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We prove some new existence theorems of fixed points for Caristi type maps and some suitable generalized distances without
lower semicontinuity assumptions on dominated functions. As applications of our results, some new fixed point theorems and new
generalizations of the Banach contraction principle are given.

1. Introduction

In 1972, Caristi proved the following famous fixed point
theorem.

Theorem 1 (Caristi [1]). Let (𝑋, 𝑑) be a complete metric space
and 𝑓 : 𝑋 → R a lower semicontinuous and bounded below
function. Suppose that 𝑇 is a Caristi type map on𝑋 dominated
by 𝑓; that is, 𝑇 satisfies

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑓 (𝑥) − 𝑓 (𝑇𝑥) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑋. (1)

Then 𝑇 has a fixed point in 𝑋.

It is well-known that the Caristi’s fixed point theorem
is one of the most valuable generalization of the Banach
contraction principle [2], and it is equivalent to the Ekeland’s
variational principle, to the Takahashi’s nonconvex mini-
mization theorem, to the Daneš’ drop theorem, to the petal
theorem, and to the Oettli-Théra’s theorem; see [3–26] and
references therein for more details. A number of general-
izations in various different directions of the Caristi’s fixed
point theorem have been investigated by several authors; see,
for example, [4–30] and references therein. An interesting
direction of research is the extension of Caristi’s fixed point
theorem, Ekeland’s variational principle, and Takahashi’s
nonconvex minimization theorem to generalized distances,
for example, 𝑤-distances [5, 10, 14, 19], 𝜏-distances [11, 12,
22], 𝜏-functions [13, 15, 18, 22–25, 31–36], weak 𝜏-functions

[24, 25],𝑃-distances [26],𝑄-functions [21], generalized pseu-
dodistances [22, 23], and others. For more details on these
generalizations, one can refer to [5, 10–26] and references
therein.

Let us recall how we can exploit Caristi’s fixed point the-
orem to prove the Banach contraction principle. A selfmap 𝑇

on a metric space (𝑋, 𝑑) is called contractive or Banach type if
there exists a real number 𝜆 ∈ [0, 1) such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑 (𝑥, 𝑦) for any 𝑥, 𝑦 ∈ 𝑋. (2)

It is obvious that if 𝑇 is a contractive map on 𝑋, then 𝑇 is
continuous on𝑋 and (2) will deduce the following inequality:

𝑑 (𝑥, 𝑇𝑥) ≤
1

1 − 𝜆
𝑑 (𝑥, 𝑇𝑥) −

1

1 − 𝜆
𝑑 (𝑇𝑥, 𝑇

2
𝑥)

for any 𝑥 ∈ 𝑋.

(3)

The inequality (3) admits that 𝑇 is a Caristi type map on
𝑋 dominated by 𝑓 defined by 𝑓(𝑥) := (1/(1 − 𝜆))𝑑(𝑥, 𝑇𝑥).
From the continuity of 𝑇, the function 𝑓 is continuous on 𝑋,
and therefore the Caristi’s fixed point theorem is applicable
to prove the Banach contraction principle. It is quite obvious
that for any map 𝑇 and any generalized distances 𝑝, the
function 𝑥 → 𝑝(𝑥, 𝑇𝑥) is not necessarily to be continuous
even lower semicontinuous, so such well-known generalized
versions of Caristi’s fixed point theorem with lower semicon-
tinuity are not easily applicable to any generalized version
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of Banach contraction principle for generalized distances.
Motivated by the reason, in the recently paper [20], the author
established some new versions of Caristi type fixed point
theorem such that they can be applicable to prove generalized
versions of Banach contraction principle for suitable general-
ized distances.

This work can be considered as a continuation of the
paper [20]. In this paper, we first establish some new fixed
point theorems for Caristi type maps and some suitable
generalized distances without assuming that the dominated
functions possess lower semicontinuity property. As applica-
tions of our results, some new fixed point theorems and new
generalizations of the Banach contraction principle are given.
We have already succeeded in utilizing our new versions of
Caristi type fixed point theorem to deal with the existence
results for any map 𝑇 satisfying

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋, (4)

where 𝛼 : [0, +∞) → [0, 1) is a function satisfying
lim sup

𝑠→ 𝑡
+ 𝛼(𝑠) < 1 for all 𝑡 ∈ [0, +∞).

2. Preliminaries

We recall in this section the notations, definitions, and results
needed. Let (𝑋, 𝑑) be a metric space. An extended real
valued function 𝜙 : 𝑋 → (−∞, +∞] is said to be lower
semicontinuous (l.s.c., for short) at𝑤 ∈ 𝑋 if for any sequence
{𝑥
𝑛
} in 𝑋 with 𝑥

𝑛
→ 𝑤 as 𝑛 → ∞, we have 𝜙(𝑤) ≤

lim inf
𝑛→∞

𝜙(𝑥
𝑛
). The function 𝜙 is called to be l.s.c. on 𝑋

if 𝜙 is l.s.c. at every point of 𝑋. The function 𝜙 is said to be
proper if 𝜙 ̸≡ +∞. Let 𝑇 : 𝑋 → 𝑋 be a selfmap. 𝑇 is said to
be closed if𝐺𝑟𝑇 = {(𝑥, 𝑦) ∈ 𝑋×𝑋 : 𝑦 = 𝑇𝑥}, the graph of𝑇, is
closed in𝑋 × 𝑋. A point V in𝑋 is a fixed point of 𝑇 if 𝑇V = V.
The set of fixed points of 𝑇 is denoted byF(𝑇). Throughout
this paper we denote by N and R, the set of positive integers
and nonnegative real numbers, respectively.

Recall that a function 𝑝 : 𝑋×𝑋 → [0, +∞) is called a𝑤-
distance [5, 10–20, 31], first introduced and defined by Kada,
Suzuki, and Takahashi, if the following are satisfied:

(𝑤1) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) for any 𝑥, 𝑦, 𝑧 ∈ 𝑋;
(𝑤2) for any 𝑥 ∈ 𝑋, 𝑝(𝑥, ⋅) : 𝑋 → [0, +∞) is l.s.c.;
(𝑤3) for any 𝜀 > 0, there exists 𝛿 > 0 such that 𝑝(𝑧, 𝑥) ≤ 𝛿

and 𝑝(𝑧, 𝑦) ≤ 𝛿 imply 𝑑(𝑥, 𝑦) ≤ 𝜀.

A function𝑝 : 𝑋×𝑋 → [0, +∞) is said to be a 𝜏-function
[13, 15, 18, 22–25, 31–36], first introduced and studied by Lin
and Du, if the following conditions hold:

(𝜏1) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋;
(𝜏2) if 𝑥 ∈ 𝑋 and {𝑦

𝑛
} in 𝑋 with lim

𝑛→∞
𝑦
𝑛

= 𝑦 such that
𝑝(𝑥, 𝑦

𝑛
) ≤ 𝑀 for some𝑀 = 𝑀(𝑥) > 0, then𝑝(𝑥, 𝑦) ≤

𝑀;
(𝜏3) for any sequence {𝑥

𝑛
} in 𝑋 with lim

𝑛→∞
sup{𝑝(𝑥

𝑛
,

𝑥
𝑚
) : 𝑚 > 𝑛} = 0, if there exists a sequence {𝑦

𝑛
} in

𝑋 such that lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑦
𝑛
) = 0, then lim

𝑛→∞
𝑑(𝑥
𝑛
,

𝑦
𝑛
) = 0;

(𝜏4) for 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑝(𝑥, 𝑦) = 0 and 𝑝(𝑥, 𝑧) = 0 imply
𝑦 = 𝑧.

Note that not either of the implications 𝑝(𝑥, 𝑦) = 0 ⇔

𝑥 = 𝑦 necessarily holds and 𝑝 is nonsymmetric in general.
It is well known that the metric 𝑑 is a 𝑤-distance and any 𝑤-
distance is a 𝜏-function, but the converse is not true; see [13,
31] for more detail.

Example 2 (see [31, Example A]). Let 𝑋 = R with the metric
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for 𝑥, 𝑦 ∈ 𝑋, and 0 < 𝑎 < 𝑏. Define the
function 𝑝 : 𝑋 × 𝑋 → [0, +∞) by

𝑝 (𝑥, 𝑦) = max {𝑎 (𝑦 − 𝑥) , 𝑏 (𝑥 − 𝑦)} . (5)

Then 𝑝 is a 𝜏-function.

The following result is crucial in this paper.

Theorem3 (see [18, Lemma 2.1]). Let (𝑋, 𝑑) be ametric space
and 𝑝 : 𝑋 × 𝑋 → [0, +∞) a function. Assume that 𝑝

satisfies the condition (𝜏3). If a sequence {𝑥
𝑛
} in 𝑋 with

lim
𝑛→∞

sup{𝑝(𝑥
𝑛
, 𝑥
𝑚
) : 𝑚 > 𝑛} = 0, then {𝑥

𝑛
} is a Cauchy

sequence in 𝑋.

Recently, the concepts of weak 𝜏-function and general-
ized pseudodistance were introduced and studied by Khanh
and Quy [24, 25] and Włodarczyk and Plebaniak [22] as
follows.

Definition 4. Let (𝑋, 𝑑) be a metric space. A function 𝑝 : 𝑋 ×

𝑋 → [0, +∞) is called
(i) a weak 𝜏-function [24, 25] on 𝑋 if conditions (𝜏1),

(𝜏3), and (𝜏4) hold;
(ii) a generalized pseudodistance [22] on 𝑋 if conditions

(𝜏1) and (𝜏3) hold.

It is obvious that any 𝜏-function is a weak 𝜏-function and
every weak 𝜏-function is a generalized pseudodistance, but
the converse parts are not always true.The first observation is
that there exists a weak 𝜏-function which is not a 𝜏-function.

Example 5 (see [24, Example 2.5]). Let 𝑋 = [0, +∞), 𝛾 > 0,
and 𝑝 : 𝑋 × 𝑋 → [0, +∞) be defined by

𝑝 (𝑥, 𝑦) =

{{

{{

{

𝑥 − 𝑦
 + 𝛾, if 𝑥 ̸= 𝑦,

3

2
𝛾, if 𝑥 = 𝑦.

(6)

Then 𝑝 is a weak 𝜏-function which is neither a 𝜏-function nor
a 𝑤-distance.

The following example shows that there exists a general-
ized pseudodistance which is not a weak 𝜏-function.

Example 6 (see [22, Example 1.3]). Define a function 𝑝 :

[0, 2] × [0, 2] → [0, +∞) by

𝑝 (𝑥, 𝑦) =

{{

{{

{

0, if 𝑥 − 𝑦 = −2;
𝑥 − 𝑦

 , if − 2 < 𝑥 − 𝑦 ≤ 0;

𝑥 − 𝑦 + 2, if 0 < 𝑥 − 𝑦 ≤ 2.

(7)
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Then 𝑝 is a generalized pseudodistance but not a weak 𝜏-
function.

Very recently, the author first introduced the following
concepts.

Definition 7 (see [20]). Let (𝑋, 𝑑) be a metric space, and let
𝑓 : 𝑋 → R, 𝜑 : R → (0, +∞), and 𝑝 : 𝑋 × 𝑋 → [0, +∞)

be functions. A single-valued selfmap 𝑇 : 𝑋 → 𝑋 is called

(i) Caristi type on 𝑋 dominated by 𝑝, 𝜑, and 𝑓 (abbrevi-
ated as (𝑝, 𝜑, 𝑓)-Caristi type on 𝑋) if

𝑝 (𝑥, 𝑇𝑥) ≤ 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑇𝑥)) for each 𝑥 ∈ 𝑋;

(8)

(ii) Caristi type on𝑋 dominated by 𝑝 and 𝑓 (abbreviated
as (𝑝, 𝑓)-Caristi type on 𝑋) if

𝑝 (𝑥, 𝑇𝑥) ≤ 𝑓 (𝑥) − 𝑓 (𝑇𝑥) for each 𝑥 ∈ 𝑋; (9)

(iii) Caristi type on𝑋 dominated by 𝜑 and 𝑓 (abbreviated
as (𝜑, 𝑓)-𝐶𝑎𝑟𝑖𝑠𝑡𝑖 𝑡𝑦𝑝𝑒 on 𝑋) if

𝑑 (𝑥, 𝑇𝑥) ≤ 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑇𝑥)) for each 𝑥 ∈ 𝑋;

(10)

(iv) Caristi type on𝑋 dominated by𝑓 (abbreviated as (𝑓)-
Caristi type on 𝑋) if

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑓 (𝑥) − 𝑓 (𝑇𝑥) for each 𝑥 ∈ 𝑋. (11)

Clearly, if 𝑇 is (𝑝, 𝑓)-Caristi type (resp. (𝑓)-Caristi type)
on 𝑋, then 𝑇 is (𝑝, 𝜑, 𝑓)-Caristi type (resp. (𝜑, 𝑓)-Caristi
type) on 𝑋 with 𝜑(𝑡) = 1 for all 𝑡. The following example
illustrates that their converse are not always true.

Example 8. Let 𝑋 = [0, +∞) with the usual metric 𝑑(𝑥, 𝑦) =

|𝑥 − 𝑦|. Then (𝑋, 𝑑) is a complete metric space. Let 𝑝 : 𝑋 ×

𝑋 → [0, +∞) be defined by

𝑝 (𝑥, 𝑦) = max {20 (𝑥 − 𝑦) , 40 (𝑦 − 𝑥)} , (12)

for all 𝑥,𝑦 ∈ 𝑋. By Example 2, we know that𝑝 is a 𝜏-function.
Let 𝑇 : 𝑋 → 𝑋 be defined by 𝑇𝑥 = 𝑥

2, 𝑥 ∈ 𝑋. Define
𝑓 : 𝑋 → R by

𝑓 (𝑥) = {
4𝑥 − 12, if 𝑥 ∈ [0, 1)

15 − 8𝑥, if 𝑥 ∈ [1, +∞) .
(13)

Then 𝑓 is not lower semicontinuous at 𝑥 = 1. For 𝑖 = 1, 2, let
𝜑
𝑖
: R → (0, +∞) be defined by

𝜑
1
(𝑡) = 2, 𝜑

2
(𝑡) = 6 ∀𝑡 ∈ R, (14)

respectively. For 𝑥 ∈ [0, 1), we have

𝑑 (𝑥, 𝑇𝑥) = 𝑥 − 𝑥
2
< 4 (𝑥 − 𝑥

2
) = 𝑓 (𝑥) − 𝑓 (𝑇𝑥) ,

𝑝 (𝑥, 𝑇𝑥) = max {20 (𝑥 − 𝑇𝑥) , 40 (𝑇𝑥 − 𝑥)}

= 20 (𝑥 − 𝑥
2
)

< 𝜑
2
(𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑇𝑥)) .

(15)

For 𝑥 ∈ [1, +∞), we have

𝑑 (𝑥, 𝑇𝑥) = 𝑥
2
− 𝑥 < 8 (𝑥

2
− 𝑥) = 𝑓 (𝑥) − 𝑓 (𝑇𝑥) ,

𝑝 (𝑥, 𝑇𝑥) = 40 (𝑥
2
− 𝑥) < 𝜑

2
(𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑇𝑥)) .

(16)

Hence, for any 𝑥 ∈ 𝑋, we show

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑓 (𝑥) − 𝑓 (𝑇𝑥)

≤ 𝜑
𝑖
(𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑇𝑥)) for each 𝑖 ∈ {1, 2} ,

𝑝 (𝑥, 𝑇𝑥) ≤ 𝜑
2
(𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑇𝑥)) .

(17)

So, 𝑇 is (𝑓)-Caristi type on 𝑋 as well as (𝜑
𝑖
, 𝑓)-Caristi type

on𝑋 for all 𝑖 ∈ {1, 2}. Moreover, we know that 𝑇 is (𝑝, 𝜑
2
, 𝑓)-

Caristi type on 𝑋, but it is neither (𝑝, 𝑓)-Caristi type nor
(𝑝, 𝜑
1
, 𝑓)-Caristi type on 𝑋 based on the following fact

𝑝 (𝑥, 𝑇𝑥) > 𝜑
1
(𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑇𝑥)) > 𝑓 (𝑥) − 𝑓 (𝑇𝑥)

∀𝑥 ∈ 𝑋.

(18)

Definition 9 (see [31–36]). A function 𝛼 : [0, +∞) → [0, 1)

is said to be anMT-function (orR-function) if lim sup
𝑠→ 𝑡
+

𝛼(𝑠) < 1 for all 𝑡 ∈ [0, +∞).

It is obvious that if 𝛼 : [0, +∞) → [0, 1) is a nonde-
creasing function or a nonincreasing function, then 𝛼 is an
MT-function. So the set ofMT-functions is a rich class. But
it is worth tomention that there exist functions which are not
MT-functions.

Example 10 (see [32]). Let 𝛼 : [0, +∞) → [0, 1) be defined
by

𝛼 (𝑡) :=
{

{

{

sin 𝑡

𝑡
, if 𝑡 ∈ (0,

𝜋

2
]

0, otherwise.
(19)

Since lim sup
𝑠→0
+𝛼(𝑠) = 1, 𝜑 is not anMT-function.

Recently, Du [32] first proved the following characteriza-
tions ofMT-functions.

Theorem 11 (see [32]). Let 𝛼 : [0, +∞) → [0, 1) be a func-
tion. Then the following statements are equivalent.

(a) 𝛼 is anMT-function.
(b) For each 𝑡 ∈ [0, +∞), there exist 𝑟(1)

𝑡
∈ [0, 1) and 𝜀(1)

𝑡
>

0 such that 𝛼(𝑠) ≤ 𝑟(1)
𝑡

for all 𝑠 ∈ (𝑡, 𝑡 + 𝜀(1)
𝑡

).
(c) For each 𝑡 ∈ [0, +∞), there exist 𝑟(2)

𝑡
∈ [0, 1) and 𝜀(2)

𝑡
>

0 such that 𝛼(𝑠) ≤ 𝑟
(2)

𝑡
for all 𝑠 ∈ [𝑡, 𝑡 + 𝜀

(2)

𝑡
].

(d) For each 𝑡 ∈ [0, +∞), there exist 𝑟(3)
𝑡

∈ [0, 1) and 𝜀(3)
𝑡

>

0 such that 𝛼(𝑠) ≤ 𝑟(3)
𝑡

for all 𝑠 ∈ (𝑡, 𝑡 + 𝜀(3)
𝑡

].
(e) For each 𝑡 ∈ [0, +∞), there exist 𝑟(4)

𝑡
∈ [0, 1) and 𝜀(4)

𝑡
>

0 such that 𝛼(𝑠) ≤ 𝑟(4)
𝑡

for all 𝑠 ∈ [𝑡, 𝑡 + 𝜀(4)
𝑡

).
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(f) For any nonincreasing sequence {𝑥
𝑛
}
𝑛∈N in [0, +∞),

one has 0 ≤ sup
𝑛∈N 𝛼(𝑥

𝑛
) < 1.

(g) 𝛼 is a function of contractive factor; that is, for any
strictly decreasing sequence {𝑥

𝑛
}
𝑛∈N in [0, +∞), one has

0 ≤ sup
𝑛∈N𝛼(𝑥

𝑛
) < 1.

3. New Results for Caristi Type Maps and
Their Applications

We start with the following useful auxiliary result.

Theorem 12. Let (𝑋, 𝑑) be a metric space, 𝑓 : 𝑋 → (−∞,

+∞] a proper and bounded below function, 𝜑 : R → (0, +∞)

a nondecreasing function, 𝑝 : 𝑋 × 𝑋 → [0,∞) a function,
and 𝑇 : 𝑋 → 𝑋 a selfmap on 𝑋. Let 𝑢 ∈ 𝑋 with 𝑓(𝑢) < +∞.
Define 𝑥

1
= 𝑢 and 𝑥

𝑛+1
= 𝑇𝑥
𝑛
for each 𝑛 ∈ N. If 𝑝 satisfies

(𝜏1) and 𝑇 is (𝑝, 𝜑, 𝑓)-Caristi type on 𝑋, then

lim
𝑛→∞

sup {𝑝 (𝑥
𝑛
, 𝑥
𝑚
) : 𝑚 > 𝑛} = 0. (20)

Moreover, if we futher assume that𝑝 satisfies (𝜏3), then {𝑥
𝑛
}
𝑛∈N

is a Cauchy sequence in 𝑋.

Proof. For 𝑥
1

= 𝑢, 𝑓(𝑥
1
) < +∞. Since 𝑇 is (𝑝, 𝜑, 𝑓)-Caristi

type on 𝑋, we get

𝑝 (𝑥
1
, 𝑥
2
) = 𝑝 (𝑥

1
, 𝑇𝑥
1
)

≤ 𝜑 (𝑓 (𝑥
1
)) (𝑓 (𝑥

1
) − 𝑓 (𝑇𝑥

1
))

= 𝜑 (𝑓 (𝑥
1
)) (𝑓 (𝑥

1
) − 𝑓 (𝑥

2
)) ,

(21)

which implies

𝑓 (𝑥
2
) ≤ 𝑓 (𝑥

1
) < +∞. (22)

Similarly, we have

𝑝 (𝑥
2
, 𝑥
3
) = 𝑝 (𝑥

2
, 𝑇𝑥
2
) ≤ 𝜑 (𝑓 (𝑥

2
)) (𝑓 (𝑥

2
) − 𝑓 (𝑥

3
)) ,

𝑓 (𝑥
3
) ≤ 𝑓 (𝑥

2
) ≤ 𝑓 (𝑥

1
) < +∞.

(23)

Hence, by induction, we can obtain the following inequalities

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜑 (𝑓 (𝑥
𝑛
)) (𝑓 (𝑥

𝑛
) − 𝑓 (𝑥

𝑛+1
)) , (24)

𝑓 (𝑥
𝑛+1

) ≤ 𝑓 (𝑥
𝑛
) < +∞ for each 𝑛 ∈ N. (25)

Since 𝑓 is bounded below,

𝑟 := lim
𝑛→∞

𝑓 (𝑥
𝑛
) = inf
𝑛∈N

𝑓 (𝑥
𝑛
) exists. (26)

By (25), since 𝜑 is nondecreasing, we have

𝜑 (𝑓 (𝑥
𝑛
)) ≤ 𝜑 (𝑓 (𝑥

1
)) ∀𝑛 ∈ N. (27)

For𝑚 > 𝑛 with𝑚, 𝑛 ∈ N, taking into account (𝜏1), (24), (26),
and (27), we get

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) ≤

𝑚−1

∑
𝑗=𝑛

𝑝 (𝑥
𝑗
, 𝑥
𝑗+1

) ≤ 𝜑 (𝑓 (𝑥
1
)) (𝑓 (𝑥

𝑛
) − 𝑟) .

(28)

Let 𝛼
𝑛

= 𝜑(𝑓(𝑥
1
))(𝑓(𝑥

𝑛
) − 𝑟), 𝑛 ∈ N. Then sup{𝑝(𝑥

𝑛
, 𝑥
𝑚
) :

𝑚 > 𝑛} ≤ 𝛼
𝑛
for each 𝑛 ∈ N. Since lim

𝑛→∞
𝑓(𝑥
𝑛
) = 𝑟, we

obtain lim
𝑛→∞

𝛼
𝑛

= 0, and hence lim
𝑛→∞

sup{𝑝(𝑥
𝑛
, 𝑥
𝑚
) :

𝑚 > 𝑛} = 0. Moreover, if 𝑝 satisfies (𝜏3), then the desired
conclusion follows from Theorem 3 immediately. The proof
is completed.

Applying Theorem 12, we prove a new fixed point theo-
rem for Caristi type maps and generalized pseudodistances.
It is worth to mention that inTheorem 13 we pose some suit-
able assumptions on the map 𝑇 without assuming that the
domi-nated functions possess lower semicontinuity property.

Theorem 13. Let (𝑋, 𝑑) be a complete metric space, 𝑓 :

𝑋 → (−∞, +∞] a proper and bounded below function, 𝜑 :

R → (0, +∞) a nondecreasing function, and 𝑝 a generalized
pseudodistance on 𝑋. Suppose that 𝑇 : 𝑋 → 𝑋 is a (𝑝, 𝜑, 𝑓)-
Caristi type selfmap on 𝑋 and one of the following conditions
is satisfied:

(H1) 𝑇 is continuous;
(H2) 𝑇 is closed;
(H3) 𝑝(𝑥, 𝑦) = 0 implies 𝑥 = 𝑦 for all 𝑥, 𝑦 ∈ 𝑋 and the map

𝑔 : 𝑋 → [0,∞) defined by 𝑔(𝑥) = 𝑝(𝑥, 𝑇𝑥) is l.s.c.;
(H4) the map ℎ : 𝑋 → [0,∞) defined by ℎ(𝑥) = 𝑑(𝑥, 𝑇𝑥)

is l.s.c.;
(H5) for any sequence {𝑧

𝑛
} in 𝑋 with 𝑧

𝑛+1
= 𝑇𝑧
𝑛
, 𝑛 ∈ N and

lim
𝑛→∞

𝑧
𝑛

= 𝑎, we have lim
𝑛→∞

𝑝(𝑧
𝑛
, 𝑇𝑎) = 0.

Then𝑇 admits a fixed point in𝑋.Moreover, for any𝑤 ∈ 𝑋

with𝑓(𝑤) < +∞, the sequence {𝑇𝑛𝑤}
𝑛∈N converges to a fixed

point of 𝑇.

Proof. Let 𝑆 = {𝑥 ∈ 𝑋 : 𝑓(𝑥) < +∞}. Since 𝑓 is proper,
𝑆 ̸= 0. Let 𝑤 ∈ 𝑆. Define 𝑥

1
= 𝑤 and 𝑥

𝑛+1
= 𝑇𝑥

𝑛
= 𝑇𝑛𝑤

for each 𝑛 ∈ N. Since 𝑝 is a generalized pseudodistance on
𝑋, by applyingTheorem 12, we know that {𝑥

𝑛
}
𝑛∈N is a Cauchy

sequence in 𝑋 and

lim
𝑛→∞

sup {𝑝 (𝑥
𝑛
, 𝑥
𝑚
) : 𝑚 > 𝑛} = 0. (29)

The last equality implies

lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (30)

By the completeness of𝑋, there exists V
𝑤

∈ 𝑋 such that 𝑥
𝑛

→

V
𝑤
as 𝑛 → ∞.
Now,we verify V

𝑤
∈ F(𝑇). If (H1) holds, since𝑇 is contin-

uous on 𝑋, 𝑥
𝑛+1

= 𝑇𝑥
𝑛
for each 𝑛 ∈ N and 𝑥

𝑛
→ V
𝑤
as 𝑛 →

∞, we get

V
𝑤

= lim
𝑛→∞

𝑥
𝑛

= lim
𝑛→∞

𝑥
𝑛+1

= lim
𝑛→∞

𝑇𝑥
𝑛

= 𝑇( lim
𝑛→∞

𝑥
𝑛
) = 𝑇V

𝑤
,

(31)

which means V
𝑤

∈ F(𝑇). If (H2) holds, since 𝑇 is closed,
𝑥
𝑛+1

= 𝑇𝑥
𝑛
for each 𝑛 ∈ N and 𝑥

𝑛
→ V
𝑤
as 𝑛 → ∞, we

have 𝑇V
𝑤

= V
𝑤
. Suppose that (H3) holds. By the lower



Abstract and Applied Analysis 5

semicontinuity of 𝑔, 𝑥
𝑛

→ V
𝑤
as 𝑛 → ∞ and (30), we

obtain

𝑝 (V
𝑤
, 𝑇V
𝑤
) = 𝑔 (V

𝑤
) ≤ lim inf
𝑛→∞

𝑔 (𝑥
𝑛
)

= lim
𝑛→∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0,
(32)

which implies 𝑝(V
𝑤
, 𝑇V
𝑤
) = 0. By the hypothesis in (H3),

we get V
𝑤

∈ F(𝑇). Suppose that (H4) holds. Since {𝑥
𝑛
}
𝑛∈N

is convergent in 𝑋,

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (33)

Since

𝑑 (V
𝑤
, 𝑇V
𝑤
) = ℎ (V

𝑤
) ≤ lim inf
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0, (34)

we obtain 𝑑(V
𝑤
, 𝑇V
𝑤
) = 0, and hence V

𝑤
∈ F(𝑇). Finally,

assume (H5) holds. Since lim
𝑛→∞

sup{𝑝(𝑥
𝑛
, 𝑥
𝑚
) : 𝑚 > 𝑛} =

0 and lim
𝑛→∞

𝑝(𝑥
𝑛
, 𝑇V
𝑤
) = 0, there exists {𝑎

𝑛
} ⊂ {𝑥

𝑛
}

with lim
𝑛→∞

sup{𝑝(𝑎
𝑛
, 𝑎
𝑚
) : 𝑚 > 𝑛} = 0 and 𝑏

𝑛
= 𝑇V
𝑤

for all 𝑛 ∈ N, such that lim
𝑛→∞

𝑝(𝑎
𝑛
, 𝑏
𝑛
) = 0. By (𝜏3),

lim
𝑛→∞

𝑑(𝑎
𝑛
, 𝑏
𝑛
) = 0. Since 𝑎

𝑛
→ V
𝑤
as 𝑛 → ∞ and

𝑑(𝑏
𝑛
, V
𝑤
) ≤ 𝑑(𝑏

𝑛
, 𝑎
𝑛
) + 𝑑(𝑎

𝑛
, V
𝑤
), we get 𝑏

𝑛
→ V
𝑤
as 𝑛 → ∞.

So 𝑇V
𝑤

= V
𝑤
or V
𝑤

∈ F(𝑇). Therefore, in any case, we
prove V

𝑤
∈ F(𝑇). Since 𝑤 ∈ 𝑆 is arbitrary, the sequence

{𝑇𝑛𝑤}
𝑛∈N converges to a fixed point V

𝑤
of 𝑇. This completes

the proof.

Here, we give an example illustrating Theorem 13. This
example also gives a negative answer to the uniqueness of
fixed point.

Example 14. Let 𝑋 = [0, 1] with the usual metric 𝑑(𝑥, 𝑦) =

|𝑥 − 𝑦|. Then (𝑋, 𝑑) is a complete metric space. Define 𝑝 :

𝑋 × 𝑋 → [0, +∞) by

𝑝 (𝑥, 𝑦) = max {2 (𝑥 − 𝑦) , 3 (𝑦 − 𝑥)} , (35)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑝 is a generalized pseudodistance on
𝑋. Let 𝑓 : 𝑋 → R and 𝜑 : R → (0, +∞) be defined by

𝑓 (𝑥) =

{{{

{{{

{

1

3
𝑥 − 25, if 𝑥 ∈ [0,

1

2
)

1

2
𝑥 − 3, if 𝑥 ∈ [

1

2
, 1] ,

𝜑 (𝑡) = 10 ∀𝑡 ∈ R,

(36)

respectively. So 𝑓(𝑥) < +∞ for all 𝑥 ∈ 𝑋. Note that 𝑓

is not lower semicontinuous at 𝑥 = 1/2, so 𝑓 is not lower
semicontinuous on 𝑋. Since 𝑓(𝑥) ≥ −25 for all 𝑥 ∈ 𝑋, 𝑓 is a
bounded below function on𝑋. Let 𝑇 : 𝑋 → 𝑋 be defined by

𝑇𝑥 = 𝑥
2

∀𝑥 ∈ 𝑋. (37)

Then𝑇 is continuous on𝑋 andF(𝑇) = {0, 1}. It is also easy to
see that 𝑇 is closed and the map 𝑥 → 𝑑(𝑥, 𝑇𝑥) is l.s.c. Hence

(H1), (H2), and (H4) as in Theorem 13 hold. We deduce that
for any 𝑥 ∈ 𝑋,

𝑝 (𝑥, 𝑇𝑥) = max {2 (𝑥 − 𝑇𝑥) , 3 (𝑇𝑥 − 𝑥)}

= 2 (𝑥 − 𝑥
2
)

< 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑇𝑥)) ,

(38)

so 𝑇 is (𝑝, 𝜑, 𝑓)-Caristi type on 𝑋. Let 𝑤 ∈ 𝑋. Since

lim
𝑛→∞

𝑇
𝑛
𝑤 = lim
𝑛→∞

𝑤
2𝑛

= {
0, if 𝑤 ∈ [0, 1) ,

1, if 𝑤 = 1,
(39)

we know that {𝑇𝑛𝑤}
𝑛∈N converges and the limit of {𝑇𝑛𝑤}

𝑛∈N

belongs to F(𝑇) = {0, 1}. On the other hand, since all
the assumptions of Theorem 13 are satisfied, by applying
Theorem 13, we also prove that𝑇has a fixed point in𝑋 and for
any 𝑤 ∈ 𝑋, the sequence {𝑇

𝑛𝑤}
𝑛∈N converges to a fixed point

of 𝑇. It is worth noticing that any well-known generalized
version of Caristi’s fixed point theorem is not applicable here.

The following conclusions are immediate from Theo-
rem 13.

Corollary 15. Let (𝑋, 𝑑) be a complete metric space, 𝑓 : 𝑋 →

(−∞, +∞] a proper and bounded below function, and 𝑝 a
generalized pseudodistance on 𝑋. Suppose that 𝑇 : 𝑋 → 𝑋

is a (𝑝, 𝑓)-Caristi type selfmap on 𝑋 and one of the conditions
(H1), (H2), (H3), (H4), and (H5) as inTheorem 13 holds. Then
𝑇 admits a fixed point in 𝑋. Moreover, for any 𝑤 ∈ 𝑋 with
𝑓(𝑤) < +∞, the sequence {𝑇

𝑛𝑤}
𝑛∈N converges to a fixed point

of T.

Corollary 16. Let (𝑋, 𝑑) be a complete metric space, 𝑓 : 𝑋 →

(−∞, +∞] a proper and bounded below function, and 𝜑 :

R → (0, +∞) a nondecreasing function. Suppose that 𝑇 :

𝑋 → 𝑋 is a (𝜑, 𝑓)-Caristi type selfmap on 𝑋 and one of the
following conditions is satisfied:

(D1) 𝑇 is continuous;
(D2) 𝑇 is closed;
(D3) the map ℎ : 𝑋 → [0,∞) defined by ℎ(𝑥) = 𝑑(𝑥, 𝑇𝑥)

is l.s.c.

Then𝑇 admits a fixed point in𝑋.Moreover, for any𝑤 ∈ 𝑋

with𝑓(𝑤) < +∞, the sequence {𝑇
𝑛𝑤}
𝑛∈N converges to a fixed

point of 𝑇.

Corollary 17. Let (𝑋, 𝑑) be a complete metric space and 𝑓 :

𝑋 → (−∞, +∞] a proper and bounded below function.
Suppose that 𝑇 : 𝑋 → 𝑋 is a (𝑓)-Caristi type selfmap
on 𝑋 and one of the conditions (D1), (D2), and (D3) as in
Corollary 16 holds.Then𝑇 admits a fixed point in𝑋. Moreover,
for any 𝑤 ∈ 𝑋 with 𝑓(𝑤) < +∞, the sequence {𝑇

𝑛𝑤}
𝑛∈N

converges to a fixed point of 𝑇.

Now, we give another quite useful auxiliary theorem for
our applications.
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Theorem 18. Let (𝑋, 𝑑) be a metric space, 𝑝 : 𝑋 × 𝑋 →

[0, +∞) a function, and 𝑇 : 𝑋 → 𝑋 a selfmap. Suppose that
there exists anMT-function 𝛼 : [0, +∞) → [0, 1) such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋. (40)

Then there exists a function 𝛽 : 𝑋 → [0, 1) such that for each
𝑥 ∈ 𝑋,

𝛽 (𝑇𝑥) ≤ 𝛽 (𝑥) ,

𝛼 (𝑝 (𝑇
𝑛−1

𝑥, 𝑇
𝑛
𝑥)) ≤ 𝛽 (𝑥) ∀𝑛 ∈ N.

(41)

Here, we denote 𝑇0 = 𝐼 (the identity map).

Proof. Let 𝑥 ∈ 𝑋 be given. From our hypothesis, we have

𝑝 (𝑇
𝑛
𝑥, 𝑇
𝑛+1

𝑥) ≤ 𝛼 (𝑝 (𝑇
𝑛−1

𝑥, 𝑇
𝑛
𝑥)) 𝑝 (𝑇

𝑛−1
𝑥, 𝑇
𝑛
𝑥)

< 𝑝 (𝑇
𝑛−1

𝑥, 𝑇
𝑛
𝑥)

(42)

for each 𝑛 ∈ N. So the sequence {𝑝(𝑇𝑛−1𝑥, 𝑇𝑛𝑥)}
𝑛∈N is strictly

decreasing in [0, +∞). Since 𝛼 is anMT-function, by (g) of
Theorem 11, we obtain

0 ≤ sup
𝑛∈N

𝛼 (𝑝 (𝑇
𝑛−1

𝑥, 𝑇
𝑛
𝑥)) < 1. (43)

Since 𝑥 ∈ 𝑋 is arbitrary, we can define a new function 𝛽 :

𝑋 → [0, 1) by

𝛽 (𝑥) := sup
𝑛∈N

𝛼 (𝑝 (𝑇
𝑛−1

𝑥, 𝑇
𝑛
𝑥)) for 𝑥 ∈ 𝑋. (44)

It is obvious that for each 𝑥 ∈ 𝑋, we have

𝛽 (𝑇𝑥) ≤ 𝛽 (𝑥) ,

𝛼 (𝑝 (𝑇
𝑛−1

𝑥, 𝑇
𝑛
𝑥)) ≤ 𝛽 (𝑥) ∀𝑛 ∈ N.

(45)

As an interesting application ofTheorem 13, we prove the
following new fixed point theorems for Banach type maps.

Theorem 19. Let (𝑋, 𝑑) be a complete metric space, 𝑝 a
generalized pseudodistance on 𝑋 with 𝑝(𝑥, 𝑦) = 0 implies
𝑥 = 𝑦 for all 𝑥, 𝑦 ∈ 𝑋, and 𝑇 : 𝑋 → 𝑋 a selfmap. Suppose
that

(a) there exists anMT-function 𝛼 : [0,∞) → [0, 1) such
that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋; (46)

(b) one of the conditions (H1), (H2), (H3), (H4), and (H5)
as in Theorem 13 holds.

Then 𝑇 admits a unique fixed point in 𝑋. Moreover, for
each 𝑥 ∈ 𝑋, the sequence {𝑇

𝑛𝑥}
𝑛∈N converges to the unique

fixed point of 𝑇.

Proof. Denote 𝑇
0 = 𝐼 (the identity map). Applying

Theorem 18, there exists a function 𝛽 : 𝑋 → [0, 1) such that
for each 𝑥 ∈ 𝑋,

𝛽 (𝑇𝑥) ≤ 𝛽 (𝑥) ,

𝛼 (𝑝 (𝑇
𝑛−1

𝑥, 𝑇
𝑛
𝑥)) ≤ 𝛽 (𝑥) ∀𝑛 ∈ N.

(47)

For each 𝑥 ∈ 𝑋, by (46), we get

𝑝 (𝑥, 𝑇𝑥) − 𝛼 (𝑝 (𝑥, 𝑇𝑥)) 𝑝 (𝑥, 𝑇𝑥)

≤ 𝑝 (𝑥, 𝑇𝑥) − 𝑝 (𝑇𝑥, 𝑇
2
𝑥) .

(48)

By exploiting the inequalities (47) and (48), we obtain

𝑝 (𝑥, 𝑇𝑥) ≤
1

1 − 𝛼 (𝑝 (𝑥, 𝑇𝑥))
𝑝 (𝑥, 𝑇𝑥)

−
1

1 − 𝛼 (𝑝 (𝑥, 𝑇𝑥))
𝑝 (𝑇𝑥, 𝑇

2
𝑥)

≤
1

1 − 𝛽 (𝑥)
𝑝 (𝑥, 𝑇𝑥)

−
1

1 − 𝛽 (𝑇𝑥)
𝑝 (𝑇𝑥, 𝑇

2
𝑥) .

(49)

Let 𝜑 : R → (0, +∞) and 𝑓 : 𝑋 → R be defined by

𝜑 (𝑡) = 1 for 𝑡 ∈ R,

𝑓 (𝑥) =
1

1 − 𝛽 (𝑥)
𝑝 (𝑥, 𝑇𝑥) for 𝑥 ∈ 𝑋,

(50)

respectively. Then 𝜑 is a nondecreasing function, and 𝑓 is a
bounded below function. Clearly, 𝑓(𝑥) < +∞ for all 𝑥 ∈ 𝑋.
By (49), we obtain

𝑝 (𝑥, 𝑇𝑥) ≤ 𝜑 (𝑓 (𝑥)) (𝑓 (𝑥) − 𝑓 (𝑇𝑥)) ∀𝑥 ∈ 𝑋. (51)

Hence we prove that 𝑇 : 𝑋 → 𝑋 is a (𝑝, 𝜑, 𝑓)-Caristi type
selfmap on 𝑋. Applying Theorem 13, we knowF(𝑇) ̸= 0. We
claim thatF(𝑇) is a singleton set. Let 𝑢, V ∈ F(𝑇).Then𝑇𝑢 =

𝑢 and 𝑇V = V. From (46), we have

𝑝 (𝑢, V) = 𝑝 (𝑇𝑢, 𝑇V) ≤ 𝛼 (𝑝 (𝑢, V)) 𝑝 (𝑢, V) (52)

or

(1 − 𝛼 (𝑝 (𝑢, V))) 𝑝 (𝑢, V) ≤ 0, (53)

which implies𝑝(𝑢, V) = 0. By our hypothesis, we get𝑢 = V and
our claim is proved. By the uniqueness of fixed point of𝑇 and
applyingTheorem 13 again, the sequence {𝑇

𝑛𝑥}
𝑛∈N converges

to the unique fixed point of 𝑇 for any 𝑥 ∈ 𝑋.

As a direct consequence of Theorem 19, we obtain the
following result.

Corollary 20. Let (𝑋, 𝑑) be a complete metric space, 𝑝 be a
generalized pseudodistance on 𝑋 with 𝑝(𝑥, 𝑦) = 0 implies 𝑥 =

𝑦 for all 𝑥, 𝑦 ∈ 𝑋, and 𝑇 : 𝑋 → 𝑋 a selfmap. Suppose that



Abstract and Applied Analysis 7

(a) there exists 𝛾 ∈ [0, 1) such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝛾𝑝 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋; (54)

(b) one of the conditions (H1), (H2), (H3), (H4), and (H5)
as in Theorem 13 holds.

Then 𝑇 admits a unique fixed point in 𝑋. Moreover, for
each 𝑥 ∈ 𝑋, the sequence {𝑇

𝑛
𝑥}
𝑛∈N converges to the unique

fixed point of 𝑇.
Applying Theorem 19, we obtain a generalization of the

celebrated Banach contraction principle.

Corollary 21. Let (𝑋, 𝑑) be a complete metric space and 𝑇 :

𝑋 → 𝑋 a selfmap. Suppose that there exists anMT-function
𝛼 : [0,∞) → [0, 1) such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋. (55)

Then 𝑇 admits a unique fixed point in 𝑋. Moreover, for
each 𝑥 ∈ 𝑋, the sequence {𝑇

𝑛𝑥}
𝑛∈N converges to the unique

fixed point of 𝑇.

Proof. By (55), we know that𝑇 is continuous on𝑋. Hence the
conclusion follows fromTheorem 19 immediately.

Remark 22. Theorems 13 and 19, Corollaries 15–21 all general-
ize and improve the celebrated Banach contraction principle.
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