing result:

𝑎
0
=

8𝐴𝐵𝐾 (𝐶 − 1)

𝐵
2
+ 6𝐴 − 6𝐴𝐶

, 𝑎
1
= 𝐾 (𝐶 − 1) ,

𝐿 =
1

2

(4𝑎
2

0
𝐾 + 𝑎

0
𝐵𝐾
2
+ 2𝐴𝐾

3
− 2𝐴𝐶𝐾

3
) ,

𝐾𝐵 (𝐶 − 1) ̸= 0.

(24)

Substituting this value in (22) and by Cases 1–4, we obtain
the following exponential, hyperbolic and triangular function
solutions of (1).

(1) If we choose 𝐵 ̸= 0 and Δ = 𝐵
2
+ 4𝐴 − 4𝐴𝐶 ≥ 0, then

the exponential function solutions can be found as

𝑢 (𝑥, 𝑡) =
16𝐴𝐵𝐾 (𝐶 − 1) − 𝐾𝐵 [Δ + 2𝐴 (𝐶 − 1)]

2Δ + 2𝐴 (𝐶 − 1)

−
𝐾𝐵√Δ

2

×

𝑐
1
exp ((√Δ/2) 𝜉) + 𝑐

2
exp ((−√Δ/2) 𝜉)

𝑐
1
exp ((√Δ/2) 𝜉) − 𝑐

2
exp ((−√Δ/2) 𝜉)

,

(25)

where

𝜉 =
𝐾𝑥
𝛽

Γ (𝛽 + 1)

+
1

2

(4𝑎
2

0
𝐾 + 𝑎

0
𝐵𝐾
2
+ 2𝐴𝐾

3
− 2𝐴𝐶𝐾

3
)

×
𝑡
𝛼

Γ (𝛼 + 1)

.

(26)

(2) If we choose 𝐵 ̸= 0 and Δ = 𝐵
2
+ 4𝐴 − 4𝐴𝐶 < 0, then

the triangular function solution will be

𝑢 (𝑥, 𝑡) =
16𝐴𝐵𝐾 (𝐶 − 1) − 𝐾𝐵 [Δ + 2𝐴 (𝐶 − 1)]

2Δ + 2𝐴 (𝐶 − 1)

−
𝐾𝐵√−Δ

2

×

𝑖𝑐
1
cos ((√−Δ/2) 𝜉) − 𝑐

2
sin ((√−Δ/2) 𝜉)

𝑖𝑐
1
sin ((√−Δ/2) 𝜉) + 𝑐

2
cos ((√−Δ/2) 𝜉)

,

(27)

where

𝜉 =
𝐾𝑥
𝛽

Γ (𝛽 + 1)

+
1

2

(4𝑎
2

0
𝐾 + 𝑎

0
𝐵𝐾
2
+ 2𝐴𝐾

3
− 2𝐴𝐶𝐾

3
)

×
𝑡
𝛼

Γ (𝛼 + 1)

.

(28)

(3) If we choose 𝐵 = 0 and Δ
1
= 𝐴(𝐶 − 1) ≥ 0, then we

get another triangular function solution

𝑢 (𝑥, 𝑡) = −𝐾√Δ
1

𝑐
1
cos (√Δ

1
𝜉) + 𝑐
2
sin (√Δ

1
𝜉)

𝑐
1
sin (√Δ

1
𝜉) − 𝑐
2
cos (√Δ

1
𝜉)

, (29)

where 𝜉 = 𝐾𝑥
𝛽
/Γ(𝛽 + 1) − Δ

1
(𝐾
3
𝑡
𝛼
/Γ(𝛼 + 1)).

(4) If we choose 𝐵 = 0 and Δ
1
= 𝐴(𝐶 − 1) < 0, then we

obtain the hyperbolic function solution

𝑢 (𝑥, 𝑡) = −𝐾√Δ
1

𝑖𝑐
1
cosh (√−Δ

1
𝜉) − 𝑐
2
sinh (√−Δ

1
𝜉)

𝑖𝑐
1
sinh (√−Δ

1
𝜉) − 𝑐
2
cosh (√−Δ

1
𝜉)

,

(30)

where 𝜉 = 𝐾𝑥
𝛽
/Γ(𝛽 + 1) − Δ

1
(𝐾
3
𝑡
𝛼
/Γ(𝛼 + 1)).

If we take 𝑐
1
= −𝑐
2
and 𝑐
1
= 𝑐
2
in (25), respectively, then

we get

𝑢 (𝑥, 𝑡) =
16𝐴𝐵𝐾 (𝐶 − 1) − 𝐾𝐵 [Δ + 2𝐴 (𝐶 − 1)]

2Δ + 2𝐴 (𝐶 − 1)

−
𝐾𝐵√Δ

2

tanh(
√Δ

2

𝜉) ,

𝑢 (𝑥, 𝑡) =
16𝐴𝐵𝐾 (𝐶 − 1) − 𝐾𝐵 [Δ + 2𝐴 (𝐶 − 1)]

2Δ + 2𝐴 (𝐶 − 1)

−
𝐾𝐵√Δ

2

coth(
√Δ

2

𝜉) .

(31)

4.2. The Nonlinear Space-Time Fractional KdV Equation. The
KdV equation is the most popular soliton equation, and it
has been largely investigated. In addition, the space and time
fractional KdV equations with initial conditions were widely
worked by [27, 38, 39]. Integrating (2) with respect to 𝑢 and
ignoring the integral constants leads to

1

2

𝐿𝑢
2
+
1

6

𝑎𝐾𝑢
3
+
1

2

𝐾
3
(𝑢
󸀠
)

2

= 0. (32)

Considering the homogeneous balance between the high-
est order derivatives and the nonlinear term in (32), we get
𝑛 = 2. So, we can suppose that (32) has the following ansatz:

𝑢 (𝜉) = 𝑎
0
+ 𝑎
1
𝐹 (𝜉) + 𝑎

2
𝐹
2

(𝜉) , (33)

where 𝑎
0
, 𝑎
1
, 𝑎
2
, 𝐿, and 𝐾 are arbitrary constants to be

determined later. Substituting (33) and (14), along with (13),
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into (32) and usingMathematica yields a system of Equations
of (𝐺󸀠/𝐺):

(
𝐺
󸀠

𝐺

)

0

:
1

3

𝑎𝑎
3

0
𝐾 + 𝐴

2
𝑎
2

1
𝐾
3
+ 𝑎
2

0
𝐿 = 0,

(
𝐺
󸀠

𝐺

)

1

:
1

2

𝑎𝑎
2

0
𝑎
1
𝐾 + 2𝐴

2
𝑎
1
𝑎
2
𝐾
3

+ 𝐴𝑎
2

1
𝐵𝐾
3
+ 𝑎
0
𝑎
1
𝐿 = 0,

(
𝐺
󸀠

𝐺

)

2

:
1

2

𝑎𝑎
0
𝑎
2

1
𝐾 +

1

2

𝑎𝑎
2

0
𝑎
2
𝐾 − 𝐴𝑎

2

1
𝐾
3

+ 2𝐴
2
𝑎
2

2
𝐾
3
+ 4𝐴𝑎

1
𝑎
2
𝐵𝐾
3
+

1

2𝑎
2

1
𝐵
2
𝐾
3

+ 𝐴𝑎
2

1
𝐶𝐾
3
+
1

2

𝑎
2

1
𝐿 + 𝑎
0
𝑎
2
𝐿 = 0,

(
𝐺
󸀠

𝐺

)

3

:
1

6

𝑎𝑎
3

1
𝐾 + 𝑎𝑎

0
𝑎
1
𝑎
2
𝐾 − 4𝐴𝑎

1
𝑎
2
𝐾
3

− 𝑎
2

1
𝐵𝐾
3
+ 4𝐴𝑎

2

2
𝐵𝐾
3
+ 2𝑎
1
𝑎
2
𝐵
2
𝐾
3

+ 4𝐴𝑎
1
𝑎
2
𝐶𝐾
3
+ 𝑎
2

1
𝐵𝐶𝐾
3
+ 𝑎
1
𝑎
2
𝐿 = 0,

(
𝐺
󸀠

𝐺

)

4

:
1

2

𝑎
2

1
𝑎
2
𝐾 +

1

2

𝑎𝑎
0
𝑎
2

2
𝐾 +

1

2

𝑎
2

1
𝐾
3

− 4𝐴𝑎
2

2
𝐾
3
− 4𝑎
1
𝑎
2
𝐵𝐾
3
+ 2𝑎
2

2
𝐵
2
𝐾
3

− 𝑎
2

1
𝐶𝐾
3
+ 4𝑎
1
𝑎
2
𝐵𝐶𝐾
3
+
1

2

𝑎
2

1
𝐶
2
𝐾
3

+
1

2

𝑎
2

2
𝐿 = 0,

(
𝐺
󸀠

𝐺

)

5

:
1

2

𝑎𝑎
1
𝑎
2

2
𝐾 + 2𝑎

1
𝑎
2
𝐾
3
− 4𝑎
2

2
𝐵𝐾
3

− 4𝑎
1
𝑎
2
𝐶𝐾
3
+ 4𝑎
2

2
𝐵𝐶𝐾
3
+ 2𝑎
1
𝑎
2
𝐶
2
𝐾
3
= 0,

(
𝐺
󸀠

𝐺

)

6

:
1

6

𝑎
1
𝑎
2

2
𝐾 + 2𝑎

2

2
𝐾
3
− 4𝑎
2

2
𝐶𝐾
3

+ 2𝑎
2

2
𝐶
2
𝐾
3
= 0.

(34)

Solving the set of the above algebraic equations by use of
Mathematica, we get the following results:

𝑎 ̸= 0, 𝑎
0
= −

12𝐴𝐾
2

𝑎

(𝐶 − 1) ,

𝑎
1
=
12𝐵𝐾

2

𝑎

(𝐶 − 1) ,

𝑎
2
= −

12𝐾
2

𝑎

(𝐶 − 1) ,

𝐿 = −𝐾
3
(𝐵
2
− 4𝐴𝐶 + 4𝐴) .

(35)

Substituting (35) into (33) and according to (15)–(18), we
obtain the following exponential function solutions, hyper-
bolic function solutions, and triangular function solutions of
(2), respectively.

(1) If we choose 𝐵 ̸= 0 and Δ = 𝐵
2
+ 4𝐴 − 4𝐴𝐶 ≥ 0, then

the exponential function solution can be found as

𝑢 (𝑥, 𝑡) =
3𝐾
2
(Δ − 2𝐶)

𝑎 (𝐶 − 1)

−
6𝐶𝐾
2
√Δ

𝑎 (𝐶 − 1)

×

𝑐
1
exp (√Δ𝜉/2) + 𝑐

2
exp ((−√Δ/2) 𝜉)

𝑐
1
exp ((√Δ/2) 𝜉) − 𝑐

2
exp ((−√Δ/2) 𝜉)

−
6𝐶𝐾
2
Δ

𝑎 (𝐶 − 1)

× [

𝑐
1
exp ((√Δ/2) 𝜉) + 𝑐

2
exp (− (√Δ/2) 𝜉)

𝑐
1
exp ((√Δ/2) 𝜉) − 𝑐

2
exp (− (√Δ/2) 𝜉)

]

2

,

(36)

where 𝜉 = 𝐾𝑥
𝛽
/Γ(𝛽 + 1) − 𝐾

3
Δ(𝑡
𝛼
/Γ(𝛼 + 1)).

(2) If we choose 𝐵 ̸= 0 and Δ = 𝐵
2
+ 4𝐴 − 4𝐴𝐶 < 0, then

the triangular function solution will be

𝑢 (𝑥, 𝑡) =
3𝐾
2
(Δ − 2𝐶)

𝑎 (𝐶 − 1)

+
6𝐶𝐾
2
√Δ

𝑎 (𝐶 − 1)

×

𝑖𝑐
1
cos (√−Δ𝜉/2) − 𝑐

2
sin ((√−Δ/2) 𝜉)

𝑖𝑐
1
sin ((√−Δ/2) 𝜉) + 𝑐

2
cos ((√−Δ/2) 𝜉)

+
6𝐶𝐾
2
Δ

𝑎 (𝐶 − 1)

× [

𝑖𝑐
1
cos ((√−Δ/2) 𝜉) − 𝑐

2
sin ((√−Δ/2) 𝜉)

𝑖𝑐
1
sin ((√−Δ/2) 𝜉) + 𝑐

2
cos ((√−Δ/2) 𝜉)

]

2

,

(37)

where 𝜉 = 𝐾𝑥
𝛽
/Γ(𝛽 + 1) − 𝐾

3
Δ(𝑡
𝛼
/Γ(𝛼 + 1)).

(3) If we choose 𝐵 = 0 and Δ
1
= 𝐴(𝐶 − 1) ≥ 0, then the

triangular function solution is given as

𝑢 (𝑥, 𝑡) = −
12𝐾
2
Δ
1

𝑎

−
12𝐾
2
Δ
1

𝑎 (𝐶 − 1)

× [

𝑐
1
cos (√Δ

1
𝜉) + 𝑐
2
sin (√Δ

1
𝜉)

𝑐
1
sin (√Δ

1
𝜉) − 𝑐
2
cos (√Δ

1
𝜉)

]

2

,

(38)

where 𝜉 = 𝐾𝑥
𝛽
/Γ(𝛽 + 1) + 4𝐾

3
Δ
1
(𝑡
𝛼
/Γ(𝛼 + 1)).
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(4) If we choose 𝐵 = 0 and Δ
1
= 𝐴(𝐶 − 1) < 0, then the

hyperbolic function solution is given as

𝑢 (𝑥, 𝑡) = −
12𝐾
2
Δ
1

𝑎

+
12𝐾
2
Δ
1

𝑎 (𝐶 − 1)

× [

𝑖𝑐
1
cosh (√−Δ

1
𝜉) − 𝑐
2
sinh (√−Δ

1
𝜉)

𝑖𝑐
1
sinh (√−Δ

1
𝜉) − 𝑐
2
cosh (√−Δ

1
𝜉)

]

2

,

(39)

where 𝜉 = 𝐾𝑥
𝛽
/Γ(𝛽 + 1) − 4𝐾

3
Δ
1
(𝑡
𝛼
/Γ(𝛼 + 1)).

Equation (36) can be rewritten at 𝑐
1
= −𝑐
2
; so we get

the other hyperbolic function solution of (2):

𝑢 (𝑥, 𝑡) =
3𝐾
2
(Δ − 2𝐶)

𝑎 (𝐶 − 1)

−
6𝐶𝐾
2
√Δ

𝑎 (𝐶 − 1)

× tanh[
√Δ

2

(
𝐾𝑥
𝛽

Γ (𝛽 + 1)

− 𝐾
3
Δ

𝑡
𝛼

Γ (𝛼 + 1)

)]

+
6𝐶𝐾
2
√Δ

𝑎 (𝐶 − 1)

× tanh2 [
√Δ

2

(
𝐾𝑥
𝛽

Γ (𝛽 + 1)

− 𝐾
3
Δ

𝑡
𝛼

Γ (𝛼 + 1)

)] .

(40)

Equation (36) becomes

𝑢 (𝑥, 𝑡) =
3𝐾
2
(Δ − 2𝐶)

𝑎 (𝐶 − 1)

−
6𝐶𝐾
2
√Δ

𝑎 (𝐶 − 1)

× coth[
√Δ

2

(
𝐾𝑥
𝛽

Γ (𝛽 + 1)

− 𝐾
3
Δ

𝑡
𝛼

Γ (𝛼 + 1)

)]

+
6𝐶𝐾
2
√Δ

𝑎 (𝐶 − 1)

× coth2 [
√Δ

2

(
𝐾𝑥
𝛽

Γ (𝛽 + 1)

− 𝐾
3
Δ

𝑡
𝛼

Γ (𝛼 + 1)

)]

(41)

at 𝑐
1
= 𝑐
2
.

Remark 5. Kudryashov et al. [41–44] have showed that every
solution, which was obtained when soliton solutions have
been found by some analytic methods, is not a new solu-
tion. They also showed that these methods are very similar.
Furthermore, they mentioned that authors who used these
methods should check the obtained results very carefully.The
reason for using improved (𝐺

󸀠
/𝐺)-expansion method in this

work is to use nonlinear equation (14) instead of linear equa-
tion

𝐺
󸀠󸀠
− 𝜆𝐺
󸀠
− 𝜇𝐺 = 0, (42)

which was used in standard (𝐺󸀠/𝐺)method and to obtain lots
of different solutions.

5. Conclusion

In this paper, we introduced an improved (𝐺
󸀠
/𝐺)-expansion

method and carried it out to obtain new travelling wave solu-
tions of the space-time fractional foamdrainage equation and
the space-time fractional KdV equation. This method gives
new exact solutions for nonlinear FPDEs. These solutions
include the hyperbolic function solution, the exponential
function solution, the triangular function solution, and the
trigonometric function solution.These solutions are useful to
understand the mechanisms of the complicated nonlinear
physical phenomena.
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