
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 402031, 12 pages
http://dx.doi.org/10.1155/2013/402031

Research Article
Synchronization in Array of Coupled Neural
Networks with Unbounded Distributed Delay and
Limited Transmission Efficiency

Xinsong Yang,1 Mengzhe Zhou,2 and Jinde Cao2,3

1 Department of Mathematics, Chongqing Normal University, Chongqing 400047, China
2Department of Mathematics, Southeast University, Nanjing 210096, China
3Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Jinde Cao; jdcao@seu.edu.cn

Received 25 January 2013; Accepted 11 March 2013

Academic Editor: Qi Luo

Copyright © 2013 Xinsong Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper investigates global synchronization in an array of coupled neural networks with time-varying delays and unbounded
distributed delays. In the coupled neural networks, limited transmission efficiency between coupled nodes, whichmakes the model
more practical, is considered. Based on a novel integral inequality and the Lyapunov functional method, sufficient synchronization
criteria are derived. The derived synchronization criteria are formulated by linear matrix inequalities (LMIs) and can be easily
verified by using Matlab LMI Toolbox. It is displayed that, when some of the transmission efficiencies are limited, the dynamics of
the synchronized state are different from those of the isolated node. Furthermore, the transmission efficiency and inner coupling
matrices between nodes play important roles in the final synchronized state. The derivative of the time-varying delay can be
any given value, and the time-varying delay can be unbounded. The outer-coupling matrices can be symmetric or asymmetric.
Numerical simulations are finally given to demonstrate the effectiveness of the theoretical results.

1. Introduction

In the past fewdecades, the problemof chaos synchronization
and network synchronization has been extensively studied
since its potential engineering applications such as commu-
nication, biological systems, and information processing
(see [1–4] and the references therein). It is found out that
neural networks can exhibit chaotic behavior as long as their
parameters and delays are properly chosen [5]. Recently, syn-
chronization of coupled chaotic neural networks has received
much attention due to its wide applications inmany areas [6–
12].

An array of coupled neural networks, as a special class of
complex networks [12–16], has received increasing attention
from researchers of different disciplines. In the literature, syn-
chronization in an array of coupled neural networks has
been extensively studied [8, 17–20]. The authors of [8]
studied the exponential synchronization problem for coupled
neural networks with constant time delay and stochastic

noise perturbations. Some novel𝐻
∞
synchronization results

have been obtained in [21] for a class of discrete time-
varying stochastic networks over a finite horizon. In [18–20,
22], several types of synchronization in dynamical networks
with discrete and bounded distributed delays were studied
based on LMI approach. However, most of the obtained
results concerning synchronization of complex networks
including the above-mentioned implicitly assume that the
connections among nodes can transmit information from the
dispatcher nodes to receiver ones according to the expected
effect. In other words, the transmission efficiencies between
connected nodes are all perfect. In practical situations,
signal transmission efficiency between nodes is limited in
general due to either the limited bandwidth of the channels
or external causes such as uncertain noisy perturbations
and artificial factors. If the transmission efficiency of some
connections in a complex network is limited, then most
of the existing synchronization criteria are not applicable.
Consequently, it is urgent to propose new synchronization
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criteria for complex networks with arbitrary transmission
efficiency.

Time delays usually exist in neural networks. Some
papers concerning synchronization of neural networks have
considered various time delays. In [6], Cao and Lu inves-
tigated the adaptive synchronization of neural networks
with or without time-varying delay. In [23], synchronization
of neural networks with discrete and bounded distributed
time-varying delays was investigated. The authors of [8]
studied the exponential synchronization problem for coupled
neural networks with constant time delay. Synchronization
of coupled neural networks with both discrete and bounded
distributed delays was studied in [11, 18–20, 24]. As pointed
out in [25], bounded distributed delay means that there is
a distribution of propagation delays only over a period of
time. At the same time, unbounded distributed delay implies
that the distant past has less influence compared to the recent
behavior of the state [26]. Note that most existing results on
stability or synchronization of neural networks with bounded
distributed delays obtained by using LMI approach cannot
be directly extended to those with unbounded distributed
delays. Although there were some results on stability or
synchronization of neural networks with unbounded dis-
tributed delays, some of them were obtained by using algebra
approach [27–30]. As is well known, compared with LMI
result, algebraic one is more conservative, and criteria in
terms of LMI can be easily checked by using the powerful
Matlab LMI Toolbox. Therefore, in this paper we investigate
the synchronization in an array of coupled neural networks
with both discrete time-varying delays and unbounded dis-
tributed delays based on LMI approach. Results of the present
paper are also applicable to synchronization of complex
networkswith bounded or unbounded distributed time delay.

Motivated by the above analysis, this paper studies the
synchronization in an array neural network with both time-
varying delays and unbounded distributed delays, under the
condition that the transmission efficiencies among nodes are
limited. By using a new lemma on infinite integral inequality
and the Lyanupov functional method, some synchronization
criteria formulated by LMIs are obtained for the considered
model. In the obtained synchronization criteria, the time-
varying delay studied can be unbounded, and its deriva-
tive can be any given value. Especially, when some of the
transmission efficiencies are limited (i.e., less than 1), the
transmission efficiency and inner coupling matrices between
nodes have serious impact on the synchronized state. Results
of this paper extend some existing ones. Numerical simula-
tions are finally given to demonstrate the effectiveness of the
theoretical results.

The rest of this paper is organized as follows. In Section 2,
coupled neural network model with transmission efficiency
is presented. Some lemmas and necessary assumptions are
also given in this section. Synchronization criteria of the con-
sidered model are obtained in Section 3. Then, in Section 4,
numerical simulations are given to show the effectiveness of
our results. Finally, Section 5 reaches conclusions.

Notations. In the sequel, if not explicitly stated, matrices
are assumed to have compatible dimensions. 𝐼

𝑞
denotes the

identity matrix of 𝑞-dimension. For vector 𝑥 ∈ R𝑛, the norm
is denoted as ‖ 𝑥 ‖= √𝑥𝑇𝑥, where 𝑇 denotes transposition.
𝐴 = (𝑎

𝑖𝑗
)
𝑚×𝑚

denotes a matrix of𝑚×𝑚-dimension.𝐴 > 0 or
𝐴 < 0 denotes that the matrix 𝐴 is a symmetric and positive
or negative definite matrix.

2. Preliminaries

An array of coupled neural networks consisting of𝑁 identical
nodes with delays and transmission efficiencies is described
as follows:

�̇�
𝑖
(𝑡) = − 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑓 (𝑥
𝑖
(𝑠)) d𝑠 + 𝐼 (𝑡)

+

𝑁

∑

𝑗=1

𝛼
𝑖𝑗
𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡) +

𝑁

∑

𝑗=1

𝛽
𝑖𝑗
V
𝑖𝑗
Υ𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝑤
𝑖𝑗
Λ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥
𝑗
(𝑠) d𝑠,

𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
𝑇

∈ R𝑛 represents the state
vector of the 𝑖th node of the network at time 𝑡; 𝑛 corresponds
to the number of neurons; 𝑓(𝑥

𝑖
(𝑡)) = (𝑓

1
(𝑥
𝑖1
(𝑡)), . . . ,

𝑓
𝑛
(𝑥
𝑖𝑛
(𝑡)))
𝑇 is the neuron activation function; 𝐶 = diag(𝑐

1
,

𝑐
2
, . . . , 𝑐

𝑛
) is a diagonal matrix with 𝑐

𝑖
> 0; 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, 𝐵 =

(𝑏
𝑖𝑗
)
𝑛×𝑛

, and 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

are the connection weight matrix,
time-delayed weight matrix, and the distributively time-
delayed weight matrix, respectively; 𝐼(𝑡) = (𝐼

1
(𝑡), 𝐼
2
(𝑡), . . . ,

𝐼
𝑛
(𝑡))
𝑇

∈ R𝑛 is an external input vector; 𝜏(𝑡) denotes the
time-varying delay satisfying ̇𝜏(𝑡) ≤ ℎ, ℎ is a constant; 𝐾(⋅)

is a scalar function describing the delay kernel. The Φ =

(𝜙
𝑖𝑗
)
𝑛×𝑛

, Υ = (𝜀
𝑖𝑗
)
𝑛×𝑛

, and Λ = (𝜆
𝑖𝑗
)
𝑛×𝑛

are inner coupling
matrices of the networks, which describe the individual cou-
pling between two subsystems. Matrices 𝑈 = (𝑢

𝑖𝑗
)
𝑁×𝑁

, 𝑉 =

(V
𝑖𝑗
)
𝑁×𝑁

, and𝑊 = (𝑤
𝑖𝑗
)
𝑁×𝑁

are outer couplings of the whole
networks satisfying the following diffusive conditions:

𝑢
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , 𝑢

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁,

V
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , V

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁,

𝑤
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , 𝑤

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑤
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

(2)

Matrices 𝛼 = (𝛼
𝑖𝑗
)
𝑁×𝑁

, 𝛽 = (𝛽
𝑖𝑗
)
𝑁×𝑁

, and Γ = (𝛾
𝑖𝑗
)
𝑁×𝑁

are transmission efficiency matrices of the coupled network.
The constants 0 ≤ 𝛼

𝑖𝑗
, 𝛽
𝑖𝑗
, 𝛾
𝑖𝑗

≤ 1 represent, respectively,
signal transmission efficiency from node 𝑗 to node 𝑖 through
connections 𝑢

𝑖𝑗
, V
𝑖𝑗
, and 𝑤

𝑖𝑗
. In this paper, we always assume

that

𝛼
𝑖𝑖
= 𝛽
𝑖𝑖
= 𝛾
𝑖𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑁. (3)

The initial condition of (1) is given by 𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) ∈

𝐶([−∞, 0],R𝑛), 𝑖 = 1, 2, . . . , 𝑁. In this paper, we assume that
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at least one matrix of 𝑈, 𝑉, and𝑊 is irreducible in the sense
that there is no isolated node in corresponding graph.
Remark 1. Model (1) is general, and some special models can
be derived from it. For instance, if

𝐾 (𝑠) = {
0, 𝑠 > 𝜃 (𝑡) ,

𝐾 (𝑠) , 0 ≤ 𝑠 ≤ 𝜃 (𝑡) ,
(4)

for any scalar 𝜃(𝑡) > 0, 𝑡 ∈ R, then the network (1)
becomes the following coupled neural networkwith bounded
distributed delays and transmission efficiencies:

�̇�
𝑖
(𝑡) = − 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝐾 (𝑡 − 𝑠) 𝑓 (𝑥
𝑖
(𝑠)) d𝑠 + 𝐼 (𝑡)

+

𝑁

∑

𝑗=1

𝛼
𝑖𝑗
𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡) +

𝑁

∑

𝑗=1

𝛽
𝑖𝑗
V
𝑖𝑗
Υ𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝐾 (𝑡 − 𝑠) 𝑥
𝑗
(𝑠) d𝑠,

𝑖 = 1, 2, . . . , 𝑁,

(5)

which includes the models in [18, 19] as a special case when
𝜏(𝑡) = 𝜏, 𝜃(𝑡) = 𝜃, and 𝛼

𝑖𝑗
= 𝛽
𝑖𝑗
= 𝛾
𝑖𝑗
= 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑁, where

𝜏, 𝜃 are nonnegative constants. Furthermore, if𝐾(𝑠) = 1, 0 ≤

𝑠 ≤ 𝜃, then (1) turns out to the model studied in [20].

Remark 2. We introduce transmission efficiencies between
nodes in model (1). The two extreme situations are if all the
signal channels in the network operate perfectly, then 𝛼

𝑖𝑗
=

𝛽
𝑖𝑗
= 𝛾
𝑖𝑗
= 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑁; if no signal is transmitted through

𝑢
𝑖𝑗
, V
𝑖𝑗
, and 𝑤

𝑖𝑗
or 𝑢
𝑖𝑗
= V
𝑖𝑗
= 𝑤
𝑖𝑗
= 0, 𝑖 ̸= 𝑗, then 𝛼

𝑖𝑗
= 𝛽
𝑖𝑗
=

𝛾
𝑖𝑗

= 0, 𝑖 ̸= 𝑗. Since many practical factors such as limited
bandwidth of the channels or external causes and other
uncertain perturbations surely exist, the model (1) is more
practical than existingmodels of complex networks including
those in [18–20].

Based on (2)-(3), the system (1) can be written as

�̇�
𝑖
(𝑡) = − 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑓 (𝑥
𝑖
(𝑠)) d𝑠 + 𝐼 (𝑡)

+

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡) +

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥
𝑗
(𝑠) d𝑠

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(1 − 𝛼
𝑖𝑗
) 𝑢
𝑖𝑗
Φ𝑥
𝑖
(𝑡)

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(1 − 𝛽
𝑖𝑗
) V
𝑖𝑗
Υ𝑥
𝑖
(𝑡 − 𝜏 (𝑡))

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(1 − 𝛾
𝑖𝑗
)𝑤
𝑖𝑗
Λ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥
𝑖
(𝑠) d𝑠,

(6)

where 𝑢
𝑖𝑗
= 𝛼
𝑖𝑗
𝑢
𝑖𝑗
, 𝑢
𝑖𝑖
= −∑

𝑗=1,𝑗 ̸= 𝑖
𝛼
𝑖𝑗
𝑢
𝑖𝑗
, V
𝑖𝑗
= 𝛽
𝑖𝑗
V
𝑖𝑗
, V
𝑖𝑖
=

−∑
𝑗=1,𝑗 ̸= 𝑖

𝛽
𝑖𝑗
V
𝑖𝑗
,𝑤
𝑖𝑗
= 𝛾
𝑖𝑗
𝑤
𝑖𝑗
, and 𝑤

𝑖𝑖
= −∑

𝑗=1,𝑗 ̸= 𝑖
𝛾
𝑖𝑗
𝑤
𝑖𝑗
, 𝑖 ̸= 𝑗.

Obviously, the matrices𝑈 = (𝑢
𝑖𝑗
)
𝑁×𝑁

,𝑉 = (V
𝑖𝑗
)
𝑁×𝑁

and𝑊 =

(𝑤
𝑖𝑗∞

)
𝑁×𝑁

are diffusive.
This paper utilizes the following assumptions.

(H
1
) The delay kernel 𝐾 : [0, +∞) → [0, +∞) is a real-
valued nonnegative continuous function, and there
exists positive number 𝑘 such that ∫+∞

0

𝐾(𝑠)d𝑠 = 𝑘.
(H
2
) There exist constant matrices 𝐸

1
and 𝐸

2
such that

[𝑓 (𝑥) − 𝑓 (𝑦) − 𝐸
1
(𝑥 − 𝑦)]

𝑇

× [𝑓 (𝑥) − 𝑓 (𝑦) − 𝐸
2
(𝑥 − 𝑦)] ≤ 0, ∀𝑥, 𝑦 ∈ R

𝑛

.

(7)

(H
3
) There are constants 𝑎, 𝑏, 𝑐 such that ∑𝑁

𝑗=1,𝑗 ̸= 𝑖
(1 −

𝛼
𝑖𝑗
)𝑢
𝑖𝑗
= 𝑎, ∑𝑁

𝑗=1,𝑗 ̸= 𝑖
(1 − 𝛽

𝑖𝑗
)V
𝑖𝑗
= 𝑏, and ∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
(1 −

𝛾
𝑖𝑗
)𝑤
𝑖𝑗
= 𝑐, 𝑖 = 1, 2, . . . , 𝑁.

Remark 3. The assumption (H
2
) was used in [24, 31]. 𝑓

satisfies the sector condition in the sense that belongs to the
sectors [𝐸

1
, 𝐸
2
]. Such a sector description is quit general and

includes the usual Lipschitz conditions as a special case.

Remark 4. When the transmission efficiencies of all the
channels are considered and some of them are limited, the
final synchronized state is different from that of a single node
without coupling. According to (H

3
), the synchronized state

can be described as the following:

�̇� (𝑡) = − (𝐶 + 𝑎Φ) 𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑓 (𝑧 (𝑠)) d𝑠 + 𝐼 (𝑡)

− 𝑏Υ𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑐Λ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑧 (𝑠) d𝑠.

(8)

In order to derive ourmain results, some basic definitions
and useful lemmas are needed.

Definition 5. The coupled neural network with limited trans-
mission efficiency (1) is said to be globally asymptotically
synchronized if

lim
𝑡→∞


𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)


= 0, 𝑖 = 1, 2, . . . , 𝑁, (9)

holds for any initial values.

Lemma 6 (see [32]). Let ⊗ denote the Kronecker product,
𝐴, 𝐵, 𝐶, and𝐷 are matrices with appropriate dimensions. The
following properties are satisfied:

(1) (𝑎𝐴) ⊗ 𝐵 = 𝐴 ⊗ (𝑎𝐵), where 𝑎 is a constant;
(2) (𝐴 + 𝐵) ⊗ 𝐶 = 𝐴 ⊗ 𝐶 + 𝐵 ⊗ 𝐶;
(3) (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ 𝐵𝐷.

Let𝑇(𝜖) denote the set ofmatrices of which the sumof the
element in each row is equal to the real number 𝜖. The set𝑀

1
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is defined as follows: if𝑀 = (𝑀
𝑖𝑗
)
(𝑁−1)×𝑁

∈ 𝑀
1
, each row of

𝑀 contains exactly one element 1 and one element −1, and all
other elements are zero. 𝑗

𝑖1
(𝑗
𝑖2
) denotes the column indexes

of the first (second) nonzero element in the 𝑖th row.The set𝐻
is defined by 𝐻 = {{𝑗

11
, 𝑗
12
}, {𝑗
21
, 𝑗
22
}, . . . , {𝑗

𝑝1
, 𝑗
𝑝2
}}. The set

𝑀
2
is defined as follows:𝑀

2
⊂ 𝑀
1
and if𝑀 = (𝑚

𝑖𝑗
)
(𝑁−1)×𝑁

∈

𝑀
2
, for any pair of the column indexes 𝑗

𝑠
and 𝑗
𝑡
, there exist

indexes 𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑙
with 𝑗

1
= 𝑗
𝑠
and 𝑗

𝑙
= 𝑗
𝑡
such that

{𝑗
𝑚
, 𝑗
𝑚+1

} ∈ 𝐻 for𝑚 = 1, 2, . . . , 𝑙 − 1.

Lemma 7 (see [33, 34]). Let𝑀 ∈ 𝑀
2
be a (𝑁−1)×𝑁matrix

and𝐺 ∈ 𝑇(𝜖) be a𝑁×𝑁matrix.Then, there exists a𝑁×(𝑁−1)

matrix 𝐽 such that𝑀𝐺 = 𝐺𝑀, where 𝐺 = 𝑀𝐺𝐽. Moreover, let
Φ be a constant 𝑛× 𝑛matrix andG = 𝐺⊗Φ, thenMG = G̃M,
where G̃ = 𝐺 ⊗ Φ, M = 𝑀 ⊗ 𝐼

𝑛
. Furthermore,𝑀𝐽 = 𝐼

𝑁−1
.

The following lemma can be easily obtained from [18, 33].

Lemma8. Let𝑥(𝑡) = (𝑥
𝑇

1
(𝑡), 𝑥
𝑇

1
(𝑡), . . . , 𝑥

𝑇

𝑁
(𝑡))
𝑇 and𝑀 ∈ 𝑀

2
,

if lim
𝑡→∞

‖ (𝑀⊗𝐼
𝑛
)𝑥(𝑡) ‖= 0, then lim

𝑡→∞
‖ 𝑥
𝑖
(𝑡)−𝑥

𝑗
(𝑡) ‖=

0, for all 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

Lemma 9 (see [35]). Suppose 𝐾(𝑡) is a nonnegative bounded
scalar function defined on [0, +∞) and ∫

+∞

0

𝐾(𝑢)d𝑢 = 𝑘. For
any constant matrix 𝐷 ∈ R𝑛×𝑛, 𝐷 > 0, and vector function
𝑥 : (−∞, 𝑡] → R𝑛 for 𝑡 ≥ 0, one has

𝑘∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥
𝑇

(𝑠)𝐷𝑥 (𝑠) d𝑠

≥ (∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠)
𝑇

𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠.

(10)

Provided that the integrals are all well defined.

3. Synchronization with Limited
Transmission Efficiency

In this section, synchronization criteria formulated by LMIs
of the general model (1) are derived. When the distributed
delays in (1) are bounded, corresponding synchronization
criterion is also obtained. In the derived synchronization
criteria, the time-varying delays can be unbounded and their
derivative can be any given value.

For 𝑀 ∈ 𝑀
2
, by Lemma 7, there exists a 𝑁 × (𝑁 − 1)

matrix 𝐽 such that 𝑀𝐽 = 𝐼
𝑁−1

. Let U = 𝑈 ⊗ Φ, Ũ = �̃� ⊗ Φ,
�̃� = 𝑀𝑈𝐽, V = 𝑉 ⊗ Υ, Ṽ = �̃� ⊗ Υ, �̃� = 𝑀𝑉𝐽, W =

𝑊 ⊗ Λ, W̃ = �̃� ⊗ Λ, �̃� = 𝑀𝑊𝐽, 𝐶 = 𝐶 + 𝑎Φ, C = 𝐼
𝑁
⊗ 𝐶,

C
1
= 𝐼
𝑁−1

⊗ 𝐶, A = 𝐼
𝑁
⊗ 𝐴, A

1
= 𝐼
𝑁−1

⊗ 𝐴, B = 𝐼
𝑁
⊗ 𝐵,

B
1
= 𝐼
𝑁−1

⊗ 𝐵, D = 𝐼
𝑁
⊗ 𝐷, D

1
= 𝐼
𝑁−1

⊗ 𝐷, K = 𝐼
𝑁
⊗ 𝐾,

K
1
= 𝐼
𝑁−1

⊗ 𝐾, f(𝑥(𝑡)) = (𝑓(𝑥
1
(𝑡)), 𝑓(𝑥

2
(𝑡)), . . . , 𝑓(𝑥

𝑁
(𝑡)))
𝑇,

I(t) = (𝐼(𝑡), 𝐼(𝑡), . . . , 𝐼(𝑡))
𝑇, Υ = 𝐼

𝑁
⊗𝑏Υ, Υ

1
= 𝐼
𝑁−1

⊗𝑏Υ, Λ =

𝐼
𝑁
⊗ 𝑐Λ, Λ

1
= 𝐼
𝑁−1

⊗ 𝑐Λ, 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
𝑇,

𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑁
(𝑡))
𝑇.Then, the network (1) can be

written in the Kronecker product form as

�̇� (𝑡) = − C𝑥 (𝑡) + Af (𝑥 (𝑡)) + Bf (𝑥 (𝑡 − 𝜏 (𝑡)))

+ D∫

𝑡

−∞

K (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠 + I (𝑡)

+ U𝑥 (𝑡) + V𝑥 (𝑡 − 𝜏 (𝑡))

+W∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠 − Υ𝑥 (𝑡 − 𝜏 (𝑡))

− Λ∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠.

(11)

To obtain synchronization criterion in the array of cou-
pled neural networks (1), we only need to consider the the
problem for the system (11). Theorem 10 is our main result.

Theorem 10. Under assumptions (H
1
)–(H
3
), if there exist

matrices𝑀 ∈ 𝑀
2
and 𝐽 satisfying𝑀𝐽 = 𝐼

𝑁−1
, positive definite

matrices 𝑃,𝑄, 𝑅, 𝐺, 𝑆 ∈ R(𝑁−1)𝑛×(𝑁−1)𝑛 and two positive diago-
nal matrices 𝑆

1
, 𝑆
2
∈ R(𝑁−1)𝑛×(𝑁−1)𝑛 such that

Ω =

(
(
(
(
(
(

(

Ξ
1

PṼ − PΥ
1

PA
1
+ E
2

PB
1

PW̃ − PΛ
1
PD
1

∗ (− (1 − ℎ) S − E
1
) 0 E

2
0 0

∗ ∗ Ξ
2

0 0 0

∗ ∗ ∗ − (1 − ℎ)G − 𝐼
(𝑁−1)𝑛

0 0

∗ ∗ ∗ ∗ −R 0

∗ ∗ ∗ ∗ ∗ −Q

)
)
)
)
)
)

)

< 0, (12)

whereΞ
1
= −CT
1
P−PC

1
+PŨ+Ũ𝑇P+𝑘2K𝑇(0)RK(0)+S−E

1
𝑆
1
,

Ξ
2
= 𝑘
2K𝑇(0)QK(0) + G − 𝐼

(𝑁−1)𝑛
𝑆
1
, E
1
= 𝐼
𝑁−1

⊗ 𝐸
1
, E
2
=

𝐼
𝑁−1

⊗𝐸
2
,𝐸
1
= (1/2)(𝐸

𝑇

1
𝐸
2
+𝐸
𝑇

2
𝐸
1
), and 𝐸

2
= (1/2)(𝐸

𝑇

1
+𝐸
𝑇

2
),

then the coupled neural networks (11) is globally asymptotically
synchronized.

Proof. Consider the following Lyapunov function:

𝑉 (𝑡) =

5

∑

𝑖=1

𝑉
𝑖
(𝑡) , (13)
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where
𝑉
1
(𝑡) = 𝑥

𝑇

(𝑡)M𝑇PM𝑥 (𝑡) ,

𝑉
2
(𝑡) = 𝑘∫

0

−∞

∫

𝑡

𝑡+𝑠

(MK (𝑡 − 𝜃) f (𝑥 (𝜃)))𝑇

×Q (MK (𝑡 − 𝜃) f (𝑥 (𝜃))) d𝜃d𝑠,

𝑉
3
(𝑡) = 𝑘∫

0

−∞

∫

𝑡

𝑡+𝑠

(MK (𝑡 − 𝜃) 𝑥 (𝜃))
𝑇

× R (MK (𝑡 − 𝜃) 𝑥 (𝜃)) d𝜃d𝑠,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

(Mf (𝑥 (𝑠)))𝑇G (Mf (𝑥 (𝑠))) d𝑠,

�̇�
5
(𝑡) = (M𝑥 (𝑡))

𝑇S (M𝑥 (𝑡))

− (1 − ̇𝜏 (𝑡)) (M𝑥 (𝑡 − 𝜏 (𝑡)))
𝑇S (M𝑥 (𝑡 − 𝜏 (𝑡))) .

(14)

Differentiating 𝑉
1
(𝑡) along the solution of (11) obtains that

�̇�
1
(𝑡) = − 𝑥

𝑇

(𝑡) (C
𝑇M𝑇PM +M𝑇PMC) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡)M𝑇PM [Af (𝑥 (𝑡)) + Bf (𝑥 (𝑡 − 𝜏 (𝑡)))

+ D∫

𝑡

−∞

K (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠

+ I (𝑡) + U𝑥 (𝑡) + V𝑥 (𝑡 − 𝜏 (𝑡))

+W∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠

− Υ𝑥 (𝑡 − 𝜏 (𝑡))

−Λ∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠] .

(15)

By virtue of Lemma 6, it can be verified that MC = C
1
M,

MA = A
1
M, MB = B

1
M, MD = D

1
M, MK = K

1
M,

MΥ = Υ
1
M, MΛ = Λ

1
M, and MI(𝑡) = 0. On the other hand,

it follows from Lemma 7 that MU = ŨM, MV = ṼM, and
MW = W̃M.Therefore,

�̇�
1
(𝑡) = − 𝑥

𝑇

(𝑡) (M𝑇C
T
1
PM +M𝑇PC

1
M) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡)M𝑇P [A
1
Mf (𝑥 (𝑡))

+ B
1
Mf (𝑥 (𝑡 − 𝜏 (𝑡)))

+ D
1
M∫

𝑡

−∞

K (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠

+ ŨM𝑥 (𝑡) + ṼM𝑥 (𝑡 − 𝜏 (𝑡))

+ W̃M∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠

− Υ
1
M𝑥 (𝑡 − 𝜏 (𝑡))

−Λ
1
M∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠] .

(16)

Moreover, based on Lemma 9, one gets that

�̇�
2
(𝑡) ≤ 𝑘

2

(MK (0) f (𝑥 (𝑡)))𝑇Q (MK (0) f (𝑥 (𝑡)))

− 𝑘∫

𝑡

−∞

(MK (𝑡 − 𝑠) f (𝑥 (𝑠)))𝑇

×Q (MK (𝑡 − 𝑠) f (𝑥 (𝑠))) d𝑠

≤ 𝑘
2

(Mf (𝑥 (𝑡)))𝑇K𝑇 (0)QK (0) (Mf (𝑥 (𝑡)))

− (∫

𝑡

−∞

MK (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠)
𝑇

×Q(∫

𝑡

−∞

MK (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠) .

(17)

Similarly,

�̇�
3
(𝑡) ≤ 𝑘

2

(M𝑥 (𝑡))
𝑇K𝑇 (0)RK (0) (M𝑥 (𝑡))

− (∫

𝑡

−∞

MK (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠)
𝑇

× R(∫

𝑡

−∞

MK (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠) .

(18)

By 0 ≤ ̇𝜏(𝑡) ≤ ℎ, it is easy to derive that

�̇�
4
(𝑡) = (Mf (𝑥 (𝑡)))𝑇G (Mf (𝑥 (𝑡)))

− (1 − ̇𝜏 (𝑡)) (Mf (𝑥 (𝑡 − 𝜏 (𝑡))))
𝑇

× G (Mf (𝑥 (𝑡 − 𝜏 (𝑡))))

≤ (Mf (𝑥 (𝑡)))𝑇G (Mf (𝑥 (𝑡)))

− (1 − ℎ) (Mf (𝑥 (𝑡 − 𝜏 (𝑡))))
𝑇

× G (Mf (𝑥 (𝑡 − 𝜏 (𝑡)))) ,

�̇�
5
(𝑡) ≤ (M𝑥 (𝑡))

𝑇S (M𝑥 (𝑡))

− (1 − ℎ) (M𝑥 (𝑡 − 𝜏 (𝑡)))
𝑇S (M𝑥 (𝑡 − 𝜏 (𝑡))) .

(19)

In view of assumption (H
2
), for any positive diagonal

matrices 𝑆
1
and 𝑆
2
, the following two inequalities hold:

(
M𝑥 (𝑡)

Mf (𝑥 (𝑡)))
𝑇

(
E
1
𝑆
1

−E
2
𝑆
1

−E𝑇
2
𝑆
1
𝐼
(𝑁−1)𝑛

𝑆
1

)(
M𝑥 (𝑡)

Mf (𝑥 (𝑡))) ≤ 0,

(
M𝑥 (𝑡 − 𝜏 (𝑡))

Mf (𝑥 (𝑡 − 𝜏 (𝑡)))
)

𝑇

(
E
1
𝑆
2

−E
2
𝑆
2

−E𝑇
2
𝑆
2
𝐼
(𝑁−1)𝑛

𝑆
2

)

× (
M𝑥 (𝑡 − 𝜏 (𝑡))

Mf (𝑥 (𝑡 − 𝜏 (𝑡)))
) ≤ 0.

(20)
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Combining (13)–(20) gives

�̇� (𝑡) ≤ 𝑥
𝑇

(𝑡)M𝑇 (−C
T
1
P − PC

1
+ PŨ + Ũ𝑇P

+𝑘
2K𝑇 (0)RK (0) + S − E

1
)M𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡)M𝑇 (PA
1
+ E
2
)Mf (𝑥 (𝑡))

+ 2𝑥
𝑇

(𝑡)M𝑇PB
1
Mf (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝑥
𝑇

(𝑡)M𝑇PD
1
M∫

𝑡

−∞

K (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠

+ 2𝑥
𝑇

(𝑡)M𝑇 (PṼ − PΥ
1
)M𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡)M𝑇 (PW̃ − PΛ
1
)M∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠

+ (Mf (𝑥 (𝑡)))𝑇 (𝑘2K𝑇 (0)QK (0) + G − 𝐼
(𝑁−1)𝑛

)

× (Mf (𝑥 (𝑡)))

− (∫

𝑡

−∞

MK (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠)
𝑇

×Q(∫

𝑡

−∞

MK (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠)

− (∫

𝑡

−∞

MK (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠)
𝑇

× R(∫

𝑡

−∞

MK (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠)

+ (Mf (𝑥 (𝑡 − 𝜏 (𝑡))))
𝑇

[− (1 − ℎ)G − 𝐼
(𝑁−1)𝑛

]

× (Mf (𝑥 (𝑡 − 𝜏 (𝑡))))

+ (M𝑥 (𝑡 − 𝜏 (𝑡)))
𝑇

[− (1 − ℎ) S − E
1
]M𝑥 (𝑡 − 𝜏 (𝑡))

+ (M𝑥 (𝑡 − 𝜏 (𝑡)))
𝑇E
2
M𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

= 𝜉
𝑇

Ω𝜉,

(21)
where

𝜉 = ((M𝑥 (𝑡))
𝑇

, (M𝑥 (𝑡 − 𝜏 (𝑡)))
𝑇

,

(Mf (𝑥 (𝑡)))𝑇, (Mf (𝑥 (𝑡 − 𝜏 (𝑡))))
𝑇

,

(M∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠)
𝑇

,

(M∫

𝑡

−∞

K (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠)
𝑇

)

𝑇

.

(22)

From the given condition (12) and the inequality (21), one
derives that �̇�(𝑡) ≤ 0 and �̇�(𝑡) = 0 if and only if 𝜉 = 0.
Hence, lim

𝑡→∞
‖ (𝑀⊗𝐼

𝑛
)𝑥(𝑡) ‖= 0. By virtue of Definition 5

and Lemma 8, the coupled neural network (11) is globally
asymptotically synchronize. This completes the proof.

Corresponding to (5), we now consider the following
network with time-varying delays and bounded distributed
delays:

�̇� (𝑡) = − C𝑥 (𝑡) + Af (𝑥 (𝑡)) + Bf (𝑥 (𝑡 − 𝜏 (𝑡)))

+ D∫

𝑡

𝑡−𝜃(𝑡)

K (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠 + I (𝑡)

+ U𝑥 (𝑡) + V𝑥 (𝑡 − 𝜏 (𝑡))

+W∫

𝑡

𝑡−𝜃(𝑡)

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠 − Υ𝑥 (𝑡 − 𝜏 (𝑡))

− Λ∫

𝑡

𝑡−𝜃(𝑡)

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠.

(23)

For the system (23) the following result can be easily
derived by similar proof process of Theorem 10.

Corollary 11. Under assumptions (H
2
) and (H

3
), if there is

positive constant 𝑘 such that ∫𝜃(𝑡)
0

𝐾(𝑢)d𝑢 = 𝑘(𝑡) ≤ 𝑘, matrices
𝑀 ∈ 𝑀

2
and 𝐽 satisfying𝑀𝐽 = 𝐼

𝑁−1
, positive definite matrices

𝑃,𝑄, 𝑅, 𝐺, 𝑆 ∈ R(𝑁−1)𝑛×(𝑁−1)𝑛, and two positive diagonal
matrices 𝑆

1
, 𝑆
2
∈ R(𝑁−1)𝑛×(𝑁−1)𝑛 such that the linear matrix

inequality (12) holds, then the coupled neural network (23) is
globally asymptotically synchronized.

Proof. Consider the following Lyapunov function:

𝑉 (𝑡) =

5

∑

𝑖=1

𝑉
𝑖
(𝑡) , (24)

where 𝑉
1
(𝑡), 𝑉
4
(𝑡), and 𝑉

5
(𝑡) are the same as those defined in

the proof of Theorem 10 and

𝑉
2
(𝑡) = 𝑘∫

0

−𝜃

∫

𝑡

𝑡+𝑠

(MK (𝑡 − 𝜃) f (𝑥 (𝜃)))𝑇

×Q (MK (𝑡 − 𝜃) f (𝑥 (𝜃))) d𝜃 d𝑠,

𝑉
3
(𝑡) = 𝑘∫

0

−𝜃

∫

𝑡

𝑡+𝑠

(MK (𝑡 − 𝜃) 𝑥 (𝜃))
𝑇

× R (MK (𝑡 − 𝜃) 𝑥 (𝜃)) d𝜃 d𝑠.

(25)

Based on Lemma 9, one can get that

�̇�
2
(𝑡) ≤ 𝑘

2

(MK (0) f (𝑥 (𝑡)))𝑇Q (MK (0) f (𝑥 (𝑡)))

− 𝑘 (𝑡) ∫

𝑡

𝑡−𝜃(𝑡)

(MK (𝑡 − 𝑠) f (𝑥 (𝑠)))𝑇

×Q (MK (𝑡 − 𝑠) f (𝑥 (𝑠))) d𝑠

≤ 𝑘
2

(Mf (𝑥 (𝑡)))𝑇K𝑇 (0)QK (0) (Mf (𝑥 (𝑡)))

− (∫

𝑡

𝑡−𝜃(𝑡)

MK (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠)
𝑇

×Q(∫

𝑡

𝑡−𝜃(𝑡)

MK (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠) ,

(26)

�̇�
3
(𝑡) ≤ 𝑘

2

(M𝑥 (𝑡))
𝑇K𝑇 (0)RK (0) (M𝑥 (𝑡))

− (∫

𝑡

𝑡−𝜃(𝑡)

MK (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠)
𝑇

× R(∫

𝑡

𝑡−𝜃(𝑡)

MK (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠) .

(27)

The rest part of the proof is similar to that of the proof of
Theorem 10. This completes the proof.
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Remark 12. In this paper, the least restriction is imposed on
the time-varying delay. The derivative of the time-varying
delay can be any given value, and the time-varying delay can
be unbounded. However, most of former results are based on
either that the derivative of the time-varying delay should be
less than 1 [16, 17] or that the time-varying delay should be
bounded [16] or even both of them [10]. In this sense, results
of this paper are less conservative than those of [10, 16, 17].

Remark 13. Synchronization criteria in an array of coupled
neural networks with limited transmission efficiency are
obtained in Theorem 10 and Corollary 11. One may note
that assumption condition (H

3
) is strong. Many real-world

complex dynamical network models do not satisfy (H
3
) and

exhibit more complicated dynamical behaviors. How to con-
trol complex networks with arbitrary limited transmission
efficiencywhilewithout (H

3
) is our next research topic, which

is also a challenging work.

4. Numerical Example

In this section, one example is provided to illustrate the effec-
tiveness of the results obtained above.

Consider a 2-dimensional neural network with both dis-
crete and unbounded distributed delays as follows:

�̇� (𝑡) = − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑓 (𝑥 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) ,

(28)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇, 𝑓(𝑥(𝑡)) = (tanh(𝑥

1
(𝑡)),

tanh(𝑥
2
(𝑡)))
𝑇, 𝜏(𝑡) = 1, 𝑘(𝑡) = 𝑒

−0.5𝑡, and

𝐶 = (
1.2 0

0 1
) , 𝐴 = (

3 −0.3

4 5
) ,

𝐵 = (
−1.4 0.1

0.3 −8
) , 𝐷 = (

−1.2 0.1

−2.8 −1
) ,

𝐼 (𝑡) = (
1

1.2
) .

(29)

In the case that the initial condition is chosen as 𝑥(𝑡) =

(0.4, 0.6)
𝑇, ∀𝑡 ∈ [−1, 0], and 𝑥(𝑡) = 0 for 𝑡 < −1, the chaotic-

like trajectory of (28) can be seen in Figure 1.
Now we consider a coupled neural network consisting of

five identical models (28), which is described as

�̇�
𝑖
(𝑡) = − 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑓 (𝑥
𝑖
(𝑠)) 𝑑𝑠 + 𝐼 (𝑡)

+

𝑁

∑

𝑗=1

𝛼
𝑖𝑗
𝑢
𝑖𝑗
Φ(𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡))

+

𝑁

∑

𝑗=1

𝛽
𝑖𝑗
V
𝑖𝑗
Υ (𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

0 1 2 3

0

5

10

15

−10

−5

−2 −1.5 −1 −0.5 0.5 1.5 2.5

𝑥
2
(
𝑡
)

𝑥
1
(𝑡)

Figure 1: Chaotic-like trajectory of the system (28).

+

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝑤
𝑖𝑗
Λ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) (𝑥
𝑗
(𝑠) − 𝑥

𝑖
(𝑠)) 𝑑𝑠,

𝑖 = 1, 2, . . . , 5,

(30)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡))
𝑇 is the state of the 𝑖th neural

network, Φ, Υ, and Λ are identity matrices, 𝑈, 𝑉, and𝑊 are
asymmetric and zero-row sum matrices as the following:

𝑈 = 10(

−7 1 3 2 1

1 −4 1 0 2

1 0 −3 1 1

1 1 1 −4 1

2 0 2 1 −5

),

𝑉 = 𝑊 = (

−3 0 1 1 1

0 −2 1 0 1

0 1 −2 0 1

1 0 0 −1 0

0 1 0 1 −2

),

(31)

the transmission efficiency matrices are

𝛼 = (

1 0.99 1 1 0.99

1 1 1 0 0.99

0.98 0 1 1 1

1 0.99 0.99 1 1

1 0 1 0.98 1

),

𝛽 = Γ = (

1 0 0.9 0.9 0.9

0 1 0.9 0 0.8

0 0.8 1 0 0.9

0.7 0 0 1 0

0 0.9 0 0.8 1

) .

(32)

It is easy to check that the activation function 𝑓 satisfies
assumption (H

2
), and 𝐸

1
= 0, 𝐸

2
= diag(0.5, 0.5). Moreover,
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𝑡
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(
𝑡
)

𝑡

(b)

Figure 2: Time response of 𝑥
𝑖1
(𝑡) (a) and 𝑥

𝑖2
(𝑡) (b), 𝑖 = 1, 2, . . . , 5.

(H
1
) and (H

3
) are satisfied with 𝑘 = 2, 𝑎 = 0.2, and 𝑏 = 𝑐 =

0.3. Obviously, ℎ = 0. Take

𝑀 = (

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

) ,

𝐽 = (

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

).

(33)

According to Theorem 10, by referring to the MATLAB LMI
Toolbox, one can get the feasible solution, see the appendix
at the end of this paper. Hence, the system (30) is globally
asymptotically synchronized.

In the simulations, the Runge-Kutta numerical scheme is
used to simulate by MATLAB. The initial values of (30) are
chosen randomly in the real number interval [−10, 10] for
𝑡 ∈ [−1, 0] and all the states of the coupled neural networks
are zero for 𝑡 < 0. The time step size is 𝛿 = 0.005. Figure 2
shows the time response of the states. Figure 3 describes the
synchronization errors 𝑒(𝑡) = ∑

2

𝑗=1
√∑
5

𝑖=2
[𝑥
1𝑗
− 𝑥
𝑖𝑗
]
2, which

turn to zero quickly as time goes.
Figure 4 presents the synchronized state of (30), which is

different from that of Figure 1. Actually, it can be seen from
(8) that 𝑎, 𝑏, and 𝑐 andΦ, Υ, and Λ have important effects on
the synchronized state. Let

Φ = (
1 0

0.5 1
) , Υ = (

0.5 0

1 1
) , Λ = (

0.5 0

0 0.5
) ,

(34)

in (8). Figure 5 depicts the trajectories of (8) with different 𝑎,
𝑏, and 𝑐, the other parameters are the same as those in (28).

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

−1

−0.5

0.5

1.5

2.5

3.5
𝑒
(
𝑡
)

𝑡

Figure 3: Error distance of the coupled network (30).
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15

−15

−10

−5

−3 −2 −1

𝑥
2
(
𝑡
)

𝑥
1
(𝑡)

Figure 4: Trajectory of the synchronized state of system (30).
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Figure 5: Trajectories of system (8) with different 𝑎, 𝑏, and 𝑐: (a) 𝑎 = 0.2, 𝑏 = 0.3, and 𝑐 = 0.3; (b) 𝑎 = 0.2, 𝑏 = 0.1, and 𝑐 = 0.3; (c) 𝑎 = 0.2,
𝑏 = 0, and 𝑐 = 0.5; (d) 𝑎 = 0.2, 𝑏 = 0.5, and 𝑐 = 0; (e) 𝑎 = 1, 𝑏 = 1, and 𝑐 = 1; (f) 𝑎 = 0.1, 𝑏 = 0.1, and 𝑐 = 0.1.
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5. Conclusions

In this paper, a general model of coupled neural networks
with time-varying delays and unbounded distributed delays
is proposed. Limited transmission efficiency between coupled
nodes is considered in the dynamical network model. Based
on the integral inequality and the Lyapunov functional
method, sufficient conditions in terms of LMIs are derived
to guarantee the synchronization of the proposed dynamical
network with limited transmission efficiency. The restriction
on time-varying delay is the least. The derivative of the

time-varying delay can be any given value, and the time-
varying delay can be unbounded. Numerical examples are
given to verify the effectiveness of the theoretical results.
Furthermore, numerical simulations show that, when some
of the transmission efficiencies are less than 1, the transmis-
sion efficiency and inner coupling matrices between nodes
play important roles for the final synchronized state. Since
many real-world transmission efficiencies between nodes are
usually less than 1, the results of this paper are new and extend
some of the existing results.

Appendix

𝑃 =

(
(
(
(
(
(
(
(

(

2.3293 −0.0507 −0.4456 0.0497 −0.1796 0.0081 −0.0216 −0.0071

−0.0507 2.0002 0.0479 −0.1233 0.0083 −0.1427 −0.0066 −0.0497

−0.4456 0.0479 4.9740 −0.1330 −0.1868 0.0201 −0.4820 0.0022

0.0497 −0.1233 −0.1330 3.8409 0.0208 −0.0304 0.0009 −0.4124

−0.1796 0.0083 −0.1868 0.0208 3.8034 −0.0981 −0.2548 0.0138

0.0081 −0.1427 0.0201 −0.0304 −0.0981 3.0951 0.0139 −0.1496

−0.0216 −0.0066 −0.4820 0.0009 −0.2548 0.0139 3.1954 −0.0674

−0.0071 −0.0497 0.0022 −0.4124 0.0138 −0.1496 −0.0674 2.7416

)
)
)
)
)
)
)
)

)

,

𝑄 =

(
(
(
(
(
(
(
(

(

14.1261 −0.3969 0.1779 0.0687 −0.0216 0.0133 0.0373 0.0077

−0.3969 12.1352 0.0901 0.7797 0.0090 0.0242 0.0046 0.0984

0.1779 0.0901 13.7184 −0.5675 0.1003 0.0460 0.1842 0.0075

0.0687 0.7797 −0.5675 9.3374 0.0397 0.4060 0.0101 0.4532

−0.0216 0.0090 0.1003 0.0397 14.0715 −0.5518 0.0850 0.0348

0.0133 0.0242 0.0460 0.4060 −0.5518 10.8553 0.0308 0.3573

0.0373 0.0046 0.1842 0.0101 0.0850 0.0308 14.1750 −0.4777

0.0077 0.0984 0.0075 0.4532 0.0348 0.3573 −0.4777 11.7793

)
)
)
)
)
)
)
)

)

,

𝑅 =

(
(
(
(
(
(
(
(

(

51.1311 −2.8226 2.1854 0.6937 −0.6251 0.2521 0.7007 −0.0726

−2.8226 36.5803 0.6786 7.1163 0.2622 0.2684 −0.0770 0.6599

2.1854 0.6786 44.5831 −3.7741 1.5536 0.2002 1.6747 0.0327

0.6937 7.1163 −3.7741 22.4396 0.2177 3.3233 0.0238 1.9847

−0.6251 0.2622 1.5536 0.2177 49.0212 −3.7531 1.3611 0.2250

0.2521 0.2684 0.2002 3.3233 −3.7531 28.4807 0.2336 3.0901

0.7007 −0.0770 1.6747 0.0238 1.3611 0.2336 50.7054 −3.3712

−0.0726 0.6599 0.0327 1.9847 0.2250 3.0901 −3.3712 33.8828

)
)
)
)
)
)
)
)

)

,

𝐺 =

(
(
(
(
(
(
(
(

(

−31.8299 −0.6083 0.0156 0.0565 0.2454 0.0531 −0.0814 0.0392

−0.6083 −26.2338 0.1191 −2.0217 0.0520 0.0315 0.0325 −0.3113

0.0156 0.1191 −33.6328 −1.6051 −0.0230 0.0458 −0.0143 0.1821

0.0565 −2.0217 −1.6051 −18.9430 0.0376 −1.0840 0.1756 −1.5906

0.2454 0.0520 −0.0230 0.0376 −33.4900 −1.2137 0.0722 0.0789

0.0531 0.0315 0.0458 −1.0840 −1.2137 −23.4590 0.0800 −0.9480

−0.0814 0.0325 −0.0143 0.1756 0.0722 0.0800 −33.1772 −0.9452

0.0392 −0.3113 0.1821 −1.5906 0.0789 −0.9480 −0.9452 −26.0874

)
)
)
)
)
)
)
)

)

,
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𝑆 =

(
(
(
(

(

81.6408 −0.4942 0.3979 0.5882 0.2149 −0.0492 0.0804 −0.0541

−0.4942 75.1089 0.5176 5.0908 −0.0392 0.5506 −0.0392 −0.3170

0.3979 0.5176 84.7411 −1.2587 0.4128 0.2505 −0.1328 0.0971

0.5882 5.0908 −1.2587 68.4426 0.2667 2.7250 0.0774 0.7954

0.2149 −0.0392 0.4128 0.2667 83.2899 −0.5940 0.3435 0.1248

−0.0492 0.5506 0.2505 2.7250 −0.5940 72.7484 0.1203 1.8855

0.0804 −0.0392 −0.1328 0.0774 0.3435 0.1203 82.3409 −0.3789

−0.0541 −0.3170 0.0971 0.7954 0.1248 1.8855 −0.3789 74.7768

)
)
)
)

)

,

𝑆
1
= diag (63.3310, 61.7187, 65.1691, 60.1717, 64.2638, 62.0351, 63.7512, 62.1022) ,

𝑆
2
= diag (67.5321, 66.8113, 70.6801, 69.0580, 69.6841, 69.7116, 69.0126, 69.7827) .
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