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This paper is concernedwith the consensus problem of general linear discrete-timemultiagent systems (MASs) with randompacket
dropout that happens during information exchange between agents. The packet dropout phenomenon is characterized as being
a Bernoulli random process. A distributed consensus protocol with weighted graph is proposed to address the packet dropout
phenomenon. Through introducing a new disagreement vector, a new framework is established to solve the consensus problem.
Based on the control theory, the perturbation argument, and the matrix theory, the necessary and sufficient condition for MASs
to reach mean-square consensus is derived in terms of stability of an array of low-dimensional matrices. Moreover, mean-square
consensusable conditions with regard to network topology and agent dynamic structure are also provided. Finally, the effectiveness
of the theoretical results is demonstrated through an illustrative example.

1. Introduction

Multiagent systems (MASs) are kinds of networked systems
in which each agent updates its states based on the informa-
tion exchanges over communication networks. Due to their
broad applications in many areas such as sensor networks
[1], distributed computation [2], swarms and flocks [3], and
formation control [4], the consensus problem of MASs has
attracted increasing attention in recent years, and consider-
able interesting results have been obtained on this problem.

At the beginning, the consensus problem is investigated
mainly for first-order and second-order MASs. Olfati-Saber
andMurray [5] studied the consensus problem for a network
of first-order integrators under various topology conditions,
including directed or undirected, fixed or switching, andwith
or without communication time-delays; Hatano andMesbahi
[6] studied the asymptotic agreement of first-order contin-
uous MASs over random information network based on
stochastic stability analysis; Zhang and Tian [7] investigated
the MASs consisting of discrete-time second-order agents

under stochastic switching topology and proved that MASs
can achieve mean-square consensus if and only if the union
graphs in the topology set are connected. Sun et al. [8] inves-
tigated the finite-time consensus for first- and second-order
leader-following Multiagent systems. In [9], Lin et al. further
studied the consensus problems of a class of high-order
Multiagent systems with dynamically changing topologies
and time-delays and proved that the communication time-
delays do not affect the stability of the Multiagent sys-
tems.

Recently, some researches on MASs with general linear
dynamics have been conducted. Li et al. [10] proved that
MASs with a communication topology having a spanning
tree can reach consensus under an observe-type protocol
if and only if each agent is stabilizable and detectable. Xu
et al. [11] investigated the information structure for the
consensusability of MASs under both fixed and switching
topologies with dynamic output feedback control. In [12], Xu
et al. further studied the leader-following consensus problem
of discrete-time Multiagent systems with switching and
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undirected topology by applying two kinds of distributed
observer-based consensus protocols to each agent. Su and
Huang [13] proved that if the system matrix is marginally
stable and the dynamic graph is jointly connected, both the
leaderless and the leader-following consensus problems for
linear discrete-time Multiagent systems under switching
network topology can be solved.

Note that most of the existing results on the consensus
problem of MASs are derived from the assumption that the
network communication environment is perfect. However,
communication constraints which may deteriorate the per-
formance of MASs are inevitable in practice. There are num-
erous studies focusing on the consensus problem for MASs
with either communication time delay or presence of per-
turbation or both of them, such as [14–18], but as one
of the main reasons for performance deterioration, packet
dropout, which takes place frequently during the information
exchange between agents, is not fully investigated. Therefore,
it is of great significance to study the effect of packet dropout
in MASs. Ren and Beard [19] studied the consensus problem
for first-order continuous-time agents communicating via
unreliable network through dynamically changing interac-
tion topology method and proved that asymptotic consensus
can be achieved if the union of the directed graph had a span-
ning tree frequently enough. Sun et al. [20] investigated the
convergence and convergence speed for the second-order and
the high-order discrete-time Multiagent systems with rand-
om networks and arbitrary weights. Zhang and Tian [21]
investigated the mean-square consensus problem for contin-
uous time second-order MASs disturbed by noise, variable
delays, and occasional packet dropout and discussed the nec-
essary and sufficient condition for mean-square robust con-
sensusability. And in [22], Zhang and Tian further studied
the consensus seeking problem for linear MASs, where each
agent communicates via a weighted random lossy network
and derived the maximum allowable loss probability.

Motivated by the above analysis, this paper is concerned
with consensus problem of general linear discrete-timeMASs
with random packet dropout that happens during the infor-
mation exchange between agents, which, to the best of our
knowledge, has not been fully investigated until now. The
contribution of this paper lies in the following: first, a dis-
tributed consensus protocol with weighted graph is proposed
to address the packet dropout phenomenon; second, through
introducing a new disagreement vector, the dynamic average
consensus problem is studied based on the established new
framework; third, the necessary and sufficient condition for
MASs to reach mean-square consensus is derived in terms
of stability of an array of low-dimensional matrices, which is
easier to be used in reality; moreover, mean-square consen-
susable conditionswith regard to network topology and agent
dynamic structure are also provided.

The rest of this paper is organized as follows. In Section
2, modeling construction of Multiagent systems with packet
dropout is proposed, and someuseful lemmas are introduced.
In Section 3, a new framework is derived to address the con-
sensus problem of MASs. The consensusable conditions with
regard to network topology and agent dynamic structure are
presented in Section 4. In Section 5, an illustrative example

is provided to demonstrate the effectiveness of our results.
Concluding remarks are drawn in Section 6.

Notation. R𝑛 and R𝑚×𝑛 denote the 𝑛-dimensional Euclidean
space and the set of 𝑚 × 𝑛 real matrix, respectively, and 𝐼

𝑁

represents an𝑁-dimensional identitymatrix. diag{⋅} refers to
a diagonal matrix, or a block diagonal matrix. For matrices𝐴
and𝐵,𝐴 > 𝐵 implies that𝐴 and𝐵 are symmetricmatrices and
that𝐴−𝐵 is positive definite.The superscript 𝑇 and −1mean
transpose and inverse of a real matrix separately, and symbol
∗ in a symmetric matrix implies a block that can be induced
by symmetry. 𝜆min(⋅), 𝜆max(⋅) and 𝜌(⋅), denote, respectively,
the smallest eigenvalue, the largest eigenvalue and the spec-
tral radius of amatrix. Prob{⋅} stands for the occurrence prob-
ability of a stochastic event and Prob{⋅ | ⋅} the conditional
probability.𝐸(⋅) is themathematical expectation operator. ‖⋅‖
and ‖ ⋅ ‖

1
stand the 2-norm and 1-norm respectively.

2. Problem Formulation and Preliminaries

Consider a system of 𝑁 agents with identical general linear
dynamics. The dynamic equation of agent 𝑖 is described by

𝑥
𝑖
(𝑘 + 1) = 𝐴𝑥

𝑖
(𝑘) + 𝐵𝑢

𝑖
(𝑘) , 𝑖 = 1, 2, . . . , 𝑁, (1)

where 𝑥
𝑖
= [𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
]
𝑇

∈ 𝑅
𝑛 is the state variable, 𝑢

𝑖
∈

R𝑚 is the control input, and 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 are
known constant matrices.

Suppose that there is a predesigned undirected fixed
topology 𝐺 which guarantees the effective communication
between distinct nodes. This assumption is quite reasonable,
since it is impossible to reach consensus under an uncon-
nected topology. Denote 𝑁

𝑖
as the neighbor set of the node

𝑖 and 𝐴
𝐺
= [𝑎
𝑖𝑗
] ∈ 𝑅
𝑁×𝑁 as the weighted adjacency matrix of

undirected graph 𝐺 with 𝑎
𝑖𝑖
= 0, and for any 𝑖 belongs to set

𝑁
𝑖
, 𝑎
𝑖𝑗
= 𝑎
𝑗𝑖
> 0, otherwise, 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖
= 0.

Under ideal communication environment, the commonly
used linear distributed consensus protocol in MASs is as
follows:

𝑢
𝑖
(𝑘) = 𝐾 ∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘) − 𝑥

𝑖
(𝑘)) , 𝑖 = 1, 2, . . . , 𝑁, (2)

where𝐾 ∈ R𝑚×𝑛 is the gain matrix.
As mentioned in Section 1, packet dropout is inevitable

in practical environment. In this paper, Bernoulli distributed
white sequence {𝜃

𝑖𝑗
(𝑘)} is introduced to model the unrelia-

bility of the link between agent 𝑖 and agent 𝑗. At any given
time instant 𝑘, for any 𝑗 ∈ 𝑁

𝑖
, 𝜃
𝑖𝑗
(𝑘) takes value in the set

{0, 1}. Suppose that for any 𝑖, 𝑗 ∈ {1, . . . , 𝑁}, 𝜃
𝑖𝑗
(𝑘) is mutually

independent; that is, the packet dropout probability between
each pair of agents is independent. When the packet is
transmitted successfully between agent 𝑖 and agent 𝑗, 𝜃

𝑖𝑗
(𝑘) =

1; when packet dropout takes place between agent 𝑖 and agent
𝑗, 𝜃
𝑖𝑗
(𝑘) = 0, which can be described as

𝜃
𝑖𝑗
(𝑘) = {

0, with probability 𝑝
𝑖𝑗
,

1, with probability 1 − 𝑝
𝑖𝑗
,

(3)
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where 𝑝
𝑖𝑗
is the occurrence probability of packet dropout

between 𝑖 and 𝑗, and for any 𝑗 ∉ 𝑁
𝑖
, 𝜃
𝑖𝑗
(𝑘) ≡ 0, 𝑝

𝑖𝑗
≡ 1.

Besides, due to the occurrence of packet dropout, the
topology of MAS (1) is no longer fixed. Denote |𝑁

𝑖
| as the

number of agents in set 𝑁
𝑖
, 𝑆 as the total number of the

possible topologies. It is easy to see that 𝑆 = 2
∑
𝑁

𝑖=1
|𝑁𝑖|/2;

then the topology of the MAS is changing among the set
{𝐺
1
, . . . , 𝐺

𝑆
}. Suppose that at certain time instant 𝑘, 𝜃

𝑖𝑗
(𝑘) =

𝜃
𝑚

𝑖𝑗
and the network topology is 𝐺

𝑚
, then the occurrence

probability of graph 𝐺
𝑚
,𝑚 = 1, . . . , 𝑆, is

𝜋
𝑚
= ∏

𝑖=1, 𝑖<𝑗

(𝜃
𝑚

𝑖𝑗
(1 − 𝑝

𝑖𝑗
) + (1 − 𝜃

𝑚

𝑖𝑗
) 𝑝
𝑖𝑗
) . (4)

Based upon the above analysis, the following distributed
consensus protocol is employed in this paper:

𝑢
𝑖
(𝑘) = 𝐾 ∑

𝑗∈𝑁𝑖

𝜃
𝑖𝑗
(𝑘) 𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘) − 𝑥

𝑖
(𝑘)) , 𝑖 = 1, . . . , 𝑁,

(5)

where𝐾 is the state feedback gain matrix to be designed.
Substituting (5) into (1), the dynamic equation of agent 𝑖

can be rewritten as

𝑥
𝑖
(𝑘 + 1) = 𝐴𝑥

𝑖
(𝑘) + 𝐵𝐾 ∑

𝑗∈𝑁𝑖

𝜃
𝑖𝑗
(𝑘) 𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘) − 𝑥

𝑖
(𝑘)) .

(6)

Then, the states of MAS (1) evolve according to the following
linear system:

𝑥 (𝑘 + 1) = (𝐼
𝑁
⊗ 𝐴 − 𝐿

𝜎(𝑘)
⊗ (𝐵𝐾)) 𝑥 (𝑘) , (7)

where 𝑥 = [𝑥
𝑇

1
, . . . , 𝑥

𝑇

𝑁
]
𝑇, 𝜎(⋅) : 𝑍

+

→ {1, 2, . . . , 𝑆} is a
stochastic process driven by an i.i.d. process and𝐿

𝜎(𝑘)
∈ {𝐿
𝑚
},

where 𝐿
𝑚
= [𝑙
𝑚

𝑖𝑗
]
𝑁×𝑁

, 𝑚 = 1, . . . , 𝑆, is the Laplacian matrix
associated with 𝐺

𝑚
, with

𝑙
𝑚

𝑖𝑗
=

{
{
{

{
{
{

{

𝑁

∑

𝑗=1

𝜃
𝑚

𝑖𝑗
𝑎
𝑖𝑗
, 𝑖 = 𝑗,

−𝜃
𝑚

𝑖𝑗
𝑎
𝑖𝑗,

𝑖 ̸= 𝑗.

(8)

Obviously, the Laplacian matrix 𝐿
𝑚
is a symmetric matrix

with zero row sum that is, ∀𝑖 ̸= 𝑗, 𝑙
𝑖𝑗
= 𝑙
𝑗𝑖
, and ∑𝑁

𝑗=1
𝑙
𝑚

𝑖𝑗
= 0.

Before presenting ourmain results, the concepts ofmean-
square stability and mean-square consensus are introduced
first, and along with them are some useful lemmas which play
significant roles in the derivation of our results.

Definition 1 (see [23]). A closed-loop system is said to be
mean-square stable, if for any 𝜀 > 0, there exists 𝛿(𝜀) > 0 such
that for any 𝑘 > 0, 𝐸(‖𝑥(𝑘)‖2) < 𝜀 holds when 𝐸(‖𝑥(0)‖2) <
𝛿(𝜀). In addition, if lim

𝑘→∞
𝐸(‖𝑥(𝑘)‖

2

) = 0 for any initial
condition, then the closed-loop system is said to be globally
mean-square asymptotically stable.

Definition 2. Multiagent system (1) with protocol (5) is said
to reach consensus in mean-square sense, if for any initial

distribution and initial states, lim
𝑘→∞

𝐸(‖𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)‖
2

) =

0 holds for all 𝑖, 𝑗 ∈ {1, . . . , 𝑁}. Furthermore, if there exists a
proper state feedback gain matrix𝐾 such that the Multiagent
system can achieve mean-square consensus, then we say that
system (1) is mean-square consensusable under protocol (5).

Lemma 3 (see [21]). For any vector 𝑧(𝑘) ∈ R𝑛, denote 𝑧(𝑘) :=
𝐸(𝑧(𝑘) ⊗ 𝑧(𝑘)), then there is

𝐸 (‖𝑧 (𝑘)‖
2

) ≤ ‖𝑧 (𝑘)‖
1
≤ 𝑛𝐸 (‖𝑧 (𝑘)‖

2

) . (9)

Lemma 4 (see [6]). For an undirected graph with 𝑛 vertices,
the Laplacian is a positive-semidefinite symmetric matrix, and
the spectrum of a graph Laplacian is on the form

0 = 𝜆
1
(𝐿) ≤ 𝜆

2
(𝐿) ≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛−1
(𝐿) ≤ 𝜆

𝑛
(𝐿) , (10)

with 𝜆
2
(𝐿) > 0 if and only if the graph that corresponds to 𝐿 is

connected.

Lemma 5. ∑𝑆
𝑚=1

𝜋
𝑚
𝐿
𝑚
has only one zero eigenvalue, if and

only if the union graph of the topology set {𝐺
1
, . . . , 𝐺

𝑆
} is con-

nected.

Proof. Since∑𝑆
𝑚=1

𝜋
𝑚
𝐿
𝑚
can be treated as a Laplacian matrix

of a graph which has the same edges with the union graph of
the topology set {𝐺

1
, . . . , 𝐺

𝑆
}, then together with Lemma 4, it

can be obtained that Lemma 5 holds.

Lemma 6 (see [24]). For any𝐴 ∈ R𝑛×𝑛, there exist orthogonal
matrix 𝑈 and an upper triangular matrix 𝑉, such that

𝑈
𝑇

𝐴𝑈 = 𝑉 =

[

[

[

[

[

𝜇
1
V
12

⋅ ⋅ ⋅ V
1𝑛

𝜇
2
⋅ ⋅ ⋅ V
2𝑛

d
...
𝜇
𝑛

]

]

]

]

]

, (11)

where 𝜇
𝑖
, 𝑖 = 1, . . . , 𝑛, are the eigenvalues of matrix 𝐴.

3. Necessary and Sufficient Conditions for
Mean-Square Consensus

Introduce the following variable:

𝛿
𝑖
(𝑘) = 𝑥

𝑖
(𝑘) −

1

𝑁

𝑁

∑

𝑗=1

𝑥
𝑗
(𝑘) . (12)

Rewrite (12) in a compact form, which is

𝛿 (𝑘) = (𝐶 ⊗ 𝐼
𝑛
) 𝑥 (𝑘) , (13)

where𝐶 = 𝐼
𝑁
− (1/𝑁)1⃗1⃗

𝑇 and 𝛿 = [𝛿𝑇
1
, . . . , 𝛿

𝑇

𝑁
]
𝑇

∈ 𝑅
𝑁𝑛 is the

so-called disagreement vector.
It is easy to verify that 𝛿 evolves according to the following

disagreement dynamics:

𝛿 (𝑘 + 1) = (𝐼
𝑁
⊗ 𝐴 − 𝐿

𝜎(𝑘)
⊗ (𝐵𝐾)) 𝛿 (𝑘) , (14)

where 𝛿(𝑘) is defined in (7).
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Since 𝐸(‖𝛿(𝑘)‖2) = 𝐸(𝑥
𝑇

(𝑘)(𝑄 ⊗ 𝐼
𝑛
)𝑥(𝑘)), where 𝑄 =

𝐶
𝑇

𝐶 = 𝐼
𝑁
− (1/𝑁)1⃗1⃗

𝑇, it is easy to verify that

𝐸 (‖𝛿(𝑘)‖
2

) =

1

2𝑁

∑

𝑖 ̸= 𝑗

𝐸(






𝑥
𝑗
(𝑘) − 𝑥

𝑖
(𝑘)







2

) . (15)

Equation (15) implies that the mean-square consensus
problem can be solved if and only if lim

𝑘→∞
𝐸(‖𝛿(𝑘)‖

2

) = 0.
From Definitions 1 and 2, it is easy to see that the consensus
problem of MAS (1) is converted to the mean square stability
analysis of system (14).

Remark 7. If the system matrix 𝐴 is Schur stable, which
means all eigenvalues of 𝐴 are located in the unit cir-
cle, MAS (1) would definitely reach consensus without the
design of consensus protocol, since under this condition,
for any 𝑖 ∈ {1, . . . , 𝑁}, 𝑥

𝑖
will converge to zero, and

lim
𝑘→∞

𝐸(‖𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)‖
2

) = 0 holds for sure. In view of
this, we assume that not all eigenvalues of 𝐴 are located in
the unit circle.

Theorem8. For any initial distribution and initial states,Mul-
tiagent system (1) with the Bernoulli packet dropout between
agents can achieve mean-square consensus under protocol (1),
if and only if

𝜌 (𝐴 −
̂
𝜆
𝑖
𝐵𝐾) < 1, (16)

where ̂
𝜆
𝑖
, 𝑖 = 2, . . . , 𝑁, are the eigenvalues of matrix

∑
𝑆

𝑚=1
𝜋
𝑚
𝐿
𝑚
except one zero eigenvalue.

Proof. Since for each 𝜎(𝑘) = 𝑚, 𝑚 = 1, . . . , 𝑆, 𝐿
𝜎(𝑘)

is a
symmetric matrix with zero row sum, and 𝑤

𝑇

= (1/𝑁)1⃗
𝑇

and 1⃗ are, respectively, the left and right eigenvectors of
𝐿
𝜎(𝑘)

associated with zero eigenvalue, we can construct an
invertible matrix 𝑇 = [1⃗ 𝑇

1
] with 𝑇−1 = [𝑤 𝑇

2

𝑇

]

𝑇

, such
that

𝑇
−1

𝐿
𝜎(𝑘)

𝑇 = 𝐿
𝜎(𝑘)

= [

0 0

0 �̃�
𝜎(𝑘)

] , (17)

where 𝑇 ∈ R𝑁×𝑁, 𝑇
1
∈ R𝑁×(𝑁−1), 𝑇

2
∈ R(𝑁−1)×𝑁, and

�̃�
𝜎(𝑘)

= 𝑇
2
𝐿
𝜎(𝑘)

𝑇
1
∈ 𝑅
(𝑁−1)×(𝑁−1).

Introduce the following variable: 𝜑(𝑘) = (𝑇
−1

⊗ 𝐼
𝑛
)𝛿(𝑘),

where 𝜑 = [𝜑
𝑇

1
, . . . , 𝜑

𝑇

𝑁
]
𝑇

∈ 𝑅
𝑁𝑛; then (14) can be denoted in

terms of 𝜑 as

𝜑 (𝑘 + 1) = (𝐼
𝑁
⊗ 𝐴 − 𝐿

𝜎(𝑘)
⊗ (𝐵𝐾)) 𝜑 (𝑘) . (18)

Note that 𝜑
1
= (𝑤
𝑇

⊗ 𝐼
𝑛
)𝛿 ≡ 0, which implies that state

𝜑
1
is always stable; thus, divide 𝜑(𝑘) into two parts; that is,

𝜑(𝑘) = [𝜑
𝑇

1
(𝑘), 𝜑
𝑇

(𝑘)]
𝑇, with 𝜑 = [𝜑

𝑇

2
, . . . , 𝜑

𝑇

𝑁
]
𝑇, it can be

derived from (17) and (18) that

𝜑 (𝑘 + 1) = 𝐴
𝜎(𝑘)

𝜑 (𝑘) , (19)

where 𝐴
𝜎(𝑘)

= 𝐼
𝑁−1

⊗ 𝐴 − �̃�
𝜎(𝑘)

⊗ (𝐵𝐾).

Similar to [21], let 𝜉(𝑘) = 𝐸(𝜑(𝑘)⊗𝜑(𝑘)); then 𝜉(𝑘) evolves
according to

𝜉 (𝑘 + 1) =

𝑆

∑

𝑚=1

𝜋
𝑚
(𝐴
𝑚
⊗ 𝐴
𝑚
) 𝜉 (𝑘) . (20)

From Lemma 3, system (14) is mean-square stable if and
only if system (20) is stable. Then, from the discrete-time
system stability theory, it can be concluded that the necessary
and sufficient condition for mean-square stability of (14) is
𝜌(∑
𝑆

𝑚=1
𝜋
𝑚
(𝐴
𝑚
⊗ 𝐴
𝑚
)) < 1.

Denote𝐴
𝑚
= Φ−Ψ

𝑚
𝐾withΦ = 𝐼

𝑁−1
⊗𝐴,Ψ

𝑚
= �̃�
𝑚
⊗𝐵,

𝐾 = 𝐼
𝑁−1

⊗ 𝐾, and 𝐾 = 𝜀𝐾
; then there is ∑𝑆

𝑚=1
𝜋
𝑚
(𝐴
𝑚
⊗

𝐴
𝑚
) = Φ⊗Φ−𝜀(∑

𝑆

𝑚=1
𝜋
𝑚
Φ⊗(Ψ

𝑚
𝐾


)+∑
𝑆

𝑚=1
𝜋
𝑚
(Ψ
𝑚
𝐾


)⊗Φ)

+ 𝜀
2

∑
𝑆

𝑚=1
𝜋
𝑚
(Ψ
𝑚
𝐾


) ⊗ (Ψ
𝑚
𝐾


). The above equation can
be treated as a perturbation of Φ ⊗ Φ by two terms
depending on 𝜀. For small enough 𝜀, the above formula is
equal to ∑

𝑆

𝑚=1
𝜋
𝑚
(𝐴
𝑚
⊗ 𝐴
𝑚
) = Φ ⊗ Φ − 𝜀(∑

𝑆

𝑚=1
𝜋
𝑚
Φ ⊗

(Ψ
𝑚
𝐾


) +∑
𝑆

𝑚=1
𝜋
𝑚
(Ψ
𝑚
𝐾


) ⊗Φ). Meanwhile, (∑𝑆
𝑚=1

𝜋
𝑚
𝐴
𝑚
) ⊗

(∑
𝑆

𝑚=1
𝜋
𝑚
𝐴
𝑚
) = Φ ⊗ Φ − 𝜀(∑

𝑆

𝑚=1
𝜋
𝑚
Φ ⊗ (Ψ

𝑚
𝐾


) +

∑
𝑆

𝑚=1
𝜋
𝑚
(Ψ
𝑚
𝐾


) ⊗ Φ) + 𝜀
2

∑
𝑆

𝑚=1
(𝜋
𝑚
Ψ
𝑚
𝐾


) ⊗ (𝜋
𝑚
Ψ
𝑚
𝐾


).
Likewise, by applying perturbation argument, for a small
enough 𝜀, 𝜌(∑𝑆

𝑚=1
𝜋
𝑚
(𝐴
𝑚
⊗ 𝐴
𝑚
)) < 1 is equivalent to

𝜌((

𝑆

∑

𝑚=1

𝜋
𝑚
𝐴
𝑚
) ⊗ (

𝑆

∑

𝑚=1

𝜋
𝑚
𝐴
𝑚
)) < 1. (21)

Next, it will be proved that (21) holds if and only if (16)
is satisfied.

It can be seen from (18) that ∑𝑆
𝑚=1

𝜋
𝑚
�̃�
𝑚
has the same

eigenvalue with ∑
𝑆

𝑚=1
𝜋
𝑚
𝐿
𝑚

and ∑
𝑆

𝑚=1
𝜋
𝑚
𝐿
𝑚

except one
zero eigenvalue. Besides, based on Lemma 6, there exists an
orthogonal matrix 𝑈 ∈ 𝑅

(𝑁−1)×(𝑁−1) such that

𝑈
𝑇

(

𝑆

∑

𝑚=1

𝜋
𝑚
�̃�
𝑚
)𝑈 =

[

[

[

[

[

[

̂
𝜆
2
∗ ⋅ ⋅ ⋅ ∗

̂
𝜆
3
⋅ ⋅ ⋅ ∗

...
̂
𝜆
𝑁

]

]

]

]

]

]

, (22)

where ̂
𝜆
𝑖
, 𝑖 = 2, . . . , 𝑁, are the eigenvalues of matrix

∑
𝑆

𝑚=1
𝜋
𝑚
𝐿
𝑚
except one zero eigenvalue. It is easy to verify

that∑𝑆
𝑚=1

𝜋
𝑚
𝐴
𝑚
= 𝐼
𝑁−1

⊗𝐴−∑
𝑆

𝑚=1
𝜋
𝑚
�̃�
𝑚
⊗(𝐵𝐾) is similar to

[

[

[

[

[

[

𝐴 −
̂
𝜆
2
𝐵𝐾 ∗ ⋅ ⋅ ⋅ ∗

𝐴 −
̂
𝜆
3
𝐵𝐾 ⋅ ⋅ ⋅ ∗

d
...

𝐴 −
̂
𝜆
𝑁
𝐵𝐾

]

]

]

]

]

]

. (23)

Based on the matrix theory, matrix ∑
𝑆

𝑚=1
𝜋
𝑚
𝐴
𝑚

has the same eigenvalue with matrix (23), obviously
𝜌(∑
𝑆

𝑚=1
𝜋
𝑚
𝐴
𝑚
) < 1, if and only if (16) is satisfied. Then,

together with the properties of the Kronecker product, it is
safe to say that (21) holds if and only if (16) is satisfied, which
completes the proof.
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Remark 9. The contribution ofTheorem 8 lies in the fact that
it converts the consensus problem of MAS (1) into a set of
matrices with the same dimensions as a single agent, which
reduces the computational complexity greatly. Besides, while
in most of the existing results each agent is guaranteed to
achieve consensuswith agent 1, see [7, 11, 21] for example, or to
achieve average consensus, see [5], for example, in this paper a
new disagreement vector is introduced to solve the consensus
problem so that each agent will reach consensus on the aver-
age states of all agents, that is, dynamic average consensus.

4. Consensusability Analysis

Theorem 8 presents the numerical solution to consensus
problem, which also implies the design method of consensus
protocol. However, in practice, we are equally interested in
that under what conditions MAS (1) has the ability to reach
consensus and inequality (16) has a solution at the same time,
that is, what are the consensusable conditions? In this section,
we focus on addressing this problem.

Theorem 10. Multiagent system (1) with the Bernoulli packet
dropout between agents can achieve mean-square consensus
under protocol (5), if and only if the union graph of the topology
set {𝐺

1
, . . . , 𝐺

𝑆
} is connected, and (𝐴, 𝐵) is stabilizable.

Proof. Necessity: define 𝐸(𝐿
𝜎(𝑘)

) = ∑
𝑆

𝑚=1
𝜋
𝑚
𝐿
𝑚

as the
expected Laplacianmatrix and its corresponding graph as the
expected graph. Since 𝐸(𝐿

𝜎(𝑘)
) is a symmetric matrix, there

exists an invertible matrix ̂𝑇 = [1⃗ 𝐹] with ̂
𝑇
−1

= [𝑤 𝐸
𝑇

]

𝑇

,
such that

̂
𝑇
−1

𝐸 (𝐿
𝜎(𝑘)

)
̂
𝑇 = Λ = [

0 0

0 Δ̂

] , (24)

where ̂
𝑇 ∈ R𝑁×𝑁, 𝐹 ∈ R𝑁×(𝑁−1), 𝐸 ∈ R(𝑁−1)×𝑁, 𝑤𝑇,

which is defined in (18), is also the left eigenvalue of 𝐸(𝐿
𝜎(𝑘)

)

associated with zero eigenvalue, and Δ̂ ∈ 𝑅
(𝑁−1)×(𝑁−1) is

a diagonal matrix with its diagonal elements being ̂𝜆
𝑖
, 𝑖 =

2, . . . , 𝑁.
Denote 𝜙(𝑘) = 𝐸(𝛿(𝑘)); then 𝜙(𝑘) evolves according to

𝜙 (𝑘 + 1) = (𝐼
𝑁
⊗ 𝐴 − 𝐸 (𝐿

𝜎(𝑘)
) ⊗ (𝐵𝐾)) 𝜙 (𝑘) , (25)

where 𝜙 = [𝜙𝑇
1
, . . . , 𝜙

𝑇

𝑁
]
𝑇

∈ 𝑅
𝑁𝑛.

Similar to the proof inTheorem 8, introduce the following
variable transformation: 𝜁(𝑘) = (

̃
𝑇
−1

⊗ 𝐼
𝑛
)𝜙(𝑘); then the

dynamic equation of 𝜁(𝑘) can be written as

𝜁 (𝑘 + 1) = (𝐼
𝑁
⊗ 𝐴 − Λ ⊗ (𝐵𝐾)) 𝜁 (𝑘) , (26)

where 𝜁 = [𝜁𝑇
1
, . . . , 𝜁

𝑇

𝑁
]
𝑇

∈ 𝑅
𝑁𝑛.

Notice that 𝜁
1
(𝑘) = (𝑤

𝑇

⊗ 𝐼
𝑁
)𝐸(𝛿(𝑘)) ≡ 0, divide

𝜁(𝑘) = (𝑤
𝑇

⊗ 𝐼
𝑁
)𝐸(𝛿(𝑘)) ≡ 0 into two parts, that is, 𝜁(𝑘) =

[𝜁
𝑇

1
(𝑘),

̃
𝜁
𝑇

(𝑘)]
𝑇, from (19) and (21), it can be derived that

̃
𝜁 (𝑘 + 1) =

[

[

[

[

[

[

𝐴 −
̂
𝜆
2
𝐵𝐾 0 ⋅ ⋅ ⋅ 0

𝐴 −
̂
𝜆
3
𝐵𝐾 ⋅ ⋅ ⋅ 0

d
...

𝐴 −
̂
𝜆
𝑁
𝐵𝐾

]

]

]

]

]

]

̃
𝜁 (𝑘) .

(27)

If the union graph of the topology set {𝐺
1
, . . . , 𝐺

𝑆
} is not

connected, the expected graph is definitely not connected.
It can be obtained from Lemma 3 that 0 =

̂
𝜆
2
≤

̂
𝜆
3
≤

⋅ ⋅ ⋅ ≤
̂
𝜆
𝑁
. Due to the fact that not all eigenvalues of 𝐴 are

located in the unit circle, there exists an initial state such that
lim
𝑘→∞

𝜁(𝑘) ̸= 0 and lim
𝑘→∞

𝐸(𝛿(𝑘)) ̸= 0 thus; system (14) is
not mean-square stable since 𝐸(‖𝛿(𝑘)‖2) ≥ ‖𝐸(𝛿(𝑘))‖

2, and
consequently, Multiagent system (1) cannot achieve mean-
square consensus.

Besides, if (𝐴, 𝐵) is unstabilizable, it is impossible to
guarantee that 𝜌(𝐴 −

̂
𝜆
𝑖
𝐵𝐾) < 1, 𝑖 = 2, . . . , 𝑁, even if the

topology condition is satisfied, and system (27) is still not
guaranteed to be stable.

Sufficiency: It can be derived from Lemma 5 that when
the union of the graphs in the topology set is connected,
all eigenvalues of ∑𝑆

𝑚=1
𝜋
𝑚
�̃�
𝑚
are positive; that is, ̂𝜆

𝑖
> 0,

𝑖 = 2, . . . , 𝑁.Therefore, when the union graph of the topology
set {𝐺

1
, . . . , 𝐺

𝑆
} is connected and (𝐴, 𝐵) is stablizable, there

exists a proper gain matrix 𝐾 such that 𝜌(𝐴 −
̂
𝜆
𝑖
𝐵𝐾) < 1,

𝑖 = 2, . . . , 𝑁. The proof is completed.

Remark 11. In [21], for two-order continuous-time MASs
with 𝐴 = [

0 1

0 0
], 𝐵 = [

0

1
], which implies that (𝐴, 𝐵) is

stablizable, Zhang and Tian prove that the MAS can reach
mean-square consensus if and only if the union graph is
connected, while in this paper, it is verified theoretically
that the stabilizability of (𝐴, 𝐵) is essential for achieving
consensus.

5. Numerical Simulation

Consider anMAS consisted of four agents, with its prior fixed
weighted communication topology being 𝑁

1
= {2}, 𝑁

2
=

{1, 3}, 𝑁
3
= {2, 4}, 𝑁

4
= {3}, 𝑎

12
= 2, 𝑎

23
= 2, 𝑎

34
= 3;

then there are eight graphs in the topology set {𝐺
1
, . . . , 𝐺

8
}.

Assume that the packet dropout probability between each
pair of agents is 0.1.

Each agent is described by a three-order difference
equation, with

𝐴 =
[

[

0.6 0 0.2

0.3 0.3 0.4

0 0 1.2

]

]

, 𝐵 =
[

[

0

0

1

]

]

. (28)

Obviously, each agent is unstable since the eigenval-
ues of 𝐴 are 0.6, 0.3, and 1.2, and (𝐴, 𝐵) is stabliz-
able. By applying Theorem 8, it can be obtained that
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Figure 1:The disagreement values between agents under consensus
protocol (5).

𝐾 = [0.1111 − 0.0000 0.1944], such that 𝜌(𝐴 −
̂
𝜆
𝑖
𝐵𝐾) =

0.8910 < 1. Suppose the initial conditions are 𝑥
10

=

[2 3 2]

𝑇, 𝑥
20
= [2 1 −1]

𝑇, 𝑥
30
= [1 −2 −3]

𝑇, and 𝑥
40
=

[−1 2 −2]

𝑇; the simulation results are shown in Figure 1.

6. Conclusion

We have studied the consensus problem of general lin-
ear discrete-time Multiagent systems (MASs) with random
packet dropout that happens during information exchange
between agents. The packet dropout phenomenon is charac-
terized as being a Bernoulli random process. A distributed
consensus protocol with weighted graph is proposed to
address the packet dropout phenomenon. By constructing
a new disagreement vector, a new framework is established
to solve the consensus problem. Then, through introducing
a common linear transformation for the switching system,
together with the control theory, the perturbation argument,
and the matrix theory, the necessary and sufficient condition
for MASs to reach mean-square consensus is derived in
terms of stability of an array of low-dimensional matri-
ces. Moreover, mean-square consensusable conditions with
regard to network topology and agent dynamic structure are
also provided.

It is worth pointing out that this paper is only a first step;
the consensus problem of linear discrete time MASs, which
may be affected by many other factors including time-delay,
and noise, is not fully investigated, and this is of our research
interest in the future.
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