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This work concerns the stability of impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion
terms as well as Dirichlet boundary condition. By means of Poincaré inequality and Gronwall-Bellman-type impulsive integral
inequality, we summarize some new and concise sufficient conditions ensuring the global exponential stability of equilibrium point.
The proposed criteria are relevant to the diffusion coefficients and the smallest positive eigenvalue of corresponding Dirichlet Lap-
lacian. In conclusion, two examples are illustrated to demonstrate the effectiveness of our obtained results.

1. Introduction

Cohen-Grossberg neural networks (CGNNs) were intro-
duced by Cohen and Grossberg in 1983 [1] and have been a
hot topic due to their important applications in various fields
such as parallel computation, associative memory, image
processing, and optimization problems.

By reason that time delays are unavoidably encountered
for the finite switching speed of neurons and amplifiers in the
implementation of neural networks, a more powerful model
of delayed Cohen-Grossberg neural networks (DCGNNs)
is afterwards proposed. This kind of mathematical models
is widely applied in dynamic image processing and pattern
recognition problems. It is worth noting that all these appli-
cations depend heavily on the dynamical behaviors such as
stability, convergence, and oscillatory [2–6]. Meanwhile,
stability is an important consideration in the designs and
applications of neural networks. The stability of delayed
neural networks is a subject of current interest, and therefore
considerable theoretical efforts have been put into this topic
followed by a large number of stability criteria reported; for
example, see [7–12] and the references therein.

In real world, however, many evolutionary processes are
characterized by abrupt changes at certain instants which
may be caused by switching phenomena, frequency changes,

or other sudden noises. As such, in the past few years, sci-
entists have become gradually interested in the influence
that impulses may have on the CGNNs and DCGNNs, thus
obtaining some related results; for example, see [13–18] and
the references therein.

Actually, besides impulsive effects, we have to recognize
that diffusion effects are also nonignorable in reality as
diffusion is unavoidable when electrons are moving in asym-
metric electromagnetic fields. On this account, the model
of neural networks with both impulses and diffusion should
be more effective for describing the evolutionary process of
practical systems. Based on this consideration, we wonder
what the influence of diffusion on the stability of CGNNs and
DCGNNs is.

So far there have appeared a few theoretical achievements
[19–29] on the stability of impulsive reaction-diffusion neural
networks with or without delays. Particularly, in [21–26], the
main research technique is the impulsive differential inequa-
lity whereby the authors discussed the stability of equilibrium
point and provided a series of sufficient conditions indepen-
dent of diffusion. From these results, we fail to see the influ-
ence of diffusion on the stability of CGNNs and DCGNNs.

Encouragingly, recently there were reported some new
results on the stability of CGNNs and DCGNNs in [19, 20,
27]; thereinto, the presented stability criteria derived from
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the impulsive differential inequality are related to the diffu-
sion terms, and thereby we know the diffusion do contribute
to the stability of impulsive neural networks.

In this paper, different from [20, 27], we shall consider
the case where the boundary condition is Dirichlet boundary
condition rather than Neumann boundary condition. More-
over, unlike [19], we shall utilize the new method of Poincarè
inequality to deal with the reaction-diffusion terms, and
Gronwall-Bellman-type impulsive integral inequality is also
introduced for stability analysis. The obtained results show
that not only the reaction-diffusion coefficients but also the
first eigenvalue of corresponding Dirichlet Laplacian can
affect the stability.

The rest of this paper is structured as follows. In Section 2,
the model of impulsive delayed Cohen-Grossberg neural
networks with reaction-diffusion terms as well as Dirichlet
boundary condition is outlined and some facts and lemmas
are introduced for later reference. By the new agencies of
Gronwall-Bellman-type impulsive integral inequality and
Poincaré inequality, we discuss the global exponential stabil-
ity of equilibrium point and develop some new and concise
algebraic criteria in Section 3. To conclude, two illustrative
examples are given in Section 4 to verify the effectiveness of
our results.

2. Preliminaries

Let𝑅
𝑛 denote the 𝑛-dimensional Euclidean space, and letΩ ⊂

𝑅
𝑚 be an open bounded domain with smooth boundary 𝜕Ω

and mesΩ > 0. Let 𝑅
+

= [0, ∞) and 𝑡
0

∈ 𝑅
+
.

Consider the following impulsive CGNN with time-
varying delays and reaction-diffusion terms:

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑚

∑

𝑠=1

𝜕

𝜕𝑥
𝑠

(𝐷
𝑖𝑠

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑠

)

− 𝑎
𝑖
(𝑢
𝑖
(𝑡, 𝑥)) [

[

𝜔
𝑖
(𝑢
𝑖
(𝑡, 𝑥)) −

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))]

]

,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,

(1)

𝑢
𝑖
(𝑡
𝑘

+ 0, 𝑥) = 𝑢
𝑖
(𝑡
𝑘
, 𝑥) + 𝑃

𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) ,

𝑥 ∈ Ω, 𝑘 = 1, 2, . . . , 𝑖 = 1, 2, . . . , 𝑛,

(2)

where 𝑛 corresponds to the numbers of units in a neural
network, 𝑥 = (𝑥

1
, . . . , 𝑥

𝑚
)
𝑇

∈ Ω, 𝑢
𝑖
(𝑡, 𝑥) denotes the

state of the 𝑖th neuron at time 𝑡 and in space 𝑥, 𝐷
𝑖𝑠

=

const > 0 represents transmission diffusion of the 𝑖th unit,
𝑎
𝑖
(𝑢
𝑖
(𝑡, 𝑥)) represents the amplification function, 𝜔

𝑖
(𝑢
𝑖
(𝑡, 𝑥))

is the appropriate behavior function, activation function
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥)) stands for the output of the 𝑗th unit at time 𝑖

and in space 𝑥 and 𝑏
𝑖𝑗
and 𝑐
𝑖𝑗
are constants: 𝑏

𝑖𝑗
indicates the

connection strength of the 𝑗th unit on the 𝑖th unit at time

𝑡 and in space 𝑥, while 𝑐
𝑖𝑗
denotes the connection weight of

the 𝑗th unit on the 𝑖th unit at time 𝑡 − 𝜏
𝑗
(𝑡) and in space 𝑥,

where 𝜏
𝑗
(𝑡) corresponds to the transmission delay along the

axon of the jth unit satisfying 0 ≤ 𝜏
𝑗
(𝑡) ≤ 𝜏 (𝜏 = const) and

⋅

𝜏
𝑗
(𝑡) < 1 − (1/ℎ)(ℎ > 0). {𝑡

𝑘
} (𝑘 = 1, 2, . . .) is the sequence

of impulsive moments meeting 0 ≤ 𝑡
0

< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ and
lim
𝑘→∞

𝑡
𝑘

= ∞; 𝑢
𝑖
(𝑡
𝑘

+ 0, 𝑥) and 𝑢
𝑖
(𝑡
𝑘

− 0, 𝑥) represent
the right-hand and left-hand limit of 𝑢

𝑖
(𝑡, 𝑥) at time 𝑡

𝑘
and

in space 𝑥, respectively. 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) stands for the abrupt

change of 𝑢
𝑖
(𝑡, 𝑥) at impulsive moment 𝑡

𝑘
and in space 𝑥.

Denote by 𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥; 𝑡
0
, 𝜑), 𝑢 ∈ 𝑅

𝑛, the solution of
systems (1)-(2), satisfying the initial condition

𝑢 (𝑠, 𝑥; 𝑡
0
, 𝜑) = 𝜑 (𝑠, 𝑥) , 𝑡

0
− 𝜏 ≤ 𝑠 ≤ 𝑡

0
, 𝑥 ∈ Ω, (3)

and Dirichlet boundary condition

𝑢 (𝑡, 𝑥; 𝑡
0
, 𝜑) = 0, 𝑡 ≥ 𝑡

0
, 𝑥 ∈ 𝜕Ω, (4)

where the vector-valued function 𝜑(𝑠, 𝑥) = (𝜑
1
(𝑠, 𝑥), . . . ,

𝜑
𝑛
(𝑠, 𝑥))

𝑇 is such that ∫
Ω

∑
𝑛

𝑖=1
𝜑
2

𝑖
(𝑠, 𝑥)𝑑𝑥 is bounded on [𝑡

0
−

𝜏, 𝑡
0
].
The solution 𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥; 𝑡

0
, 𝜑) = (𝑢

1
(𝑡, 𝑥; 𝑡

0
, 𝜑), . . . ,

𝑢
𝑛
(𝑡, 𝑥; 𝑡

0
, 𝜑))
𝑇 of problems (1)–(4) is, for the time variable 𝑡, a

piecewise continuous function with the first kind discontinu-
ity at the points 𝑡

𝑘
(𝑘 = 1, 2, . . .), where it is left-continuous;

that is, the following relations are valid:

𝑢
𝑖
(𝑡
𝑘

− 0, 𝑥) = 𝑢
𝑖
(𝑡
𝑘
, 𝑥) ,

𝑢
𝑖
(𝑡
𝑘

+ 0, 𝑥) = 𝑢
𝑖
(𝑡
𝑘
, 𝑥) + 𝑃

𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) .

(5)

Throughout this paper, we define the norm of 𝑢(𝑡, 𝑥; 𝑡
0
, 𝜑)

as

𝑢 (𝑡, 𝑥; 𝑡
0
, 𝜑)

Ω
= √

𝑛

∑

𝑖=1

∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥; 𝑡

0
, 𝜑) 𝑑𝑥 (6)

and make the following assumptions for convenience.

(H1) 𝑎
𝑖
(⋅) : 𝑅 → 𝑅

+ is continuous and bounded; that is,
there exist constants 𝑎

𝑖
and 𝑎
𝑖
such that

0 < 𝑎
𝑖
≤ 𝑎
𝑖
(𝜁) ≤ 𝑎

𝑖
< ∞, for 𝑖 = 1, . . . , 𝑛. (7)

(H2) 𝜔
𝑖
(⋅) : 𝑅 → 𝑅 is continuous and𝜔

𝑖
(0) = 0; moreover,

there exists constant 𝑝
𝑖
> 0 such that

𝜔
𝑖
(𝜁
1
) − 𝜔
𝑖
(𝜁
2
)

𝜁
1

− 𝜁
2

≥ 𝑝
𝑖
> 0, for 𝜁

1
̸= 𝜁
2
, 𝑖 = 1, . . . , 𝑛. (8)

(H3) 𝑓
𝑖
(⋅) : 𝑅 → 𝑅 is continuous and 𝑓

𝑖
(0) = 0; further-

more, there exists constant 𝑙
𝑖
> 0 such that

𝑙
𝑖
= sup
𝜁
1
̸= 𝜁
2

𝑓
𝑖
(𝜁
1
) − 𝑓
𝑖
(𝜁
2
)

𝜁
1

− 𝜁
2

for 𝜁
1

̸= 𝜁
2
, 𝑖 = 1, 2, . . . , 𝑛. (9)

(H4) 𝑃
𝑖𝑘

(⋅) : 𝑅 → 𝑅 is continuous and 𝑃
𝑖𝑘

(0) = 0 for 𝑖 =

1, 2, . . . , 𝑛 and 𝑘 = 1, 2, . . ..
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In the light of (H1)–(H4), it is easy to see that problems
(1)-(2) admit an equilibrium point 𝑢 = 0.

Definition 1. The equilibrium point 𝑢 = 0 of problems (1)-
(2) is said to be globally exponentially stable if there exist
constants 𝜅 > 0 and 𝑀 ≥ 1 such that

𝑢 (𝑡, 𝑥; 𝑡
0
, 𝜑)

Ω
≤ 𝑀

𝜑
Ω

𝑒
−𝜅(𝑡−𝑡

0
)

, 𝑡 ≥ 𝑡
0
, (10)

where ‖𝜑‖
2

Ω
= sup

𝑡
0
−𝜏≤𝑠≤𝑡

0

∑
𝑛

𝑖=1
∫
Ω

𝜑
𝑖

2

(𝑠, 𝑥)𝑑𝑥 .

Lemma 2 (see [30] (Gronwall-Bellman-type impulsive inte-
gral inequality)). Assume the following.

(A1) The sequence {𝑡
𝑘
} satisfies 0 ≤ 𝑡

0
< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅, with
lim
𝑘→∞

𝑡
𝑘

= ∞.
(A2) 𝑞 ∈ 𝑃𝐶

1

[𝑅
+
, 𝑅] and 𝑞(𝑡) is left-continuous at 𝑡

𝑘
, 𝑘 =

1, 2, . . ..
(A3) 𝑝 ∈ 𝐶[𝑅

+
, 𝑅
+
] and for 𝑘 = 1, 2, . . .,

𝑞 (𝑡) ≤ 𝑐 + ∫

𝑡

𝑡
0

𝑝 (𝑠) 𝑞 (𝑠) 𝑑𝑠 + ∑

𝑡
0
<𝑡
𝑘
<𝑡

𝜂
𝑘
𝑞 (𝑡
𝑘
) , 𝑡 ≥ 𝑡

0
, (11)

where 𝜂
𝑘

≥ 0 and c = const . Then,

𝑞 (𝑡) ≤ 𝑐 ∏

𝑡
0
<𝑡
𝑘
<𝑡

(1 + 𝜂
𝑘
) exp(∫

𝑡

𝑡
0

𝑝 (𝑠) 𝑑𝑠) , 𝑡 ≥ 𝑡
0
. (12)

Lemma3 (see [31] (Poincaré inequality)). LetS be a bounded
region in 𝑅

𝑛

, V(𝑥) ∈ 𝐶
1

(S), and V = 0 on the boundary of S;
then

𝜆
1

∫
S

V
2

(𝑥) 𝑑𝑥 ≤ ∫
S

|∇V (𝑥)|
2

𝑑𝑥, (13)

where 𝜆
1
is the smallest positive eigenvalue of the following

problem:

ΔΨ (𝑥) + 𝜆Ψ (𝑥) = 0, 𝑥 ∈ S, Ψ (𝑥) = 0, 𝑥 ∈ 𝜕S.

(14)

Lemma 4. If 𝑎 > 0 and 𝑏 > 0, then 𝑎𝑏 ≤ (1/𝜀)𝑎
2

+ 𝜀𝑏
2 holds

for any 𝜀 > 0.

3. Main Results

Theorem 5. Assume the following.

(1) 𝐷 = min{𝐷
𝑖𝑠

: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and
denote 2𝐷𝜆

1
= 𝜒.

(2) 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 0 ≤ 𝜃

𝑖𝑘
≤ 2.

(3) There exists a constant 𝛾 > 0 satisfying 𝛾 +𝜆 + ℎ𝜌𝑒
𝛾𝜏

>

0 and 𝜆 + ℎ𝜌𝑒
𝛾𝜏

< 0, where

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
𝑝
𝑖
+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
) + 𝜌,

𝜌 = max
𝑖=1,...,𝑛

(𝑙
𝑖

2

)

𝑛

∑

𝑖=1

𝑎
𝑖
.

(15)

Then, the equilibrium point 𝑢 = 0 of systems (1)-(2) is globally
exponentially stable with convergence rate −(𝜆 + ℎ𝜌𝑒

𝛾𝜏

)/2.

Proof. Multiplying both sides of (1) by 𝑢
𝑖
(𝑡, 𝑥), we get

𝜕𝑢
2

𝑖
(𝑡, 𝑥)

𝜕𝑡
= 2

𝑚

∑

𝑠=1

𝑢
𝑖
(𝑡, 𝑥)

𝜕

𝜕𝑥
𝑠

(𝐷
𝑖𝑠

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑠

)

− 2𝑢
𝑖
(𝑡, 𝑥) 𝑎

𝑖
(𝑢
𝑖
(𝑡, 𝑥))

× [

[

𝜔
𝑖
(𝑢
𝑖
(𝑡, 𝑥)) −

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))]

]

,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω, 𝑘 = 1, 2, . . . ,

(16)

which yields, after integrating with respect to spatial variable
𝑥 on Ω,

𝑑 (∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) 𝑑𝑥)

𝑑𝑡
= 𝐽
1

+ 𝐽
2
,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

(17)

where 𝐽
1

= 2 ∫
Ω

∑
𝑚

𝑠=1
(𝑢
𝑖
(𝑡, 𝑥)(𝜕/𝜕𝑥

𝑠
)(𝐷
𝑖𝑠
(𝜕𝑢
𝑖
(𝑡, 𝑥))/𝜕𝑥

𝑠
))𝑑𝑥,

𝐽
2

= −2 ∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑎

𝑖
(𝑢
𝑖
(𝑡, 𝑥))

× [

[

𝜔
𝑖
(𝑢
𝑖
(𝑡, 𝑥)) −

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))]

]

𝑑𝑥.

(18)

By combining Green formula, Dirichlet boundary condi-
tion, Lemma 3, and condition (1) of Theorem 5, we obtain

𝐽
1

= −2

𝑚

∑

𝑠=1

∫
Ω

𝐷
𝑖𝑠
(

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑠

)

2

𝑑𝑥

≤ −2𝐷𝜆
1

∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) 𝑑𝑥 ≜ −𝜒 ∫

Ω

𝑢
2

𝑖
(𝑡, 𝑥) 𝑑𝑥.

(19)
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Moreover, it follows from assumptions (H1), (H2), and
(H3) that

2 ∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑎

𝑖
(𝑢
𝑖
(𝑡, 𝑥)) 𝜔

𝑖
(𝑢
𝑖
(𝑡, 𝑥)) 𝑑𝑥

≥ 2𝑎
𝑖
𝑝
𝑖
∫
Ω

𝑢𝑖 (𝑡, 𝑥)


2

𝑑𝑥,

(20)

2 ∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑎

𝑖
(𝑢
𝑖
(𝑡, 𝑥))

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥)) 𝑑𝑥

≤ 𝑎
𝑖

𝑛

∑

𝑗=1

∫
Ω

(𝑏
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) + 𝑓

2

𝑗
(𝑢
𝑗
(𝑡, 𝑥))) 𝑑𝑥

≤ 𝑎
𝑖

𝑛

∑

𝑗=1

∫
Ω

2

𝑏
𝑖𝑗

𝑢
𝑖
(𝑡, 𝑥)

 𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))


𝑑𝑥

≤ 𝑎
𝑖

𝑛

∑

𝑗=1

∫
Ω

(𝑏
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) + 𝑙

2

𝑗
𝑢
2

𝑗
(𝑡, 𝑥)) 𝑑𝑥,

(21)

2 ∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑎

𝑖
(𝑢
𝑖
(𝑡, 𝑥))

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)) 𝑑𝑥

≤ 𝑎
𝑖

𝑛

∑

𝑗=1

∫
Ω

(𝑐
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) + 𝑙

2

𝑗
𝑢
2

𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)) 𝑑𝑥.

(22)

Consequently, substituting (19)–(22) into (17) produces

𝑑 (∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) 𝑑𝑥)

𝑑𝑡

≤ −𝜒 ∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) 𝑑𝑥 − 2𝑎

𝑖
𝑝
𝑖
∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) 𝑑𝑥

+ 𝑎
𝑖

𝑛

∑

𝑗=1

∫
Ω

(𝑏
2

𝑖𝑗
𝑢
𝑖

2

(𝑡, 𝑥) + 𝑙
2

𝑗
𝑢
2

𝑗
(𝑡, 𝑥)) 𝑑𝑥

+ 𝑎
𝑖

𝑛

∑

𝑗=1

∫
Ω

(𝑐
2

𝑖𝑗
𝑢
𝑖

2

(𝑡, 𝑥) + 𝑙
2

𝑗
𝑢
2

𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)) 𝑑𝑥

(23)

for 𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . ..

Now define Lyapunov function 𝑉
𝑖
(𝑡) as 𝑉

𝑖
(𝑡) =

∫
Ω

𝑢
2

𝑗
(𝑡, 𝑥)𝑑𝑥. It is not difficult to see that 𝑉

𝑖
(𝑡) is a piecewise

continuous function with points of discontinuity of the first
kind 𝑡

𝑘
(𝑘 = 1, 2, . . .), where it is continuous from the left;

that is, 𝑉
𝑖
(𝑡
𝑘

− 0) = 𝑉
𝑖
(𝑡
𝑘
) (𝑘 = 1, 2, . . .). In addition, for 𝑡 = 𝑡

𝑘

(𝑘 = 0, 1, 2, . . .), we know

𝑉
𝑖
(𝑡
𝑘

+ 0) ≤ 𝑉
𝑖
(𝑡
𝑘
) , 𝑘 = 0, 1, 2, . . . , (24)

as 𝑉
𝑖
(𝑡
0

+ 0) ≤ 𝑉
𝑖
(𝑡
0
) and 𝑢

2

𝑖
(𝑡
𝑘

+ 0, 𝑥) = (1 − 𝜃
𝑖𝑘

)
2

𝑢
2

𝑖
(𝑡
𝑘
, 𝑥) ≤

𝑢
2

𝑖
(𝑡
𝑘
, 𝑥) (𝑘 = 1, 2, . . .), supported by condition 2 of Theorem

5.

Put 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 0, 1, 2, . . .. It is derived from (23)
that

𝑑𝑉
𝑖
(𝑡)

𝑑𝑡
≤ (−𝜒 − 2𝑎

𝑖
𝑝
𝑖
+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
) 𝑉
𝑖
(𝑡)

+ 𝑎
𝑖
max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡)

+ 𝑎
𝑖
max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)) ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . .

(25)

Define function 𝑉(𝑡) of the form 𝑉(𝑡) = ∑
𝑛

𝑖=1
𝑉
𝑖
(𝑡) again.

From (25), one then reads
𝑑𝑉 (𝑡)

𝑑𝑡
≤ 𝜆𝑉 (𝑡)

+ 𝜌

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)) , 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . ,

(26)

where 𝜌 = max
𝑖=1,...,𝑛

(𝑙
2

𝑖
) ∑
𝑛

𝑖=1
𝑎
𝑖
and 𝜆 = max

𝑖=1,...,𝑛
(−𝜒 −

2𝑎
𝑖
𝑝
𝑖
+ 𝑎
𝑖
∑
𝑛

𝑗=1
𝑏
2

𝑖𝑗
+ 𝑎
𝑖
∑
𝑛

𝑗=1
𝑐
2

𝑖𝑗
) + 𝜌.

Construct 𝑉
∗

(𝑡) = 𝑒
𝛾(𝑡−𝑡
0
)

𝑉(𝑡), where 𝛾 > 0 satisfies
𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏

> 0 and 𝜆 + ℎ𝜌𝑒
𝛾𝜏

< 0. Evidently, 𝑉∗(𝑡) is also a
piecewise continuous function with the first kind discontin-
uous points 𝑡

𝑘
(𝑘 = 1, 2, . . .), in which it is continuous from

the left; that is, 𝑉∗(𝑡
𝑘

− 0) = 𝑉
∗

(𝑡
𝑘
) (𝑘 = 1, 2, . . .). Moreover,

at 𝑡 = 𝑡
𝑘

(𝑘 = 0, 1, 2, . . .), we find by the use of (24)

𝑉
∗

(𝑡
𝑘

+ 0) ≤ 𝑉
∗

(𝑡
𝑘
) , 𝑘 = 0, 1, 2, . . . . (27)

Set 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 0, 1, 2, . . .. By virtue of (26), one has

𝑑𝑉
∗

(𝑡)

𝑑𝑡
= 𝛾𝑒
𝛾(𝑡−𝑡
0
)

𝑉 (𝑡) + 𝑒
𝛾(𝑡−𝑡
0
)
𝑑𝑉 (𝑡)

𝑑𝑡

≤ 𝛾𝑒
𝛾(𝑡−𝑡
0
)

𝑉 (𝑡)

+ (𝜆𝑉 (𝑡) + 𝜌

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) 𝑒

𝛾(𝑡−𝑡
0
)

= (𝛾 + 𝜆) 𝑉
∗

(𝑡) + 𝜌𝑒
𝛾(𝑡−𝑡
0
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)) ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . .

(28)

Choose small enough 𝜀 > 0. Integrating (28) from 𝑡
𝑘

+ 𝜀

to 𝑡 gives

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
𝑘

+ 𝜀) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘
+𝜀

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡
𝑘
+𝜀

𝜌𝑒
𝛾(𝑠−𝑡
0
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . .

(29)
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which yields, after letting 𝜀 → 0 in (29),

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
𝑘

+ 0) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . .

(30)

Next, we estimate the value of 𝑉
∗

(𝑡) at 𝑡 = 𝑡
𝑘+1

, 𝑘 = 0, 1,

2, . . .. For small enough 𝜀 > 0, we put 𝑡 = 𝑡
𝑘+1

− 𝜀. Now an
application of (30) leads to, for 𝑘 = 0, 1, 2, . . .,

𝑉
∗

(𝑡
𝑘+1

− 𝜀) ≤ 𝑉
∗

(𝑡
𝑘

+ 0) + (𝛾 + 𝜆) ∫

𝑡
𝑘+1
−𝜀

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡
𝑘+1
−𝜀

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) 𝑑𝑠.

(31)

If we let 𝜀 → 0 in (31), there results

𝑉
∗

(𝑡
𝑘+1

− 0)

≤ 𝑉
∗

(𝑡
𝑘

+ 0) + (𝛾 + 𝜆) ∫

𝑡
𝑘+1

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡
𝑘+1

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) 𝑑𝑠, 𝑘 = 0, 1, 2, . . . .

(32)

Note that𝑉
∗

(𝑡
𝑘+1

−0) = 𝑉
∗

(𝑡
𝑘+1

) is applicable for 𝑘 = 0, 1,

2, . . .. Thus,

𝑉
∗

(𝑡
𝑘+1

) ≤ 𝑉
∗

(𝑡
𝑘

+ 0) + (𝛾 + 𝜆) ∫

𝑡
𝑘+1

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡
𝑘+1

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) 𝑑𝑠

(33)

holds for 𝑘 = 0, 1, 2, . . .. By synthesizing (30) and (33), we
then arrive at

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
𝑘

+ 0) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(34)

This, together with (27), results in

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
𝑘
) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) 𝑑𝑠

(35)

for 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 = 0, 1, 2, . . ..

Recalling the assumptions that 0 ≤ 𝜏
𝑗
(𝑡) ≤ 𝜏 and

∙

𝜏
𝑗
(𝑡) <

1 − (1/ℎ)(ℎ > 0), we therefore obtain

∫

𝑡

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗
(𝑡)

𝑡
𝑘
−𝜏
𝑗(𝑡𝑘)

𝜌𝑒
𝛾(𝜃+𝜏

𝑗
(𝑠)−𝑡
0
)

𝑉
𝑗
(𝜃)

1

1 −
∙

𝜏
𝑗
(𝑠)

𝑑𝜃

≤ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗
(𝑡)

𝑡
𝑘
−𝜏
𝑗(𝑡𝑘)

𝑒
𝛾(𝜃−𝑡

0
)

𝑉
𝑗
(𝜃) 𝑑𝜃.

(36)

Hence,

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
𝑘
) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗
(𝑡)

𝑡
𝑘
−𝜏
𝑗(𝑡𝑘)

𝑒
𝛾(𝑠−𝑡
0
)

𝑉
𝑗
(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(37)

By induction argument, we reach

𝑉
∗

(𝑡
𝑘
) ≤ 𝑉
∗

(𝑡
𝑘−1

) + (𝛾 + 𝜆) ∫

𝑡
𝑘

𝑡
𝑘−1

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
𝑘
−𝜏
𝑗
(𝑡
𝑘
)

𝑡
𝑘−1
−𝜏
𝑗(𝑡𝑘−1)

𝑒
𝛾(𝑠−𝑡
0
)

𝑉
𝑗
(𝑠) 𝑑𝑠,

...

𝑉
∗

(𝑡
2
) ≤ 𝑉
∗

(𝑡
1
) + (𝛾 + 𝜆) ∫

𝑡
2

𝑡
1

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
2
−𝜏
𝑗
(𝑡
2
)

𝑡
1
−𝜏
𝑗(𝑡1)

𝑒
𝛾(𝑠−𝑡
0
)

𝑉
𝑗
(𝑠) 𝑑𝑠,

𝑉
∗

(𝑡
1
) ≤ 𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆) ∫

𝑡
1

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
1
−𝜏
𝑗
(𝑡
1
)

𝑡
0
−𝜏
𝑗(𝑡0)

𝑒
𝛾(𝑠−𝑡
0
)

𝑉
𝑗
(𝑠) 𝑑𝑠.

(38)
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Thus,

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗
(𝑡)

𝑡
0
−𝜏
𝑗(𝑡0)

𝑒
𝛾(𝑠−𝑡
0
)

𝑉
𝑗
(𝑠) 𝑑𝑠

≤ 𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0
−𝜏
𝑗(𝑡0)

𝑒
𝛾(𝑠−𝑡
0
)

𝑉
𝑗
(𝑠) 𝑑𝑠

= 𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏

) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0
−𝜏
𝑗(𝑡0)

𝑒
𝛾(𝑠−𝑡
0
)

𝑉
𝑗
(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(39)

Since

ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0
−𝜏
𝑗(𝑡0)

𝑒
𝛾(𝑠−𝑡
0
)

𝑉
𝑗
(𝑠) 𝑑𝑠

≤ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0
−𝜏

𝑉
𝑗
(𝑠) 𝑑𝑠

= ℎ𝜌𝑒
𝛾𝜏

∫

𝑡
0

𝑡
0
−𝜏

(

𝑛

∑

𝑗=1

∫
Ω

𝜑
𝑗

2

(𝑠, 𝑥) 𝑑𝑥) 𝑑𝑠

≤ 𝜏ℎ𝜌e𝛾𝜏𝜑


2

Ω
,

(40)

we claim

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
0
) + 𝜏ℎ𝜌𝑒

𝛾𝜏𝜑


2

Ω

+ (𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2 . . . .

(41)

According to Lemma 2, we assert that

𝑉
∗

(𝑡) ≤ (𝑉
∗

(𝑡
0
) + 𝜏ℎ𝜌𝑒

𝛾𝜏𝜑


2

Ω
)

× exp {(𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

) (𝑡 − 𝑡
0
)} , 𝑡 ≥ 𝑡

0
,

(42)

which reduces to
𝑢 (𝑡, 𝑥; 𝑡

0
, 𝜑)

Ω

≤ √1 + 𝜏ℎ𝜌𝑒𝛾𝜏
𝜑

Ω

× exp{(
𝜆 + ℎ𝜌𝑒

𝛾𝜏

2
) (𝑡 − 𝑡

0
)} , 𝑡 ≥ 𝑡

0
.

(43)

This completes the proof.

Remark 6. According to the conditions ofTheorem 5, we see
that the reaction-diffusion terms can influence the stability
of equilibrium point 𝑢 = 0. Specifically, the acting factors
include the reaction-diffusion coefficients and the first eigen-
value of corresponding Dirichlet Laplacian.

Remark 7. It is not difficult to see that there must exist con-
stant 𝛾 > 0 satisfying condition 3 of Theorem 5 if 𝜆 < −ℎ𝜌.

Theorem 8. Assume the following.
(1) 𝐷 = min{𝐷

𝑖𝑠
: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and

denote 2𝐷𝜆
1

= 𝜒.
(2) 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 1 − √1 + 𝛼 ≤ 𝜃

𝑖𝑘
≤ 1 +

√1 + 𝛼, 𝛼 ≥ 0.
(3) inf

𝑘=1,2...
(𝑡
𝑘

− 𝑡
𝑘−1

) ≥ 𝜇.
(4) There exists a constant 𝛾 > 0 satisfying 𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏

>

0 and 𝜆 + ℎ𝜌𝑒
𝛾𝜏

+ ln(1 + 𝛼)/𝜇 < 0, where 𝜆 =

max
𝑖=1,...,𝑛

(−𝜒−2𝑎
𝑖
𝑝
𝑖
+𝑎
𝑖
∑
𝑛

𝑗=1
𝑏
2

𝑖𝑗
+𝑎
𝑖
∑
𝑛

𝑗=1
𝑐
2

𝑖𝑗
)+𝜌 and

𝜌 = max
𝑖=1,...,𝑛

(𝑙
2

𝑖
) ∑
𝑛

𝑖=1
𝑎
𝑖
.

Then, the equilibrium point 𝑢 = 0 of systems (1)-(2) is glob-
ally exponentially stable with convergence rate −(1/2)(𝜆 +

ℎ𝜌e𝛾𝜏 + ln(1 + 𝛼)/𝜇).

Proof. Define Lyapunov function 𝑉 of the form 𝑉(𝑡) =

∑
𝑛

𝑖=1
𝑉
𝑖
(𝑡), where 𝑉

𝑖
(𝑡) = ∫

Ω

𝑢
2

𝑖
(𝑡, 𝑥)𝑑𝑥. Obviously, 𝑉(𝑡) is a

piecewise continuous function with the first kind discontin-
uous points 𝑡

𝑘
, 𝑘 = 1, 2, . . ., where it is continuous from the

left; that is, 𝑉(𝑡
𝑘

− 0) = 𝑉(𝑡
𝑘
) (𝑘 = 1, 2, . . .). Furthermore,

for 𝑡 = 𝑡
𝑘

(𝑘 = 0, 1, 2, . . .), we derive from condition 2 of
Theorem 8 that

𝑢
2

𝑖
(𝑡
𝑘

+ 0, 𝑥) − 𝑢
2

𝑖
(𝑡
𝑘
, 𝑥)

= (1 − 𝜃
𝑖𝑘

)
2

𝑢
2

𝑖
(𝑡
𝑘
, 𝑥) − 𝑢

2

𝑖
(𝑡
𝑘
, 𝑥) ≤ 𝛼𝑢

2

𝑖
(𝑡
𝑘
, 𝑥) .

(44)

Thereby,

𝑉 (𝑡
𝑘

+ 0) ≤ 𝛼𝑉 (𝑡
𝑘
) + 𝑉 (𝑡

𝑘
) , 𝑘 = 0, 1, 2, . . . . (45)

Construct function 𝑉
∗

(𝑡) = 𝑒
𝛾(𝑡−𝑡
0
)

𝑉(𝑡) again, where 𝛾 >

0 satisfies 𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

> 0 and 𝜆 + ℎ𝜌𝑒
𝛾𝜏

+ ln(1 + 𝛼)/𝜇 <

0. Then, 𝑉
∗

(𝑡) is also a piecewise continuous function with
the first kind discontinuous points 𝑡

𝑘
, 𝑘 = 1, 2, . . ., where it

is continuous from the left; that is, 𝑉
∗

(𝑡
𝑘

− 0) = 𝑉
∗

(𝑡
𝑘
) (𝑘 =

1, 2, . . .). And for 𝑡 = 𝑡
𝑘

(𝑘 = 0, 1, 2, . . .), it follows from (45)
that

𝑉
∗

(𝑡
𝑘

+ 0) ≤ 𝛼𝑉
∗

(𝑡
𝑘
) + 𝑉
∗

(𝑡
𝑘
) , 𝑘 = 0, 1, 2, . . . (46)

Set 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 = 0, 1, 2, . . .. Following the same pro-
cedure as shown in the proof of Theorem 5, we get

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
𝑘

+ 0) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗
(𝑡)

𝑡
𝑘
−𝜏
𝑗(𝑡𝑘)

𝑒
𝛾(𝜃−𝑡

0
)

𝑉
𝑗
(𝜃) 𝑑𝜃,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(47)



Abstract and Applied Analysis 7

The relations (46) and (47) yield

𝑉
∗

(𝑡) − 𝑉
∗

(𝑡
𝑘
)

≤ 𝛼𝑉
∗

(𝑡
𝑘
) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗
(𝑡)

𝑡
𝑘
−𝜏
𝑗(𝑡𝑘)

𝑒
𝛾(𝜃−𝑡

0
)

𝑉
𝑗
(𝜃) 𝑑𝜃,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(48)

By induction argument, we obtain

𝑉
∗

(𝑡
𝑘
) − 𝑉
∗

(𝑡
𝑘−1

)

≤ 𝛼𝑉
∗

(𝑡
𝑘−1

) + (𝛾 + 𝜆) ∫

𝑡
𝑘

𝑡
𝑘−1

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
𝑘
−𝜏
𝑗
(𝑡
𝑘
)

𝑡
𝑘−1
−𝜏
𝑗(𝑡𝑘−1)

𝑒
𝛾(𝜃−𝑡

0
)

𝑉
𝑗
(𝜃) 𝑑𝜃,

...

𝑉
∗

(𝑡
2
) − 𝑉
∗

(𝑡
1
)

≤ 𝛼𝑉
∗

(𝑡
1
) + (𝛾 + 𝜆) ∫

𝑡
2

𝑡
1

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
2
−𝜏
𝑗
(𝑡
2
)

𝑡
1
−𝜏
𝑗(𝑡1)

𝑒
𝛾(𝜃−𝑡

0
)

𝑉
𝑗
(𝜃) 𝑑𝜃,

𝑉
∗

(𝑡
1
) − 𝑉
∗

(𝑡
0
)

≤ 𝛼𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆) ∫

𝑡
1

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
1
−𝜏
𝑗
(𝑡
1
)

𝑡
0
−𝜏
𝑗(𝑡0)

𝑒
𝛾(𝜃−𝑡

0
)

𝑉
𝑗
(𝜃) 𝑑𝜃.

(49)

Hence,

𝑉
∗

(𝑡) − 𝑉
∗

(𝑡
0
)

≤ 𝛼𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗
(𝑡)

𝑡
0
−𝜏
𝑗(𝑡0)

𝑒
𝛾(𝜃−𝑡

0
)

𝑉
𝑗
(𝜃) 𝑑𝜃

+ 𝛼 ∑

𝑡
0
<𝑡
𝑘
<𝑡

𝑉 (𝑡
𝑘
)

≤ 𝛼𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏

) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0
−𝜏
𝑗(𝑡0)

𝑒
𝛾(𝜃−𝑡

0
)

𝑉
𝑗
(𝜃) 𝑑𝜃 + 𝛼 ∑

𝑡
0
<𝑡
𝑘
<𝑡

𝑉 (𝑡
𝑘
) ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(50)

Introducing ℎ𝜌𝑒
𝛾𝜏

∑
𝑛

𝑗=1
∫
𝑡
0

𝑡
0
−𝜏
𝑗
(𝑡
0
)

𝑒
𝛾(𝜃−𝑡

0
)

𝑉
𝑗
(𝜃)𝑑𝜃 ≤

𝜏ℎ𝜌𝑒
𝛾𝜏

‖𝜑‖
2

Ω
as shown in the proof of Theorem 5 into (50),

(50) becomes, for 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 = 0, 1, 2, . . .,

𝑉
∗

(𝑡) − 𝑉
∗

(𝑡
0
)

≤ 𝛼𝑉
∗

(𝑡
0
) + 𝜏ℎ𝜌𝑒

𝛾𝜏𝜑


2

Ω

+ (𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠 + 𝛼 ∑

𝑡
0
<𝑡
𝑘
<𝑡

𝑉 (𝑡
𝑘
) .

(51)

It then results from Lemma 2 that, for 𝑡 ≥ 𝑡
0
,

𝑉
∗

(𝑡) ≤ ((𝛼 + 1) 𝑉
∗

(𝑡
0
) + 𝜏ℎ𝜌𝑒

𝛾𝜏𝜑


2

Ω
)

× ∏

𝑡
0
<𝑡
𝑘
<𝑡

(1 + 𝛼) exp ((𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

) (𝑡 − 𝑡
0
))

= ((𝛼 + 1) 𝑉
∗

(𝑡
0
) + 𝜏ℎ𝜌𝑒

𝛾𝜏𝜑


2

Ω
)

× (1 + 𝛼)
𝑘 exp ((𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏

) (𝑡 − 𝑡
0
)) .

(52)

On the other hand, since inf
𝑘=1,2,...

(𝑡
𝑘

− 𝑡
𝑘−1

) ≥ 𝜇, one has
𝑘 ≤ (𝑡

𝑘
− 𝑡
0
)/𝜇. Thereby,

(1 + 𝛼)
𝑘

≤ exp{
ln (1 + 𝛼)

𝜇
(𝑡
𝑘

− 𝑡
0
)}

≤ exp{
ln (1 + 𝛼)

𝜇
(𝑡 − 𝑡
0
)}

(53)

and (52) can be rewritten as

𝑉
∗

(𝑡) ≤ ((𝛼 + 1) 𝑉
∗

(𝑡
0
) + 𝜏ℎ𝜌𝑒

𝛾𝜏𝜑


2

Ω
)

× exp((𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

+
ln (1 + 𝛼)

𝜇
) (𝑡 − 𝑡

0
))

(54)

which implies

𝑢 (𝑡, 𝑥; 𝑡
0
, 𝜑)

Ω
≤ √(𝛼 + 1 + 𝜏ℎ𝜌𝑒𝛾𝜏)

𝜑
Ω

× exp(
1

2
(𝜆 + ℎ𝜌𝑒

𝛾𝜏

+
𝑙𝑛 (1 + 𝛼)

𝜇
) (𝑡 − 𝑡

0
)) , 𝑡 ≥ 𝑡

0
.

(55)

The proof is completed.
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Due to Lemma 4, we know that the following inequalities:

2

𝑛

∑

𝑗=1

𝑏
𝑖𝑗

∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑓 (𝑢

𝑗
(𝑡, 𝑥)) 𝑑𝑥

≤

𝑛

∑

𝑗=1

∫
Ω

(𝜀
1
𝑏
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) +

𝑙
2

𝑗

𝜀
1

𝑢
2

𝑗
(𝑡, 𝑥)) 𝑑𝑥,

2

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑓 (𝑢

𝑗
(𝑡 − 𝜏
𝑗
, 𝑥)) 𝑑𝑥

≤

𝑛

∑

𝑗=1

∫
Ω

(𝜀
2
𝑐
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) +

𝑙
2

𝑗

𝜀
2

𝑢
2

𝑖
(𝑡 − 𝜏
𝑗
, 𝑥)) 𝑑𝑥

(56)

hold for any 𝜀
1
, 𝜀
2

> 0. Thus, in a similar way to the proofs of
Theorems 5–8, we can prove the following theorems.

Theorem 9. Assume the following.

(1) 𝐷 = min{𝐷
𝑖𝑠

: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and
denote 2𝐷𝜆

1
= 𝜒.

(2) 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 0 ≤ 𝜃

𝑖𝑘
≤ 2.

(3) There exist constants 𝛾 > 0 and 𝜀
1
, 𝜀
2

> 0 such that
𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏

> 0 and 𝜆 + ℎ𝜌𝑒
𝛾𝜏

< 0, where 𝜆 =

max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
𝑝
𝑖

+ 𝑎
𝑖
∑
𝑛

𝑗=1
(𝜀
1
𝑏
2

𝑖𝑗
+ 𝜀
2
𝑐
2

𝑖𝑗
)) +

(max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)/𝜀
1
) ∑
𝑛

𝑖=1
𝑎
𝑖
, and 𝜌 = (max

𝑖=1,...,𝑛
(𝑙
2

𝑗
)/𝜀
2
)

∑
𝑛

𝑖=1
𝑎
𝑖
.

Then, the equilibrium point 𝑢 = 0 of systems (1)-(2) is globally
exponentially stable with convergence rate −(𝜆 + ℎ𝜌𝑒

𝛾𝜏

)/2.

Remark 10. There must exist constant 𝛾 > 0 satisfying condi-
tion 3 of Theorem 9 if there are constants 𝜀

1
, 𝜀
2

> 0 such that
𝜆 < −ℎ𝜌.

Theorem 11. Assume the following.

(1) 𝐷 = min{𝐷
𝑖𝑠

: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and
denote 2𝐷𝜆

1
= 𝜒.

(2) 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 1 − √1 + 𝛼 ≤ 𝜃

𝑖𝑘
≤ 1 +

√1 + 𝛼, 𝛼 ≥ 0.
(3) inf

𝑘=1,2,...
(𝑡
𝑘

− 𝑡
𝑘−1

) ≥ 𝜇.
(4) There exist constants 𝛾 > 0 and 𝜀

1
, 𝜀
2

> 0 satisfying
𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏

> 0 and 𝜆 + ℎ𝜌𝑒
𝛾𝜏

+ ln(1 + 𝛼)/𝜇 < 0,
where

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
𝑝
𝑖
+ 𝑎
𝑖

𝑛

∑

𝑗=1

(𝜀
1
𝑏
2

𝑖𝑗
+ 𝜀
2
𝑐
2

𝑖𝑗
))

+

max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝜀
1

𝑛

∑

𝑖=1

𝑎
𝑖
,

𝜌 =

max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝜀
2

𝑛

∑

𝑖=1

𝑎
𝑖
.

(57)

Then, the equilibrium point 𝑢 = 0 of systems (1)-(2) is globally
exponentially stable with convergence rate −(1/2)(𝜆 + ℎ𝜌𝑒

𝛾𝜏

+

ln(1 + 𝛼)/𝜇).
Further, on the condition that |𝑃

𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥))|≤𝜃

𝑖𝑘
|𝑢
𝑖
(𝑡
𝑘
, 𝑥)|,

where 𝜃
2

𝑖𝑘
< (𝛼 − 1)/2 and 𝛼 ≥ 1, we obtain

𝑢
2

𝑖
(𝑡
𝑘

+ 0, 𝑥) − 𝑢
2

𝑖
(𝑡
𝑘
, 𝑥)

≤ 2(𝑢
𝑖
(𝑡
𝑘
, 𝑥))
2

+ 2(𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)))
2

− 𝑢
2

𝑖
(𝑡
𝑘
, 𝑥)

≤ (2 + 2𝜃
2

𝑖𝑘
) (𝑢
𝑖
(𝑡
𝑘
, 𝑥))
2

− 𝑢
2

𝑖
(𝑡
𝑘
, 𝑥) ≤ 𝛼𝑢

2

𝑖
(𝑡
𝑘
, 𝑥)

(58)

for 𝑡 = 𝑡
𝑘

(𝑘 = 1, 2, . . .). In an identical way with the proof of
Theorem 8, we can present the following.

Theorem 12. Assume the following.

(1) Let 𝐷 = min{𝐷
𝑖𝑠

: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and
denote 2𝐷𝜆

1
= 𝜒.

(2) |𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥))| ≤ 𝜃

𝑖𝑘
|𝑢
𝑖
(𝑡
𝑘
, 𝑥)|, where 𝜃

2

𝑖𝑘
≤ (𝛼 − 1)/2

and 𝛼 ≥ 1.
(3) inf

𝑘=1,2,...
(𝑡
𝑘

− 𝑡
𝑘−1

) ≥ 𝜇.
(4) There exist constants 𝛾 > 0 and 𝜀

1
, 𝜀
2

> 0 such that
𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏

> 0 and 𝜆 + ℎ𝜌𝑒
𝛾𝜏

+ ln(1 + 𝛼)/𝜇 < 0,
where

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
𝑝
𝑖
+ 𝑎
𝑖

𝑛

∑

𝑗=1

(𝜀
1
𝑏
2

𝑖𝑗
+ 𝜀
2
𝑐
2

𝑖𝑗
))

+

max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝜀
1

𝑛

∑

𝑖=1

𝑎
𝑖
,

𝜌 =

max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝜀
2

𝑛

∑

𝑖=1

𝑎
𝑖
.

(59)

Then, the equilibrium point u = 0 of systems (1)-(2) is globally
exponentially stable with convergence rate −(1/2)(𝜆 + ℎ𝜌𝑒

𝛾𝜏

+

ln(1 + 𝛼)/𝜇).

Remark 13. Different fromTheorems 5–11, the impulsive part
in Theorem 12 could be nonlinear, and this will be of more
applicability. Actually, Theorems 5–11 can be regarded as the
special cases of Theorem 12.

4. Examples

Example 14. Consider problems (1)–(4) with 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) =

1.343𝑢
𝑖
(𝑡
𝑘
, 𝑥); moreover, 𝑛 = 2, 𝑚 = 2, Ω = {(𝑥

1
, 𝑥
2
)
𝑇

|

𝑥
2

1
+ 𝑥
2

2
< 1}, 𝑎

𝑖
(𝑢
1
(𝑡, 𝑥)) = 1, 𝜔

1
(𝑢
1
(𝑡, 𝑥)) = 6.5𝑢

1
(𝑡, 𝑥),

𝜔
2
(𝑢
2
(𝑡, 𝑥)) = 8.5𝑢

2
(𝑡, 𝑥), (𝐷

𝑖𝑠
) = (
1.2 2.3

2.2 1.5
), (𝑏
𝑖𝑗
) = (
−0.23 1.3

−0.14 3.2
),

(𝑐
𝑖𝑗
) = (

−0.1 −0.2

0.25 −0.13
), 𝑓
𝑗
(𝑢
𝑗
) = (√2/4)(|𝑢

𝑗
+ 1| − |𝑢

𝑗
− 1|), and

𝜏
𝑗
(𝑡) = (3/4) arctan(𝑡).
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As 𝜆
1

= 5.783 and 𝐷 = 1.2, we know 𝜒 = 13.8792. Fur-
ther, for 𝑙

𝑖
= √2/2, 𝑎

𝑖
= 𝑎
𝑖

= 1, 𝑝
1

= 6.5, and 𝑝
2

= 8.5, we
compute

𝜌 = max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝑛

∑

𝑖=1

𝑎
𝑖
= 1,

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
𝑝
𝑖
+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
)

+ 𝜌 = −15.5402.

(60)

Let ℎ = 4. Since 𝜆 = −15.5402 < −4 = −ℎ𝜌, we therefore
conclude fromTheorem 5 that the zero solution of this system
is globally exponential stable.

Example 15. Consider problems (1)–(4) with 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) =

arctan(0.5𝑢
𝑖
(𝑡
𝑘
, 𝑥)); moreover, 𝑛 = 2, 𝑚 = 2, Ω =

{(𝑥
1
, 𝑥
2
)
𝑇

| 𝑥
2

1
+ 𝑥
2

1
< 1}, 𝑎

𝑖
(𝑢
1
(𝑡, 𝑥)) = 1, 𝜔

1
(𝑢
1
(𝑡, 𝑥)) =

6.5𝑢
1
(𝑡, 𝑥), 𝜔

2
(𝑢
2
(𝑡, 𝑥)) = 8.5𝑢

2
(𝑡, 𝑥), (𝐷

𝑖𝑠
) = (
1.2 2.3

2.2 1.5
), (𝑏
𝑖𝑗
) =

(
−0.23 1.3

−0.14 3.2
), (𝑐
𝑖𝑗
) = (
−0.1 −0.2

0.25 −0.13
), 𝑓
𝑗
(𝑢
𝑗
) = (√2/4)(|𝑢

𝑗
+ 1| − |𝑢

𝑗
−

1|), 𝜏
𝑗
(𝑡) = (1/𝜋) arctan(𝑡), and 𝑡

𝑘
= 𝑡
𝑘−1

+ 𝑘.
As 𝜆
1

= 5.783 and 𝐷 = 1.2, we know 𝜒 = 13.8792. Fur-
ther, for 𝑙

𝑖
= √2/2, 𝑎

𝑖
= 𝑎
𝑖

= 1, 𝑝
1

= 6.5, 𝑝
2

= 8.5, and
𝜀
𝑖
= 1, we compute

𝜌 =
max
𝑖=1,...,𝑛

𝜀
2

𝑛

∑

𝑖=1

𝑎
𝑖
= 1,

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
𝑝
𝑖
+ 𝑎
𝑖

𝑛

∑

𝑗=1

(𝜀
1
𝑏
2

𝑖𝑗
+ 𝜀
2
𝑐
2

𝑖𝑗
))

+

max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝜀
1

𝑛

∑

𝑖=1

𝑎
𝑖
= −15.5402.

(61)

Let 𝜏 = 0.5, ℎ = 4, 𝜇 = 1, 𝜃
𝑖𝑘

= 0.5, and 𝛼 = 1.5; we can
find 𝛾 = 2.4 such that

𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

= 0.1403 > 0,

𝜆 + ℎ𝜌𝑒
𝛾𝜏

+
ln (1 + 𝛼)

𝜇
= −1.3434 < 0.

(62)

Therefore it is concluded from Theorem 12 that the zero
solution of this system is globally exponential stable.
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