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The Δ-power function and fractional Δ-integrals and fractional Δ-differential are defined, and then the definitions and properties
of Δ-Mittag-Leffler function are given. The properties of fractional Δ-integrals and fractional Δ-differential on time scales are
discussed in detail. After that, the existence of the solution and the dependency of the solution upon the initial value for Cauchy
type problemwith fractionalΔ-derivative are studied. Also the explicit solutions to homogeneous fractionalΔ-differential equations
and nonhomogeneous fractional Δ-differential equations are derived by using Laplace transform method.

1. Introduction

The fractional differential equation theory is an important
subject of mathematics, which includes continuous frac-
tional differential equations and discrete fractional difference
equations. The theory of fractional differential equations
has gained considerable popularity and importance dur-
ing the past three decades or so. Many applications in
numerous seemingly diverse and widespread fields of science
and engineering have been gained. It does indeed provide
several potentially useful tools for solving differential and
integral equations and various other problems involving
special functions of mathematical physics as well as their
extensions and generalizations in one and more variables.
About these advances, one can refer to [1, 2], the books
[3, 4], and the references of them. For the recent devel-
opments about continuous fractional differential equations
and discrete fractional difference equations, one can refer
to [5–11]. To unify differential equations and difference
equations, Higer proposed firstly the time scale and built the
relevant basic theories (see [12–15]). Recently, some authors
studied fractional calculus on time scales (see [16, 17]), where
Williams [16] gives a definition of fractional∇-integral and∇-
derivative on time scales to unify three cases of specific time
scales. Bastos gives definitions of fractional Δ-integral and

Δ-derivative on time scales by the inverse of Laplace trans-
form in [17].

Inspired by these works, the aim of this paper is to give
a new definition of fractional Δ-integral and Δ-derivative on
general time scales and then study some fractional differential
equations on time scales. To define the fractional Δ-integral
and fractional Δ-derivative, we would need to obtain a
definition of fractional order power functions on time scales
to generalize the monomials. Different from definition of ∇-
power functions by axiomatization method in [16], we define
fractional Δ-power functions on general time scales by using
inversion of time scale Laplace transform and shift transform
in Section 3, andRiemann-Liouville fractionalΔ-integral and
Riemann-Liouville fractional Δ-derivative on general time
scales are also given. In Section 4, we present the properties
of fractional Δ-integrals and fractional Δ-differential on
time scales. Then in Section 5, Cauchy type problem with
Riemann-Liouville fractional Δ-derivative is discussed. In
Section 6, for the Riemann-Liouville fractional Δ-differential
initial value problem, we discuss the dependency of the
solution upon the initial value. In Section 7, by applying
the Laplace transform method, we derive explicit solutions
to homogeneous fractional Δ-differential equations with
constant coefficients. In Section 8, we also use the Laplace
transform method to find particular solutions and general
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solutions of the corresponding fractional Δ-differential non-
homogeneous equations.

2. Preliminaries

First, we present some preliminaries about time scales in [12].

Definition 1 (see [12]). A time scale T is a nonempty closed
subset of the real numbers. Throughout this paper, T or
T
𝑖
(𝑖 = 1, 2, . . . , 𝑛) denotes a time scale.

Definition 2 (see [12]). Let T be a time scale. For 𝑡 ∈ T one
defines the forward jump operator 𝜎 : T → T by 𝜎(𝑡) :=

inf{𝑠 ∈ T : 𝑠 > 𝑡}, while the backward jump operator 𝜌 : T →

T is defined by 𝜌(𝑡) := sup{𝑠 ∈ T : 𝑠 < 𝑡}. If 𝜎(𝑡) > 𝑡, one says
that 𝑡 is right-scattered, while if 𝜌(𝑡) < 𝑡, one says that 𝑡 is left-
scattered. Points that are right-scattered and left-scattered at
the same time are called isolated. Also, if 𝑡 < sup T and 𝜎(𝑡) =
𝑡, then 𝑡 is called right-dense, and if 𝑡 > inf T and 𝜌(𝑡) = 𝑡,
then 𝑡 is called left-dense.

Definition 3 (see [12]). A function 𝑓 : T → R is called
regulated provided that its right-sided limits exist (finite) at
all right-dense points in T and its left-sided limits exist (finite)
at all left-dense points in T .

Definition 4 (see [12]). Let ℎ
𝑘
: T2

→ R, 𝑘 ∈ N
0
be defined

by

ℎ
0 (𝑡, 𝑠) = 1 ∀𝑡, 𝑠 ∈ T (1)

and then recursively by

ℎ
𝑘+1 (𝑡, 𝑠) = ∫

𝑡

𝑠

ℎ
𝑘 (𝜏, 𝑠) Δ𝜏 ∀𝑡, 𝑠 ∈ T . (2)

Definition 5 (see [12]). One defines the Cauchy function 𝑦 :

T × T𝑘
𝑛

→ R for the linear dynamic equation

𝐿𝑦 = 0, where 𝐿𝑦 = 𝑦
Δ
𝑛

+

𝑛

∑

𝑖=1

𝑝
𝑖
𝑦
Δ
𝑛−𝑖

, (3)

to be for each fixed 𝑠 ∈ T𝑘
𝑛

the solution of the initial value
problem

𝐿𝑦 = 0, 𝑦
Δ
𝑖

(𝜎 (𝑠) , 𝑠) = 0, 0 ≤ 𝑖 ≤ 𝑛 − 2,

𝑦
Δ
𝑛−1

(𝜎 (𝑠) , 𝑠) = 1.

(4)

Remark 6 (see [12]). Note that

𝑦 (𝑡, 𝑠) := ℎ
𝑛−1 (𝑡, 𝜎 (𝑠)) (5)

is the Cauchy function of 𝑦Δ
𝑛

= 0.

Theorem7 (variation of constants [12]). Let𝑓 ∈ 𝐶rd; then the
solution of the initial value problem

𝐿𝑦 = 𝑓 (𝑡) , 𝑦
Δ
𝑖

(𝑡
0
) = 0, 0 ≤ 𝑖 ≤ 𝑛 − 1, (6)

is given by

𝑦 (𝑡) = ∫

𝑡

𝑡
0

𝑦 (𝑡, 𝑠) 𝑓 (𝑠) Δ𝑠, (7)

where 𝑦(𝑡, 𝑠) is the Cauchy function for

𝐿𝑦 = 0, 𝑤ℎ𝑒𝑟𝑒 𝐿𝑦 = 𝑦
Δ
𝑛

+

𝑛

∑

𝑖=1

𝑝
𝑖
𝑦
Δ
𝑛−𝑖

. (8)

Definition 8 (see [2]). The factorial polynomial is defined as

(𝑡)
(𝑛)

=

𝑛−1

∏

𝑗=0

(𝑡 − 𝑗) =
Γ (𝑡 + 1)

Γ (𝑡 + 1 − 𝑛)
. (9)

For arbitrary ], define

𝑡
(])

=
Γ (𝑡 + 1)

Γ (𝑡 + 1 − 𝜐)
, (10)

where Γ denotes gamma function (see [3]).

Definition 9 (see [12]). One says that a function 𝑝 : T → R

is regressive provided that

1 + 𝜇 (𝑡) 𝑝 (𝑡) ̸= 0 (11)

for all 𝑡 ∈ T𝑘 holds.The set of all regressive and rd-continuous
functions 𝑓 : T → R will be denoted by

R = R (T) = R (T ,R) . (12)

Theorem 10 (see [12]). If 𝑝 ∈ R, then the function ⊖𝑝 defined
by

⊖𝑝 (𝑡) := −
𝑝 (𝑡)

1 + 𝜇 (𝑡) 𝑝 (𝑡)
∀𝑡 ∈ T

𝑘 (13)

is also an element ofR.

Definition 11 (see [12]). If 𝑝 ∈ R, then one defines the Δ-
exponential function by

𝑒
𝑝 (𝑡, 𝑠)

= exp(∫
𝑡

𝑠

1

𝜇 (𝜏)
Log (1 + 𝜇 (𝜏) 𝑝 (𝜏)) Δ𝜏) for 𝑠, 𝑡 ∈ T .

(14)

Definition 12 (see [12]). If 𝑝 ∈ R, then the first order linear
dynamic equation

𝑦
Δ
= 𝑝 (𝑡) 𝑦 (15)

is called regressive.

Theorem 13 (see [12]). Suppose that (15) is regressive and fix
𝑡
0
∈ T . Then 𝑒

𝑝
(⋅, 𝑡

0
) is a solution of the initial value problem

𝑦
Δ
= 𝑝 (𝑡) 𝑦, 𝑦 (𝑡

0
) = 1 (16)

on T .
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Theorem 14 (see [12]). If 𝑝 ∈ R, then

𝑒
𝑝 (𝜎 (𝑡) , 𝑠) := 𝑒

𝜎

𝑝
(𝑡, 𝑠) = (1 + 𝜇 (𝑡) 𝑝 (𝑡)) 𝑒𝑝 (𝑡, 𝑠) . (17)

Definition 15 (see [12]). Assume that 𝑥 : T → R is regulated.
Then the Δ-Laplace transform of 𝑥 is defined by

L {𝑥} (𝑧, 𝑡0) = ∫

∞

𝑡
0

𝑥 (𝑡) 𝑒
𝜎

⊖𝑧
(𝑡, 𝑡

0
) Δ𝑡 (18)

for 𝑧 ∈ D{𝑥}, where D{𝑥} consists of all complex numbers
𝑧 ∈ C for which the improper integral exists.

Definition 16 (uniqueness of the inverse [12]). If the functions
𝑓 : T → R and𝑔 : T → Rhave the sameLaplace transform,
then 𝑓 = 𝑔.

In order to give fractional integral and derivative on
a time scale, we need to define fractional power function
ℎ
𝛼
(𝑡, 𝑠) which is derived by the inverse of Laplace transform

and is introduced in the following section. Before this, we
need definitions of shift and convolution and some properties
about convolution, such as convolution theorem and associa-
tivity, which are introduced in [18].

Definition 17 (see [18]). Let T be a time scale that sup T = ∞

and fix 𝑡
0
∈ T . For a given 𝑓 : [𝑡

0
,∞)T → C, the solution of

the shifting problem

𝑢
Δ
𝑡

(𝑡, 𝜎 (𝑠)) = −𝑢
Δ𝑠
(𝑡, 𝑠) , 𝑡, 𝑠 ∈ T , 𝑡 ≥ 𝑠 ≥ 𝑡

0
,

𝑢 (𝑡, 𝑡
0
) = 𝑓 (𝑡) , 𝑡 ∈ T , 𝑡 ≥ 𝑡

0

(19)

is denoted by 𝑓 and is called the shift (or delay) of 𝑓.

Example 18 (see [18]). Consider ℎ̂
𝑘
(⋅, 𝑟)(𝑡, 𝑠) = ℎ

𝑘
(𝑡, 𝑠) for all

𝑡, 𝑠 ∈ T , independent of 𝑟.

Definition 19 (see [18]). For given functions 𝑓, 𝑔 : T → R,
their convolution 𝑓 ∗ 𝑔 is defined by

(𝑓 ∗ 𝑔) (𝑡) = ∫

𝑡

𝑡
0

𝑓 (𝑡, 𝜎 (𝑠)) 𝑔 (𝑠) Δ𝑠, (20)

where 𝑓 is the shift of 𝑓 introduced in Definition 17.

Theorem 20 (associativity of the convolution [18]). The
convolution is associative; that is,

(𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ) . (21)

Theorem 21 (see [18]). If 𝑓 is delta differentiable, then

(𝑓 ∗ 𝑔)
Δ
= 𝑓

Δ
∗ 𝑔 + 𝑓 (𝑡

0
) 𝑔, (22)

and if 𝑔 is delta differentiable, then

(𝑓 ∗ 𝑔)
Δ
= 𝑓 ∗ 𝑔

Δ
+ 𝑓𝑔 (𝑡

0
) . (23)

Theorem 22 (see [18]). If 𝑓 and 𝑔 are infinitely often Δ-
differentiable, then for all 𝑘 ∈ 𝑁

0

(𝑓 ∗ 𝑔)
Δ
𝑘

= 𝑓
Δ
𝑘

∗ 𝑔 +

𝑘−1

∑

]=0

𝑓
Δ
]

(𝑡
0
) 𝑔

Δ
𝑘−1−]

= 𝑓 ∗ 𝑔
Δ
𝑘

+

𝑘−1

∑

]=0

𝑓
Δ
]

𝑔
Δ
𝑘−1−]

(𝑡
0
) ,

(𝑓 ∗ 𝑔)
Δ
𝑘

(𝑡
0
) =

𝑘−1

∑

]=0

𝑓
Δ
]

(𝑡
0
) 𝑔

Δ
𝑘−1−]

(𝑡
0
) .

(24)

Theorem 23 (convolution theorem [18]). Suppose that 𝑓, 𝑔 :

T → R are locally Δ-integrable functions on T and their
convolution 𝑓 ∗ 𝑔 is defined by (20). Then,

L {𝑓 ∗ 𝑔} (𝑧)

= L {𝑓} (𝑧) ⋅L {𝑔} (𝑧) , 𝑧 ∈ D {𝑓} ∩D {𝑔} .

(25)

Theorem24 (see [12]). Assume that 𝑥 : T → C is a mapping,
such that 𝑥Δ

𝑘

is regulated. Then

L {𝑥
Δ
𝑘

} (𝑧, 𝑡
0
) = 𝑧

𝑘
L {𝑥} (𝑧, 𝑡0) −

𝑘−1

∑

𝑖=0

𝑧
𝑘−𝑖−1

𝑥
Δ
𝑖

(𝑡
0
) (26)

for those regressive 𝑧 ∈ C satisfying

lim
𝑡→∞

{𝑥
Δ
𝑖

(𝑡) 𝑒⊖𝑧 (𝑡, 𝑡0)} = 0, 𝑖 = 0, 1, . . . , 𝑘 − 1. (27)

Theorem 25 (see [12]). Assume that ℎ
𝑘
(𝑡, 𝑡

0
), 𝑘 ∈ N

0
are

defined as in Definition 4. Then

L {ℎ
𝑘
(⋅, 𝑡

0
)} (𝑧, 𝑡

0
) =

1

𝑧𝑘+1
(28)

for those regressive 𝑧 ∈ C satisfying

lim
𝑡→∞

{ℎ
𝑘
(𝑡, 𝑡

0
) 𝑒

⊖𝑧
(𝑡, 𝑡

0
)} = 0. (29)

3. Δ-Power Function and Fractional Integral
and Derivative on Time Scales

In this section, inspired by property of ℎ
𝑘
(⋅, 𝑡

0
) inTheorem 25

for 𝑘 ∈ N
0
, we define fractional Δ-power functions ℎ

𝛼
(𝑡, 𝑠)

for 𝛼 ∈ R by using inversion of Δ-Laplace transform and give
definitions of fractional integral and derivative on time scales.

Definition 26. One defines fractional generalized Δ-power
function ℎ

𝛼
(𝑡, 𝑡

0
) on time scales

ℎ
𝛼
(𝑡, 𝑡

0
) = L

−1
{

1

𝑧𝛼+1
} (𝑡) (30)

to those suitable regressive 𝑧 ∈ C \ {0} such that L−1 exist
for 𝛼 ∈ R, 𝑡 ≥ 𝑡

0
. Fractional generalized Δ-power function

ℎ
𝛼
(𝑡, 𝑠) on time scales is defined as the shift of ℎ

𝛼
(𝑡, 𝑡

0
); that

is,

ℎ
𝛼 (𝑡, 𝑠) =

̂
ℎ
𝛼
(⋅, 𝑡

0
) (𝑡, 𝑠) (𝑡 ≥ 𝑠 ≥ 𝑡

0
) . (31)
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Applying the initial value theorem of Laplace transform
(see, e.g., [15, Theorem 1.3], for 𝛼 > 0, we have

ℎ
𝛼
(𝑡

0
, 𝑡

0
) = lim

𝑧→∞
𝑧 ⋅

1

𝑧𝛼+1
= 0. (32)

Theorem 27. For 𝛼, 𝛽 ∈ R, one has

(ℎ
𝛼
(⋅, 𝑡

0
) ∗ ℎ

𝛽
(⋅, 𝑡

0
)) (𝑡) = ℎ

𝛼+𝛽+1
(𝑡, 𝑡

0
) . (33)

Proof. According to convolution theorem,

L {(ℎ
𝛼
(⋅, 𝑡

0
) ∗ ℎ

𝛽
(⋅, 𝑡

0
)) (𝑡)} (𝑧, 𝑡0)

= L {ℎ
𝛼
(𝑡, 𝑡

0
)} (𝑧, 𝑡

0
)L {ℎ

𝛽
(𝑡, 𝑡

0
)} (𝑧, 𝑡

0
)

=
1

𝑧𝛼+1
⋅

1

𝑧𝛽+1
=

1

𝑧𝛼+𝛽+2

= L {ℎ
𝛼+𝛽+1

(𝑡, 𝑡
0
)} (𝑧, 𝑡

0
) .

(34)

By the uniqueness of inverse transform for Laplace transform,
we obtain

(ℎ
𝛼
(⋅, 𝑡

0
) ∗ ℎ

𝛽
(⋅, 𝑡

0
)) (𝑡)

= ∫

𝑡

𝑡
0

̂
ℎ
𝛼
(⋅, 𝑡

0
) (𝑡, 𝜎 (𝜏)) ℎ𝛽 (𝜏, 𝑠) Δ𝜏 = ℎ

𝛼+𝛽+1
(𝑡, 𝑡

0
) .

(35)

Moreover, if we take 𝛼 = 0, then

(1 ∗ ℎ
𝛽
) (𝑡, 𝑡

0
) = ∫

𝑡

𝑡
0

ℎ
𝛽 (𝜏, 𝑠) Δ𝜏 = ℎ

𝛽+1
(𝑡, 𝑡

0
) . (36)

That is,

ℎ
Δ

𝛽+1
(𝑡, 𝑡

0
) = ℎ

𝛽
(𝑡, 𝑡

0
) . (37)

Now, we will give the definitions of fractional Δ-integral
and Δ-derivative which are the main context in this section.

Definition 28. Let Ω be a finite interval on a time scale T ,
𝑡
0
, 𝑡 ∈ Ω. For 𝛼 ≥ 0 and for a function 𝑓 : T → R, the

Riemann-Liouville fractional Δ-integral of order 𝛼 is defined
by 𝐼0

Δ,𝑡
0

𝑓(𝑡) = 𝑓(𝑡) and

(𝐼
𝛼

Δ,𝑡
0

𝑓) (𝑡) = (ℎ
𝛼−1

(⋅, 𝑡
0
) ∗ 𝑓) (𝑡)

= ∫

𝑡

𝑡
0

̂
ℎ
𝛼−1

(⋅, 𝑡
0
) (𝑡, 𝜎 (𝜏)) 𝑓 (𝜏) Δ𝜏

= ∫

𝑡

𝑡
0

ℎ
𝛼−1 (𝑡, 𝜎 (𝜏)) 𝑓 (𝜏) Δ𝜏,

(38)

for 𝛼 > 0, 𝑡 > 𝑡
0
.

When T = R, ℎ
𝛼−1

(𝑥, 𝑎) = (𝑥 − 𝑎)
𝛼−1

/Γ(𝛼), according to
Definition 17,

̂ℎ
𝛼−1 (⋅, 𝑎) (𝑥, 𝑡) =

(𝑥 − 𝑡)
𝛼−1

Γ (𝛼)
(39)

satisfy

𝜕 ̂ℎ
𝛼−1 (⋅, 𝑎) (𝑥, 𝑡)

𝜕𝑥
= −

𝜕 ̂ℎ
𝛼−1 (⋅, 𝑎) (𝑥, 𝑡)

𝜕𝑡

̂ℎ
𝛼−1 (⋅, 𝑎) (𝑥, 𝑎) = ℎ

𝛼−1 (𝑥, 𝑎) .

(40)

When T = Z, ℎ
𝛼−1

(𝑥, 𝑎) = (𝑥 − 𝑎)
(𝛼−1)

/Γ(𝛼), according
to Definition 17,

̂ℎ
𝛼−1 (⋅, 𝑎) (𝑥, 𝑡) =

(𝑥 − 𝑡)
(𝛼−1)

Γ (𝛼)
(41)

satisfy

̂ℎ
𝛼−1 (⋅, 𝑎) (𝑥 + 1, 𝑡 + 1) − ̂ℎ

𝛼−1 (⋅, 𝑎) (𝑥, 𝑡 + 1)

= − ̂ℎ
𝛼−1 (⋅, 𝑎) (𝑥, 𝑡 + 1) + ̂ℎ

𝛼−1 (⋅, 𝑎) (𝑥, 𝑡) ,

̂ℎ
𝛼−1 (⋅, 𝑎) (𝑥, 𝑎) = ℎ

𝛼−1 (𝑥, 𝑎) .

(42)

As an especial case ofDefinition 28, we have the following
examples.

Example 29 (see [3]). When T = R, the fractional Δ-integral
of order 𝛼 is defined by

(𝐼
𝛼

𝑎+
𝑓) (𝑥) :=

1

Γ (𝛼)
∫

𝑥

𝑎

1

(𝑥 − 𝑡)
1−𝛼

𝑓 (𝑡) 𝑑𝑡 (𝑥 > 𝑎) . (43)

Example 30. When T = Z, Consider the following.

(1) The 𝑛th integral of 𝑓 is defined by

𝑎
Δ

−𝑛
𝑥 (𝑡) =

1

Γ (𝑛)

𝑡−𝑛

∑

𝑠=𝑎

(𝑡 − 𝜎 (𝑠))
(𝑛−1)

𝑥 (𝑠) . (44)

Here 𝑡 − 𝑛 ≥ 𝑎, 𝜎(𝑠) = 𝑠 + 1.
Note that power function (𝑡 − 𝜎(𝑠))

(𝑛−1)
/Γ(𝑛) vanishes

at 𝑠 ≥ 𝑡 − 𝑛 + 1. So

𝑎
Δ

−𝑛
𝑥 (𝑡) =

1

Γ (𝑛)

𝑡−1

∑

𝑠=𝑎

(𝑡 − 𝜎 (𝑠))
(𝑛−1)

𝑥 (𝑠)

=
1

Γ (𝑛)

𝑡−𝑛

∑

𝑠=𝑎

(𝑡 − 𝜎 (𝑠))
(𝑛−1)

𝑥 (𝑠) , for 𝑡 − 𝑛 ≥ 𝑎.

(45)

(2) The 𝛾th fractional sum of 𝑓 is defined by

𝑎
Δ

−𝛾
𝑥 (𝑡) =

1

Γ (𝛾)

𝑡−1

∑

𝑠=𝑎

(𝑡 − 𝜎 (𝑠))
(𝛾−1)

𝑥 (𝑠) ,

for 𝑡 ≥ 𝑎 − [−𝛾] .

(46)

Definition 31. Let 𝛼 ≥ 0, 𝑚 = [𝛼] + 1, and 𝑓 : T → R.
For 𝑠, 𝑡 ∈ T𝑘

𝑚

with 𝑠 < 𝑡, the Riemann-Liouville fractional
Δ-derivative of order 𝛼 is defined by the expression

𝐷
𝛼

Δ,𝑠
𝑓 (𝑡) := 𝐷

𝑚

Δ
𝐼
𝑚−𝛼

Δ,𝑠
𝑓 (𝑡) , (47)

if it exists.
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Throughout this paper, we denote 𝑓Δ
𝑛

= 𝐷
𝑛

Δ
𝑓 = 𝐷

𝑛

Δ,𝑠
𝑓,

𝑛 ∈ N, and, for 𝛼 < 0, 𝐷
𝛼

Δ,𝑠
𝑓(𝑡) means 𝐼−𝛼

Δ,𝑠
𝑓(𝑡) and 𝐼

𝛼

Δ,𝑠
𝑓(𝑡)

means𝐷−𝛼

Δ,𝑠
𝑓(𝑡).

Finally, we present the definition of Δ-Mittag-Leffler
function which is an important tool for solving fractional
difference equation.

Definition 32. Δ-Mittag-Leffler function is defined by

Δ
𝐹
𝛼,𝛽

(𝜆, 𝑡, 𝑡
0
) =

∞

∑

𝑗=0

𝜆
𝑗
ℎ
𝑗𝛼+𝛽−1

(𝑡, 𝑡
0
) , (48)

provided that the right series is convergent, where 𝛼, 𝛽 > 0,
𝜆 ∈ R.

Example 33. When 0 < 𝜆 < 1, for any 𝑗, |ℎ
𝑗𝛼+𝛽−1

(𝑡, 𝑡
0
)| <

𝑀, we can obtain that the series ∑
∞

𝑗=0
𝜆
𝑗
ℎ
𝑗𝛼+𝛽−1

(𝑡, 𝑡
0
) is

convergent.

Example 34. When T = R, ∑
∞

𝑗=0
𝜆
𝑗
ℎ
𝑗𝛼+𝛽−1

(𝑡, 𝑡
0
) =

∑
∞

𝑗=0
𝜆
𝑗
((𝑡− 𝑡

0
)
𝑗𝛼+𝛽−1

/Γ(𝑗𝛼+𝛽)). Since∑∞

𝑗=0
𝜆
𝑗
((𝑡− 𝑡

0
)
𝑗𝛼+𝛽−1

/

Γ(𝑗𝛼+𝛽)) is convergent for any 𝑡 ≥ 𝑡
0
,∑∞

𝑗=0
𝜆
𝑗
ℎ
𝑗𝛼+𝛽−1

(𝑡, 𝑡
0
) is

convergent. That is,
Δ
𝐹
𝛼,𝛽

(𝜆, 𝑡, 𝑡
0
) is defined as 𝑡 ≥ 𝑡

0
.

As to the Laplace transform of Δ-Mittag-Leffler function,
we have the following theorem.

Theorem 35. The Laplace transform of Δ-Mittag-Leffler func-
tion is

L {
Δ
𝐹
𝛼,𝛽

(𝜆, 𝑡, 𝑡
0
)} (𝑧, 𝑡

0
) =

𝑧
𝛼−𝛽

𝑧𝛼 − 𝜆
(|𝜆| < |𝑧|

𝛼
) . (49)

Proof. According to the definition of Laplace transform, it is
obtained that

L {
Δ
𝐹
𝛼,𝛽

(𝜆, 𝑡, 𝑡
0
)} (𝑧, 𝑡

0
)

= ∫

∞

𝑡
0
Δ

𝐹
𝛼,𝛽

(𝜆, 𝑡, 𝑡
0
) ⋅ 𝑒

𝜎

⊖𝑧
(𝑡, 𝑡

0
) Δ𝑡

= ∫

∞

𝑡
0

∞

∑

𝑗=0

𝜆
𝑗
ℎ
𝑗𝛼+𝛽−1

(𝑡, 𝑡
0
) ⋅ 𝑒

𝜎

⊖𝑧
(𝑡, 𝑡

0
) Δ𝑡

=

∞

∑

𝑗=0

𝜆
𝑗
∫

∞

𝑡
0

ℎ
𝑗𝛼+𝛽−1

(𝑡, 𝑡
0
) ⋅ 𝑒

𝜎

⊖𝑧
(𝑡, 𝑡

0
) Δ𝑡

=

∞

∑

𝑗=0

𝜆
𝑗
L {ℎ

𝑗𝛼+𝛽−1
(𝑡, 𝑡

0
)} (𝑧, 𝑡

0
)

=

∞

∑

𝑗=0

𝜆
𝑗 1

𝑧𝑗𝛼+𝛽
= 𝑧

−𝛽

∞

∑

𝑗=0

𝜆
𝑗
(𝑧

−𝛼
)
𝑗

=
𝑧
𝛼−𝛽

𝑧𝛼 − 𝜆
(|𝜆| < |𝑧|

𝛼
) .

(50)

By differentiating 𝑘 times with respect to 𝜆 on both sides
of the formula inTheorem 35, we get the following result:

L{
𝜕
𝑘

𝜕𝜆𝑘 Δ𝐹𝛼,𝛽
(𝜆, 𝑡, 𝑡

0
)} (𝑧, 𝑡

0
) =

𝑘!𝑧
𝛼−𝛽

(𝑧
𝛼 − 𝜆)

𝑘+1
. (51)

4. Properties of Fractional Δ-Integral and
Δ-Derivative on Time Scales

In this section, we mainly give the properties of fractional Δ-
integral and Δ-derivative on time scales which are needed in
the following sections.

Theorem 36. Let 𝛼 > 0,𝑚 = [𝑎] + 1, and 𝛽 ∈ R. Then

(1) 𝐼
𝛼

Δ,𝑡
0

ℎ
𝛽−1

(𝑡, 𝑡
0
) = ℎ

𝛽+𝛼−1
(𝑡, 𝑡

0
) ,

(2) 𝐷
𝛼

Δ,𝑡
0

ℎ
𝛽−1

(𝑡, 𝑡
0
) = ℎ

𝛽−𝛼−1
(𝑡, 𝑡

0
) .

(52)

Proof. (1) According to Definition 28 and Theorem 27, we
have

𝐼
𝛼

Δ,𝑡
0

ℎ
𝛽−1

(𝑡, 𝑡
0
)

= (ℎ
𝛼−1

(⋅, 𝑡
0
) ∗ ℎ

𝛽−1
(⋅, 𝑡

0
)) (𝑡) = ℎ

𝛼+𝛽−1
(𝑡, 𝑡

0
) .

(53)

(2) By Definition 31, it is obtained that

𝐷
𝛼

Δ,𝑡
0

ℎ
𝛽−1

(𝑡, 𝑡
0
) = 𝐷

𝑚

Δ
𝐼
𝑚−𝛼

Δ,𝑡
0

ℎ
𝛽−1

(𝑡, 𝑡
0
) = 𝐷

𝑚
ℎ
𝑚+𝛽−𝛼−1

(𝑡, 𝑡
0
) .

(54)

Then

𝐷
𝑚
ℎ
𝑚+𝛽−𝛼−1

(𝑡, 𝑡
0
) = ℎ

𝛽−𝛼−1
(𝑡, 𝑡

0
) . (55)

In particular, if 𝛽 = 1, 𝛼 > 0, then the Riemann-Liouville
fractionalΔ-derivatives of a constant are, in general, not equal
to zero:

𝐷
𝛼

Δ,𝑡
0

1 = ℎ
−𝛼

(𝑡, 𝑡
0
) (0 < 𝛼 < 1) . (56)

On the other hand, for 𝑗 = 1, 2, . . . , 𝑚,

𝐷
𝛼

Δ,𝑡
0

ℎ
𝛼−𝑗 (𝑡, 𝑠) = 0. (57)

In fact,

𝐷
𝛼

Δ,𝑡
0

ℎ
𝛼−𝑗 (𝑡, 𝑠) = 𝐷

𝑚

Δ
𝐼
𝑚−𝛼

Δ,𝑡
0

ℎ
𝛼−𝑗 (𝑡, 𝑠)

= 𝐷
𝑚

Δ
ℎ
𝑚−𝑗 (𝑡, 𝑠) = 0.

(58)

FromTheorem 36, we derive the following result in [3] when
T = R.

Corollary 37 (see [3]). If 𝛼 ≥ 0 and 𝛽 > 0, then

(𝐼
𝛼

𝑎+
(𝑡 − 𝑎)

𝛽−1
) (𝑥) =

Γ (𝛽)

Γ (𝛽 + 𝛼)
(𝑥 − 𝑎)

𝛽+𝛼−1
(𝛼 > 0) ,

(𝐷
𝛼

𝑎+
(𝑡 − 𝑎)

𝛽−1
) (𝑥) =

Γ (𝛽)

Γ (𝛽 − 𝛼)
(𝑥 − 𝑎)

𝛽−𝛼−1
(𝛼 ≥ 0) .

(59)
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In particular, if 𝛽 = 1 and 𝛼 ≥ 0, then the Riemann-Liouville
fractional derivatives of a constant are, in general, not equal to
zero:

(𝐷
𝛼

𝑎+
1) (𝑥) =

(𝑥 − 𝑎)
−𝛼

Γ (1 − 𝛼)
(0 < 𝛼 < 1) . (60)

On the other hand, for 𝑗 = 1, 2, . . . , [𝛼] + 1,

(𝐷
𝛼

𝑎+
(𝑡 − 𝑎)

𝛼−𝑗
) (𝑥) = 0. (61)

As to the fractional sum and difference, we have the
following result, which is an improvement of Lemma 3.1 in
[1].

Corollary 38. Let 𝜇 ∈ R \ {. . . , −2, −1}. Then

(1) Δ
−]
𝑎
(𝑡 − 𝑎)

(𝜇)
= 𝜇

(−])
(𝑡 − 𝑎)

(𝑢+𝜐)
, 𝑓𝑜𝑟 𝑡 ≥ 𝑎 − [−]] ,

(2) Δ
]
𝑎
(𝑡 − 𝑎)

(𝜇)
= 𝜇

(])
(𝑡 − 𝑎)

(𝑢−𝜐)
, 𝑓𝑜𝑟 𝑡 ≥ 𝑎 + 1.

(62)

Lemma 39 (Taylor’s formula). Let 𝑛 ∈ N. Suppose that the
function 𝑓 is 𝑛 times differentiable on T𝑘

𝑛

. Let 𝛼 ∈ T𝑘
𝑛−1

, 𝑡 ∈ T ,
and 𝑡 > 𝛼. Then one has

𝑓 (𝑡) =

𝑛

∑

𝑘=0

ℎ
𝑘 (𝑡, 𝛼) 𝑓

Δ
𝑘

(𝛼) + ∫

𝑡

𝛼

ℎ
𝑛 (𝑡, 𝜎 (𝜏)) 𝑓

Δ
𝑛+1

(𝜏) Δ𝜏.

(63)

Proof. Let 𝑔(𝑡) := 𝑓
Δ
𝑛+1

(𝑡). Then 𝑓 solves the initial value
problem

𝑥
Δ
𝑛+1

= 𝑔 (𝑡) , 𝑥
Δ
𝑘

(𝛼) = 𝑓
Δ
𝑘

(𝛼) , 0 ≤ 𝑘 ≤ 𝑛. (64)

Note that the Cauchy function for 𝑦
Δ
𝑛+1

= 0 is
𝑦 (𝑡, 𝑠) = ℎ

𝑛
(𝑡, 𝜎(𝑠)). By the variation of constants formula

inTheorem 7,

𝑓 (𝑡) = 𝑢 (𝑡) + ∫

𝑡

𝛼

𝑦 (𝑡, 𝜎 (𝜏)) 𝑔 (𝜏) Δ𝜏, (65)

where 𝑢 solves the initial value problem

𝑢
Δ
𝑛+1

= 0, 𝑢
Δ
𝑚

(𝛼) = 𝑓
Δ
𝑚

(𝛼) , 0 ≤ 𝑚 ≤ 𝑛. (66)

To validate the claim that 𝑢(𝑡) = ∑
𝑛

𝑘=0
ℎ
𝑘
(𝑡, 𝛼)𝑓

Δ
𝑘

(𝛼), set

𝜔 (𝑡) :=

𝑛

∑

𝑘=0

ℎ
𝑘 (𝑡, 𝛼) 𝑓

Δ
𝑘

(𝛼) . (67)

By the properties of ℎ
𝑘
(𝑡, 𝛼), 𝜔Δ

𝑛+1

(𝑡) = 0. We have moreover
that

𝜔
Δ
𝑚

(𝑡) =

𝑛

∑

𝑘=𝑚

ℎ
𝑘−𝑚 (𝑡, 𝛼) 𝑓

Δ
𝑘

(𝛼) , (68)

so that

𝜔
Δ
𝑚

(𝛼) =

𝑛

∑

𝑘=𝑚

ℎ
𝑘−𝑚 (𝛼, 𝛼) 𝑓

Δ
𝑘

(𝛼) = 𝑓
Δ
𝑚

(𝛼) , (69)

for 0 ≤ 𝑚 ≤ 𝑛. We consequently have that 𝜔 also solves (66),
whence 𝑢 ≡ 𝜔 by uniqueness.

Lemma40. (1) For𝛼 > 0, 𝑛 = [𝛼]+1, let𝑓 be a functionwhich
is 𝑛 times Δ-differentiable on T𝑘

𝑛

with 𝑓
Δ
𝑛

rd-continuous over
T , and it is valid that

𝐼
𝛼

Δ,𝑡
0

𝑓 (𝑡)

=

𝑛−1

∑

𝑘=0

ℎ
𝑘+𝛼

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
) + (ℎ

𝑛+𝛼−1
(⋅, 𝑡

0
) ∗ 𝑓

Δ
𝑛

) (𝑡) .

(70)

(2) For 𝛼 ≥ 0, 𝑛 = [𝛼] + 1, let 𝑓 be a function which is
𝑛 times Δ-differentiable on T𝑘

𝑛

with 𝑓
Δ
𝑛

rd-continuous over T
and 𝐷

𝛼

Δ,𝑡
0

𝑓 exists almost on T , and it is valid that

𝐷
𝛼

Δ,𝑡
0

𝑓 (𝑡)

=

𝑛−1

∑

𝑘=0

ℎ
𝑘−𝛼

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
) + (ℎ

𝑛−𝛼−1
(⋅, 𝑡

0
) ∗ 𝑓

Δ
𝑛

) (𝑡) .

(71)

Proof. By Taylor’s formula

𝑓 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ
𝑘
(𝑡, 𝑡

0
) 𝑓

Δ
𝑘

(𝑡
0
) + ∫

𝑡

𝑡
0

ℎ
𝑛−1 (𝑡, 𝜎 (𝜏)) 𝑓

Δ
𝑛

(𝜏) Δ𝜏,

(72)

we have

𝐼
𝛼

Δ,𝑡
0

𝑓 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ
𝑘+𝛼

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
)

+ (ℎ
𝛼−1

(⋅, 𝑡
0
) ∗ (ℎ

𝑛−1
(⋅, 𝑡

0
) ∗ 𝑓

Δ
𝑛

)) (𝑡)

=

𝑛−1

∑

𝑘=0

ℎ
𝑘+𝛼

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
)

+ ((ℎ
𝛼−1

(⋅, 𝑡
0
) ∗ ℎ

𝑛−1
(⋅, 𝑡

0
)) ∗ 𝑓

Δ
𝑛

) (𝑡)

=

𝑛−1

∑

𝑘=0

ℎ
𝑘+𝛼

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
)

+ (ℎ
𝛼+𝑛−1

(⋅, 𝑡
0
) ∗ 𝑓

Δ
𝑛

) (𝑡) .

(73)

Besides,

𝐷
𝛼

Δ,𝑡
0

𝑓 (𝑡) = 𝐷
𝑚

Δ
𝐼
𝑚−𝛼

Δ,𝑡
0

𝑓 (𝑡)

= 𝐷
𝑚

Δ
[

𝑛−1

∑

𝑘=0

ℎ
𝑘+𝑚−𝛼

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
)

+ (ℎ
𝑚+𝑛−𝛼−1

(⋅, 𝑡
0
) ∗ 𝑓

Δ
𝑛

) (𝑡) ]

=

𝑛−1

∑

𝑘=0

ℎ
𝑘−𝛼

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
)+(ℎ

𝑛−𝛼−1
(⋅, 𝑡

0
) ∗ 𝑓

Δ
𝑛

) (𝑡) ,

(74)
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where

𝐷
𝑚

Δ
(ℎ

𝑚+𝑛−𝛼−1
(⋅, 𝑡

0
) ∗ 𝑓

Δ
𝑛

) (𝑡)

= (ℎ
𝑛−𝛼−1

(⋅, 𝑡
0
) ∗ 𝑓

Δ
𝑛

) (𝑡) +

𝑚

∑

𝑘=0

ℎ
𝑚+𝑛−𝛼−1−𝑘

(𝑡
0
, 𝑡

0
) 𝑔

Δ
𝑚−𝑘

= (ℎ
𝑛−𝛼−1

(⋅, 𝑡
0
) ∗ 𝑓

Δ
𝑛

) (𝑡) .

(75)

When T = R, there is the following corollary.

Corollary 41 (see [3]). Let 𝛼 ≥ 0 and 𝑛 = [𝛼] + 1. If
𝑦(𝑥) ∈ 𝐴𝐶

𝑛
[𝑎, 𝑏], then the fractional derivative 𝐷𝛼

𝑎+
𝑦 exists

almost everywhere on [𝑎, 𝑏] and can be represented in the form

(𝐷
𝛼

𝑎+
𝑦) (𝑥) =

𝑛−1

∑

𝑘=0

𝑦
(𝑘)

(𝑎)

Γ (1 + 𝑘 − 𝛼)
(𝑥 − 𝑎)

𝑘−𝛼

+
1

Γ (𝑛 − 𝛼)
∫

𝑥

𝑎

𝑦
(𝑛)

(𝑡) 𝑑𝑡

(𝑥 − 𝑡)
𝛼−𝑛+1

.

(76)

Theorem 42. For 𝛼 > 0 and 𝛽 > 0, then (𝐼
𝛼

Δ,𝑡
0

𝐼
𝛽

Δ,𝑡
0

𝑓)(𝑡) =

(𝐼
𝛼+𝛽

Δ,𝑡
0

𝑓)(𝑡).

Proof. According to Definition 28, Theorem 20 and 27,

(𝐼
𝛼

Δ,𝑡
0

𝐼
𝛽

Δ,𝑡
0

𝑓) (𝑡) = (ℎ
𝛼−1

(⋅, 𝑡
0
) ∗ (ℎ

𝛽−1
(⋅, 𝑡

0
) ∗ 𝑓)) (𝑡)

= ((ℎ
𝛼−1

(⋅, 𝑡
0
) ∗ ℎ

𝛽−1
(⋅, 𝑡

0
)) ∗ 𝑓) (𝑡)

= (ℎ
𝛼+𝛽−1

(⋅, 𝑡
0
) ∗ 𝑓) (𝑡) = (𝐼

𝛼+𝛽

Δ,𝑡
0

𝑓) (𝑡) .

(77)

Theorem 43. For 𝛼 > 0, 𝑛 is a positive integer; if 𝑓 is Δ-
differentiable and the highest order derivative is rd-continuous
over T , then it is valid that

(1) 𝐷
𝑛

Δ
𝐷

𝛼

Δ,𝑡
0

𝑓 (𝑡) = 𝐷
𝑛+𝛼

Δ,𝑡
0

𝑓 (𝑡) ,

(2) 𝐷
𝑛

Δ
𝐼
𝛼

Δ,𝑡
0

𝑓 (𝑡) = 𝐼
𝛼−𝑛

Δ,𝑡
0

𝑓 (𝑡) .
(78)

Proof. (1) Suppose that 𝑓 is a function which is 𝑠 times
Δ-differentiable on T𝑘

𝑠

with 𝑓
Δ
𝑠

rd-continuous over T . By
Lemma 40(2),

𝐷
𝑛

Δ
𝐷

𝛼

Δ,𝑡
0

𝑓 (𝑡)

= 𝐷
𝑛

Δ
[

𝑠−1

∑

𝑘=0

ℎ
𝑘−𝛼

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
) + (ℎ

𝑠−1−𝛼
(⋅, 𝑡

0
) ∗ 𝑓

Δ
𝑠

) (𝑡)]

=

𝑠−1

∑

𝑘=0

ℎ
𝑘−𝛼−𝑛

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
) + (ℎ

𝑠−1−𝛼−𝑛
(⋅, 𝑡

0
) ∗ 𝑓

Δ
𝑠

) (𝑡)

= 𝐷
𝑛+𝛼

Δ,𝑡
0

𝑓 (𝑡) .

(79)

By a similar way, we can get (2).

When T = Z, we have the following corollary.

Corollary 44. Let 𝑓 : N
𝑎
→ R be given. For any 𝑘 ∈ N

0
and

𝜇 > 0 with𝑀− 1 < 𝜇 ≤ 𝑀, one has

Δ
𝑘
Δ

−𝜇

𝑎
𝑓 (𝑡) = Δ

𝑘−𝜇

𝑎
𝑓 (𝑡) , 𝑓𝑜𝑟 𝑡 ≥ 𝑎 − [−𝜇] ,

Δ
𝑘
Δ

𝜇

𝑎
𝑓 (𝑡) = Δ

𝑘+𝜇

𝑎
𝑓 (𝑡) , 𝑓𝑜𝑟 𝑡 ≥ 𝑎 + 1.

(80)

Theorem 45. For 𝛼 > 0, 𝑛 is a positive integer; if 𝑓 is Δ-
differentiable and the highest order derivative is rd-continuous
over T , then it is valid that

(1) 𝐷
𝑛+𝛼

Δ,𝑡
0

𝑓 (𝑡) = 𝐷
𝛼

Δ,𝑡
0

𝐷
𝑛

Δ,𝑡
0

𝑓 (𝑡) +

𝑛−1

∑

𝑘=0

ℎ
𝑘−𝛼−𝑛

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
) ,

(2) 𝐷
𝑛−𝛼

Δ,𝑡
0

𝑓 (𝑡) = 𝐼
𝛼

Δ,𝑡
0

𝐷
𝑛

Δ,𝑡
0

𝑓 (𝑡) +

𝑛−1

∑

𝑘=0

ℎ
𝑘+𝛼−𝑛

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
) .

(81)

Proof. (1) In the proof ofTheorem 43(1), if we take 𝑠 = 𝑛+𝑚,
then we have

𝐷
𝑛

Δ
𝐷

𝛼

Δ,𝑡
0

𝑓 (𝑡) = 𝐷
𝑛+𝛼

Δ,𝑡
0

𝑓 (𝑡)

=

𝑛+𝑚−1

∑

𝑘=0

ℎ
𝑘−𝛼−𝑛

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
)

+ (ℎ
𝑠−1−𝛼−𝑛

(⋅, 𝑡
0
) ∗ 𝑓

Δ
𝑠

) (𝑡) .

(82)

As𝐷𝑛

Δ
𝑓(𝑡) is𝑚 times Δ-differentiable on T𝑘

𝑚+𝑛

, we have

𝐷
𝛼

Δ,𝑡
0

(𝐷
𝑛

Δ
𝑓 (𝑡)) =

𝑚−1

∑

𝑘=0

ℎ
𝑘−𝛼

(𝑡, 𝑡
0
) 𝑓

Δ
𝑛+𝑘

(𝑡
0
)

+ (ℎ
−𝛼+𝑚−1

(⋅, 𝑡
0
) ∗ 𝑓

Δ
𝑠

) (𝑡) .

(83)

By (82) and (83), if 𝑓 is at least 𝑛 times Δ-differentiable with
the highest order derivative rd-continuous over T , then we
have

𝐷
𝑛

Δ
𝐷

𝛼

Δ,𝑡
0

𝑓 (𝑡) = 𝐷
𝛼

Δ,𝑡
0

(𝐷
𝑛

Δ
𝑓 (𝑡))

+

𝑛−1

∑

𝑘=0

ℎ
−𝛼−𝑛+𝑘

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
) .

(84)

Thus

𝐷
𝑛

Δ
𝐷

𝛼

Δ,𝑡
0

𝑓 (𝑡) = 𝐷
𝛼

Δ,𝑡
0

(𝐷
𝑛

Δ
𝑓 (𝑡)) (85)

is valid if and only if

𝑓
Δ
𝑘

(𝑡
0
) = 0, 𝑘 = 0, . . . , 𝑛 − 1. (86)
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(2) Similarly, we have

𝐼
𝛼

Δ,𝑡
0

𝐷
𝑛

Δ
𝑓 (𝑡) =

𝑚−1

∑

𝑘=0

ℎ
𝑘+𝛼

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘+𝑛

(𝑡
0
)

+ (ℎ
𝛼+𝑚−1

(⋅, 𝑡
0
) ∗ 𝑓

Δ
𝑚+𝑛

) (𝑡) ,

𝐷
𝑛

Δ
𝐼
𝛼

Δ,𝑡
0

𝑓 (𝑡) = 𝐼
𝛼−𝑛

Δ,𝑡
0

𝑓 (𝑡)

=

𝑛+𝑚−1

∑

𝑘=0

ℎ
𝑘+𝛼−𝑛

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
)

+ (ℎ
𝛼+𝑚−1

(⋅, 𝑡
0
) ∗ 𝑓

Δ
𝑚+𝑛

) (𝑡) .

(87)

Therefore

𝐷
𝑛

Δ
𝐼
𝛼

Δ,𝑡
0

𝑓 (𝑡) = 𝐼
𝛼

Δ,𝑡
0

𝐷
𝑛

Δ
𝑓 (𝑡) +

𝑛−1

∑

𝑘=0

ℎ
𝑘+𝛼−𝑛

(𝑡, 𝑡
0
) 𝑓

Δ
𝑘

(𝑡
0
) .

(88)

Provided that 𝑓 is at least 𝑛 times Δ-differentiable with the
highest order derivative rd-continuous over T .

Thus

𝐷
𝑛

Δ
𝐼
𝛼

Δ,𝑡
0

𝑓 (𝑡) = 𝐼
𝛼

Δ,𝑡
0

𝐷
𝑛

Δ
𝑓 (𝑡) (89)

is valid if and only if

𝑓
Δ
𝑘

(𝑡
0
) = 0, 𝑘 = 0, . . . , 𝑛 − 1. (90)

In particular, there are corollaries for T = R and for T =

Z.

Corollary 46 (see [3]). Let 𝛼 > 0 and 𝛽 > 0 be such that
𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑚 − 1 < 𝛽 ≤ 𝑚 (𝑛,𝑚 ∈ N) and 𝛼 + 𝛽 < 𝑛,
and let 𝑓 ∈ 𝐿

1
(𝑎, 𝑏) and 𝑓

𝑚−𝛼
∈ 𝐴𝐶

𝑚
([𝑎, 𝑏]). Then one has

the following index rule:

(𝐷
𝛼

𝑎+
𝐷

𝛽

𝑎+
𝑓) (𝑥) = (𝐷

𝛼+𝛽

𝑎+
𝑓) (𝑥)

−

𝑚

∑

𝑗=1

(𝐷
𝛽−𝑗

𝑎+
𝑓) (𝑎+)

(𝑥 − 𝑎)
−𝑗−𝛼

Γ (1 − 𝑗 − 𝛼)
.

(91)

Corollary 47. Let 𝑓 : N
𝑎
→ R be given. For any 𝑘 ∈ N

0
and

] > 0,

Δ
−]
𝑎
Δ

𝑘
𝑓 (𝑡) = Δ

𝑘−𝜐

𝑎
𝑓 (𝑡) −

𝑘−1

∑

𝑗=0

Δ
𝑗
𝑓 (𝑎)

Γ (𝜐 − 𝑘 + 𝑗 + 1)
(𝑡 − 𝑎)

(𝜐−𝑘+𝑗)
,

𝑓𝑜𝑟 𝑡 ≥ 𝑎 − [−]] .

(92)

Theorem48. Let𝑓 beΔ-differentiable and let its highest order
derivative be rd-continuous over T . When 𝛼, 𝛽 > 0,𝑀 = [𝛽] +

1, one has the following:

(1) (𝐷
𝛽

Δ,𝑡
0

𝐼
𝛼

Δ,𝑡
0

𝑓) (𝑡) = (𝐼
𝛼−𝛽

Δ,𝑡
0

) 𝑓 (𝑡) ,

(2) (𝐼
𝛼

Δ,𝑡
0

𝐷
𝛽

Δ,𝑡
0

𝑓) (𝑡) = (𝐷
𝛽−𝛼

Δ,𝑡
0

) 𝑓 (𝑡)

−

𝑀

∑

𝑘=1

ℎ
𝛼−𝑘

(𝑡, 𝑡
0
)𝐷

𝛽−𝑘

Δ,𝑡
0

𝑓 (𝑡
0
) .

(93)

Proof. According toTheorem 42 and (24), we have

(𝐷
𝛽

Δ,𝑡
0

𝐼
𝛼

Δ,𝑡
0

𝑓) (𝑡) = (𝐷
𝑀

Δ
𝐼
𝑀−𝛽

Δ,𝑡
0

𝐼
𝛼

Δ,𝑡
0

𝑓) (𝑡)

= 𝐷
𝑀

Δ
(ℎ

𝑀+𝛼−𝛽−1
(⋅, 𝑡

0
) ∗ 𝑔) (𝑡)

= (ℎ
𝛼−𝛽−1

(⋅, 𝑡
0
) ∗ 𝑔) (𝑡)

= (𝐼
𝛼−𝛽

Δ,𝑡
0

) 𝑓 (𝑡) .

(94)

In addition,

𝐼
𝛼

Δ,𝑡
0

𝐷
𝛽

Δ,𝑡
0

𝑓 (𝑡) = 𝐼
𝛼

Δ,𝑡
0

𝐷
𝑀

Δ
𝐼
𝑀−𝛽

Δ,𝑡
0

𝑓 (𝑡)

= 𝐷
𝑀

Δ
𝐼
𝛼

Δ,𝑡
0

𝐼
𝑀−𝛽

Δ,𝑡
0

𝑓 (𝑡)

−

𝑀−1

∑

𝑘=0

ℎ
𝛼−𝑀+𝑘

(𝑡, 𝑡
0
)𝐷

𝑘+𝛽−𝑀

Δ,𝑡
0

𝑓 (𝑡
0
)

= 𝐼
𝛼−𝛽

Δ,𝑡
0

𝑓 (𝑡) −

𝑀

∑

𝑘=1

ℎ
𝛼−𝑘

(𝑡, 𝑡
0
)𝐷

𝛽−𝑘

Δ,𝑡
0

𝑓 (𝑡
0
) .

(95)

As a direct corollary ofTheorem 48, we get Lemma 2.5 in
[3].

Corollary 49 (see [3]). Let 𝑅(𝛼) > 0, 𝑛 = [𝑅(𝛼)] + 1, and
let 𝑓

𝑛−𝛼
(𝑥) = (𝐼

𝑛−𝛼

𝑎+
𝑓)(𝑥). If 𝑓(𝑥) ∈ 𝐿

1
(𝑎, 𝑏) and 𝑓

𝑛−𝛼
(𝑥) ∈

𝐴𝐶
𝑛
[𝑎, 𝑏], then

(𝐼
𝛼

𝑎+
𝐷

𝛼

𝑎+
𝑓) (𝑥) = 𝑓 (𝑥) −

𝑛

∑

𝑗=1

𝑓
(𝑛−𝑗)

𝑛−𝛼 (𝑎)

Γ (𝛼 − 𝑗 + 1)
(𝑥 − 𝑎)

𝛼−𝑗 (96)

holds almost everywhere on [𝑎, 𝑏].

For fractional sum and difference, there is also the follow-
ing theorem in [1].

It is different from Theorem 3.3 in [1], and from
Theorem 48, we can get the following corollary.

Corollary 50. Let 𝑓 : N
𝑎
→ R be given. For any 𝑘 ∈ N

0
and

], 𝜇 > 0 with𝑀− 1 < 𝜇 ≤ 𝑀,

Δ
−]
𝑎
Δ

𝜇

𝑎
𝑓 (𝑡)

= Δ
𝜇−𝜐

𝑎
𝑓 (𝑡) −

𝑀−1

∑

𝑗=0

Δ
𝑗−(𝑀−𝜇)

𝑎
𝑓 (𝑎)

Γ (𝜐 − 𝑘 + 𝑗 + 1)
(𝑡 − 𝑎)

(𝜐−𝑀+𝑗)
.

(97)
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Next, we will give the Laplace transform of fractional
integral and derivative on time scales.

Theorem 51. (1) Let 𝛼 > 0 and 𝑓 : T → R be locally Δ-
integrable. For 𝑠, 𝑡 ∈ T with 𝑡 > 𝑡

0
, one has

L {𝐼
𝛼

Δ,𝑡
0

𝑓 (𝑡)} (𝑧, 𝑡0) =
1

𝑧𝛼
L {𝑓 (𝑡)} (𝑧, 𝑡0) . (98)

(2) Let 𝛼 > 0 and 𝑓 : T → R be locally Δ-integrable. For
𝑡
0
, 𝑡 ∈ T𝑘

𝑚

with 𝑡 > 𝑠, one has

L {𝐷
𝛼

Δ,𝑡
0

𝑓 (𝑡)} (𝑧, 𝑡0)

= 𝑧
𝛼
L {𝑓 (𝑡)} (𝑧, 𝑡0) −

𝑚

∑

𝑗=1

𝑧
𝑗−1

𝐷
𝛼−𝑗

Δ,𝑡
0

𝑓 (𝑡
0
) .

(99)

Proof. (1) According to Definition 28 and convolution theo-
rem, we have

L {𝐼
𝛼

Δ,𝑡
0

𝑓 (𝑡)} (𝑧, 𝑡0)

= L {(ℎ
𝛼−1

(⋅, 𝑡
0
) ∗ 𝑓) (𝑡)} (𝑧, 𝑡0)

= L {ℎ
𝛼−1

(𝑡, 𝑡
0
)} (𝑧, 𝑡

0
)L {𝑓 (𝑡)} (𝑧, 𝑡0)

=
1

𝑧𝛼
L {𝑓 (𝑡)} (𝑧, 𝑡0) .

(100)

(2) By Definition 31 and (26) and taking the Laplace
transform of fractional integral into account, we get

L {𝐷
𝛼

Δ,𝑡
0

𝑓 (𝑡)} (𝑧, 𝑡0)

= L {𝐷
𝑚

Δ,𝑡
0

𝐼
𝑚−𝛼

Δ,𝑡
0

𝑓 (𝑡)} (𝑧, 𝑡0)

= 𝑧
𝑚
L {𝐼

𝑚−𝛼

Δ,𝑡
0

𝑓 (𝑡)} (𝑧, 𝑡0) −

𝑚−1

∑

𝑗=0

𝑧
𝑚−𝑗−1

𝐷
𝑗
𝐼
𝑚−𝛼

Δ,𝑡
0

𝑓 (𝑡
0
)

= 𝑧
𝑚 1

𝑧𝑚−𝛼
L {𝑓 (𝑡)} (𝑧, 𝑡0) −

𝑚−1

∑

𝑗=0

𝑧
𝑚−𝑗−1

𝐷
𝑗−𝑚+𝛼

Δ,𝑡
0

𝑓 (𝑡
0
)

= 𝑧
𝛼
L {𝑓 (𝑡)} (𝑧, 𝑡0) −

𝑚

∑

𝑗=1

𝑧
𝑗−1

𝐷
𝛼−𝑗

Δ,𝑡
0

𝑓 (𝑡
0
) .

(101)

5. Cauchy Type Problem with
Riemann-Liouville Fractional Derivative

In this section, we consider Cauchy type problem with
Riemann-Liouville fractional derivative

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) (𝛼 > 0) , (102)

𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦 (𝑡
0
) = 𝑏

𝑘 (𝑘 = 1, . . . , 𝑚 = − [−𝛼]) . (103)

In the space 𝐿𝛼

Δ
[𝑎, 𝑏) defined for 𝛼 > 0 by

𝐿
𝛼

Δ
[𝑎, 𝑏) := {𝑦 ∈ 𝐿

Δ [𝑎, 𝑏) : 𝐷
𝛼

Δ,𝑡
0

∈ 𝐿
Δ [𝑎, 𝑏)} . (104)

Here 𝐿
Δ
[𝑎, 𝑏) := 𝐿

Δ,1
[𝑎, 𝑏) is the space of Δ-Lebesgue

summable functions in a finite interval T̃ := [𝑎, 𝑏)T .
In the following, we prove that Cauchy type problem and

nonlinear Volterra integral equation are equivalent in the
sense that if 𝑦(𝑡) ∈ 𝐿

Δ
[𝑎, 𝑏) satisfies one of these relations,

then it also satisfies the other.

Theorem 52. Let 𝛼 > 0, 𝑚 = −[−𝛼], T̃ := [𝑎, 𝑏]T , 𝑡0, 𝑡 ∈ T̃𝑘
𝑚

.
Let𝐺 be an open set inR and let 𝑓 : T̃ ×𝐺 → R be a function
such that 𝑓(𝑡, 𝑦) ∈ 𝐿

Δ
[𝑎, 𝑏) for any 𝑦 ∈ 𝐺. If 𝑦(𝑡) ∈ 𝐿

Δ
[𝑎, 𝑏),

then Cauchy type problem (102) and (103) is equivalent to

𝑦 (𝑡) =

𝑚

∑

𝑘=1

ℎ
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑏

𝑘
+ 𝐼

𝛼

Δ,𝑡
0

𝑓 (𝑡, 𝑦 (𝑡)) . (105)

Proof. First we prove the necessity.We apply 𝐼𝛼
Δ,𝑡
0

to both sides
of (102) and get byTheorem 48

𝐼
𝛼

Δ,𝑡
0

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) = 𝑦 (𝑡) −

𝑚

∑

𝑘=1

ℎ
𝛼−𝑘

(𝑡, 𝑡
0
)𝐷

𝛼−𝑘

Δ,𝑡
0

𝑦 (𝑡
0
)

= (ℎ
𝛼−1

(⋅, 𝑡
0
) ∗ 𝑓 (⋅, ⋅)) (𝑡) .

= 𝐼
𝛼

Δ,𝑡
0

𝑓 (𝑡, 𝑦 (𝑡)) .

(106)

Thus

𝑦 (𝑡) =

𝑚

∑

𝑘=1

ℎ
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑏

𝑘
+ 𝐼

𝛼

Δ,𝑡
0

𝑓 (𝑡, 𝑦 (𝑡)) . (107)

Now we prove the sufficiency. Applying the operator𝐷𝛼

Δ,𝑡
0

to
both sides of (105) and by (57) andTheorem 48(1), we have

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) =

𝑚

∑

𝑘=1

𝐷
𝛼

Δ,𝑡
0

ℎ
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑏

𝑘

+ 𝐷
𝛼

Δ,𝑡
0

𝐼
𝛼

Δ,𝑡
0

𝑓 (𝑡, 𝑦 (𝑡))

= 𝑓 (𝑡, 𝑦 (𝑡)) .

(108)

Now we show that the relations in (103) also hold. For this,
we apply the operators 𝐷𝛼−𝑘

Δ,𝑡
0

(𝑘 = 1, . . . , 𝑚) to both sides of
(105):

𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦 (𝑡)

=

𝑚

∑

𝑗=1

𝐷
𝛼−𝑘

Δ,𝑡
0

ℎ
𝛼−𝑗

(𝑡, 𝑡
0
) 𝑏

𝑗
+ 𝐷

𝛼−𝑘

Δ,𝑡
0

𝐼
𝛼

Δ,𝑡
0

𝑓 (𝑡, 𝑦 (𝑡))

=

𝑚

∑

𝑗=1

𝐷
𝑚−𝑘

Δ,𝑡
0

𝐼
𝑚−𝛼

Δ,𝑡
0

ℎ
𝛼−𝑗

(𝑡, 𝑡
0
) 𝑏

𝑗
+ 𝐼

𝑘

Δ,𝑡
0

𝑓 (𝑡, 𝑦 (𝑡))

=

𝑚

∑

𝑗=1

𝐷
𝑚−𝑘

Δ,𝑡
0

ℎ
𝑚−𝑗

(𝑡, 𝑡
0
) 𝑏

𝑗
+ 𝐼

𝑘

Δ,𝑡
0

𝑓 (𝑡, 𝑦 (𝑡)) .

(109)

Since

𝐷
𝑚−𝑘

Δ,𝑡
0

ℎ
𝑚−𝑗

(𝑡, 𝑡
0
) =

{{

{{

{

0, 𝑘 < 𝑗,

1, 𝑘 = 𝑗,

ℎ
𝑘−𝑗

(𝑡, 𝑡
0
) , 𝑘 > 𝑗,

𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦 (𝑡
0
) = 𝑏

𝑘 (𝑘 = 1, . . . , 𝑚) .

(110)
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In the following, we bring in Lipschitzian-type condition:
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦

1 (𝑡)) − 𝑓 (𝑡, 𝑦
2 (𝑡))

󵄨󵄨󵄨󵄨 ≤ 𝐴
󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦

2 (𝑡)
󵄨󵄨󵄨󵄨 , (111)

where 𝐴 > 0 does not depend on 𝑡 ∈ [𝑎, 𝑏)T . We will derive
a unique solution to the Cauchy problem (102)-(103).

Theorem 53. Let the condition of Theorem 52 be valid, let
𝑓(𝑡, 𝑦) satisfy the Lipschitzian condition (111), and |𝑓(𝑡, 𝑦)| ≤

𝑀,
Δ
𝐹
𝛼,1

(𝐴, 𝑡, 𝑡
0
) is defined on T̃ := [𝑎, 𝑏]T , where 𝐴 is

the Lipschitzian constant in (111). Then there exists a unique
solution 𝑦(𝑡) to initial value problem (102)-(103) in the space
𝐿
𝛼

Δ
[𝑎, 𝑏).

Proof. Since the Cauchy type problem (102)-(103) and the
nonlinear Volterra integral equation (105) are equivalent, we
only need to prove that there exists a unique solution to (105).

We define function sequences:
𝑦
𝑙 (𝑡) = 𝑦

0 (𝑡) + 𝐼
𝛼

Δ,𝑡
0

𝑓 (𝑡, 𝑦
𝑙−1 (𝑡)) (𝑙 = 1, 2, . . . , ) , (112)

where

𝑦
0 (𝑡) =

𝑚

∑

𝑘=1

ℎ
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑏

𝑘
. (113)

We obtain, by induction that,
󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑦

𝑙−1 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑀𝐴

𝑙−1
ℎ
𝑙𝛼
(𝑡, 𝑡

0
) . (114)

In fact, for 𝑙 = 1, as |𝑓(𝑡, 𝑦(𝑡))| ≤ 𝑀, we have
󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦

0 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑀𝐼

𝛼

Δ,𝑡
0

ℎ
0
(𝑡, 𝑡

0
) = 𝑀ℎ

𝛼
(𝑡, 𝑡

0
) . (115)

If
󵄨󵄨󵄨󵄨𝑦𝑙−1 (𝑡) − 𝑦

𝑙−2 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑀𝐴

𝑙−2
ℎ
(𝑙−1)𝛼

(𝑡, 𝑡
0
) , (116)

then
󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑦

𝑙−1 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝐴 (𝐼

𝛼

Δ,𝑡
0

󵄨󵄨󵄨󵄨𝑦𝑙−1
− 𝑦

𝑙−2

󵄨󵄨󵄨󵄨) (𝑡)

≤ 𝐴 (𝐼
𝛼

Δ,𝑡
0

𝑀𝐴
𝑙−2

ℎ
(𝑙−1)𝛼

(⋅, 𝑡
0
)) (𝑡)

= 𝑀𝐴
𝑙−1

(𝐼
𝛼

Δ,𝑡
0

ℎ
(𝑙−1)𝛼

(⋅, 𝑡
0
)) (𝑡)

= 𝑀𝐴
𝑙−1

ℎ
𝑙𝛼
(𝑡, 𝑡

0
) .

(117)

Let

𝑦 (𝑡) = lim
𝑙→∞

(𝑦
𝑙 (𝑡) − 𝑦

0 (𝑡)) =

∞

∑

𝑙=1

(𝑦
𝑙 (𝑡) − 𝑦

𝑙−1 (𝑡)) , (118)

and we have
∞

∑

𝑙=1

󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑦
𝑙−1 (𝑡)

󵄨󵄨󵄨󵄨 ≤

∞

∑

𝑙=1

𝑀𝐴
𝑙−1

ℎ
𝑙𝛼
(𝑡, 𝑡

0
)

=
𝑀

𝐴

∞

∑

𝑙=1

𝐴
𝑙
ℎ
𝑙𝛼
(𝑡, 𝑡

0
)

<
𝑀

𝐴

∞

∑

𝑙=1

𝐴
𝑙
ℎ
𝑙𝛼
(𝑏, 𝑡

0
)

=
𝑀

𝐴
[
Δ𝐹𝛼,1

(𝐴, 𝑏, 𝑡
0
) − 1] .

(119)

ByWeierstrass discriminance, we obtain 𝑦
𝑙
(𝑡) convergent

uniformly. Next we will show the uniqueness. Assume that
𝑧(𝑡) is another solution to (105); that is,

𝑧 (𝑡) = 𝑦
0 (𝑡) + 𝐼

𝛼

Δ,𝑡
0

𝑓 (𝑡, 𝑧 (𝑡)) . (120)

As
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦 (𝑡))

󵄨󵄨󵄨󵄨 ≤ 𝑀,

󵄨󵄨󵄨󵄨𝑦0 (𝑡) − 𝑧 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝐼

𝛼

Δ,𝑡
0

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑧 (𝑡))
󵄨󵄨󵄨󵄨 ≤ 𝑀ℎ

𝛼
(𝑡, 𝑡

0
) .

(121)

If
󵄨󵄨󵄨󵄨𝑦𝑙−1 (𝑡) − 𝑧 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑀𝐴
𝑙−1

ℎ
𝑙𝛼
(𝑡, 𝑡

0
) , (122)

then
󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑧 (𝑡)

󵄨󵄨󵄨󵄨 ≤ (𝐼
𝛼

Δ,𝑡
0

󵄨󵄨󵄨󵄨𝑓 (⋅, 𝑦
𝑙−1 (⋅)) − 𝑓 (⋅, 𝑧 (⋅))

󵄨󵄨󵄨󵄨) (𝑡)

≤ (𝐼
𝛼

Δ,𝑡
0

𝐴
󵄨󵄨󵄨󵄨𝑦𝑙−1

− 𝑧
󵄨󵄨󵄨󵄨) (𝑡)

≤ (𝐼
𝛼

Δ,𝑡
0

𝐴𝑀𝐴
𝑙−1

ℎ
𝑙𝛼
(⋅, 𝑡

0
)) (𝑡)

≤ 𝑀𝐴
𝑙
(𝐼

𝛼

Δ,𝑡
0

ℎ
𝑙𝛼
(⋅, 𝑡

0
)) (𝑡)

= 𝑀𝐴
𝑙
ℎ
(𝑙+1)𝛼

(𝑡, 𝑡
0
) .

(123)

By mathematical induction, we have
󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑧 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑀𝐴
𝑙
ℎ
(𝑙+1)𝛼

(𝑡, 𝑡
0
) (124)

and then get 𝑧(𝑡) = 𝑦(𝑡) owing to the uniqueness of the limit.
This completes the proof of the theorem.

Next we consider the generalized Cauchy type problem:

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝐷
𝛼
1

Δ,𝑡
0

𝑦 (𝑡) , . . . , 𝐷
𝛼
𝑙

Δ,𝑡
0

𝑦 (𝑡))

(0 = 𝛼
0
≤ 𝛼

1
≤ ⋅ ⋅ ⋅ ≤ 𝛼

𝑙
< 𝛼) ,

(125)

𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦 (𝑡
0
) = 𝑏

𝑘 (𝑘 = 1, . . . , 𝑛, 𝑛 = [𝛼] + 1) . (126)

Theorem 54. Let 𝑓 : [𝑎, 𝑏)T × 𝐺 → R be a function such
that 𝑓(𝑡, 𝑦, 𝑦

1
, . . . , 𝑦

𝑙
) ∈ 𝐿

Δ
[𝑎, 𝑏) for any (𝑦, 𝑦

1
, . . . , 𝑦

𝑙
) ∈ 𝐺. If

𝑦(𝑡) ∈ 𝐿
Δ
[𝑎, 𝑏), then 𝑦(𝑡) satisfies a.e. the relations (126) and

(125) if and only if it satisfies a.e. the integral equation

𝑦 (𝑡) =

𝑛

∑

𝑘=1

ℎ
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑏

𝑘

+ (𝐼
𝛼

Δ,𝑡
0

𝑓 (𝜏, 𝑦 (𝜏) , 𝐷
𝛼
1

Δ,𝑡
0

𝑦 (𝜏) , . . . , 𝐷
𝛼
𝑙

Δ,𝑡
0

𝑦 (𝜏))) (𝑡) .

(127)

Assume that 𝑓 satisfies generalized Lipschitzian condi-
tion

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦, 𝑦
1
, . . . , 𝑦

𝑙
) − 𝑓 (𝑡, 𝑧, 𝑧

1
, . . . , 𝑧

𝑙
)
󵄨󵄨󵄨󵄨 ≤ 𝐴[

[

𝑙

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
− 𝑧

𝑗

󵄨󵄨󵄨󵄨󵄨
]

]

.

(128)

According to Theorem 54 and by a similar proof to that
of Theorem 53, we have the following theorem.
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Theorem 55. Let the condition of Theorem 54 be valid and let
𝑓(𝑡, 𝑦, 𝑦

1
, . . . , 𝑦

𝑙
) satisfy the Lipschitzian condition (128). Then

there exists a unique solution 𝑦(𝑡) to the generalized Cauchy
type problem.

6. The Dependency of the Solution upon
the Initial Value

We consider fractional differential initial value problem
again:

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡
0
) = 𝜂,

(129)

where 0 < 𝛼 < 1.
UsingTheorem 52, we have

𝑦 (𝑡) = 𝜂ℎ
𝛼−1

(𝑡, 𝑡
0
) + (𝐼

𝛼

Δ,𝑡
0

𝑓 (𝜏, 𝑦 (𝜏))) (𝑡) . (130)

Suppose that 𝑧(𝑡) is the solution to the initial value problem:

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡
0
) = 𝜂.

(131)

We can derive the dependency of the solution upon the initial
value.

Theorem 56. Let T̃ := [𝑎, 𝑏]T , 𝑡0, 𝑡 ∈ T̃𝑘 and suppose that 𝑓
satisfy the Lipschitz condition; that is,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑧 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))
󵄨󵄨󵄨󵄨 ≤ 𝐴

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 . (132)

Then one has
󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨 Δ
𝐹
𝛼,𝛼

(𝐴, 𝑏, 𝑡
0
) . (133)

Proof. By the proof of Theorem 53, we know that 𝑦(𝑡) =

lim
𝑚→∞

𝑦
𝑚
(𝑡), 𝑧(𝑡) = lim

𝑚→∞
𝑧
𝑚
(𝑡), where

𝑦
0 (𝑡) = 𝜂ℎ

𝛼−1
(𝑡, 𝑡

0
) ,

𝑦
𝑚 (𝑡) = 𝑦

0 (𝑡) + (𝐼
𝛼

Δ,𝑡
0

𝑓 (𝜏, 𝑦
𝑚−1 (𝜏))) (𝑡) ,

𝑧
0 (𝑡) = 𝜂ℎ

𝛼−1
(𝑡, 𝑡

0
) ,

𝑧
𝑚 (𝑡) = 𝑧

0 (𝑡) + (𝐼
𝛼

Δ,𝑡
0

𝑓 (𝜏, 𝑧
𝑚−1 (𝜏))) (𝑡) .

(134)

Using the Lipschitz condition, we have
󵄨󵄨󵄨󵄨𝑧1 (𝑡) − 𝑦

1 (𝑡)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨 ℎ𝛼−1
(𝑡, 𝑡

0
)

+ (𝐼
𝛼

Δ,𝑡
0

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑧
0 (𝜏)) − 𝑓 (𝜏, 𝑦

0 (𝜏))
󵄨󵄨󵄨󵄨) (𝑡)

≤
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨 ℎ𝛼−1
(𝑡, 𝑡

0
) + (𝐼

𝛼

Δ,𝑡
0

𝐴
󵄨󵄨󵄨󵄨𝑧0 (𝜏) − 𝑦

0 (𝜏)
󵄨󵄨󵄨󵄨) (𝑡)

=
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨 ℎ𝛼−1
(𝑡, 𝑡

0
) +

󵄨󵄨󵄨󵄨𝜂 − 𝜂
󵄨󵄨󵄨󵄨 𝐴 (𝐼

𝛼

Δ,𝑡
0

ℎ
𝛼−1

(𝜏, 𝑡
0
)) (𝑡)

=
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨 ℎ𝛼−1
(𝑡, 𝑡

0
) +

󵄨󵄨󵄨󵄨𝜂 − 𝜂
󵄨󵄨󵄨󵄨 𝐴ℎ

2𝛼−1
(𝑡, 𝑡

0
)

=
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨 [ℎ𝛼−1
(𝑡, 𝑡

0
) + 𝐴ℎ

2𝛼−1
(𝑡, 𝑡

0
)] .

(135)

Suppose that

󵄨󵄨󵄨󵄨𝑧𝑚−1 (𝑡) − 𝑦
𝑚−1 (𝑡)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨

𝑚−1

∑

𝑗=0

𝐴
𝑗
ℎ
𝑗𝛼+𝛼−1

(𝑡, 𝑡
0
) .

(136)

Then

󵄨󵄨󵄨󵄨𝑧𝑚 (𝑡) − 𝑦
𝑚 (𝑡)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨 ℎ𝛼−1
(𝑡, 𝑡

0
)

+ (𝐼
𝛼

Δ,𝑡
0

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑧
𝑚−1 (𝜏)) − 𝑓 (𝜏, 𝑦

𝑚−1 (𝜏))
󵄨󵄨󵄨󵄨) (𝑡)

≤
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨 ℎ𝛼−1
(𝑡, 𝑡

0
)

+ (𝐼
𝛼

Δ,𝑡
0

𝐴
󵄨󵄨󵄨󵄨𝑧𝑚−1 (𝜏) − 𝑦

𝑚−1 (𝜏)
󵄨󵄨󵄨󵄨) (𝑡)

≤
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨 ℎ𝛼−1
(𝑡, 𝑡

0
)

+ (𝐼
𝛼

Δ,𝑡
0

𝐴
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨

𝑚−1

∑

𝑗=0

𝐴
𝑗
ℎ
𝑗𝛼+𝛼−1

(𝜏, 𝑡
0
)) (𝑡)

=
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨 ℎ𝛼−1
(𝑡, 𝑡

0
)

+ 𝐴
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨

𝑚−1

∑

𝑗=0

𝐴
𝑗
(𝐼

𝛼

Δ,𝑡
0

ℎ
𝑗𝛼+𝛼−1

(𝜏, 𝑡
0
)) (𝑡)

=
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨 ℎ𝛼−1
(𝑡, 𝑡

0
)

+
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨

𝑚−1

∑

𝑗=0

𝐴
𝑗+1

ℎ
(𝑗+1)𝛼+𝛼−1

(𝑡, 𝑡
0
)

=
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨

𝑚

∑

𝑗=0

𝐴
𝑗
ℎ
𝑗𝛼+𝛼−1

(𝑡, 𝑡
0
) .

(137)

According to mathematical induction, we have

󵄨󵄨󵄨󵄨𝑧𝑚 (𝑡) − 𝑦
𝑚 (𝑡)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨

𝑚

∑

𝑗=0

𝐴
𝑗
ℎ
𝑗𝛼+𝛼−1

(𝑡, 𝑡
0
) . (138)

Taking the limit𝑚 → ∞, we obtain that

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝜂 − 𝜂
󵄨󵄨󵄨󵄨

∞

∑

𝑗=0

𝐴
𝑗
ℎ
𝑗𝛼+𝛼−1

(𝑡, 𝑡
0
)

≤
󵄨󵄨󵄨󵄨𝜂 − 𝜂

󵄨󵄨󵄨󵄨 Δ
𝐹
𝛼,𝛼

(𝐴, 𝑏, 𝑡
0
) .

(139)

As a special case, when fractional equation is linear, we
can obtain its explicit solutions and we will explain it in next
section.
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7. Homogeneous Equations with
Constant Coefficients

In this section, we apply the Laplace transform method to
derive explicit solutions to homogeneous equations of the
form

𝑚

∑

𝑘=1

𝐴
𝑘
[𝐷

𝛼
𝑘

Δ,𝑡
0

𝑦 (𝑡)] + 𝐴
0
𝑦 (𝑡) = 0

(𝑡 > 𝑡
0
; 𝑚 ∈ N; 0 < 𝛼

1
< ⋅ ⋅ ⋅ < 𝛼

𝑚
)

(140)

with the Liouville fractional derivatives 𝐷𝛼
𝑘

Δ,𝑡
0

𝑦 (𝑘 = 1, . . . ,

𝑚). Here 𝐴
𝑘

∈ R (𝑘 = 0, . . . , 𝑚) are real constants, and,
generally speaking, we can take 𝐴

𝑚
= 1.

In order to solve the equation, we need the following
Laplace transform formula:

L {𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡)} (𝑧, 𝑡0) = 𝑧
𝛼
L {𝑦 (𝑡)} (𝑧, 𝑡0)

−

𝑙

∑

𝑗=1

𝑑
𝑗
𝑧
𝑗−1

(𝑙 − 1 < 𝛼 ≤ 𝑙 ∈ N) ,
(141)

𝑑
𝑗
= 𝐷

𝛼−𝑗

Δ,𝑡
0

𝑦 (𝑡
0
) (𝑗 = 1, . . . , 𝑙) . (142)

First, we derive explicit solutions to (140) with𝑚 = 1:

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 0 (𝑡 > 𝑡
0
; 𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N; 𝜆 ∈ R) .

(143)

In order to prove our result, we need the following definition
and lemma.

Definition 57. The function𝑊
𝛼
(𝑡) is defined by

𝑊
𝛼 (𝑡) = det ((𝐷𝛼−𝑘

Δ,𝑡
0

𝑦
𝑗
) (𝑡))

𝑛

𝑘,𝑗=1
(𝑛 = [𝛼] + 1, 𝑎 ≤ 𝑡 ≤ 𝑏) .

(144)

Lemma 58. The solutions 𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡) are linearly

independent if and only if 𝑊
𝛼
(𝑡

∗
) ̸= 0 at some point 𝑡∗ ∈ [𝑎, 𝑏].

Proof. Wefirst prove sufficiency. If, to the contrary, 𝑦
𝑗
(𝑡) (𝑗 =

1, 2, . . . , 𝑛) are linearly dependent on Ω, then there exist 𝑛
constants {𝑐

𝑗
}
𝑛

𝑗=1
, not all zero, such that

((𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦
𝑗
) (𝑡))

𝑛

𝑘,𝑗=1
(

𝑐
1

𝑐
2

...
𝑐
𝑛

) ≡ 0 (145)

holds, and thus 𝑊
𝛼
(𝑡) ≡ 0 which leads to a contradiction.

Therefore, if 𝑊
𝛼
(𝑡

∗
) ̸= 0 at some point 𝑡

∗
∈ Ω, then

𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡) are linearly independent. Nowwe prove

the necessity. Suppose, to the contrary, for 𝑡 ∈ Ω, 𝑊
𝛼
(𝑡) = 0.

Consider

((𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦
𝑗
) (𝑡

∗
))

𝑛

𝑘,𝑗=1
𝐶 = 0, (146)

where 𝑡∗ ∈ Ω, 𝐶 = (

𝑐
1

𝑐
2

...
𝑐
𝑛

). As𝑊
𝛼
(𝑡

∗
) = 0, the equations have

nontrivial solution 𝑐
𝑗
(𝑗 = 1, 2, . . . , 𝑛). Now we construct a

function using these constants:

𝑦 (𝑡) =

𝑛

∑

𝑗=1

𝑐
𝑗
𝑦
𝑗 (𝑡) , (147)

and we get that 𝑦(𝑡) is a solution. From (146), we obtain that
𝑦(𝑡) satisfies initial value condition

(𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦 (𝑡
∗
)) = 0, 𝑘 = 1, . . . , 𝑛. (148)

However, 𝑦(𝑡) = 0 is also a solution to equation satisfying the
initial value condition. By the uniqueness of solution, we have

𝑛

∑

𝑗=1

𝑐
𝑗
𝑦
𝑗 (𝑡) = 0, (149)

and, thus 𝑦
𝑗
(𝑡) (𝑗 = 1, 2, . . . , 𝑛) are linearly dependant,

which leads to a contradiction. Thus, if the solutions 𝑦
1
(𝑡),

𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡) are linearly independent, then 𝑊

𝛼
(𝑡

∗
) ̸= 0 at

some point 𝑡∗ ∈ Ω.

There hold the following statements.

Theorem 59. Let 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N) and 𝜆 ∈ R. Then the
functions

𝑦
𝑗 (𝑡) = Δ

𝐹
𝛼,𝛼+1−𝑗

(𝜆, 𝑡, 𝑡
0
)(=

∞

∑

𝑘=0

𝜆
𝑘
ℎ̂
𝑘𝛼+𝛼−𝑗

(𝑡, 𝑡
0
))

(𝑗 = 1, . . . , 𝑙)

(150)

yield the fundamental system of solutions to (143). Moreover,
𝑦
𝑗
(𝑡), 𝑗 = 1, 2, . . . , 𝑙, satisfy

𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦
𝑗
(𝑡

0
) = 0 (𝑘, 𝑗 = 1, . . . , 𝑙; 𝑘 ̸= 𝑗) ,

𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦
𝑘
(𝑡

0
) = 1 (𝑘 = 1, . . . , 𝑙) .

(151)

Proof. Applying the Laplace transform to (143) and taking
(141) into account, we have

L {𝑦 (𝑡)} (𝑧, 𝑡0) =

𝑙

∑

𝑗=1

𝑑
𝑗

𝑧
𝑗−1

𝑧𝛼 − 𝜆
, (152)

where 𝑑
𝑗
(𝑗 = 1, . . . , 𝑙) are given by (142).

Formula (49) with 𝛽 = 𝛼 + 1 − 𝑗 yields

L {
Δ
𝐹
𝛼,𝛼+1−𝑗

(𝜆, 𝑡, 𝑡
0
)} (𝑧, 𝑡

0
) =

𝑧
𝑗−1

𝑧𝛼 − 𝜆
(|𝜆| < |𝑧|

𝛼
) .

(153)

Thus, from (152), we derive the following solution to (143):

𝑦 (𝑡) =

𝑙

∑

𝑗=1

𝑑
𝑗
𝑦
𝑗 (𝑡) , 𝑦

𝑗 (𝑡) = Δ
𝐹
𝛼,𝛼+1−𝑗

(𝜆, 𝑡, 𝑡
0
) . (154)
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It is easily verified that the functions 𝑦
𝑗
(𝑡) are solutions to

(143):

𝐷
𝛼

Δ,𝑡
0

[
Δ
𝐹
𝛼,𝛼+1−𝑗

(𝜆, 𝑡, 𝑡
0
)]

= 𝜆
Δ
𝐹
𝛼,𝛼+1−𝑗

(𝜆, 𝑡, 𝑡
0
) (𝑗 = 1, . . . , 𝑙) .

(155)

In fact,

𝐷
𝛼

Δ,𝑡
0

[
Δ
𝐹
𝛼,𝛼+1−𝑗

(𝜆, 𝑡, 𝑡
0
)] = 𝐷

𝛼

Δ,𝑡
0

[

∞

∑

𝑘=0

𝜆
𝑘
ℎ
𝑘𝛼+𝛼−𝑗

(𝑡, 𝑡
0
)]

=

∞

∑

𝑘=0

𝜆
𝑘
ℎ
𝑘𝛼−𝑗

(𝑡, 𝑡
0
)

=

∞

∑

𝑘=−1

𝜆
𝑘+1

ℎ
(𝑘+1)𝛼−𝑗

(𝑡, 𝑡
0
)

= 𝜆
0
ℎ
−𝑗
(𝑡, 𝑡

0
)

+

∞

∑

𝑘=0

𝜆
𝑘+1

ℎ
(𝑘+1)𝛼−𝑗

(𝑡, 𝑡
0
)

= 𝜆

∞

∑

𝑘=0

𝜆
𝑘
ℎ
𝑘𝛼+𝛼−𝑗

(𝑡, 𝑡
0
)

= 𝜆
Δ
𝐹
𝛼,𝛼+1−𝑗

(𝜆, 𝑡, 𝑡
0
) .

(156)

Moreover,

𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦
𝑗 (𝑡) = 𝐷

𝛼−𝑘

Δ,𝑡
0

[

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠𝛼+𝛼−𝑗

(𝑡, 𝑡
0
)]

=

∞

∑

𝑠=0

𝜆
𝑠
ℎ
𝑠𝛼+𝑘−𝑗

(𝑡, 𝑡
0
) .

(157)

It follows from (157) that

𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦
𝑗
(𝑡

0
) = 0 (𝑘, 𝑗 = 1, . . . , 𝑙; 𝑘 > 𝑗) ,

𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦
𝑘
(𝑡

0
) = 1 (𝑘 = 1, . . . , 𝑙) .

(158)

If 𝑘 < 𝑗, then

𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦
𝑗 (𝑡) =

∞

∑

𝑠=1

𝜆
𝑠
ℎ
𝑠𝛼+𝑘−𝑗

(𝑡, 𝑡
0
)

=

∞

∑

𝑠=0

𝜆
𝑠+1

ℎ
𝑠𝛼+𝛼+𝑘−𝑗

(𝑡, 𝑡
0
) ,

(159)

and since 𝛼 + 𝑘 − 𝑗 ≥ 𝛼 + 1 − 𝑙 > 0 for any 𝑘, 𝑗 = 1, . . . , 𝑙, the
following relations hold:

𝐷
𝛼−𝑘

Δ,𝑡
0

𝑦
𝑗
(𝑡

0
) = 0 (𝑘, 𝑗 = 1, . . . , 𝑙; 𝑘 < 𝑗) . (160)

By (158) and (160), 𝑊
𝛼
(𝑡

0
) = 1. Then 𝑦

𝑗
(𝑡), 𝑗 = 1, . . . , 𝑙,

yield the fundamental system of solutions to (143).

Corollary 60. Consider that

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 0 (𝑡 > 𝑡
0
; 0 < 𝛼 ≤ 1; 𝜆 ∈ R) (161)

has its solution given by

𝑦 (𝑡) =
Δ
𝐹
𝛼,𝛼

(𝜆, 𝑡, 𝑡
0
) , (162)

while

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 0 (𝑡 > 𝑡
0
; 1 < 𝛼 ≤ 2; 𝜆 ∈ R) (163)

has the fundamental system of solutions given by

𝑦
1 (𝑡) = Δ

𝐹
𝛼,𝛼

(𝜆, 𝑡, 𝑡
0
) , 𝑦

2 (𝑡) = Δ
𝐹
𝛼,𝛼−1

(𝜆, 𝑡, 𝑡
0
) .

(164)

Next we derive the explicit solutions to (140) with 𝑚 = 2

of the form

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) − 𝜆𝐷
𝛽

Δ,𝑡
0

𝑦 (𝑡) − 𝜇𝑦 (𝑡) = 0

(𝑡 > 𝑡
0
; 𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N; 0 < 𝛽 < 𝛼)

(165)

with 𝜆, 𝜇 ∈ R.

Theorem 61. Let 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N), 0 < 𝛽 < 𝛼, and
𝜆, 𝜇 ∈ R. Then the functions

𝑦
𝑗 (𝑡) =

∞

∑

𝑘=0

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘 Δ
𝐹
𝛼−𝛽,𝛼+𝑘𝛽+1−𝑗

(𝜆, 𝑡, 𝑡
0
) (166)

yield the fundamental system of solutions to (165) provided that
the series in (166) are convergent. Moreover, if 𝛼 + 1 − 𝑙 > 𝛽 >

𝑙 − 1, then 𝑦
𝑗
(𝑡), 𝑗 = 1, 2, . . . , 𝑙, in (166) satisfy (151).

Proof. Let 𝑚 − 1 < 𝛽 ≤ 𝑚 (𝑚 ≤ 𝑙;𝑚 ∈ N). Applying
the Laplace transform to (165) and using (141) as in (152), we
obtain

L {𝑦 (𝑡)} (𝑧, 𝑡0) =

𝑙

∑

𝑗=1

𝑑
𝑗

𝑧
𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
, (167)

where 𝑑
𝑗
= 𝐷

𝛼−𝑗

Δ,𝑡
0

𝑦(𝑡
0
) − 𝜆𝐷

𝛽−𝑗

Δ,𝑡
0

𝑦(𝑡
0
) (𝑗 = 1, . . . , 𝑚), 𝑑

𝑗
=

𝐷
𝛼−𝑗

Δ,𝑡
0

𝑦(𝑡
0
) (𝑗 = 𝑚 + 1, . . . , 𝑙).

For 𝑧 ∈ C and |𝜇𝑧
−𝛽
/(𝑧

𝛼−𝛽
− 𝜆)| < 1, we have

1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
=

𝑧
−𝛽

𝑧𝛼−𝛽 − 𝜆
⋅

1

1 − 𝜇𝑧−𝛽/ (𝑧𝛼−𝛽 − 𝜆)

=

∞

∑

𝑘=0

𝜇
𝑘
𝑧
−𝛽−𝑘𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑘+1

,

(168)

and hence (167) has the following representation:

L {𝑦 (𝑡)} (𝑧, 𝑡0) =

𝑙

∑

𝑗=1

𝑑
𝑗

∞

∑

𝑘=0

𝜇
𝑘 𝑧

𝑗−1−𝛽−𝑘𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑘+1

. (169)
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By (51), for 𝑧 ∈ C and |𝜆𝑧
𝛽−𝛼

| < 1, we have

𝑧
𝑗−1−𝛽−𝑘𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑘+1

=
𝑧
(𝛼−𝛽)−(𝛼+𝑘𝛽+1−𝑗)

(𝑧𝛼−𝛽 − 𝜆)
𝑘+1

=
1

𝑘!
L{

𝜕
𝑘

𝜕𝜆𝑘 Δ
𝐹
𝛼−𝛽,𝛼+𝑘𝛽+1−𝑗

(𝜆, 𝑡, 𝑡
0
)} (𝑧, 𝑡

0
) .

(170)

From (169) and (170), we derive the solution to (165) as

𝑦 (𝑡) =

𝑙

∑

𝑗=1

𝑑
𝑗
𝑦
𝑗 (𝑡) , (171)

where 𝑦
𝑗
(𝑡) (𝑗 = 1, . . . , 𝑙) are given by (166). For 𝑞, 𝑗 =

1, . . . , 𝑙, the direct evaluation yields

𝐷
𝛼−𝑞

Δ,𝑡
0

𝑦
𝑗 (𝑡)

= 𝐷
𝛼−𝑞

Δ,𝑡
0

∞

∑

𝑘=0

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘 Δ
𝐹
𝛼−𝛽,𝛼+𝑘𝛽+1−𝑗

(𝜆, 𝑡, 𝑡
0
)

=

∞

∑

𝑘=0

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘
𝐷

𝛼−𝑞

Δ,𝑡
0

[

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+𝛼+𝑘𝛽−𝑗

(𝑡, 𝑡
0
)]

=

∞

∑

𝑘=0

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+𝑘𝛽+𝑞−𝑗

(𝑡, 𝑡
0
) .

(172)

For 𝑞 > 𝑗, 𝐷𝛼−𝑞

Δ,𝑡
0

𝑦
𝑗
(𝑡

0
) = 0, and for 𝑞 = 𝑗, 𝐷𝛼−𝑞

Δ,𝑡
0

𝑦
𝑗
(𝑡

0
) =

1. Thus we have 𝑊
𝛼
(𝑡

0
) = 1. It follows from Lemma 58

that the functions 𝑦
𝑗
(𝑡), 𝑗 = 1, 2, . . . , 𝑙 in (166) are linearly

independent solutions, and then they yield the fundamental
system of solutions to (165). Furthermore, if 𝑞 < 𝑗, then we
rewrite (172) as follows:

𝐷
𝛼−𝑞

Δ,𝑡
0

𝑦
𝑗 (𝑡) = 𝐷

𝛼−𝑞

Δ,𝑡
0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑠=1

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+𝑞−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑘=1

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘
ℎ̂
𝑘𝛽+𝑞−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑘=1

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘

∞

∑

𝑠=1

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+𝑘𝛽+𝑞−𝑗

(𝑡, 𝑡
0
)

=

∞

∑

𝑠=1

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+𝑞−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑘=1

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘
ℎ̂
𝑘𝛽+𝑞−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑘=1

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘

∞

∑

𝑠=1

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+𝑘𝛽+𝑞−𝑗

(𝑡, 𝑡
0
) .

(173)

If 𝛼+1−𝑙 > 𝛽 > 𝑙−1, then 𝑠(𝛼−𝛽)+𝑞−𝑗 ≥ (𝛼−𝛽)+1−𝑙 > 0

for 𝑘 = 0, 𝑞, 𝑗 = 1, . . . , 𝑙, 𝑠 ∈ N+, and 𝑘𝛽+ 𝑞 − 𝑗 ≥ 𝛽+ 1 − 𝑙 > 0

for 𝑠 = 0, 𝑞, 𝑗 = 1, . . . , 𝑙, 𝑘 ∈ N+. Besides, we also have 𝑠(𝛼 −

𝛽) + 𝑘𝛽 + 𝑞 − 𝑗 ≥ (𝛼 − 𝛽) + 𝛽 + 1 − 𝑙 = 𝛼 + 1 − 𝑙 > 0 for
𝑞, 𝑗 = 1, . . . , 𝑙, 𝑠, 𝑘 ∈ N+. These imply that 𝐷𝛼−𝑞

Δ,𝑡
0

𝑦
𝑗
(𝑡

0
) = 0.

Thus the relations in (151) are valid.The proof is finished.

Corollary 62. Consider that

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) − 𝜆𝐷
𝛽

Δ,𝑡
0

𝑦 (𝑡) = 0

(𝑡 > 𝑡
0
; 𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N; 0 < 𝛽 < 𝛼)

(174)

has its fundamental system of solution given by

𝑦
𝑗 (𝑡) = Δ

𝐹
𝛼−𝛽,𝛼+1−𝑗

(𝜆, 𝑡, 𝑡
0
) (𝑗 = 1, . . . , 𝑙) . (175)

Finally, we find the explicit solutions to (140)with any𝑚 ∈

N \ {1, 2}. It is convenient to rewrite (140) in the form

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) − 𝜆𝐷
𝛽

Δ,𝑡
0

𝑦 (𝑡) −

𝑚−2

∑

𝑘=0

𝐴
𝑘
𝐷

𝛼
𝑘

Δ,𝑡
0

𝑦 (𝑡) = 0

(𝑡 > 𝑡
0
; 𝑚 ∈ N \ {1, 2} ; 0 = 𝛼

0
< 𝛼

1

< ⋅ ⋅ ⋅ < 𝛼
𝑚−2

< 𝛽 < 𝛼; 𝜆, 𝐴
0
, . . . , 𝐴

𝑚−2
∈ R) .

(176)

Theorem63. Let𝑚 ∈ N\{1, 2}, 𝑙−1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N), let 𝛽 and
𝛼
1
, . . . , 𝛼

𝑚−2
be such that 𝛼 > 𝛽 > 𝛼

𝑚−2
> ⋅ ⋅ ⋅ > 𝛼

1
> 𝛼

0
= 0,

and let 𝜆, 𝐴
0
, . . . , 𝐴

𝑚−2
∈ R. Then the functions

𝑦
𝑗 (𝑡) =

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

𝜕
𝑛

𝜕𝜆𝑛 Δ
𝐹
𝛼−𝛽,𝛼+1−𝑗+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆, 𝑡, 𝑡

0
)

(177)

yield the fundamental system of solutions to (176) provided that
the series in (177) are convergent. The inner sum is taken over
all 𝑘

0
, . . . , 𝑘

𝑚−2
∈ N

0
such that 𝑘

0
+ ⋅ ⋅ ⋅ + 𝑘

𝑚−2
= 𝑛. Moreover,

if 𝛼 + 1 − 𝑙 > 𝛽 > 𝛼
𝑚−2

+ 𝑙 − 1, then 𝑦
𝑗
(𝑡), 𝑗 = 1, 2, . . . , 𝑙, in

(177) satisfy (151).

Proof. Let 𝑙
𝑚−1

−1 < 𝛽 ≤ 𝑙
𝑚−1

, 𝑙
𝑘
−1 < 𝛼

𝑘
< 𝑙

𝑘
(𝑘 = 1, . . . , 𝑚−

2; 0 ≤ 𝑙
1
≤ ⋅ ⋅ ⋅ ≤ 𝑙

𝑚−1
≤ 𝑙). Applying the Laplace transform to

(176) and using (141) as in (167), we obtain

L {𝑦 (𝑡)} (𝑧, 𝑡0) =

𝑙

∑

𝑗=1

𝑑
𝑗

𝑧
𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2

𝑘=0
𝐴

𝑘
𝑧𝛼
𝑘

, (178)
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where
𝑑
𝑗
= 𝐷

𝛼−𝑗

Δ,𝑡
0

𝑦 (𝑡
0
) − 𝜆𝐷

𝛽−𝑗

Δ,𝑡
0

𝑦 (𝑡
0
)

−

𝑚−2

∑

𝑘=1

𝐴
𝑘
𝐷

𝛼
𝑘
−𝑗

Δ,𝑡
0

𝑦 (𝑡
0
) (𝑗 = 1, . . . , 𝑙

1
) ,

𝑑
𝑗
= 𝐷

𝛼−𝑗

Δ,𝑡
0

𝑦 (𝑡
0
) − 𝜆𝐷

𝛽−𝑗

Δ,𝑡
0

𝑦 (𝑡
0
)

−

𝑚−2

∑

𝑘=2

𝐴
𝑘
𝐷

𝛼
𝑘
−𝑗

Δ,𝑡
0

𝑦 (𝑡
0
) (𝑗 = 𝑙

1
+ 1 . . . , 𝑙

2
) ,

...

𝑑
𝑗
= 𝐷

𝛼−𝑗

Δ,𝑡
0

𝑦 (𝑡
0
) − 𝜆𝐷

𝛽−𝑗

Δ,𝑡
0

𝑦 (𝑡
0
) (𝑗 = 𝑙

𝑚−2
+ 1, . . . , 𝑙

𝑚−1
) ,

𝑑
𝑗
= 𝐷

𝛼−𝑗

Δ,𝑡
0

𝑦 (𝑡
0
) (𝑗 = 𝑙

𝑚−1
+ 1, . . . , 𝑙) .

(179)

Here ∑
𝑛

𝑘=𝑚
𝐴

𝑘
:= 0 (𝑚 > 𝑛). For 𝑧 ∈ C and

| ∑
𝑚−2

𝑘=0
𝐴

𝑘
𝑧
𝛼
𝑘
−𝛽
/(𝑧

𝛼−𝛽
− 𝜆)| < 1, we have

1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2

𝑘=0
𝐴

𝑘
𝑧𝛼
𝑘

=
𝑧
−𝛽

𝑧𝛼−𝛽 − 𝜆
⋅

1

(1 − ∑
𝑚−2

𝑘=0
𝐴

𝑘
𝑧𝛼
𝑘
−𝛽/ (𝑧𝛼−𝛽 − 𝜆))

=

∞

∑

𝑛=0

𝑧
−𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

(

𝑚−2

∑

𝑘=0

𝐴
𝑘
𝑧
𝛼
𝑘
−𝛽
)

𝑛

=

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
𝑛!

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]
𝑧
−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

,

(180)

if we also take into account the following relation:

(𝑥
0
+ ⋅ ⋅ ⋅ + 𝑥

𝑚−2
)
𝑛

= ( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
𝑛!

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

𝑚−2

∏

]=0

𝑥
𝑘]

𝜐
,

(181)

where the summation is taken over all 𝑘
0
, . . . , 𝑘

𝑚−2
∈ N

0
such

that 𝑘
0
+ ⋅ ⋅ ⋅ + 𝑘

𝑚−2
= 𝑛.

In addition, for 𝑧 ∈ C and |𝜆𝑧
𝛽−𝛼

| < 1, we have

𝑧
𝑗−1−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
𝑧
(𝛼−𝛽)−(𝛼+1−𝑗+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘])

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L

Δ,𝑡
0

{
𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹
𝛼−𝛽,𝛼+1−𝑗+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡

0
)} (𝑧) .

(182)

From (178), (180), and (182), we derive the solution to (176),
as

𝑦 (𝑡) =

𝑙

∑

𝑗=1

𝑑
𝑗
𝑦
𝑗 (𝑡) , (183)

which shows that arbitrary solution 𝑦(𝑡) can be expressed by
𝑦
𝑗
(𝑡), 𝑗 = 1, . . . , 𝑙, where 𝑦

𝑗
(𝑡) (𝑗 = 1, . . . , 𝑙) are given by (177).

For 𝑞, 𝑗 = 1, . . . , 𝑙, the direct evaluation yields

𝐷
𝛼−𝑞

Δ,𝑡
0

𝑦
𝑗 (𝑡)

= 𝐷
𝛼−𝑞

Δ,𝑡
0

{

{

{

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!
[

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

×
𝜕
𝑛

𝜕𝜆𝑛 Δ
𝐹
𝛼−𝛽,𝛼+1−𝑗+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡

0
)
}

}

}

=

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!
[

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

×
𝜕
𝑛

𝜕𝜆𝑛
𝐷

𝛼−𝑞

Δ,𝑡
0

[

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+𝛼−𝑗+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝑡, 𝑡

0
)]

=

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!
[

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

×
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑞−𝑗
(𝑡, 𝑡

0
) .

(184)

For 𝑞 > 𝑗, 𝐷𝛼−𝑞

Δ,𝑡
0

𝑦
𝑗
(𝑡

0
) = 0, and for 𝑞 = 𝑗, 𝐷𝛼−𝑞

Δ,𝑡
0

𝑦
𝑗
(𝑡

0
) =

1. Thus we have 𝑊
𝛼
(𝑡

0
) = 1. It follows from Lemma 58

that the functions 𝑦
𝑗
(𝑡), 𝑗 = 1, 2, . . . , 𝑙 in (177) are linearly

independent solutions and then they yield the fundamental
system of solutions to (176). Furthermore, if 𝑞 < 𝑗, then we
rewrite (184) as follows:

𝐷
𝛼−𝑞

Δ,𝑡
0

𝑦
𝑗 (𝑡)

= 𝐷
𝛼−𝑞

Δ,𝑡
0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑠=1

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑞−𝑗
(𝑡, 𝑡

0
)

+

∞

∑

𝑛=1

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

𝜕
𝑛

𝜕𝜆𝑛
ℎ̂
∑
𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑞−𝑗
(𝑡, 𝑡

0
)

+

∞

∑

𝑛=1

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!
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× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=1

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑞−𝑗
(𝑡, 𝑡

0
)

=

∞

∑

𝑠=1

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+𝑞−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑛=1

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

𝜕
𝑛

𝜕𝜆𝑛
ℎ̂
∑
𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑞−𝑗
(𝑡, 𝑡

0
)

+

∞

∑

𝑛=1

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=1

𝜆
𝑠
ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑞−𝑗
(𝑡, 𝑡

0
) .

(185)

If 𝛼 + 1 − 𝑙 > 𝛽 > 𝛼
𝑚−2

+ 𝑙 − 1, then 𝑠(𝛼 − 𝛽) + 𝑞 − 𝑗 ≥

(𝛼 − 𝛽) + 1 − 𝑙 > 0 for 𝑛 = 0, 𝑞, 𝑗 = 1, . . . , 𝑙, 𝑠 ∈ N+, and
∑

𝑚−2

]=0 (𝛽 − 𝛼])𝑘] + 𝑞 − 𝑗 ≥ 𝛽 − 𝛼
𝑖
+ 1 − 𝑙 ≥ 𝛽 − 𝛼

𝑚−2
+ 1 − 𝑙 >

0 for 𝑠 = 0, 𝑞, 𝑗 = 1, . . . , 𝑙, 𝑛 ∈ N+. Besides, we also have
𝑠(𝛼−𝛽) +∑

𝑚−2

]=0 (𝛽−𝛼])𝑘] +𝑞− 𝑗 ≥ (𝛼−𝛽) +𝛽 −𝛼
𝑖
+1 − 𝑙 ≥

(𝛼 − 𝛽) + 𝛽 − 𝛼
𝑚−2

+ 1 − 𝑙 > 0 for 𝑞, 𝑗 = 1, . . . , 𝑙, 𝑠, 𝑛 ∈ N+.
These imply that 𝐷𝛼−𝑞

Δ,𝑡
0

𝑦
𝑗
(𝑡

0
) = 0. Thus the relations in (151)

are valid. The result follows.

8. Nonhomogeneous Equations with
Constant Coefficients

In Section 7, we have applied the Laplace transform method
to derive explicit solutions to the homogeneous equations
(140) with the Liouville fractional derivatives. Here we use
this approach to find particular solutions to the correspond-
ing nonhomogeneous equations

𝑚

∑

𝑘=1

𝐴
𝑘
𝐷

𝛼
𝑘

Δ,𝑡
0

𝑦 (𝑡) + 𝐴
0
𝑦 (𝑡)

= 𝑓 (𝑡) (𝑡 > 𝑡
0
; 0 < 𝛼

1
< ⋅ ⋅ ⋅ < 𝛼

𝑚
; 𝑚 ∈ N)

(186)

with real 𝐴
𝑘
∈ R (𝑘 = 0, . . . , 𝑚).

By (141)-(142), for suitable functions 𝑦, the Laplace
transform of𝐷𝛼

Δ,𝑡
0

𝑦 is given by

L {𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡)} (𝑧, 𝑡0) = 𝑧
𝛼
L {𝑦 (𝑡)} (𝑧, 𝑡0) . (187)

Applying the Laplace transform to (186) and taking (187) into
account, we have

[𝐴
0
+

𝑚

∑

𝑘=1

𝐴
𝑘
𝑧
𝛼
𝑘]L {𝑦 (𝑡)} (𝑧, 𝑡0) = L {𝑓 (𝑡)} (𝑧, 𝑡0) .

(188)

Using the inverse Laplace transform L−1

Δ
from here, we

obtain a particular solution to (186) in the form

𝑦 (𝑡) = L
−1

[
L {𝑓 (𝑡)} (𝑧, 𝑡0)

𝐴
0
+ ∑

𝑚

𝑘=1
𝐴

𝑘
𝑧𝛼
𝑘

] (𝑡) . (189)

Using the Laplace convolution formula

L {𝑓 ∗ 𝑔} (𝑧, 𝑡
0
) = L {𝑓} (𝑧, 𝑡

0
)L {𝑔} (𝑧, 𝑡

0
) , (190)

we can introduce the Laplace fractional analog of the Green
function as follows:

𝐺
𝛼
1
,...,𝛼
𝑚

(𝑡) = L
−1

{
1

𝑃
𝛼
1
,...,𝛼
𝑚

(𝑧)
} (𝑡) ,

𝑃
𝛼
1
,...,𝛼
𝑚

(𝑧) = 𝐴
0
+

𝑚

∑

𝑘=1

𝐴
𝑘
𝑧
𝛼
𝑘 ,

(191)

and we can express a particular solution of (152) in the form
of the Laplace convolution 𝐺

𝛼
1
,...,𝛼
𝑚

(𝑡) and ℎ
𝑟
(𝑡, 𝑡

0
):

𝑦 (𝑡) = (𝑓 ∗ 𝐺
𝛼
1
,...,𝛼
𝑚

) (𝑡) . (192)

Generally speaking, we can consider (186) with𝐴
𝑚
= 1. First

we derive a particular solution to (186) with𝑚 = 1 in the form

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 𝑓 (𝑡) (𝑡 > 𝑡
0
; 𝛼 > 0) . (193)

Theorem 64. Let 𝛼 > 0, 𝜆 ∈ R. Then (193) is solvable, and its
particular solution has the form

𝑦 (𝑡) = (𝑓 ∗
Δ
𝐹
𝛼,𝛼

(𝜆, 𝑠, 𝑡
0
)) (𝑡) (194)

provided that the integral in the right-hand side of (194) is
convergent.

Proof. Equation (193) is the same as (186) with𝑚 = 1, 𝛼
1
= 𝛼,

and 𝐴
1
= 1, 𝐴

0
= −𝜆 and (191) takes the form

𝐺
𝛼 (𝑡) = L

−1
{

1

𝑧𝛼 − 𝜆
} (𝑡) =

Δ
𝐹
𝛼,𝛼

(𝜆, 𝑡, 𝑡
0
) . (195)

Thus (192), with 𝐺
𝛼
1
,...,𝛼
𝑚

(𝑡) = 𝐺
𝛼
(𝑡), yields (194). Theorem is

proved.

Next we derive a particular solution to (186) with 𝑚 = 2

of the form

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) − 𝜆𝐷
𝛽

Δ,𝑡
0

𝑦 (𝑡) − 𝜇𝑦 (𝑡) = 𝑓 (𝑡) ,

(𝑡 > 𝑡
0
; 𝛼 > 𝛽 > 0) .

(196)

Theorem 65. Let 𝛼 > 𝛽 > 0, 𝜆, 𝜇 ∈ R. Then (196) is solvable,
and its particular solution has the form

𝑦 (𝑡) = (𝑓 ∗ 𝐺
𝛼,𝛽;𝜆,𝜇 (𝑠)) (𝑡) , (197)

𝐺
𝛼,𝛽;𝜆,𝜇 (𝑡) =

∞

∑

𝑘=0

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘 Δ
𝐹
𝛼−𝛽,𝛼+𝑘𝛽

(𝜆, 𝑡, 𝑡
0
) (198)

provided that the series in (198) and the integral in (197) are
convergent.
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Proof. Equation (196) is the same as (186) with𝑚 = 2, 𝛼
2
= 𝛼,

𝛼
1
= 𝛽,𝐴

2
= 1,𝐴

1
= −𝜆, and 𝐴

0
= −𝜇, and (191) is given by

𝐺
𝛼,𝛽 (𝑡) = L

−1
{

1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
} (𝑡) . (199)

According to (168) for 𝑧 ∈ C and |𝜇𝑧
−𝛽
/(𝑧

𝛼−𝛽
− 𝜆)| < 1, we

have

𝐺
𝛼,𝛽;𝜆,𝜇 (𝑡) = L

−1
{

∞

∑

𝑛=0

𝜇
𝑛 𝑧

−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

} (𝑡) . (200)

In addition, for 𝑧 ∈ C and |𝜆𝑧
𝛽−𝛼

| < 1, we have

𝑧
−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L{

𝜕
𝑛

𝜕𝜆𝑛 Δ
𝐹
𝛼−𝛽,𝛼+𝑛𝛽

(𝜆, 𝑡, 𝑡
0
)} (𝑧, 𝑡

0
) ,

(201)

and hence (200) takes the following form:

𝐺
𝛼,𝛽;𝜆,𝜇 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛 Δ
𝐹
𝛼−𝛽,𝛼+𝑛𝛽

(𝜆, 𝑡, 𝑡
0
) . (202)

Thus the result in (197) follows from (192) with 𝐺
𝛼
1
,...,𝛼
𝑚

(𝑡) =

𝐺
𝛼,𝛽;𝜆,𝜇

(𝑡).

Finally, we find a particular solution to (186) with any𝑚 ∈

N \ {1, 2}. It is convenient to rewrite (186) just as (176) in the
form

𝐷
𝛼

Δ,𝑡
0

𝑦 (𝑡) − 𝜆𝐷
𝛽

Δ,𝑡
0

𝑦 (𝑡) −

𝑚−2

∑

𝑘=1

𝐴
𝑘
𝐷

𝛼
𝑘

Δ,𝑡
0

𝑦 (𝑡) − 𝐴
0
𝑦 (𝑡)

= ℎ̂
𝑟
(𝑡, 𝑡

0
) (𝑡 > 𝑡

0
)

(203)

with 𝑚 ∈ N \ {1, 2}, 0 < 𝛼
1
< ⋅ ⋅ ⋅ < 𝛼

𝑚−2
< 𝛽 < 𝛼, and

𝜆, 𝐴
0
, . . . , 𝐴

𝑚−2
∈ R.

Theorem 66. Let 𝑚 ∈ N \ {1, 2}, 0 = 𝛼
0
< 𝛼

1
< ⋅ ⋅ ⋅ < 𝛼

𝑚−2
<

𝛽 < 𝛼, and let 𝜆, 𝐴
0
, . . . , 𝐴

𝑚−2
∈ R. Then (203) is solvable,

and its particular solution has the form

𝑦 (𝑡) = (𝑓 ∗ 𝐺
𝛼
1
,...,𝛼
𝑚−2

,𝛽,𝛼;𝜆 (𝑠)) (𝑡) , (204)

𝐺
𝛼
1
,...,𝛼
𝑚−2

,𝛽,𝛼;𝜆 (𝑡)

=

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

𝜐=0

(𝐴
𝜐
)
𝑘
𝜐

]
𝜕
𝑛

𝜕𝜆𝑛 Δ
𝐹
𝛼−𝛽,𝛼+∑

𝑚−2

𝜐=0
(𝛽−𝛼
𝜐
)𝑘
𝜐

(𝜆, 𝑡, 𝑡
0
)

(205)

provided that the series (205) and integral in (204) are
convergent. The inner sum is taken over all 𝑘

0
, . . . , 𝑘

𝑚−2
such

that 𝑘
0
+ ⋅ ⋅ ⋅ + 𝑘

𝑚−2
= 𝑛.

Proof. Equation (203) is the same equation as (186) with 𝛼
𝑚
=

𝛼, 𝛼
𝑚−1

= 𝛽, 𝐴
𝑚
= 1, . . . , 𝐴

𝑚−1
= −𝜆, and with −𝐴

𝑘
instead

of 𝐴
𝑘
for 𝑘 = 0, . . . , 𝑚 − 2. Since 𝛼

0
= 0, (191) takes the form

𝐺
𝛼
1
,...,𝛼
𝑚−2

,𝛽,𝛼;𝜆 (𝑡) = L
−1

{
1

𝑧𝛼 − 𝜆𝛼𝛽 − ∑
𝑚−2

𝑘=0
𝐴

𝑘
𝑧𝛼
𝑘

} (𝑡) .

(206)

For 𝑧 ∈ C and | ∑
𝑚−2

𝑘=0
𝐴

𝑘
𝑧
𝛼
𝑘
−𝛽
/(𝑧

𝛼−𝛽
− 𝜆)| < 1, in accordance

with (180), we have

𝐺
𝛼
1
,...,𝛼
𝑚−2

,𝛽,𝛼;𝜆 (𝑡)

= L
−1

{

{

{

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑛

)
𝑛!

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

𝜐=0

(𝐴
𝜐
)
𝑘
𝜐

]
𝑧
−𝛽−∑

𝑚−2

𝜐=0
(𝛽−𝛼
𝜐
)𝑘
𝜐

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

}

}

}

(𝑡) .

(207)

For 𝑧 ∈ C and |𝜆𝑧
𝛽−𝛼

| < 1, we have

𝑧
−𝛽−∑

𝑚−2

𝜐=0
(𝛽−𝛼
𝜐
)𝑘
𝜐

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L{

𝜕
𝑛

𝜕𝜆𝑛 Δ
𝐹
𝛼−𝛽,𝛼+∑

𝑚−2

𝜐=0
(𝛽−𝛼
𝜐
)𝑘
𝜐

(𝜆, 𝑡, 𝑡
0
)} (𝑧, 𝑡

0
) .

(208)

The proof is finished.

As in the case of ordinary differential equations, a general
solution to the nonhomogeneous equation (186) is a sum
of a particular solution to this equation and of the general
solution to the corresponding homogeneous equation (140).
Therefore, the results established in Section 7 and in Section 8
can be used to derive general solutions to the nonhomo-
geneous equations (193), (196), and (203). The following
statements can thus be derived fromTheorems 59, 64, 61, 65
andTheorems 63 and 66, respectively.

Theorem 67. Let 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N), 𝜆 ∈ R. Then (193) is
solvable, and its general solution is given by

𝑦 (𝑡) =

𝑙

∑

𝑗=1

𝑐
𝑗Δ
𝐹
𝛼,𝛼+1−𝑗

(𝜆, 𝑡, 𝑡
0
) + 𝑓 (𝑡) , (209)

where 𝑐
𝑗
(𝑗 = 1, . . . , 𝑙) are arbitrary real constants.

Theorem 68. Let 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N), 0 < 𝛽 < 𝛼, 𝜆, 𝜇 ∈ R.
Then (196) is solvable, and its general solution has the form

𝑦 (𝑡) =

𝑙

∑

𝑗=1

𝑐
𝑗

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛 Δ
𝐹
𝛼−𝛽,𝛼+𝑛𝛽+1−𝑗

(𝜆, 𝑡, 𝑡
0
)

+ (𝑓 ∗ 𝐺
𝛼,𝛽,𝜆,𝜇 (𝑠)) (𝑡) ,

(210)

where 𝐺
𝛼,𝛽,𝜆,𝜇

(𝑡) is given by (198) and 𝑐
𝑗
(𝑗 = 1, . . . , 𝑙) are

arbitrary real constants.
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Theorem 69. Let 𝑚 ∈ N \ {1, 2}, 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N), let 𝛽
and 𝛼

1
, 𝛼

2
, . . . , 𝛼

𝑚−2
be such that 𝛼 > 𝛽 > 𝛼

𝑚−2
> ⋅ ⋅ ⋅ > 𝛼

1
>

𝛼
0
= 0 and 𝛼 − 𝑙 + 1 ≥ 𝛽, and let 𝜆, 𝐴

0
, . . . , 𝐴

𝑚−2
∈ R. Then

(203) is solvable, and its general solution is given by

𝑦 (𝑡) =

𝑙

∑

𝑗=1

𝑐
𝑗

∞

∑

𝑛=0

( ∑

𝑘
0
+⋅⋅⋅+𝑘

𝑚−2
=𝑟

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

𝜐=0

(𝐴
𝜐
)
𝑘
𝜐

]

⋅
𝜕
𝑛

𝜕𝜆𝑛 Δ
𝐹
𝛼−𝛽,𝛼+1−𝑗+∑

𝑚−2

𝜐=0
(𝛽−𝛼
𝜐
)𝑘
𝜐

(𝜆, 𝑡, 𝑡
0
)

+ (𝑓 ∗ 𝐺
𝛼
1
,...,𝛼
𝑚−2,

𝛽,𝛼;𝜆 (𝑠)) (𝑡) ,

(211)

where 𝐺
𝛼
1
,...,𝛼
𝑚−2,

𝛽,𝛼;𝜆
(𝑡) is given by (205) and 𝑐

𝑗
(𝑗 = 1, . . . , 𝑙)

are arbitrary real constant.

9. Conclusions

In this paper, we first give a generalized definition of frac-
tional Δ-power function on general time scale by inversion
of Laplace transform and shift transform. The fractional Δ-
power function on a time scale is an important basis of
fractional Δ-integral and fractional Δ-differential on time
scales. Then, based on the fractional Δ-power function,
we give a new definition of Riemann-Liouville fractional
Δ-integral and Riemann-Liouville fractional Δ-derivative
on time scales. Some of properties of Riemann-Liouville
fractional Δ-integral and Riemann-Liouville fractional Δ-
derivative on time scales are studied in detail. On this
basis, equivalencies of Cauchy type problem with Riemann-
Liouville fractional Δ-derivative and nonlinear Volterra inte-
gral equation are obtained. By employing Laplace transform,
we derive explicit solutions to homogeneous and nonho-
mogeneous equations of Riemann-Liouville fractional Δ-
derivative with constant coefficient. We give the conditions
when the solutions of linear fractional differential equation
will be linearly independent and when these linearly inde-
pendent solutions form the fundamental system of solutions.
On the other hand, we know that continuous fractional
differential equation theory and discrete fractional difference
equation theory have been studied by many authors, the
existence and uniqueness of the solution to the boundary
value problems for fractional differential equations have
been studied a lot by many methods involving partial order
method, fixed point method, lower and upper solutions
method, transform method, and so on. For example, for the
recent developments about continuous fractional differential
equations and discrete fractional difference equations, one
can refer to [3, 5–11] and the references therein. However, the
fractional differential equation theory on time scales is still an
open problem.Therefore, the authors believe that the present
workwill potentiate further research in the study of fractional
differential equation theory on time scales in the future.
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