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We are concerned with determining values of 𝛾, for which there exist nodal solutions of the boundary value problem (|𝑢
󸀠
|
𝑝−2

𝑢
󸀠
)
󸀠

+

𝛾𝑚(𝑡)𝑓(𝑢) = 0, 𝑡 ∈ (0, 1), 𝑢(0) = 𝑢(1) = 0, where𝑚 ∈ 𝐶[0, 1] is a sign-changing function, 𝑓 : R → R with 𝑓(𝑠)𝑠 > 0. The proof of
our main results is based upon global bifurcation techniques.

1. Introduction

In [1], Ma and Thompson considered determining values of
𝑟, for which there exist nodal solutions of the boundary value
problem

𝑢
󸀠󸀠
+ 𝑟𝑚 (𝑡) 𝑓 (𝑢) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(1)

under the following assumptions:

(𝐻
1
) 𝑓 ∈ 𝐶(R,R) with 𝑠𝑓(𝑠) > 0 for 𝑠 ̸= 0;

(𝐻̃
2
) 𝑚 : [0, 1] → [0, +∞) is continuous and does not
vanish identically on any subinterval of [0, 1];

(𝐻̃
3
) there exist 𝑓

0
, 𝑓
∞
∈ (0, +∞) such that

𝑓
0
= lim
|𝑠|→0

𝑓 (𝑠)

𝑠
, 𝑓

∞
= lim
|𝑠|→+∞

𝑓 (𝑠)

𝑠
. (2)

Using the bifurcation theory of Rabinowitz [2, 3], they
proved the following.

Theorem 1. Let (𝐻
1
), (𝐻̃
2
), and (𝐻̃

3
) hold. Assume that, for

some 𝑘 ∈ N, either

𝜆
𝑘

𝑓
∞

< 𝑟 <
𝜆
𝑘

𝑓
0

𝑜𝑟
𝜆
𝑘

𝑓
0

< 𝑟 <
𝜆
𝑘

𝑓
∞

. (3)

Then (1) has two solutions 𝑢+
𝑘
and 𝑢−

𝑘
such that 𝑢+

𝑘
has exactly

𝑘 − 1 zeros in (0, 1) and is positive near 0 and 𝑢−
𝑘
has exactly

𝑘 − 1 zeros in (0, 1) and is negative near 0.

The results of Theorem 1 have been extended to the
case that the weight function changes its sign by Ma and
Han [4]. Bifurcation methods have been applied to study
the existence of nodal solutions of nonlinear two-point,
multipoint, and periodic boundary value problems; see [5–
9] and the references therein. The results they obtained
extend somewell-known theorems of the existence of positive
solutions for the related problems [10].

However, no results on the existence of nodal solu-
tions, even positive solutions, have been established for
one-dimensional 𝑝-Laplacian equation with sign-changing
weight 𝑚(𝑡). It is the purpose of this paper to establish a
similar result to Theorem 1 for one-dimensional 𝑝-Laplacian
equation with sign-changing weight. Problem with sign-
changingweight arises from the selection-migrationmodel in
population genetics. In this model, 𝑚(𝑡) changes sign corre-
sponding to the fact that an allele𝐴

1
holds an advantage over

a rival allele 𝐴
2
at the same points and is at a disadvantage

at others; the parameter 𝑟 corresponds to the reciprocal of
diffusion; for details see [11].

If 𝑚(𝑡) ≡ 1, Del Pino et al. [12] established the global
bifurcation theory for one-dimensional 𝑝-Laplacian eigen-
value problem. Peral [13] got the global bifurcation theory for
𝑝-Laplacian eigenvalue problem on the unite ball. In [14], Del
Pino and Manásevich obtained the global bifurcation from



2 Abstract and Applied Analysis

the principal eigenvalue for 𝑝-Laplacian eigenvalue problem
on the general domain. If 𝑚(𝑡) ≥ 0 and is singular at 𝑡 = 0

or 𝑡 = 1, Lee and Sim [15] also established the bifurcation
theory for one-dimensional 𝑝-Laplacian eigenvalue problem.
However, if𝑚(𝑡) changes sign, there are a few papers dealing
with the 𝑝-Laplacian eigenvalue problem via bifurcation
techniques. In [16], Drábek and Huang established the global
bifurcation from the principal eigenvalue for 𝑝-Laplacian
eigenvalue problem in R𝑁.

The purpose of this paper is to study the bifurcation
behavior of one-dimensional 𝑝-Laplacian eigenvalue prob-
lem as follows:

𝜑
𝑝
(𝑢
󸀠
)
󸀠

+ 𝛾𝑚 (𝑡) 𝑓 (𝑢) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(4)

under the condition (𝐻
1
) and

(𝐻
2
) 𝑚(𝑡) ∈ 𝐶[0, 1] changes sign and

meas {𝑥 ∈ [0, 1] | 𝑚 (𝑡) = 0} = 0; (5)

(𝐻
3
) there exists 𝑓

0
∈ (0,∞) such that

𝑓
0
= lim
|𝑠|→0

𝑓 (𝑠)

𝜑
𝑝
(𝑠)
, (6)

where 𝜑
𝑝
(𝑠) = |𝑠|

𝑝−2
𝑠 with 1 < 𝑝 < +∞;

(𝐻
4
) there exists 𝑓

∞
∈ (0, +∞) such that

𝑓
∞
= lim
|𝑠|→+∞

𝑓 (𝑠)

𝜑
𝑝
(𝑠)
. (7)

Moreover, based on our global bifurcation theorem, we will
prove the existence of nodal solutions for the corresponding
nonlinear problem with a parameter (see Theorem 11).

The main tool is the global bifurcation techniques in [17].
The rest of this paper is arranged as follows. In

Section 2, we establish the global bifurcation theory for
one-dimensional 𝑝-Laplacian eigenvalue problem with sign-
changing weight. In Section 3, we state and prove the main
results of this paper.

2. Some Preliminaries

Let 𝐸 be the Banach space 𝐶1
0
[0, 1] with the norm

‖𝑢‖ = max {‖𝑢‖
∞
,
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󵄩󵄩󵄩󵄩󵄩∞

} . (8)

Let 𝑌 = 𝐿1(0, 1) with its usual normal ‖ ⋅ ‖
𝐿
1 .

We start by considering the following auxiliary problem:

𝜑
𝑝
(𝑢
󸀠
)
󸀠

= ℎ, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(9)

for a given ℎ ∈ 𝐿
1
(0, 1). By a solution of problem (9),

we understand a function 𝑢 ∈ 𝐸 with 𝜑
𝑝
(𝑢
󸀠
) absolutely

continuous which satisfies (9). Problem (9) is equivalently
written to

𝑢 (𝑡) = 𝐺
𝑝
(ℎ) (𝑡) := ∫

𝑡

0

𝜑
−1

𝑝
(𝑎 (ℎ) + ∫

𝑠

0

ℎ (𝜏) 𝑑𝜏) 𝑑𝑠, (10)

where 𝑎 : 𝑌 → R is a continuous function satisfying

∫

1

0

𝜑
−1

𝑝
(𝑎 (ℎ) + ∫

𝑠

0

ℎ (𝜏) 𝑑𝜏) 𝑑𝑠 = 0. (11)

It is known that 𝐺
𝑝
: 𝑌 → 𝐸 is continuous and maps equi-

integrable sets of 𝑌 into relatively compacts of 𝐸. One may
refer to Lee and Sim [15] for details.

Since the bifurcation points of

𝜑
𝑝
(𝑢
󸀠
(𝑡))
󸀠

+ 𝜆𝑚 (𝑡) 𝑓 (𝑢 (𝑡)) = 0 a.e. in (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0

(12)

is related to the eigenvalues of the problem

𝜑
𝑝
(𝑢
󸀠
(𝑡))
󸀠

+ 𝜆𝑚 (𝑡) 𝜑
𝑝
(𝑢 (𝑡)) = 0 a.e. in (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0.

(13)

We define the operator 𝑇𝑝
𝜆
: 𝐸 → 𝐸 by

𝑇
𝑝

𝜆
(𝑢) (𝑡) = ∫

𝑡

0

𝜑
−1

𝑝
(𝑎 (−𝜆𝑚𝜑

𝑝
(𝑢 (𝜏)))

− ∫

𝑠

0

𝜆𝑚 (𝜏) 𝜑
𝑝
(𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠

=: 𝐺
𝑝
(−𝜆𝑚𝜑

𝑝
(𝑢)) (𝑡) .

(14)

Then𝑇𝑝
𝜆
: 𝐸 → 𝐸 is completely continuous and problem (13)

is equivalent to

𝑢 = 𝑇
𝑝

𝜆
(𝑢) . (15)

The following spectrum result plays a fundamental role in
our study.

Lemma 2 (see [18, 19]). Let (𝐻
2
) hold. Then

(i) the set of all eigenvalues of the problem (13) is two
infinite sequences of simple eigenvalues as follows:

0 < 𝜇
+

1
(𝑝) < 𝜇

+

2
(𝑝) < ⋅ ⋅ ⋅ < 𝜇

+

𝑘
(𝑝) < ⋅ ⋅ ⋅ ,

lim
𝑘→+∞

𝜇
+

𝑘
(𝑝) = +∞,

0 > 𝜇
−

1
(𝑝) > 𝜇

−

2
(𝑝) > ⋅ ⋅ ⋅ > 𝜇

−

𝑘
(𝑝) > ⋅ ⋅ ⋅ ,

lim
𝑘→+∞

𝜇
−

𝑘
(𝑝) = −∞;

(16)

(ii) for 𝑘 ∈ N and ] ∈ {+, −}, Ker (𝐼 − 𝑇𝑝
𝜇
]
𝑘
(𝑝)
) is a space of

𝐸 with dimensional 1;
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(iii) the eigenfunction corresponding to 𝜇]
𝑘
(𝑝) has exactly

𝑘 − 1 simple zeros in (0, 1).

Remark 3. Using the Gronwall inequality, we can easily show
that all zeros of eigenfunction corresponding to eigenvalue
𝜇
]
𝑘
(𝑝) are simple.
It is very known that 𝑇2

𝜆
is completely continuous in

𝐶
1
[0, 1].Thus, the Leray-Schauder degree 𝑑LS(𝐼−𝑇

2

𝜆
, 𝐵
𝑟
(0), 0)

is well-defined for arbitrary 𝑟-ball 𝐵
𝑟
(0) and 𝜆 ̸= 𝜇

]
𝑘
, 𝑘 ∈ Z

and ] ∈ {+, −}.

Lemma 4. For 𝑟 > 0, we have

𝑑LS (𝐼 − 𝑇
2

𝜆
, 𝐵
𝑟
(0) , 0)

=

{{

{{

{

1, 𝑖𝑓 𝜆 ∈ (𝜇
−

1
(2) , 𝜇

+

1
(2)) ,

(−1)
𝑘
, 𝑖𝑓 𝜆 ∈ (𝜇

+

𝑘
(2) , 𝜇

+

𝑘+1
(2)) , 𝑘 ∈ N,

(−1)
𝑘
, 𝑖𝑓 𝜆 ∈ (𝜇

−

𝑘+1
(2) , 𝜇

−

𝑘
(2)) , 𝑘 ∈ N.

(17)

Proof. We divide the proof into two cases.

Case 1 . 𝜆 ≥ 0. Since𝑇2
𝜆
is compact and linear, by [20,Theorem

8.10] and Lemma 2 (ii) with 𝑝 = 2,

𝑑LS (𝐼 − 𝑇
2

𝜆
, 𝐵
𝑟
(0) , 0) = (−1)

𝑚(𝜆)
, (18)

where 𝑚(𝜆) is the sum of algebraic multiplicity of the
eigenvalues 𝜇 of (13) satisfying 𝜇−1𝜆 > 1.

If 𝜆 ∈ [0, 𝜇+
1
(2)), then there are no such 𝜇 at all; then

𝑑LS (𝐼 − 𝑇
2

𝜆
, 𝐵
𝑟
(0) , 0) = (−1)

𝑚(𝜆)
= (−1)

0
= 1. (19)

If 𝜆 ∈ (𝜇+
𝑘
(2), 𝜇
+

𝑘+1
(2)) for some 𝑘 ∈ N, then

(𝜇
+

𝑗
(2))
−1

𝜆 > 1, 𝑗 ∈ {1, ⋅ ⋅ ⋅ , 𝑘} . (20)

This together with Lemma 2 (ii) implies the following:

𝑑LS (𝐼 − 𝑇
2

𝜆
, 𝐵
𝑟
(0) , 0) = (−1)

𝑘
. (21)

Case 2 . 𝜆 < 0. In this case, we consider a new sign-changing
eigenvalue problem as follows

𝑢
󸀠󸀠
+ 𝜆̂𝑚̂ (𝑡) 𝑢 = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(22)

where 𝜆 = −𝜆, 𝑚̂(𝑡) = −𝑚(𝑡). It is easy to check that

𝜇
+

𝑘
(2) = −𝜇

−

𝑘
(2) , 𝑘 ∈ N. (23)

Thus, we may use the result obtained in Case 1 to deduce the
desired result.

We first show that the principle eigenvalue function 𝜇]
1
:

(1, +∞) → R is continuous.

Proposition 5. The eigenvalue function 𝜇]
1
: (1, +∞) → R is

continuous.

Proof. We only show that 𝜇+
1
: (1, +∞) → R is continuous

since the case of 𝜇−
1
is similar. In the following proof, we will

shorten 𝜇+
1
to 𝜇
1
. From the variational characterization of

𝜇
1
(𝑝), it follows that

𝜇
1
(𝑝)

= sup{𝜇 > 0 | 𝜇∫
1

0

𝑚(𝑡) |𝑢|
𝑝
𝑑𝑡

≤ ∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑡, ∀𝑢 ∈ 𝐶
∞

𝑐
(0, 1)} .

(24)

Let {𝑝
𝑗
}
∞

𝑗=1
be a sequence in (1, +∞) convergent to 𝑝 > 1.

We will show that

lim
𝑗→+∞

𝜇
1
(𝑝
𝑗
) = 𝜇
1
(𝑝) . (25)

To do this, let 𝑢 ∈ 𝐶∞
𝑐
(0, 1). Then, from (24),

𝜇
1
(𝑝
𝑗
)∫

1

0

𝑚(𝑡) |𝑢|
𝑝
𝑗𝑑𝑡 ≤ ∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

𝑝
𝑗

𝑑𝑡. (26)

On applying the Dominated Convergence Theorem, we
find that

lim sup
𝑗→+∞

𝜇
1
(𝑝
𝑗
)∫

1

0

𝑚(𝑡) |𝑢|
𝑝
𝑑𝑡 ≤ ∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑡. (27)

Relation (27), the fact that 𝑢 is arbitrary and (24) yield

lim sup
𝑗→+∞

𝜇
1
(𝑝
𝑗
) ≤ 𝜇
1
(𝑝) . (28)

Thus, to prove (25), it suffices to show that

lim inf
𝑗→+∞

𝜇
1
(𝑝
𝑗
) ≥ 𝜇
1
(𝑝) . (29)

Let {𝑝
𝑘
}
∞

𝑘=1
be a subsequence of {𝑝

𝑗
}
∞

𝑗=1
such that

lim
𝑘→+∞

𝜇
1
(𝑝
𝑘
) = lim inf
𝑗→+∞

𝜇
1
(𝑝
𝑗
).

Let us fix 𝜀
0
> 0 so that 𝑝−𝜀

0
> 1 and, for each 0 < 𝜀 < 𝜀

0
,

𝑊
1,𝑝−𝜀

0
(0, 1) is compactly embedded into 𝐿𝑝+𝜀(0, 1). For 𝑘 ∈

N, let us choose 𝑢
𝑘
∈ 𝑊
1,𝑝
𝑘

0
(0, 1) such that

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

𝑘

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘

𝑑𝑡 = 1, (30)

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

𝑘

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘

𝑑𝑡 = 𝜇
1
(𝑝
𝑘
) ∫

1

0

𝑚(𝑡)
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨
𝑝
𝑘
𝑑𝑡. (31)

For 0 < 𝜀 < 𝜀
0
, there exists 𝑘

0
∈ N such that 𝑝−𝜀 < 𝑝

𝑘
< 𝑝+𝜀

for any 𝑘 ≥ 𝑘
0
. Thus, for 𝑘 ≥ 𝑘

0
, (30) and Hölder’s inequality

imply that

∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

𝑘

󵄨󵄨󵄨󵄨󵄨

𝑝−𝜀

𝑑𝑡 ≤ 1. (32)

This shows that {𝑢
𝑘
}
∞

𝑘=𝑘
0

is a bounded sequence in
𝑊
1,𝑝−𝜀

0
(0, 1). Passing to a subsequence if necessary, we can
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assume that 𝑢
𝑘
⇀ 𝑢 in𝑊1,𝑝−𝜀

0
(0, 1) and hence that 𝑢

𝑘
→ 𝑢

in 𝐿𝑝+𝜀(0, 1). Furthermore, 𝑢 ∈ 𝐿
𝑝
(0, 1) and 𝑢

𝑘
→ 𝑢 in

𝐿
𝑝
𝑘(0, 1) for 𝑘 ≥ 𝑘

0
. It follows that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨
𝑝
𝑘

𝑑𝑡 − ∫

1

0

|𝑢|
𝑝
𝑘𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

1

0

𝑝
𝑘

󵄨󵄨󵄨󵄨𝑢 + 𝜃𝑢𝑘
󵄨󵄨󵄨󵄨
𝑝
𝑘
−1 󵄨󵄨󵄨󵄨𝑢𝑘 − 𝑢

󵄨󵄨󵄨󵄨 𝑑𝑡

≤ (𝑝 + 𝜀) (∫

1

0

󵄨󵄨󵄨󵄨𝑢 + 𝜃𝑢𝑘
󵄨󵄨󵄨󵄨
𝑝
𝑘

𝑑𝑡)

(𝑝
𝑘
−1)/𝑝

𝑘

×(∫

1

0

󵄨󵄨󵄨󵄨𝑢𝑘 − 𝑢
󵄨󵄨󵄨󵄨
𝑝
𝑘

𝑑𝑡)

1/𝑝
𝑘

≤ (𝑝 + 𝜀) (‖𝑢‖
𝑝
𝑘

+
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩𝑝
𝑘

)
𝑝
𝑘
−1

(∫

1

0

󵄨󵄨󵄨󵄨𝑢𝑘 − 𝑢
󵄨󵄨󵄨󵄨
𝑝
𝑘

𝑑𝑡)

1/𝑝
𝑘

󳨀→ 0

(33)

as 𝑘 → +∞. It is clear that

∫

1

0

|𝑢|
𝑝
𝑘𝑑𝑡 − ∫

1

0

|𝑢|
𝑝
𝑑𝑡 󳨀→ 0 as 𝑘 󳨀→ +∞. (34)

Thus,

∫

1

0

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨
𝑝
𝑘

𝑑𝑡 󳨀→ ∫

1

0

|𝑢|
𝑝
𝑑𝑡. (35)

Similarly, we can also obtain that

∫

1

0

𝑚
+

(𝑡)
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨
𝑝
𝑘

𝑑𝑡 󳨀→ ∫

1

0

𝑚
+

(𝑡) |𝑢|
𝑝
𝑑𝑡,

∫

1

0

𝑚
−

(𝑡)
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨
𝑝
𝑘

𝑑𝑡 󳨀→ ∫

1

0

𝑚
−

(𝑡) |𝑢|
𝑝
𝑑𝑡,

(36)

where 𝑚+(𝑡) = max{𝑚(𝑡), 0} and 𝑚−(𝑡) = −min{𝑚(𝑡), 0}.
Therefore,

∫

1

0

𝑚(𝑡)
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨
𝑝
𝑘

𝑑𝑡

= ∫

1

0

𝑚
+

(𝑡)
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨
𝑝
𝑘

𝑑𝑡 − ∫

1

0

𝑚
−

(𝑡)
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨
𝑝
𝑘

𝑑𝑡

󳨀→ ∫

1

0

𝑚
+

(𝑡) |𝑢|
𝑝
𝑑𝑡 − ∫

1

0

𝑚
−

(𝑡) |𝑢|
𝑝
𝑑𝑡

= ∫

1

0

𝑚(𝑡) |𝑢|
𝑝
𝑑𝑡.

(37)

We note that (30) and (31) imply that

𝜇
1
(𝑝
𝑘
) ∫

1

0

𝑚(𝑡)
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨
𝑝
𝑘

𝑑𝑡 = 1 (38)

for all 𝑘 ∈ N. Thus, letting 𝑘 go to +∞ in (38) and using (37),
we find that

lim inf
𝑗→+∞

𝜇
1
(𝑝
𝑘
) ∫

1

0

𝑚(𝑡) |𝑢|
𝑝
𝑑𝑡 = 1. (39)

On the other hand, since 𝑢
𝑘
⇀ 𝑢 in 𝑊1,𝑝−𝜀

0
(0, 1), from

(32) we obtain that

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󵄩󵄩󵄩󵄩󵄩

𝑝−𝜀

𝑝−𝜀
≤ lim inf
𝑘→+∞

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠

𝑘

󵄩󵄩󵄩󵄩󵄩

𝑝−𝜀

𝑝−𝜀
≤ 1
𝜀/𝑝
. (40)

Now, letting 𝜀 → 0
+ and applying Fatou’s Lemma, we

find that
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
≤ 1. (41)

Hence, 𝑢 ∈ 𝑊
1,𝑝
(0, 1); here 𝑊1,𝑝(0, 1) denotes the radially

symmetric subspace of𝑊1,𝑝(0, 1). We claim that actually 𝑢 ∈
𝑊
1,𝑝

0
(0, 1). Indeed, we know that 𝑢 ∈ 𝑊

1,𝑝−𝜀

0
(0, 1) for each

0 < 𝜀 < 𝜀
0
. For 𝜙 ∈ 𝐶∞

𝑐
(R), it is easy to see that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝑢𝜙
󸀠
𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󵄩󵄩󵄩󵄩󵄩𝑝−𝜀

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩(𝑝−𝜀)󸀠 , 𝑖 = 1, . . . , 𝑁. (42)

Then, letting 𝜀 → 0
+, we obtain that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝑢𝜙
󸀠
𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󵄩󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝑝󸀠 , 𝑖 = 1, . . . , 𝑁, (43)

where 𝑝󸀠 = 𝑝/(𝑝 − 1). Since 𝜙 is arbitrary, from Proposition
IX-18 of [21], we find that 𝑢 ∈ 𝑊1,𝑝

0
(0, 1), as desired.

Finally, combining (39) and (41), we obtain that

lim inf
𝑗→+∞

𝜇
1
(𝑝
𝑘
) ∫

1

0

𝑚(𝑡) |𝑢|
𝑝
𝑑𝑡 ≥ ∫

1

0

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑡. (44)

This and the variational characterization of 𝜇
1
(𝑝) imply

(29) and hence (25). This concludes the proof of the lemma.

Using Remark 3, Lemma 2, and Proposition 5, we will
show that all eigenvalue functions 𝜇±

𝑘
: (1, +∞) → R,

2 ≤ 𝑘 ∈ N are continuous.

Lemma 6. For fixed 2 ≤ 𝑘 ∈ N and ] ∈ {+, −}, 𝜇]
𝑘
(𝑝) as a

function of 𝑝 ∈ (1, +∞) is continuous.

Proof. Let 𝑢]
𝑘
be an eigenfunction corresponding to 𝜇]

𝑘
(𝑝). By

Lemma 2 and Remark 3, we know that 𝑢 has exactly 𝑘 − 1
simple zeros in 𝐼; that is, there exist 𝑐

𝑘,1
, . . . , 𝑐

𝑘,𝑘−1
∈ 𝐼 such

that 𝑢(𝑐
𝑘,1
) = ⋅ ⋅ ⋅ = 𝑢(𝑐

𝑘,𝑘−1
) = 0. For convenience, we set

𝑐
𝑘,0

= 0, 𝑐
𝑘,𝑘

= 1, and 𝐽
𝑖
= (𝑐
𝑘,𝑖−1

, 𝑐
𝑘,𝑖
) for 𝑖 = 1, . . . , 𝑘. Let

𝜇
]
1
(𝑝,𝑚/𝐽

𝑖
, 𝐽
𝑖
) denote the first positive or negative eigenvalue

of the restriction of problem (13) on 𝐽
𝑖
for 𝑖 = 1, . . . , 𝑘. Lemma

3 of [18] follows that 𝜇]
𝑘
(𝑝) = 𝜇

]
1
(𝑝,𝑚/𝐽

𝑖
, 𝐽
𝑖
) for 𝑖 = 1, . . . , 𝑘.

Using a similar proof to Proposition 5, we can show that
𝜇
]
1
(𝑝,𝑚/𝐽

𝑖
, 𝐽
𝑖
) is continuous with respect to 𝑝 for 𝑖 = 1, . . . , 𝑘.

Therefore, 𝜇]
𝑘
(𝑝) is also continuous with respect to 𝑝.
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Lemma 7. (i) Let {𝜇+
𝑘
(𝑝)}
𝑘∈N

be the sequence of positive
eigenvalues of (13). Let 𝜆 be a constant with 𝜆 ̸= 𝜇

+

𝑘
(𝑝) for all

𝑘 ∈ N. Then, for arbitrary 𝑟 > 0,

deg (𝑇𝑝
𝜆
, 𝐵
𝑟
(0) , 0) = (−1)

𝛽
, (45)

where 𝛽 is the number of eigenvalues 𝜇+
𝑛
(𝑝) of problem (13) less

than 𝜆.
(ii) Let {𝜇−

𝑘
(𝑝)}
𝑘∈N be the sequence of negative eigenvalues

of (13). Consider 𝜆 ̸= 𝜇
−

𝑘
(𝑝), 𝑘 ∈ N; then

deg (𝑇𝑝
𝜆
, 𝐵
𝑟
(0) , 0) = (−1)

𝛽
, ∀𝑟 > 0, (46)

where 𝛽 is the number of eigenvalues 𝜇−
𝑘
(𝑝) of problem (25)

larger than 𝜆.

Proof. We will only prove the case 𝜆 > 𝜇
+

1
(𝑝) since the

proof for the other cases is similar. We also only give the
proof for the case 𝑝 > 2. Proof for the case 1 < 𝑝 < 2 is
similar. Assume that 𝜇+

𝑘
(𝑝) < 𝜆 < 𝜇

+

𝑘+1
(𝑝) for some 𝑘 ∈ N.

Since the eigenvalues depend continuously on 𝑝, there exists
a continuous function 𝜒 : [2, 𝑝] → R and 𝑞 ∈ [2, 𝑝] such
that 𝜇+

𝑘
(𝑞) < 𝜒(𝑞) < 𝜇

+

𝑘+1
(𝑞) and 𝜆 = 𝜒(𝑝). Define

Φ(𝑞, 𝑢) = 𝑢 − 𝐺
𝑞
(−𝜒 (𝑞)𝑚 (𝑡) 𝜑

𝑞
(𝑢)) . (47)

It is easy to show that Φ(𝑞, 𝑢) is a compact perturbation
of the identity such that, for all 𝑢 ̸= 0, by definition of 𝜒(𝑞),
Φ(𝑞, 𝑢) ̸= 0, for all 𝑞 ∈ [2, 𝑝]. Hence, the invariance of the
degree under homotopology and the classical result for 𝑝 = 2
imply

deg (𝑇𝑝
𝜆
, 𝐵
𝑟
(0) , 0) = deg (𝑇2

𝜆
, 𝐵
𝑟
(0) , 0) = (−1)

𝑘
. (48)

For the existence of bifurcation branches for (12), we will
make use of the following global bifurcation theorem results.

Lemma8 (see [17]). Let𝑋 be a Banach space. Let𝐹 : R×𝑋 →

𝑋 be completely continuous such that 𝐹(𝜆, 0) = 0 for all 𝜆 ∈ R.
Suppose that there exist constants 𝜌, 𝜂 ∈ R, with 𝜌 < 𝜂, such
that (𝜌, 0) and (𝜂, 0) are not bifurcation points for the equation

𝑢 − 𝐹 (𝜆, 𝑢) = 0. (49)

Furthermore, assume that

deg (𝐼 − 𝐹 (𝜌, ⋅) , 𝐵
𝑟
(0) , 0) ̸= deg (𝐼 − 𝐹 (𝜂, ⋅) , 𝐵

𝑟
(0) , 0) ,

(50)

where 𝐵
𝑟
(0) = {𝑢 ∈ 𝑋 : ‖𝑢‖ < 𝑟} is an isolating neighborhood

of the trivial solution for both constants 𝜌 and 𝜂. Let

S = {(𝜆, 𝑢) : (𝜆, 𝑢) 𝑖𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 (49) 𝑤𝑖𝑡ℎ 𝑢 ̸= 0}

∪ ([𝜌, 𝜂] × {0}) ,

(51)

and letC be the component ofS containing [𝜌, 𝜂] × {0}. Then,
either

(i) C is unbounded in R × 𝑋 or
(ii) C ∩ [(R \ [𝜌, 𝜂]) × {0}] ̸= 0.

Define the Nemytskii operators𝐻 : R × 𝐸 → 𝑌 by

𝐻(𝜆, 𝑢) (𝑡) := −𝜆𝑚 (𝑡) 𝑓 (𝑢 (𝑡)) . (52)

Then, it is clear that𝐻 is continuous operatorwhich sends
bounded sets of R × 𝐸 into an equi-integrable sets of 𝑌 and
problem (12) can be equivalently written as

𝑢 = 𝐺
𝑝
∘ 𝐻 (𝜆, 𝑢) := 𝐹 (𝜆, 𝑢) . (53)

𝐹 is completely continuous in R × 𝐸 → 𝐸 and 𝐹(𝜆, 0) = 0,
for all 𝜆 ∈ R.

Notice that (12) with 𝜆 = 0 has only the trivial solution.
Applying this fact and Lemma 8 and the same method to
prove [15,Theorem 2.1] with obvious changes, we may obtain
the following.

Lemma 9. Assume that (𝐻
1
), (𝐻
2
), and (𝐻

3
) hold. Then, for

fixed 𝑝 > 1 and for fixed 𝜎 ∈ {+, −}, each (𝜇]
𝑘
(𝑝)/𝑓
0
, 0) is a

bifurcation point of (12) and the associated bifurcation branch
(C]
𝑘
)
𝜎 satisfies the following;
(1) (C]

𝑘
)
𝜎 is unbounded in 𝐸;

(2) (C]
𝑘
)
𝜎
⊂ (R × Φ

𝜎

𝑘
) ∪ {(𝜇

]
𝑘
(𝑝), 0)}, where Φ𝜎

𝑘
is the set

of function 𝑢 ∈ 𝐶1
0
[0, 1] which has exact 𝑘 − 1 simple

zeros in (0, 1), and 𝜎𝑢 is positive near 0.

Finally, we give a key lemma that will be used in Section 3.
Let

𝐼
+
:= {𝑡 ∈ [0, 1] | 𝑚 (𝑡) > 0} ,

𝐼
−
:= {𝑡 ∈ [0, 1] | 𝑚 (𝑡) < 0} .

(54)

Lemma 10. Let (𝐻
2
) hold. Let 𝐼 = [𝑎, 𝑏] be such that 𝐼 ⊂ 𝐼

+

and

meas 𝐼 > 0. (55)

Let 𝑔
𝑛
: [0, 1] → (0, +∞) be such that

lim
𝑛→+∞

𝑔
𝑛
(𝑡) = +∞, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑜𝑛 𝐼. (56)

Let 𝑦
𝑛
∈ 𝐸 be a solution of the equation

𝜑
𝑝
(𝑦
󸀠

𝑛
)
󸀠

+ 𝑚 (𝑡) 𝑔
𝑛
(𝑡) 𝜑
𝑝
(𝑦
𝑛
) = 0, 𝑡 ∈ (0, 1) . (57)

Then, the number of zeros of 𝑦
𝑛
|
𝐼
goes to infinity as 𝑛 → +∞.

Proof. After taking a subsequence if necessary, we may
assume that

𝑚(𝑡) 𝑔
𝑛
𝑗
(𝑡) ≥ 𝑗, 𝑡 ∈ 𝐼, (58)

as 𝑗 → +∞. It is easy to check that the distance between
any two consecutive zeros of any nontrivial solution of the
equation

𝜑
𝑝
(𝑢
󸀠

(𝑡))
󸀠

+ 𝑗𝜑
𝑝
(𝑢 (𝑡)) = 0, 𝑡 ∈ 𝐼, (59)

goes to zero as 𝑗 → +∞. Using this with [21, Lemma 2.5], it
follows the desired results.
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3. Main Results and Its Proof

Let 𝜇±
𝑘
be the 𝑘th positive or negative eigenvalue of (13).

By applying Lemma 9, we will establish the main results as
follows.

Theorem 11. Let (𝐻
1
), (𝐻
2
), (𝐻
3
), and (𝐻

4
) hold. Assume

that, for some 𝑘 ∈ N, either

𝛾 ∈ (
𝜇
+

𝑘
(𝑝)

𝑓
∞

,
𝜇
+

𝑘

𝑓
0

) ∪ (
𝜇
−

𝑘
(𝑝)

𝑓
0

,
𝜇
−

𝑘
(𝑝)

𝑓
∞

) (60)

or

𝛾 ∈ (
𝜇
+

𝑘
(𝑝)

𝑓
0

,
𝜇
+

𝑘
(𝑝)

𝑓
∞

) ∪ (
𝜇
−

𝑘
(𝑝)

𝑓
∞

,
𝜇
−

𝑘
(𝑝)

𝑓
0

) . (61)

Then, (4) has two solutions 𝑢+
𝑘
and 𝑢−

𝑘
such that 𝑢+

𝑘
has

exactly 𝑘 − 1 zeros in (0, 1) and is positive near 0 and 𝑢−
𝑘
has

exactly 𝑘 − 1 zeros in (0, 1) and is negative near 0.

Proof. We only prove the case of 𝛾 > 0. The case of 𝛾 < 0 is
similar. Consider the problem

𝜑
𝑝
(𝑢
󸀠
)
󸀠

+ 𝜆𝛾𝑚 (𝑡) 𝑓 (𝑢) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 0, 𝑢 (1) = 0.

(62)

Considering the results of Lemma 9, we have that, for
each integer 𝑘 ≥ 1, 𝜎 ∈ {+, −}, there exists a continuum
(𝐶
+

𝑘
)
𝜎
⊆ Φ
𝜎

𝑘
of solutions of (62) joining (𝜇+

𝑘
(𝑝)/𝛾𝑓

0
, 0) to

infinity in (0,∞) × Φ
𝜎

𝑘
. Moreover, (𝐶+

𝑘
)
𝜎
\ {(𝜇
+

𝑘
(𝑝)/𝛾𝑓

0
, 0)} ⊂

(0,∞) × Φ
𝜎

𝑘
.

It is clear that any solution of (62) of the form (1, 𝑢)

yields a solution 𝑢 of (4). We will show that (𝐶+
𝑘
)
𝜎 crosses the

hyperplane {1} × 𝐸 in R × 𝐸. To this end, it will be enough
to show that (𝐶+

𝑘
)
𝜎 joins (𝜇+

𝑘
(𝑝)/𝛾𝑓

0
, 0) to (𝜇+

𝑘
(𝑝)/𝛾𝑓

∞
, +∞).

Let (𝜂
𝑛
, 𝑦
𝑛
) ∈ (𝐶

+

𝑘
)
𝜎 satisfy

𝜇
𝑛
+
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩 󳨀→ +∞. (63)

We note that 𝜂
𝑛
> 0 for all 𝑛 ∈ N since (0, 0) is the only

solution of (62) for 𝜆 = 0 and (𝐶+
𝑘
)
𝜎
∩ ({0} × 𝐸) = 0.

Case 1. 𝜇+
𝑘
(𝑝)/𝑓
∞
< 𝛾 < 𝜇

+

𝑘
(𝑝)/𝑓
0
. In this case, we only need

to show that

(
𝜇
+

𝑘
(𝑝)

𝛾𝑓
∞

,
𝜇
+

𝑘
(𝑝)

𝛾𝑓
0

) ⊆ {𝜇 ∈ R : (𝜇, 𝑢) ∈ (𝐶
+

𝑘
)
𝜎

} . (64)

We divide the proof into two steps.
Step 1. We show that, if there exists a constant number𝑀 > 0

such that

𝜂
𝑛
⊂ (0,𝑀] (65)

for 𝑛 ∈ N large enough, then (𝐶+
𝑘
)
𝜎 joins (𝜇+

𝑘
(𝑝)/𝛾𝑓

0
, 0) to

(𝜇
+

𝑘
(𝑝)/𝛾𝑓

∞
, +∞).

In this case, it follows that
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩 󳨀→ +∞. (66)

Let 𝜉 ∈ 𝐶(R) be such that

𝑓 (𝑢) = 𝑓
∞
𝜑
𝑝
(𝑢) + 𝜉 (𝑢) . (67)

Then,

lim
|𝑢|→+∞

𝜉 (𝑢)

𝜑
𝑝
(𝑢)

= 0. (68)

Let

𝜉 (𝑢) = max
0≤|𝑠|≤𝑢

󵄨󵄨󵄨󵄨𝜉 (𝑠)
󵄨󵄨󵄨󵄨 . (69)

Then, 𝜉 is nondecreasing and

lim
𝑢→+∞

𝜉 (𝑢)

|𝑢|
𝑝−1

= 0. (70)

We divide the equation

𝜑
𝑝
(𝑦
󸀠

𝑛
)
󸀠

− 𝜇
𝑛
𝛾𝑚 (𝑡) 𝑓

∞
𝜑
𝑝
(𝑦
𝑛
) = 𝜇
𝑛
𝛾𝑚 (𝑡) 𝜉 (𝑦

𝑛
) (71)

by ‖𝑦
𝑛
‖ and set 𝑦

𝑛
= 𝑦
𝑛
/‖𝑦
𝑛
‖. Since 𝑦

𝑛
is bounded in 𝐸, after

taking a subsequence if necessary, we have 𝑦
𝑛
⇀ 𝑦 for some

𝑦 ∈ 𝐸 and 𝑦
𝑛
→ 𝑦 in 𝑌 with ‖𝑦‖ = 1. Moreover, from (70)

and the fact that 𝜉 is nondecreasing, we have

lim
𝑛→+∞

𝜉 (𝑦
𝑛
(𝑡))

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩
𝑝−1

= 0, (72)

since

𝜉 (𝑦
𝑛
(𝑡))

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩
𝑝−1

≤
𝜉 (
󵄨󵄨󵄨󵄨𝑦𝑛 (𝑡)

󵄨󵄨󵄨󵄨)

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩
𝑝−1

≤
𝜉 (
󵄩󵄩󵄩󵄩𝑦𝑛(𝑡)

󵄩󵄩󵄩󵄩∞)

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩
𝑝−1

≤
𝜉 (
󵄩󵄩󵄩󵄩𝑦𝑛 (𝑡)

󵄩󵄩󵄩󵄩)

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩
𝑝−1

.

(73)

By the continuity and compactness of 𝐺
𝑝
, it follows that

𝑦 = 𝐺
𝑝
(𝜇𝛾𝑚 (𝑡) 𝑓

∞
𝜑
𝑝
(𝑦)) , (74)

where 𝜇 = lim
𝑛→+∞

𝜇
𝑛
, again choosing a subsequence and

relabeling if necessary.
We claim that

𝑦 ∈ (𝐶
+

𝑘
)
𝜎

. (75)

Suppose on the contrary that 𝑦 ∈ (𝐶+
𝑘
)
𝜎. Since 𝑦 ̸= 0 is a

solution of (74) and all zeros of𝑦 in [0, 1] are simple, it follows
that 𝑦 ∈ (𝐶+

ℎ
)
𝜄
̸= (𝐶
+

𝑘
)
𝜎 for some ℎ ∈ N and 𝜄 ∈ {+, −}.

By the openness of 𝐸 \ (𝐶+
𝑘
)
𝜎, we have that there exists a

neighborhood 𝑈(𝑦, 𝜌
0
) such that

𝑈 (𝑦, 𝜌
0
) ⊂ 𝐸 \ (𝐶

+

𝑘
)
𝜎

, (76)

which contradicts the facts that 𝑦
𝑛
→ 𝑦 in𝐸 and 𝑦

𝑛
∈ (𝐶
+

𝑘
)
𝜎.

Therefore, 𝑦 ∈ 𝐶]
𝑘
. Moreover, by Lemma 2, 𝜇𝛾𝑓

∞
= 𝜇
+

𝑘
(𝑝), so

that

𝜇 =
𝜆
𝑘

𝛾𝑓
∞

. (77)

Therefore, (𝐶+
𝑘
)
𝜎 joins (𝜇+

𝑘
(𝑝)/𝛾𝑓

0
, 0) to (𝜇+

𝑘
(𝑝)/𝛾𝑓

∞
, +∞).
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Step 2. We show that there exists a constant𝑀 such that 𝜇
𝑛
∈

(0,𝑀] for 𝑛 ∈ N large enough.
On the contrary, we suppose that

lim
𝑛→+∞

𝜇
𝑛
= +∞. (78)

Since (𝜂
𝑛
, 𝑦
𝑛
) ∈ (𝐶

+

𝑘
)
𝜎, it follows that

𝜑(𝑦
󸀠

𝑛
)
󸀠

+ 𝛾𝜂
𝑛
𝑚(𝑡)

𝑓 (𝑦
𝑛
)

𝜑 (𝑦
𝑛
)
𝜑 (𝑦
𝑛
) = 0. (79)

Let

0 = 𝜏 (0, 𝑛) < 𝜏 (1, 𝑛) < ⋅ ⋅ ⋅ < 𝜏 (𝑘, 𝑛) = 1 (80)

be the zeros of 𝑦
𝑛
in [0, 1]. Then, after taking a subsequence

if necessary,

lim
𝑛→+∞

𝜏 (𝑙, 𝑛) := 𝜏 (𝑙,∞) , 𝑙 ∈ {0, 1, ⋅ ⋅ ⋅ , 𝑘 − 1} . (81)

Notice that Lemma 10 and the fact that 𝑦
𝑛
has exactly 𝑘 − 1

simple zeros in [0, 1] yield

[∪
𝑘−1

𝑙=0
(𝜏 (𝑙,∞) , 𝜏 (𝑙 + 1,∞))] ∩ 𝐼

+
= 0, (82)

which implies that

meas {[∪𝑘−1
𝑙=0

(𝜏 (𝑙,∞) , 𝜏 (l + 1,∞))] ∩ 𝐼
−
} = 1. (83)

However, this contradicts (𝐻
2
): 0 < meas 𝐼− < 1.

Case 2. 𝜇+
𝑘
(𝑝)/𝑓
0
< 𝛾 < 𝜇

+

𝑘
(𝑝)/𝑓
∞
. In this case, we have that

𝜇
+

𝑘
(𝑝)

𝛾𝑓
0

< 1 <
𝜇
+

𝑘
(𝑝)

𝛾𝑓
∞

. (84)

Assume that (𝜂
𝑛
, 𝑦
𝑛
) ∈ (𝐶

+

𝑘
)
𝜎 is such that

lim
𝑛→+∞

(𝜇
𝑛
+
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩) = +∞. (85)

If 𝜂
𝑛
→ +∞, then we are done!

If there exists 𝑀 > 0, such that, for 𝑛 ∈ N sufficiently
large,

𝜂
𝑛
∈ (0,𝑀] . (86)

Applying the same method used in Step 1 of Case 1, after
taking a subsequence and relabeling if necessary, it follows
that

(𝜂
𝑛
, 𝑦
𝑛
) 󳨀→ (

𝜇
+

𝑘
(𝑝)

𝛾𝑓
∞

, +∞) as 𝑛 󳨀→ +∞. (87)

Thus, (𝐶+
𝑘
)
𝜎 joins (𝜇+

𝑘
(𝑝)/𝛾𝑓

0
, 0) to (𝜇

+

𝑘
(𝑝)/𝛾𝑓

∞
, +∞).
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