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This paper is mainly concerned with the existence, stability, and bifurcations of periodic solutions of a certain scalar impulsive
differential equations on Moebius stripe. Some sufficient conditions are obtained to ensure the existence and stability of one-
side periodic orbit and two-side periodic orbit of impulsive differential equations on Moebius stripe by employing displacement
functions. Furthermore, double-periodic bifurcation is also studied by using Poincaré map.

1. Introduction

Many systems in physics, chemistry, biology, and information
science have impulsive dynamical behavior due to abrupt
jumps at certain instants during the evolving processes. This
complex dynamical behavior can be modeled by impulsive
differential equations. The theory of impulsive differential
systems has been developed by numerous mathematicians
(see [1–9]). As to the stability theory and boundary value
problems to impulsive differential equations,There have been
extensive studies in this area. However, there are very few
works on the qualitative theory of impulsive differential
equations and impulsive semidynamical systems. Recently,
Bonotto and Federson have given a version of the Poincaré-
Bendixson Theorem for impulsive semidynamical systems
in [10, 11]. As it is known, the method of Poincaré map
plays an important role in the research of qualitative theory
and is a natural means to study the existence of periodic
solutions and its asymptotic stability. However, due to the
complexity of the associated impulsive dynamic models, this
approach has only been applied successfully to Raibert’s
one-legged-hopper (see [12–14]) predator-prey models (see
[15–18]), and so forth. The bifurcation theory for ordinary
differential equations or smooth systems appeared during the
last decades (see, e.g., [19]); however, little is known about
the bifurcation theory of impulsive differential equations due
to its complexity (see [20]). In this paper, we mainly study

a certain scalar impulsive differential equations on Moebius
stripe undergoing impulsive effects at fixed time:

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥) , 𝑡 ̸= 𝜏𝑘,

Δ𝑥|𝑡=𝜏𝑘
= 𝐼𝑘 (𝑥) , 𝑘 ∈ Z

+
,

(1)

where 0 ≤ 𝜏𝑘 < 𝜏𝑘+1, 𝑘 ∈ Z+ are fixed with 𝜏𝑘 → +∞

as, 𝑘 → +∞, and Δ𝑥|𝑡=𝜏𝑘
= 𝑥(𝜏

+

𝑘
) − 𝑥(𝜏𝑘). Hu and Han

(see [20]) investigated the existence of periodic solutions and
bifurcations of (1) under the assumptions that 𝑓(𝑡, 𝑥) and
𝐼𝑘(𝑥) are periodic; that is, the following assumption holds.

(H∗) There exist a constant 𝑇 > 0, a positive integer 𝑞,
and two mutual coprime positive integers𝑚 and 𝑛 such that

𝑓 (𝑡 + 𝑇, 𝑥) = 𝑓 (𝑡, 𝑥) , ∀𝑡 ∈ R
+
, 𝑥 ∈ R,

𝐼𝑘+𝑞 (𝑥) = 𝐼𝑘 (𝑥) , 𝜏𝑘+𝑞 − 𝜏𝑘 = 𝑇, ∀𝑘 ∈ Z
+
, 𝑥 ∈ R,

𝑚 (𝑡𝑘+𝑞 − 𝑡𝑘) = 𝑛𝑇, 𝑘 ≥ 1.

(2)

In this paper, we assume that the following conditions hold.
(H1) Assume that both𝑓(𝑡, 𝑥) and𝑓𝑥(𝑡, 𝑥) are continuous

scalar functions on R × R, 𝐼𝑘(𝑥) : R → R, 𝑘 ∈ Z are odd,
continuous functions; that is, 𝐼𝑘(−𝑥) = −𝐼𝑘(𝑥), 𝑘 ∈ Z+.
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(H2) There exists a constant 𝑇 > 0, a positive integer 𝑞

such that

𝑓 (𝑡 + 𝑇, −𝑥) = −𝑓 (𝑡, 𝑥) , ∀𝑡 ∈ R, 𝑥 ∈ R,

𝐼𝑘+𝑞 (𝑥) = 𝐼𝑘 (𝑥) , 𝜏𝑘+𝑞 − 𝜏𝑘 = 𝑇, ∀𝑘 ∈ Z
+
, 𝑥 ∈ R.

(3)

From (H2), we have 𝑓(𝑡, 𝑥) is 2𝑇 periodic and 𝜏𝑘+𝑞 −𝜏𝑘 = 2𝑇.
Hence assumption (H∗) holds naturally. However, we show
some new and fruitful results of system (1) with the condition
(H1)-(H2). For example, we obtain the existence and stability
of 2𝑇 periodic solutions to system (1) by double-periodic
bifurcation.
This paper is organized as follows. In Section 2, for the sake
of self-containedness of the paper, we present some basic
definitions of impulsive differential equations. In Section 3,
we describe the scalar impulsive differential equations on
Moebius stripe and define the Poincaré map. Then we prove
several essential lemmas and give sufficient conditions to
ensure the existence and stability of one-side and two-side
orbits of impulsive differential equation on Moebius stripe.
In Section 4, we are mainly concerned with the double-
periodic bifurcation impulsive differential equations onMoe-
bius stripe.

2. Preliminaries

For the sake of self-containedness of the paper, we present
the basic definitions and notations of the theory of impul-
sive differential equations we need (see [1, 2, 8]). We also
include some fundamental results which are necessary for
understanding the theory.

LetR,Z, andZ+ be the sets of real numbers, integers, and
positive integers, respectively. Denote by 𝜃 = {𝜃𝑖} a strictly
increasing sequence of real numbers such that the set A of
indexes 𝑖 is an interval in Z.

Definition 1. A function 𝜙 : R → R𝑛, 𝑛 ∈ R, is from the set
𝑃𝐶(R, 𝜃) if

(i) it is left continuous;
(ii) it is continuous, except, possibly, points of 𝜃, where it

has discontinuities of the first kind.

The last definition means that if 𝜙(𝑡) ∈ 𝑃𝐶(R, 𝜃), then the
right limit 𝜙(𝜃𝑖+) = lim𝑡→𝜃+

𝑖

𝜙(𝑡) exists and 𝜙(𝜃𝑖(−)) = 𝜙(𝜃𝑖),
where 𝜙(𝜃𝑖−) = lim𝑡→𝜃−

𝑖

𝜙(𝑡), for each 𝜃𝑖 ∈ 𝜃.

Definition 2. A function 𝜙 : R → R𝑛 is from the set
𝑃𝐶
1
(R, 𝜃) if 𝜙(𝑡), 𝜙(𝑡) ∈ 𝑃𝐶(R, 𝜃), where the derivative at

points of 𝜃 is assumed to be the left derivative.
In what follows, in this section, 𝐽 ∈ R is an interval in R.

For simplicity of notation, 𝜃 is not necessary a subset of 𝐽.

Definition 3. The solution 𝜙(𝑡) is stable if to any 𝜀 > 0 and
𝑡0 ∈ 𝐽 there corresponds 𝛿(𝑡0, 𝜀) > 0 such that for any other
solution 𝜓(𝑡) of (1) with ‖𝜙(𝑡0) − 𝜓(𝑡0)‖ < 𝛿(𝑡0, 𝜀) we have
‖𝜙(𝑡) − 𝜓(𝑡)‖ < 𝜀 for 𝑡 ≥ 𝑡0; the solution 𝜙(𝑡) is uniformly
stable, if 𝛿(𝑡0, 𝜀) can be chosen independently of 𝑡0.

→𝑛

Figure 1: Moebius stripe.

Definition 4. The solution 𝜙(𝑡) is asymptotically stable if it is
stable in the sense of Definition 3 and there exists a positive
number 𝜅(𝑡0) such that if 𝜓(𝑡) is any other solution of (1)
with ‖𝜙(𝑡0) − 𝜓(𝑡0)‖ < 𝜅(𝑡0), then ‖𝜙(𝑡) − 𝜓(𝑡)‖ → 0 as
𝑡 → ∞; if 𝜅(𝑡0) can be chosen to be independent of 𝑡0
and 𝜙(𝑡) is uniformly stable, then 𝜙(𝑡) is said to be uniformly
asymptotically stable.

Definition 5. The solution 𝜙(𝑡) is unstable if there exist
numbers 𝜀0 > 0 and 𝑡0 ∈ 𝐽 such that for any 𝛿 > 0 there
exists a solution 𝑦𝛿(𝑡), ‖𝜙(𝑡0) − 𝑦𝛿(𝑡0)‖ < 𝛿, of (1) such that
either it is not continuable to ∞ or there exists a moment 𝑡1,
𝑡1 > 𝑡0 such that ‖𝜙(𝑡1) − 𝑦𝛿(𝑡1)‖ ≥ 𝛿.

For any 𝑡0 ∈ R, we assume that there exists a 𝑘 ∈ Z+,
such that 𝜏𝑘−1 < 𝑡0 ≤ 𝜏𝑘; then the initial value problem (IVP)
to first-order impulsive differential equations (1) is given as

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥) , 𝑡 ̸= 𝜏𝑘,

Δ𝑥|𝑡=𝜏𝑘
= 𝐼𝑘 (𝑥) , 𝑘 ∈ Z

+,

𝑥 (𝑡
+

0
) = 𝑥0.

(4)

In what followed, we use 𝑥(𝑡, 𝑡0, 𝑥0) to denote the solution of
IVP (4).

In [20], Hu and Han investigated system (1) under the
assumption (H∗) and obtained the following stability results
for the periodic solutions.

Theorem 6 (see [20]). Let 𝑥(𝑡, 𝑡0, 𝑥∗0 ) be a periodic solution
of system (1) with period T. If 0 < |𝑃


(𝑥
∗

0
)| < 1 (>1), then it

is uniformly asymptotically stable (unstable), where 𝑃(𝑥0) =

𝑥(𝑡0 + 𝑛𝑇
+
, 𝑡0, 𝑥0) is the Poincaré map of system (1).

3. Poincaré Map and Periodic Solutions

In this section, we describe the scalar impulsive differential
equations on Moebius stripe and define the Poincaré map.
Then we prove several essential lemmas and give sufficient
conditions to ensure the existence and stability of one-
side and two-side orbits (Figure 2) of impulsive differential
equation on Moebius stripe.
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Lemma 7. Assume that conditions (H1), (H2) hold. Suppose
that 𝑥(𝑡, 𝑡0, 𝑥0) is a solution of (1) satisfying initial value
𝑥(𝑡
+

0
) = 𝑥0. Then −𝑥(𝑡 + 𝑇, 𝑡0, 𝑥0) is also a solution of (1), and

−𝑥 (𝑡 + 𝑇, 𝑡0, 𝑥0) = 𝑥 (𝑡, 𝑡0, −𝑥 (𝑡0 + 𝑇, 𝑡0, 𝑥0)) , 𝑡 ∈ R.

(5)

Proof. Let 𝜑(𝑡) ≡ −𝑥(𝑡 + 𝑇, 𝑡0, 𝑥0), 𝜓(𝑡) ≡ 𝑥(𝑡, 𝑡0, −𝑥(𝑡0 +

𝑇, 𝑡0, 𝑥0)). Then for 𝑡 ̸= 𝜏𝑘, 𝑘 ∈ Z, we have by (H2) that

𝑑𝜑 (𝑡)

𝑑𝑡
= −

𝑑𝑥 (𝑡 + 𝑇, 𝑡0, 𝑥0)

𝑑𝑡

= − 𝑓 (𝑡 + 𝑇, 𝑥 (𝑡 + 𝑇, 𝑡0, 𝑥0))

= 𝑓 (𝑡, −𝑥 (𝑡 + 𝑇, 𝑡0, 𝑥0)) = 𝑓 (𝑡, 𝜑 (𝑡)) .

(6)

For 𝑡 = 𝜏𝑘, 𝑘 ∈ Z+, it follows from (H1), (H2) that 𝜏𝑘 + 𝑇 =

𝜏𝑘+𝑞, 𝑘 ∈ Z+ and

Δ𝜑|𝑡=𝜏𝑘
= − 𝑥 (𝜏𝑘 + 𝑇

+
, 𝑡0, 𝑥0) + 𝑥 (𝜏𝑘 + 𝑇, 𝑡0, 𝑥0)

= − 𝑥 (𝜏
+

𝑘+𝑞
, 𝑡0, 𝑥0) + 𝑥 (𝜏𝑘+𝑞, 𝑡0, 𝑥0)

= − 𝐼𝑘+𝑞 (𝑥 (𝜏𝑘+𝑞, 𝑡0, 𝑥0))

= − 𝐼𝑘 (𝑥 (𝜏𝑘+𝑞, 𝑡0, 𝑥0)) = −𝐼𝑘 (𝑥 (𝜏𝑘 + 𝑇, 𝑡0, 𝑥0))

= 𝐼𝑘 (−𝑥 (𝜏𝑘 + 𝑇, 𝑡0, 𝑥0)) = 𝐼𝑘 (𝜑 (𝜏𝑘)) .

(7)

Thus, we proved that 𝜑(𝑡) ≡ −𝑥(𝑡 + 𝑇, 𝑡0, 𝑥0) is a solution of
(1). On the other hand, it is obvious that

𝜑 (𝑡) |𝑡=𝑡0
= −𝑥 (𝑡0 + 𝑇, 𝑡0, 𝑥0) = 𝜓 (𝑡) |𝑡=𝑡0

. (8)

Hence, by uniqueness theorem we have that 𝜑(𝑡) ≡ 𝜓(𝑡), 𝑡 ∈

R. This completes the proof.

Let𝐷 denotes the stripe area on the plain {(𝑡, 𝑥) | (𝑡, 𝑥) ∈

R ×R} between two lines 𝑡 = 𝑡0 and 𝑡 = 𝑡0 + 𝑇; that is,

𝐷 = {(𝑡, 𝑥) | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇, −∞ < 𝑥 < +∞} . (9)

Assume that 𝑥(𝑡, 𝑡0, 𝑥0) exists for all 𝑡 ∈ [𝑡0, +∞). Define
𝐿0 = {(𝑡, 𝑥(𝑡, 𝑡0, 𝑥0)) | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇}. In general, we denote
𝐿𝑘 (𝑘 ≥ 1) by

𝐿𝑘 = {(𝑡, 𝑥 (𝑡, 𝑡0, −𝑥𝑘)) | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇} , (10)

where 𝑥𝑘 = 𝑥(𝑡0 + 𝑇
+
, 𝑡0, −𝑥𝑘−1), 𝑡 ≥ 𝑡0.

It follows from Lemma 7 that 𝐿𝑘 has the form

𝐿𝑘 = {(𝑡, (−1)
𝑘
𝑥 (𝑡 + 𝑘𝑇, 𝑡0, 𝑥0)) | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇} . (11)

We now introduce an equivalence relation ∼ on 𝐷 such
that for (𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝐷

(𝑡, 𝑥) ∼ (𝑡

, 𝑥

) iff 

𝑡 − 𝑡


= 𝑇, 𝑥 = −𝑥

. (12)

Then we denote the corresponding quotient space by 𝑀2.
From geometric point of view,𝑀2 is obtained by considering

𝑂

𝑥

𝑇 2𝑇 𝑡

𝑥0

−𝑥0

Figure 2: Figure of one-side and two-side orbits.

two elements (𝑡0, 𝑥) and (𝑡0 + 𝑇, −𝑥) on 𝐷 as the same point
(or sticking (𝑡0, 𝑥) and (𝑡0 + 𝑇, −𝑥) together). Thus 𝑀2 is a
surface with only one side or the well-knownMoebius stripe.
Obviously, by Lemma 7 the union

⋃

𝑘∈Z+

𝐿𝑘 = ⋃

𝑘∈Z+

{(𝑡, (−1)
𝑘
𝑥 (𝑡 + 𝑘𝑇, 𝑡0, 𝑥0)) | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇}

(13)

define a flow on 𝑀2. From this point of view, we call (1)
satisfying (H1) and (H2) an impulsive dynamical system on
Moebius stripe (see Figure 1).

Definition 8 (PoincaréMap). Let 𝑥(𝑡, 𝑡0, 𝑥0) be the solution of
(IVP) (4). Assume that there exists an interval 𝐽 such that for
any 𝑥0 ∈ 𝐽, 𝑥(𝑡, 𝑡0, 𝑥0) exists on [𝑡0, 𝑡0+𝑇]. A map 𝑃 : 𝐽 → R

is called a Poincaré map of system (1) if for any 𝑥0 ∈ 𝐽

𝑃 (𝑥0) = −𝑥 (𝑡0 + 𝑇
+
, 𝑡0, 𝑥0) . (14)

Definition 9. A closed curve 𝛾
+
(𝑥0) is called a one-side

periodic orbit on 𝑀2 if 𝛾
+
(𝑥0) = 𝐿0. And a closed curve

𝛾
+
(𝑥0) is called a two-side periodic orbit on 𝑀2 if 𝛾

+
(𝑥0) =

𝐿0 ∪ 𝐿1 ̸= 𝐿1.

From Definitions 8 and 9, we can easily prove the
following assertion.

Lemma 10. One of following alternatives is valid:

(i) 𝛾
+
(𝑥0) is a one-side periodic orbit;

(ii) 𝑥0 is a fixed point of 𝑃; that is, 𝑃(𝑥0) = 𝑥0;

(iii) 𝑥(𝑡 + 𝑇, 𝑡0, 𝑥0) = −𝑥(𝑡, 𝑡0, 𝑥0), 𝑡 ∈ R.

Proof. We prove it from (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Assume
(i) is true; that is, 𝛾+(𝑥0) is a one-side periodic orbit. Then by
Definition 9 we have that

−𝑥 (𝑡0 + 𝑇
+
, 𝑡0, 𝑥0) = 𝑥 (𝑡

+

0
, 𝑡0, 𝑥0) = 𝑥0, (15)

that is, 𝑃(𝑥0) = 𝑥0. Hence (ii) is valid.



4 Abstract and Applied Analysis

Next, we suppose that (ii) is fulfilled; that is, −𝑥(𝑡0 +

𝑇
+
, 𝑡0, 𝑥0) = 𝑥0. Then by Lemma 7 we know

𝑥 (𝑡 + 𝑇, 𝑡0, 𝑥0) = 𝑥 (𝑡, 𝑡0, −𝑥 (𝑡0 + 𝑇
+
, 𝑡0, 𝑥0))

= −𝑥 (𝑡, 𝑡0, 𝑥0) .

(16)

Thus, (iii) is proved.
Finally, if (iii) is true, then 𝑥(𝑡0 +𝑇

+
, 𝑡0, 𝑥0) = −𝑥0. By the

uniqueness of solution of IVP (4), we know

𝑥 (𝑡, 𝑡0, −𝑥 (𝑡0 + 𝑇
+
, 𝑡0, 𝑥0)) = 𝑥 (𝑡, 𝑡0, 𝑥0) ,

𝑡 ∈ [𝑡0, 𝑡0 + 𝑇] .

(17)

Thus we obtain that 𝛾+(𝑥0) is a one-side periodic orbit.
The proof is completed.

Similarly, as proof of Lemma 10, we have the following
lemma.

Lemma 11. One of following alternatives is valid:

(i) 𝛾
+
(𝑥0) is a two-side periodic orbit;

(ii) 𝑥0 is a 2-periodic point of 𝑃; that is, 𝑃(𝑥0) ̸= 𝑥0,
𝑃
2
(𝑥0) = 𝑥0;

(iii) 𝑥(𝑡 + 2𝑇, 𝑡0, 𝑥0) = 𝑥(𝑡, 𝑡0, 𝑥0), 𝑡 ∈ R. And there exists
a 𝑡0, such that 𝑥(𝑡0 + 𝑇

+
, 𝑡0, 𝑥0) ̸= − 𝑥0.

Remark 12. From Lemmas 10 and 11, we see that a one-side
periodic orbit must be a two-side periodic orbit since

𝑃 (𝑥0) = 𝑥0 implies 𝑃
2
(𝑥0) = 𝑃 (𝑃 (𝑥0)) = 𝑃 (𝑥0) = 𝑥0.

(18)

Nevertheless, the converse is not true.
From Remark 12, we give the definition of stability of the

mentioned orbits.

Definition 13. Let 𝛾
+
(𝑥0) be a periodic orbit of system (1)

(one-side or two-side). Then 𝛾
+
(𝑥0) of system (1) is called

stable (asymptotically stable or unstable) if 𝛾
+
(𝑥0) as a 2𝑇

periodic solution is stable (asymptotically stable or unstable).

Theorem 14. Assume 𝑥(𝑡, 𝑡0𝑥0) is the solution of IVP (4) and
let 𝑧(𝑡) = 𝜕𝑥(𝑡, 𝑡0, 𝑥0)/𝜕𝑥0. Then 𝑧(𝑡) is a solution to the
following IVP of impulsive differential equations:

𝑑𝑧

𝑑𝑡
= 𝑓𝑥 (𝑡, 𝑥) 𝑧, 𝑡 ̸= 𝑡𝑘,

Δ𝑧|𝑡=𝜏𝑘
= 𝐼


𝑘
(𝑥) , 𝑘 ∈ Z

+,

𝑧 (𝑡0) = 1.

(19)

Proof. Let 𝐽 = (𝑡0, +∞) and 𝐽𝑘 = (𝜏𝑘−1, 𝜏𝑘], 𝑘 ∈ Z+. Without
losing generality, we assume that 𝑡0 ∈ 𝐽𝑗 for some 𝑗 ≥ 1. The
solution of IVP

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥) ,

𝑥 (𝑡
+

0
) = 𝑥0

(20)

can be expressed as

𝑥 (𝑡, 𝑡0, 𝑥0) = 𝑥0 + ∫

𝑡

𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) 𝑑𝑠. (21)

Differentiate between both sides of the above equation with
respect to 𝑥0, we have

𝜕𝑥 (𝑡, 𝑡0, 𝑥0)

𝜕𝑥0

= 1 + ∫

𝑡

𝑡0

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) ⋅
𝜕𝑥 (𝑠, 𝑡0, 𝑥0)

𝜕𝑥0

𝑑𝑠.

(22)

Let 𝑧(𝑡) = 𝜕𝑥(𝑡, 𝑡0, 𝑥0)/𝜕𝑥0, then for 𝑡 ∈ [𝑡0, 𝜏𝑗), 𝑧(𝑡) is the
solution of IVP to ordinary differential equation

𝑑𝑧

𝑑𝑡
= 𝑓𝑥 (𝑡, 𝑥) 𝑧, 𝑡 ̸= 𝑡𝑘,

𝑧 (𝑡0) = 1.

(23)

Thus

𝑧 (𝑡) = exp∫

𝑡

𝑡0

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) 𝑑𝑠. (24)

Since 𝑧(𝑡) is left continuous on [𝑡0,∞), we have

𝑧 (𝜏𝑗) = exp∫

𝜏𝑗

𝑡0

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) 𝑑𝑠. (25)

For 𝑡 ∈ 𝐽𝑗+1, 𝑥(𝑡, 𝑡0, 𝑥0) is a solution of system

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥) ,

𝑥 (𝜏𝑗) = 𝑥1,

(26)

where 𝑥1 = 𝑥(𝜏𝑗+ , 𝑡0, 𝑥0) = 𝑥(𝜏𝑗, 𝑡0, 𝑥0) + 𝐼𝑗(𝑥(𝜏𝑗, 𝑡0, 𝑥0)).
Thus, we have

𝑥 (𝑡, 𝑡0, 𝑥0) ≡ 𝑥 (𝑡, 𝜏𝑗, 𝑥1)

= 𝑥1 + ∫

𝑡

𝜏𝑗

𝑓 (𝑠, 𝑥 (𝑠, 𝜏𝑗, 𝑥1)) 𝑑𝑠, 𝑡 ∈ 𝐽𝑗+1.

(27)

Similarly, we have 𝑡 ∈ (𝜏𝑗, 𝜏𝑗+1),

𝜕𝑥 (𝑡, 𝑡0, 𝑥0)

𝜕𝑥1

=
𝜕𝑥 (𝑡, 𝜏𝑗, 𝑥1)

𝜕𝑥1

= exp∫

𝑡

𝜏𝑗

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝜏𝑗, 𝑥1)) 𝑑𝑠

= exp∫

𝑡

𝜏𝑗

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) 𝑑𝑠.

(28)
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Note

𝜕𝑥1

𝜕𝑥0

=
𝜕 [𝑥 (𝜏𝑗, 𝑡0, 𝑥0) + 𝐼𝑗 (𝑥 (𝜏𝑗, 𝑡0, 𝑥0))]

𝜕𝑥 (𝜏𝑗, 𝑡0, 𝑥0)

⋅
𝜕𝑥 (𝜏𝑗, 𝑡0, 𝑥0)

𝜕𝑥0

= (1 + 𝐼


𝑗
(𝑥 (𝜏𝑗, 𝑡0, 𝑥0)))

𝜕𝑥 (𝜏𝑗, 𝑡0, 𝑥0)

𝜕𝑥0

.

(29)

We obtain for 𝑡 ∈ (𝜏𝑗, 𝜏𝑗+1) that

𝜕𝑥 (𝑡, 𝑡0, 𝑥0)

𝜕𝑥0

=
𝜕𝑥 (𝑡, 𝜏𝑗, 𝑥1)

𝜕𝑥0

= (1 + 𝐼


𝑗
(𝑥 (𝜏𝑗, 𝑡0, 𝑥0)))

⋅ exp∫

𝑡

𝑡0

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) 𝑑𝑠.

(30)

Deducing in a similar way, we get

𝜕𝑥 (𝑡, 𝑡0, 𝑥0)

𝜕𝑥0

= ∏

𝑡0<𝜏𝑘≤𝑡

(1 + 𝐼


𝑘
(𝑥 (𝜏𝑗, 𝑡0, 𝑥0)))

⋅ exp∫

𝑡

𝑡0

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) 𝑑𝑠,

(31)

where 𝑡 ∈ 𝐽. Then the proof is completed.

By Definitions 9 and (31), we conclude the following
assertion.

Corollary 15. Assume that conditions (H1), (H2) hold. Then

𝑃

(𝑥0) = − ∏

𝑡0<𝜏𝑘≤𝑡0+𝑇

(1 + 𝐼


𝑘
(𝑥 (𝜏𝑘, 𝑡0, 𝑥0)))

⋅ exp∫

𝑡0+𝑇

𝑡0

𝑓𝑥 (𝑡, 𝑥 (𝑡, 𝑡0, 𝑥0)) 𝑑𝑡.

(32)

As usual, one uses the notion 𝑃
2
(𝑥0) = 𝑃(𝑃(𝑥0)). Then one

has

[𝑃
2
(𝑥0)]


= ∏

𝑡0<𝜏𝑘≤𝑡0+2𝑇

(1 + 𝐼


𝑘
(𝑥 (𝜏𝑘, 𝑡0, 𝑥0)))

⋅ exp∫

𝑡0+2𝑇

𝑡0

𝑓𝑥 (𝑡, 𝑥 (𝑡, 𝑡0, 𝑥0)) 𝑑𝑡.

(33)

Definition 16. 𝑥0 is called a hyperbolic fixed point of 𝑃 if
𝑥0 = 𝑃(𝑥0) and 𝑃


(𝑥0) ̸= − 1; the corresponding one-side

periodic orbit 𝛾+(𝑥0) is called hyperbolic one-side periodic
orbit. If 𝛾+(𝑥0) is a two-side periodic orbit with (𝑃

2
)


(𝑥0) ̸= 1,
then we call 𝛾+(𝑥0) a hyperbolic two-side periodic orbit.

Theorem 17. Assume that the conditions (H1), (H2) hold. Let
𝛾
+
(𝑥0) be a periodic orbit of system (1) and 𝐼



𝑘
(𝑥(𝜏𝑘, 𝑡0, 𝑥0)) ̸= −

1. Then (i)∫𝑡0+2𝑇
𝑡0

𝑓𝑥(𝑡, 𝑥(𝑡, 𝑡0, 𝑥0))𝑑𝑡 < −∑
𝑡0<𝜏𝑘≤𝑡0+2𝑇

ln |1 +

𝐼


𝑘
(𝑥(𝜏𝑘, 𝑡0, 𝑥0))| implies 𝛾+(𝑥0) is asymptotically stable,
(ii)∫𝑡0+2𝑇
𝑡0

𝑓𝑥(𝑡, 𝑥(𝑡, 𝑡0, 𝑥0))𝑑𝑡 > −∑
𝑡0<𝜏𝑘≤𝑡0+2𝑇

ln |1 +

𝐼


𝑘
(𝑥(𝜏𝑘, 𝑡0, 𝑥0))| implies 𝛾+(𝑥0) is unstable.

Proof. If 𝛾+(𝑥0) is a two-side periodic orbit; that is, 𝑥(𝑡, 𝑡0, 𝑥0)
is a 2𝑇 periodic solution of (1). Since both (H1) and (H2)
hold, we know that (1) is a periodic impulsive differential
equation. Then by (33) and Theorem 6, the conclusion is
straightforward.

Example 18. Consider the linear periodic impulsive differen-
tial equations on Moebius stripe as follows:

𝑑𝑥

𝑑𝑡
= 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) , 𝑡 ̸= 𝜏𝑘,

Δ𝑥|𝑡=𝜏𝑘
= 𝑐𝑘𝑥 (𝜏𝑘) , 𝑘 ∈ Z

+
,

(34)

where 𝜏𝑘 < 𝜏𝑘+1 (𝑘 ≥ 1), 𝜏𝑘 → +∞, 𝑘 → +∞, 𝑐𝑘 ̸= − 1 and
there exists a constant 𝑇 > 0, a positive integer 𝑞, such that
the following conditions are satisfied:

(H̃1) 𝑎(𝑡 + 𝑇) = 𝑎(𝑡) and 𝑏(𝑡 + 𝑇) = −𝑏(𝑡) for 𝑡 ∈ R;
(H̃2) 𝑎(𝑡) and 𝑏(𝑡) are continuous;
(H̃3) 𝑐𝑘+𝑞 = 𝑐𝑘, for all 𝑘 ∈ Z+;

(H̃4) 𝜏𝑘+𝑞 − 𝜏𝑘 = 𝑇, for all 𝑘 ∈ Z+.

Assume that 𝑥(𝑡, 𝑡0, 𝑥0) is a one-side periodic solution of
system (34), by the method of variation of constants formula
(see [1]), we get

𝑥 (𝑡, 𝑡0, 𝑥0)

= ∏

𝑡0<𝜏𝑘≤𝑡

(1 + 𝑐𝑘)

⋅ exp∫

𝑡

𝑡0

𝑎 (𝑡) 𝑑𝑡

× [𝑥0 + ∫

𝑡

𝑡0

exp(−∫

𝑠

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑠) 𝑑𝑠] ,

(35)

𝑃 (𝑥0)

= − ∏

𝑡0<𝜏𝑘≤𝑡0+𝑇

(1 + 𝑐𝑘)

⋅ exp∫

𝑡0+𝑇

𝑡0

𝑎 (𝑡) 𝑑𝑡

× [𝑥0 + ∫

𝑡0+𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑡) 𝑑𝑡] ,

(36)
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𝑃
2
(𝑥0)

= ∏

𝑡0<𝜏𝑘≤𝑡0+2𝑇

(1 + 𝑐𝑘)

⋅ exp∫

𝑡0+2𝑇

𝑡0

𝑎 (𝑡) 𝑑𝑡

× [𝑥0 + ∫

𝑡0+2𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑡) 𝑑𝑡] .

(37)

Let𝐴 = ∏
𝑡0<𝜏𝑘≤𝑡0+𝑇

(1+𝑐𝑘) ⋅exp∫
𝑡0+𝑇

𝑡0
𝑎(𝑡)𝑑𝑡; therefore, we

have the following theorem.

Theorem 19. Suppose that (H̃1–H̃4) are satisfied, then

(i) there exists a unique one-side periodic orbit for system
(34) if𝐴 ̸= −1, which is asymptotically stable (unstable)
provided 0 < |𝐴| < 1 (|𝐴| > 1),

(ii) if 𝐴2 ̸= 1, (34) has no two-side periodic orbit. If 𝐴 = 1

all the trajectories are two-side periodic orbits expect for
a unique one-side periodic orbit.

Proof. For the sake of convenience, we denote

𝐵1 = ∫

𝑡0+𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑡) 𝑑𝑡,

𝐵2 = ∫

𝑡0+2𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑡) 𝑑𝑡.

(38)

Then

𝑃 (𝑥0) = −𝐴 (𝑥0 + 𝐵1) , 𝑃
2
(𝑥0) = 𝐴

2
(𝑥0 + 𝐵2) . (39)

Obviously, 𝑃(𝑥0) = 𝑥0 has a unique solution for any 𝑥0 ∈ R

if 𝐴 ̸= − 1, and 𝑃
2
(𝑥0) = 𝑥0 has a unique solution for any

𝑥0 ∈ R if 𝐴2 ̸= 1. Observing that any two-side periodic orbit
obtained under the assumption 𝐴

2
̸= 1 must be a one-side

periodic orbit since 𝐴
2

̸= 1 implies 𝐴 ̸= − 1, together with
Remark 12, we have (34) has no two-side periodic orbit.

It follows from (36) that𝑃(𝑥0) = −𝐴.Then byTheorem 6
we have the one-side orbit is asymptotically stable (unstable)
provided 0 < |𝐴| < 1 (|𝐴| > 1).

Next, let 𝐴 = 1. By taking (36) and (37) into account, we
have

𝑃 (𝑥0) = −𝑥0 − ∫

𝑡0+𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑡) 𝑑𝑡

≡ −𝑥0 − 𝐵1,

𝑃
2
(𝑥0) = 𝑥0 + ∫

𝑡0+2𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑡) 𝑑𝑡

≡ 𝑥0 + 𝐵2.

(40)

Suppose that 𝑃 has a unique fixed point 𝑥∗
0

= −𝐵1/2, from
the above we have −𝐵1/2 + 𝐵2 = −𝐵1/2, then 𝐵2 ≡ 0 and

𝑃
2
(𝑥0) = 𝑥0. So by taking Lemma 11, 𝛾+(𝑥0) is a two-side

periodic orbit if 𝑥0 ̸= 𝑥
∗

0
.

The proof is ended.

Remark 20. If 𝑐𝑘 ≡ 0, 𝑘 ∈ Z+, in (34); that is, (34)
reduces to an ordinary differential equation. We see that
𝐴 = exp∫

𝑡0+𝑇

𝑡0
𝑎(𝑡)𝑑𝑡. Hence𝐴 ̸= − 1 holds automatically, and

therefore (34) always has a unique one-side periodic orbit.

Corollary 21. Let (H̃1–H̃4) be fulfilled and 𝐴 = 1. Then

𝐵2 = ∫

𝑡0+2𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) d𝑢) 𝑏 (𝑡) 𝑑𝑡 = 0. (41)

Now we are in position to consider nonlinear impulsive
system on Meobius stripe. To explore the uniqueness of one-
side periodic orbit, we induce the following condition.

(H3) Operator 𝐵𝑘 : R → R, 𝐵𝑘(𝑥) = 𝑥 + 𝐼𝑘(𝑥) is strictly
increasing, for all 𝑘 ∈ Z+.

Theorem 22. Suppose that conditions (H1)–(H3) hold, then

(i) system (1) has at most one one-side periodic orbit;
(ii) if any solution 𝑥(𝑡, 𝑡0, 𝑥0) of (1) with |𝑥0| ≤ |𝑃(0)| is

well defined on 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇], then system (1) must
has a unique one-side periodic orbit.

Proof. We first prove that system (1) cannot have two one-
side periodic orbits. Suppose 𝛾

+

1
(𝑥
∗

0
) : 𝑥 = 𝑥(𝑡, 𝑡0, 𝑥

∗

0
), 𝑡 ∈

[𝑡0, 𝑡0 +𝑇] and 𝛾
+

2
(𝑥0) : 𝑥 = 𝑥(𝑡, 𝑡0, 𝑥0), 𝑡 ∈ [𝑡0, 𝑡0 +𝑇] are two

one-side periodic orbits system (1). Then

𝑥 (𝑡0 + 𝑇, 𝑡0, 𝑥
∗

0
) = −𝑥

∗

0
, 𝑥 (𝑡0 + 𝑇, 𝑡0, 𝑥0) = −𝑥0. (42)

Without losing generality, we assume 𝑥0 > 𝑥
∗

0
, then it follows

from uniqueness theorem of ordinary differential equations
that𝑥 = 𝑥(𝑡, 𝑡0, 𝑥0) and 𝑥(𝑡, 𝑡0, 𝑥

∗

0
) cannot intersect when 𝑡 is

not an impulsive time. Therefore we have

𝑥 (𝑡, 𝑡0, 𝑥0) > 𝑥 (𝑡, 𝑡0, 𝑥
∗

0
) , 𝑡0 ≤ 𝑡 ≤ 𝜏1. (43)

Note 𝐵𝑘(𝑥) = 𝑥 + 𝐼𝑘(𝑥) is strictly increasing, we get

𝑥 (𝜏
+

1
, 𝑡0, 𝑥0) > 𝑥 (𝜏

+
, 𝑡0, 𝑥
∗

0
) . (44)

In a similar way, we can prove that 𝑥(𝑡, 𝑡0, 𝑥0) > 𝑥(𝑡, 𝑡0, 𝑥
∗

0
),

𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇. That is, the curve {(𝑡, 𝑥) | 𝑥 = 𝑥(𝑡, 𝑡0, 𝑥0),

𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇} always stays above curve {(𝑡, 𝑥) | 𝑥 =

𝑥(𝑡, 𝑡0, 𝑥
∗

0
), 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇}. This contradicts (42). We put

it in another way that

𝑥0 > 𝑥
∗

0
⇒ 𝑃 (𝑥0) > 𝑃 (𝑥

∗

0
) . (45)

Thus, (1) has at most a one-side periodic orbit.
Further, let the solution 𝑥(𝑡, 𝑡0, 𝑥0) of system (1) be all

defined on 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇]. If 𝑃(0) = 0, the conclusion is
proved.We assume that𝑃(0) > 0, thenwe know𝑃(𝑥0) < 𝑃(0)

if 0 < 𝑥0 ≤ 𝑃(0). Note

𝑃
2
(0) − 𝑃 (0) = 𝑃 (𝑃 (0)) − 𝑃 (0) < 𝑃 (0) − 𝑃 (0) = 0.

(46)
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𝑂

𝑥

𝑡

𝑥0

−𝑥0

Figure 3: A one-side periodic orbit.

We obtain that 𝑃(𝑥0)−𝑥0 have opposite signs between 𝑥0 = 0

and 𝑥0 = 𝑃(0), and then it follows from the continuity of
𝑃 that there exists 𝑥

∗

0
∈ (0, 𝑃(0)) such that 𝑃(𝑥

∗

0
) = 𝑥

∗

0
.

Similarly, we can prove 𝑃 has a fixed point in the case of
𝑃(0) < 0. The proof is completed.

Theorem 23. Assume that conditions (H1)–(H3) hold. Fur-
thermore, suppose there exists a positive number 𝑁 such that

𝑓 (𝑡,𝑁) ≤ 0, 𝑓 (𝑡, −𝑁) ≥ 0, 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇] , (47)

−2𝑁 ≤ 𝐼𝑘 (𝑁) ≤ 0, ∀𝑘 ∈ Z
+
. (48)

Then (1) has a unique one-side periodic orbit.

Proof. From (47) we have that 𝑥(𝑡, 𝑡0, 𝑥0) will stay inside
[−𝑁,𝑁] for 𝑡 ̸= 𝜏𝑘, 𝑘 ∈ Z+. On the other hand, by (H3), we
have that −𝑁 + 𝐼𝑘(−𝑁) ≤ 𝑥(𝜏𝑘) + 𝐼𝑘(𝑥(𝜏𝑘)) ≤ 𝑁 + 𝐼𝑘(𝑁) for
−𝑁 ≤ 𝑥(𝜏𝑘) ≤ 𝑁. Then it follows from (48) that

−𝑁 ≤ 𝑁 + 𝐼𝑘 (𝑁) ≤ 𝑁 ≤ 𝑁,

−𝑁 ≤ −𝑁 + 𝐼𝑘 (−𝑁) = −𝑁 − 𝐼𝑘 (𝑁) ≤ 𝑁

(49)

(see Figure 3).

Thus,

|𝑃 (0)| =
−𝑥 (𝑡0 + 𝑇, 0)

 =
𝑥 (𝑡0 + 𝑇, 0)

 ≤ 𝑁. (50)

This implies that 𝑃(𝑥0) is well defined for |𝑥0| ≤ |𝑃(0)|. By
Theorem 22, we obtain that (1) has a unique one-side periodic
orbit.

4. Double-Period Bifurcation

In this section, we mainly discuss the bifurcation on periodic
orbits. If system (1) has a one-side periodic orbit, without
losing generality, we may assume that 𝑓(𝑡, 0) = 0; that is,
𝑥 = 0 is the one-side periodic orbit. Actually, if 𝑥(𝑡) is a
one-side periodic orbit, then we let 𝑦 = 𝑥 − 𝑥(𝑡); therefore

there exists a transformation of system (1) that

𝑑𝑦

𝑑𝑡
= 𝑓 (𝑡, 𝑦 + 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑥 (𝑡)) ≡ 𝑔 (𝑡, 𝑦) , 𝑡 ̸= 𝜏𝑘,

Δ𝑦|𝑡=𝜏𝑘
= 𝐼𝑘 (𝑦 + 𝑥 (𝜏𝑘)) − 𝐼𝑘 (𝑥 (𝜏𝑘)) ≡ ℎ𝑘 (𝑦) , 𝑘 ∈ Z

+,
(51)

By (H2) and Lemma 10, we know 𝑔(𝑡 + 𝑇, −𝑦) = −𝑔(𝑡, 𝑦),
𝑔(𝑡, 0) = 0, ℎ𝑘+𝑞(𝑦) = ℎ𝑘(𝑦), and 𝜏𝑘+𝑞 − 𝜏𝑘 = 𝑇, for all 𝑘 ∈ Z+.

Next, we consider the following perturbed system of
system (1):

𝑑𝑥

𝑑𝑡
= 𝐹 (𝑡, 𝑥, 𝜀) , 𝑡 ̸= 𝜏𝑘,

Δ𝑥|𝑡=𝜏𝑘
= �̃�𝑘 (𝑥 (𝜏𝑘) , 𝜀) , 𝑘 ∈ Z

+,
(52)

where 𝐹 : R × R × R → R is 𝐶
3 with respect to 𝑥,

continuously differentiable with respect to 𝜀. �̃�𝑘 : R×R → R

is 𝐶
3
(𝑘 ∈ Z+) with respect to 𝑥. Moreover, we suppose

𝐹(𝑡 + 𝑇, −𝑥, 𝜀) = −𝐹(𝑡, 𝑥, 𝜀), �̃�𝑘(𝑥, 𝜀) = �̃�𝑘+𝑞(𝑥, 𝜀), �̃�𝑘(−𝑥) =

−�̃�𝑘(𝑥), for all 𝑘 ∈ Z+, where 𝜏𝑘+𝑞 − 𝜏𝑘 = 𝑇. For 𝜀 = 0, we
have 𝐹(𝑡, 𝑥, 0) = 𝑓(𝑡, 𝑥), �̃�𝑘(𝑥, 0) = 𝐼𝑘(𝑥). These assumptions
mean (H1) and (H2) hold for 𝐹 and �̃�𝑘, for all 𝑘 ∈ Z+.
Furthermore, assume that 𝑥 + �̃�𝑘(𝑥, 𝜀) is strictly increasing,
then by Theorem 22 we have that system (52) has at most a
one-side periodic orbit.

Suppose that (1) has a one-side periodic orbit and
𝑓(𝑡, 0) = 0. Then by using implicit function theorem in the
Poincaré map of system (52), we know that system (52) has a
one-side periodic orbit when |𝜀| is sufficiently small. Now let
𝑥
∗
(𝑡, 𝜀) be the solution of system (52) and 𝑦(𝑡, 𝜀) = 𝑥(𝑡, 𝜀) −

𝑥
∗
(𝑡, 𝜀). Then we can get a transformation of system (52):

𝑑𝑦

𝑑𝑡
= 𝐹 (𝑡, 𝑦 + 𝑥

∗
, 𝜀) − 𝐹 (𝑡, 𝑥

∗
, 𝜀) = 𝐺 (𝑡, 𝑦, 𝜀) , 𝑡 ̸= 𝜏𝑘,

Δ𝑦|𝑡=𝜏𝑘
= �̃�𝑘 (𝑦 + 𝑥

∗
(𝜏𝑘, 𝜀) , 𝜀)

− �̃�𝑘 (𝑥
∗
(𝜏𝑘, 𝜀) , 𝜀) = 𝐻𝑘 (𝑦, 𝜀) , 𝑘 ∈ Z

+.
(53)

By Taylor’s formula, we have

𝐺 (𝑡, 𝑦, 𝜀) = 𝐴1 (𝑡, 𝜀) 𝑦 + 𝐴2 (𝑡, 𝜀) 𝑦
2

+ 𝐴3 (𝑡, 𝜀) 𝑦
3
+ 𝑜 (𝑦

3
) ,

𝐻𝑘 (𝑦, 𝜀) = 𝐵𝑘1 (𝜀) 𝑦 + 𝐵𝑘3 (𝜀) 𝑦
3
+ 𝑜 (𝑦

3
) ,

(54)

where

𝐴 𝑖 (𝑡, 𝜀) =
1

𝑖!

𝜕
𝑖
𝐹

𝜕𝑥𝑖
(𝑡, 𝑥
∗
, 𝜀) ,

𝐵𝑘𝑗 (𝜀) =
1

𝑗!

𝜕
𝑗
�̃�𝑘

𝜕𝑥𝑗
(𝑥
∗
, 𝜀) ,

𝐴 𝑖 (𝑡 + 𝑇, 𝜀) = (−1)
𝑖−1

𝐴 𝑖 (𝑡, 𝜀) ,

(55)

for 𝑘 ≥ 1, 𝑖 = 1, 2, 3; 𝑗 = 1, 3.
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If 𝜀 = 0, then 𝑥
∗

= 0. So 𝐴 𝑖(𝑡, 0) = (1/𝑖!)(𝜕
𝑖
𝑓/𝜕𝑥
𝑖
)(𝑡, 0)

and 𝐵𝑘𝑗(0) = (1/𝑗!)𝐼
(𝑗)

𝑘
(0), for 𝑘 ≥ 1, 𝑖 = 1, 2, 3, 𝑗 = 1, 3.

Suppose that 𝑦(𝑡, 𝑦0, 𝜀) (𝑡 ≥ 𝑡0) is the solution of system
(53) with the initial value 𝑦(𝑡

+

0
, 𝑦0, 𝜀) = 𝑦0, 𝑃(𝑦0, 𝜀) is the

Poincaré map of system (53). Note

�̃� (𝑦0, 𝜀) = 𝑦 (𝑡0 + 2𝑇
+
, 𝑦0, 𝜀) = 𝑃

2
(𝑦0, 𝜀) . (56)

Without losing generality, let 𝑥∗(𝑡, 𝜀) = 0 is a nonhyperbolic
solution. That is, 𝑃(0, 0) = 0 and (𝜕𝑃/𝜕𝑦0)(0, 0) = −1.

Noting that 𝑃(0, 𝜀) = 0, then by Taylor’s formula, we have

𝑃 (𝑦0, 𝜀) = 𝐴1 (𝜀) 𝑦0 + 𝐴2 (𝜀) 𝑦
2

0
+ 𝐴3 (𝜀) 𝑦

3

0
+ 𝑜 (𝑦

3

0
) , (57)

where 𝐴1(𝜀) = (𝜕𝑃/𝜕𝑦0)(0, 𝜀), 𝐴2(𝜀) = (1/2)(𝜕
2
𝑃/𝜕𝑦
2

0
)(0, 𝜀),

and 𝐴3(𝜀) = (1/6)(𝜕
3
𝑃/𝜕𝑦
3

0
)(0, 𝜀).

Theorem 24. Suppose that 𝑓(𝑡, 0) = 0 and 𝑥 = 0 is a one-
side periodic orbit of system (52)𝜀=0 with 𝑃(0, 0) = 0 and
(𝜕𝑃/𝜕𝑦0)(0, 0) = −1. Let 𝑎∗

3
= (1/6)�̃�



(0, 0). If 𝑎∗
3

̸= 0, then
for |𝜀| sufficiently small and [𝐴1(𝜀) + 1]𝑎

∗

3
> 0 (≤0) implies

that system (52) has a unique (no) two-sides periodic orbit near
𝑥 = 0, except for a one-side periodic orbit 𝑥∗(𝑡, 𝜀).

Proof. As before, we obtain that �̃�(0, 𝜀) = [𝑃

(0, 𝜀)]

2
= 𝐴
2

1
(𝜀):

�̃� (𝑦0, 𝜀) = 𝑃 (𝑃 (𝑦0, 𝜀) , 𝜀)

= 𝐴1 (𝜀) 𝑃 (𝑦0, 𝜀) + 𝐴2 (𝜀) 𝑃
2
(𝑦0, 𝜀)

+ 𝐴3 (𝜀) 𝑃
3
(𝑦0, 𝜀) + 𝑜 (𝑃

3
(𝑦0, 𝜀))

= 𝐴
2

1
(𝜀) 𝑦0 + [𝐴

2

1
(𝜀) + 𝐴1 (𝜀)] 𝐴2 (𝜀) 𝑦

2

0

+ 𝐴1 [𝐴3 (𝜀) + 2𝐴
2

2
(𝜀) + 𝐴

2

1
(𝜀) 𝐴3 (𝜀)] 𝑦

3

0

+ 𝑜 (𝑦
3

0
) .

(58)

By our assumption, we have 𝐴1(𝜀) = −1 + 𝐴


1
(0)𝜀 + 𝑜(𝜀).

Therefore,

�̃� (𝑦0, 𝜀) =
𝑃
2
(𝑦0, 𝜀) − 𝑦0

𝑦0

= 𝑑0 (𝜀) + 𝑑1 (𝜀) 𝑦0 + 𝑑2 (𝜀) 𝑦
2

0
+ 𝑜 (𝑦

2

0
) ,

(59)

where

𝑑0 (𝜀) = 𝐴
2

1
(𝜀) − 1 = −2 [𝐴1 (𝜀) + 1] + 𝑜 ([𝐴1 (𝜀) + 1]) ,

𝑑1 (𝜀) = [𝐴
2

1
(𝜀) + 𝐴1 (𝜀)] 𝐴2 (𝜀)

= 𝑂 (𝐴1 (𝜀) + 1) = −𝐴


1
(0) 𝐴2 (0) 𝜀 + 𝑜 (𝜀) ,

𝑑2 (𝜀) = 𝐴1 (𝜀) [𝐴3 (𝜀) + 2𝐴
2

2
(𝜀) + 𝐴

2

1
(𝜀) 𝐴3 (𝜀)]

= − 2 [𝐴
2

2
(0) + 𝐴3 (0)] + 𝑜 (1) = 𝑎

∗

3
+ 𝑜 (1) .

(60)

By the implicit function theorem, there exists a unique
function 𝑦0 = 𝑦1(𝜀), 𝑦1(0) = 0 such that (𝜕�̃�/𝜕𝑦0)(𝑦1(𝜀), 𝜀) =

0. Therefore, for |𝜀| sufficiently small, there is a unique
extremal point 𝑦0 = 𝑦1(𝜀) near 𝑥 = 0. Moreover, the function
�̃�(𝑦0, 𝜀) takes its minimum (maximum) Δ(𝜀) ≡ �̃�(𝑦1(𝜀), 𝜀)

only if 𝑎∗
3
> 0 (<0):

Δ (𝜀) = 𝑑0 (𝜀) + 𝑜 (𝜀) = 𝐴
2

1
(𝜀) − 1 = −2 [𝐴1 (𝜀) + 1] + 𝑜 (𝜀) .

(61)

Without loss of generality, we can let 𝑎∗
3

= 𝑑2(0) > 0 and
then 𝑦0 = 0 is the minimum point of 𝑑(𝑦0, 0). So there exists
𝜀0 > 0, such that

�̃� (±𝜀0, 0) > 0,
𝜕�̃�

𝜕𝑦0

(𝜀0, 0) > 0,
𝜕�̃�

𝜕𝑦0

(−𝜀0, 0) < 0,

(62)

and for |𝑦0| ≤ 𝜀0, (𝜕
2
�̃�/𝜕𝑦
2

0
) (𝑦0, 0) > 0 exists.Therefore, there

exists a 𝛿0, such that, for |𝜀| ≤ 𝛿0, we have

�̃� (±𝜀0, 𝜀) > 0,
𝜕�̃�

𝜕𝑦0

(𝜀0, 𝜀) > 0,
𝜕�̃�

𝜕𝑦0

(−𝜀0, 𝜀) < 0.

(63)

For |𝜀| ≤ 𝛿0 and |𝑦0| ≤ 𝜀0, we have

𝜕
2
�̃�

𝜕𝑦2
0

(𝑦0, 𝜀) > 0. (64)

From (64), for any |𝜀| ≤ 𝛿0, we have

Δ (𝜀) = min
|𝑦0|≤𝜀0

�̃� (𝑦0, 𝜀) , −𝜀0 < 𝑦1 (𝜀) < 𝜀0. (65)

And for 𝑦0 ∈ (−𝜀0, 𝑦1(𝜀))(∈ (𝑦1(𝜀), 𝜀0)),

𝜕�̃�

𝜕𝑦0

(𝑦0, 𝜀) < 0 (> 0) . (66)

If Δ(𝜀) > 0, then for all |𝜀| ≤ 𝛿0 and |𝑥0| < 𝜀0, we have
0 < Δ(𝜀) ≤ �̃�.

If Δ(𝜀) = 0, then 𝑦0 = 𝑦1(𝜀) is the unique solution of
function �̃�.

If Δ(𝜀) < 0, then there exist a unique 𝑦1(𝜀) and a unique
𝑦2(𝜀), such that

�̃� (𝑦𝑖 (𝜀) , 𝜀) = 0,
𝜕�̃�

𝜕𝑦0

(𝑦𝑖 (𝜀) , 𝜀) ̸= 0, 𝑖 = 1, 2. (67)

Thus system (52) has two (no) two-side periodic orbits if
𝑎
∗

3
Δ(𝜀) < 0 (≥0). The conclusion is completed (see Figures

4, 5, and 6).
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𝑑

−𝜀0 𝜀0 𝑥0

Δ > 0

𝑂

Figure 4

𝑑

−𝜀0 𝜀0 𝑥0

Δ = 0

𝑂

Figure 5

Now we shall calculate 𝐴1(0) and 𝑎
∗

3
in the simplest case,

let 𝑞 = 1. For 𝑞 > 1 we can calculate them in the same way.
In this case, 𝐼𝑘 ≡ 𝐼 and 𝐵𝑘𝑖(𝑦0, 𝜀) = 𝐵𝑖(𝑦0, 𝜀), 𝑖 = 1, 3. Suppose
𝑦(𝑡, 𝑦0, 𝜀) (𝑡 ≤ 𝑡0) is the solution to system (53) with initial
value 𝑦(𝑡0+, 𝑦0, 𝜀) = 𝑦0. For 𝑦(𝑡, 0, 𝜀) = 0, let

𝑦 (𝑡, 𝑦0, 𝜀) = 𝜑1 (𝑡, 𝜀) 𝑦0 + 𝜑2 (𝑡, 𝜀) 𝑦
2

0

+ 𝜑3 (𝑡, 𝜀) 𝑦
3

0
+ 𝑜 (𝑦

3

0
) , 𝑡 ≤ 𝑡0.

(68)

Then for 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇], taking 𝑦(𝑡, 𝑦0, 𝜀) into system
(53), we can obtain 𝜑1, 𝜑2, and 𝜑3 satisfying the following
equations:

𝜑


1
(𝑡, 𝜀) = 𝐴1 (𝑡, 𝜀) 𝜑1 (𝑡, 𝜀) ,

𝜑


2
(𝑡, 𝜀) = 𝐴1 (𝑡, 𝜀) 𝜑2 (𝑡, 𝜀) + 𝐴2 (𝑡, 𝜀) 𝜑

2

1
(𝑡, 𝜀) ,

𝜑


3
(𝑡, 𝜀) = 𝐴1 (𝑡, 𝜀) 𝜑3 (𝑡, 𝜀) + 2𝐴2 (𝑡, 𝜀) 𝜑1 (𝑡, 𝜀) 𝜑2 (𝑡, 𝜀)

+ 𝜑3 (𝑡, 𝜀) 𝜑
3

1
(𝑡, 𝜀) .

(69)

For 𝑦(0, 𝑦0, 𝜀) = 𝑦0, we know

𝜑1 (0, 𝜀) = 1, 𝜑2 (0, 𝜀) = 𝜑3 (0, 𝜀) = 0. (70)

𝑑

−𝜀0 𝜀0 𝑥0

Δ < 0

𝑂

Figure 6

From (69) and (70), we have

𝜑1 (𝑡, 𝜀) = exp∫

𝑡

𝑡0

𝐴1 (𝑢, 𝜀) 𝑑𝑢,

𝜑2 (𝑡, 𝜀) = 𝜑1 (𝑡, 𝜀) ∫

𝑡

𝑡0

𝐴2 (𝑠, 𝜀) 𝜑1 (𝑠, 𝜀) 𝑑𝑠,

𝜑3 (𝑡, 𝜀) = 𝜑1 (𝑡, 𝜀)

× ∫

𝑡

𝑡0

[2𝐴2 (𝑠, 𝜀) 𝜑2 (𝑠, 𝜀) + 𝐴3 (𝑠, 𝜀) 𝜑
2

1
(𝑠, 𝜀)] 𝑑𝑠.

(71)

For 𝑡0 < 𝑡 < 𝑡0 + 𝑇, as we know, we get

𝑦 (𝑡0 + 𝑇
+
, 𝑦0, 𝜀) = [1 + 𝐵1 (𝜀)] 𝑦 (𝑡0 + 𝑇, 𝜀)

+ 𝐵2 (𝜀) 𝑦
2
(𝑡0 + 𝑇, 𝜀)

+ 𝐵3 (𝜀) 𝑦
3
(𝑡0 + 𝑇, 𝜀)

+ 𝑜 (𝑦
3
(𝑡0 + 𝑇, 𝜀))

= 𝜑1 (𝑡0 + 𝑇
+
, 𝜀) 𝑦0 + 𝜑2 (𝑡0 + 𝑇

+
, 𝜀) 𝑦
2

0

+ 𝜑3 (𝑡0 + 𝑇
+
, 𝜀) 𝑦
3

0
+ 𝑜 (𝑦

3

0
) ,

(72)

where

𝜑1 (𝑡0 + 𝑇
+
, 𝜀) = [1 + 𝐵1 (𝜀)] 𝜑1 (𝑡0 + 𝑇, 𝜀) ,

𝜑2 (𝑡0 + 𝑇
+
, 𝜀) = [1 + 𝐵1 (𝜀)] 𝜑2 (𝑡0 + 𝑇, 𝜀)

+ 𝐵2 (𝜀) 𝜑
2

1
(𝑡0 + 𝑇, 𝜀) ,

𝜑3 (𝑡0 + 𝑇
+
, 𝜀) = [1 + 𝐵1 (𝜀)] 𝜑3 (𝑡0 + 𝑇, 𝜀)

+ 2𝐵2 (𝜀) 𝜑1 (𝑡0 + 𝑇, 𝜀) 𝜑2 (𝑡0 + 𝑇, 𝜀)

+ 𝐵3 (𝜀) 𝜑
3
(𝑡0 + 𝑇, 𝜀) .

(73)

Clearly, 𝐴1(𝜀) = −𝜑1(𝑡0 + 𝑇
+
, 𝜀), 𝐴2(𝜀) = −𝜑2(𝑡0 + 𝑇

+
, 𝜀), and

𝐴3(𝜀) = −𝜑3(𝑡0 + 𝑇
+
, 𝜀).
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Moreover, we know

∫

𝑡0+𝑇

𝑡0

𝐴2 (𝑠, 𝜀) 𝜑2 (𝑠, 𝜀) 𝑑𝑠

= ∫

𝑡0+𝑇

𝑡0

𝐴2 (𝑠, 𝜀) 𝜑1 (𝑠, 𝜀)

× [∫

𝑠

𝑡0

𝐴2 (𝑢, 𝜀) 𝜑1 (𝑢, 𝜀) 𝑑𝑢] 𝑑𝑠

=
1

2
[∫

𝑡0+𝑇

𝑡0

𝐴2 (𝑢, 𝜀) 𝜑1 (𝑢, 𝜀) 𝑑𝑢]

2

.

(74)

Denote Φ(𝜀) = ∫
𝑡0+𝑇

𝑡0
𝐴2(𝑡, 𝜀)𝜑1(𝑡, 𝜀)𝑑𝑡 and 𝜙1(𝜀) = 𝜑1(𝑡0 +

𝑇, 𝜀). Then,

𝜑2 (𝑡0 + 𝑇, 𝜀) = 𝜙1 (𝜀)Φ (𝜀) ,

𝜑3 (𝑡0 + 𝑇, 𝜀) = 𝜙1 (𝜀)Φ
2
(𝜀) + ∫

𝑡0+𝑇

𝑡0

𝐴3 (𝑠, 𝜀) 𝜑
2

1
(𝑠, 𝜀) 𝑑𝑠.

(75)

Then we can obtain

𝐴1 (𝜀) = − [1 + 𝐵1 (𝜀)] exp(∫

𝑡0+𝑇

𝑡0

𝐴1 (𝑢, 𝜀) 𝑑𝑢) ,

𝐴2 (𝜀) = − [1 + 𝐵1 (𝜀)] 𝜙1 (𝜀)Φ (𝜀) ,

𝐴3 (𝜀) = − [1 + 𝐵1 (𝜀)] 𝜙1 (𝜀)

× [Φ
2
(𝜀) + ∫

𝑡0+𝑇

𝑡0

𝐴3 (𝑠, 𝜀) 𝜑
2

1
(𝑠, 𝜀) 𝑑𝑠]

− 𝐵3 (𝜀) 𝜙
3

1
(𝜀) .

(76)

For 𝐴1(0) = −1, we can have 𝜙1(0) = 1/(1 + 𝐵1(0)). Then

𝐴2 (0) = −Φ (0) , (77)

𝐴3 (0) = −Φ
2
(0) −

𝐵3 (0)

[1 + 𝐵1 (0)]
3
− Δ (0) , (78)

where Δ(𝜀) = ∫
𝑡0+𝑇

𝑡0
𝐴3(𝑠, 𝜀)𝜑

2

1
(𝑠, 𝜀)𝑑𝑠 =

∫
𝑡0+𝑇

𝑡0
𝐴3(𝑠, 𝜀) exp[2 ∫

𝑠

𝑡0
𝐴1(𝑢, 𝜀)𝑑𝑢]𝑑𝑠. Therefore,

𝑎
∗

3
= −2 [𝐴

2

2
(0) + 𝐴3 (0)] = 2Δ (0) +

2𝐵3 (0)

[1 + 𝐵1 (0)]
3
. (79)

By considering (76)–(79), we can easily have the following
theorem when 𝑞 = 1.

Theorem 25. Suppose that 𝑓(𝑡, 0) = 0 and 𝑥 = 0 is a one-
side periodic solution of system (52)𝜀=0 with 𝑃(0, 0) = 0 and
(𝜕𝑃/𝜕𝑦0)(0, 0) = −1. Let

𝐴1 (𝜀) = − (1 + �̃�


(𝑥
∗
, 𝜀)) exp∫

𝑡0+𝑇

𝑡0

𝐹𝑥 (𝑡, 𝑥
∗
, 𝜀) 𝑑𝑡,

𝑎
∗

3
=

1

6
∫

𝑡0+2𝑇

𝑡0

𝑓


𝑥
(𝑠, 0) 𝑒

2 ∫
𝑠

𝑡0
𝑓𝑥(𝑢,0)𝑑𝑢

𝑑𝑠 +
2�̃�


(0)

[1 + �̃�


(0)]
3
.

(80)

If 𝑎∗
3

̸= 0, then for |𝜀| sufficiently small, [𝐴1(𝜀) + 1]𝑎
∗

3
> 0 (≤0)

implies that system (52) has a unique (no) two-side periodic
orbit of near 𝑥 = 0, except for a one-side periodic orbit 𝑥∗(𝑡, 𝜀).

By virtue of Theorem 25, we can have the following
conclusion.

Corollary 26. (i) Let 𝐴1(0) = −1, 𝑎∗
3

> 0 (<0). Then 𝑥 = 0 is
a nonhyperbolic one-side periodic orbit of system (48) (𝜀 = 0),
which is asymptotically stable (unstable). (ii) Let 𝐴1(0) = −1,
[𝐴1(𝜀) + 1]𝑎

∗

3
> 0, 0 < |𝜀| ≪ 1. Then (𝐴1(𝜀) + 1) < 0 (>0),

𝑥
∗
(𝑡, 𝜀) is a hyperbolic one-side periodic orbit of system (48)

(𝜀 = 0), which is asymptotically stable (unstable. Moreover, the
two-side periodic orbit is unstable (asymptotically stable) near
𝑥 = 0.

Finally, we give an example to illustrate it.

Example 27. Consider

𝑑𝑥

𝑑𝑡
= 𝜀
2
𝑥 + |𝜀| (sin 𝑡) 𝑥

2
− (1 − 2 cos 2𝑡) 𝑥3, 𝑡 ̸= 𝑘𝜋,

Δ𝑥|𝑡=𝑘𝜋 = −𝜀𝑥 (𝑘𝜋) + (𝑏3 + 𝜀) 𝑥
3
(𝑘𝜋) , 𝑘 ∈ Z

+
,

(81)

where |𝜀| > 0. It is obvious that for |𝜀| > 0 sufficiently small,
𝑥 − 𝜀𝑥 + (𝑏3 + 𝜀)𝑥

3 is strictly increasing, and then 𝑥
∗
(𝑡, 𝜀) = 0

is the unique 𝜋-periodic solution. By direct computation, we
have𝐴1(𝑡, 𝜀) = 𝜀

2,𝐴2(𝑡, 𝜀) = |𝜀|(sin 𝑡), 𝐴3(𝑡, 𝜀) = 2 cos 2𝑡 − 1,
𝐵1(𝜀) = −𝜀, and 𝐵3(𝜀) = 𝑏3 + 𝜀. Therefore, 𝐴1(𝜀) + 1 = (𝜀 −

1)𝑒
𝜀
2
𝜋
+1 = 𝜀+𝑜(𝜀), 𝑎∗

3
= 2𝑏3 −𝜋. It follows fromTheorem 25

that system (81) has two (no) 2𝜋-periodic solution of near
𝑥 = 0 if |𝜀| is sufficiently small and 𝑎

∗

3
𝜀 > 0 (≤0).
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Bendixson theorem in impulsive semidynamical systems,” Jour-
nal of Differential Equations, vol. 244, no. 9, pp. 2334–2349,
2008.

[12] J. W. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable
walking for biped robots: analysis via systems with impulse
effects,” IEEE Transactions on Automatic Control, vol. 46, no. 1,
pp. 51–64, 2001.

[13] I. A.Hiskens, “Stability of hybrid system limit cycles: application
to the Compass Gait Biped Robot,” in Proceedings of the 40th
lEEE Conference on Decision and Control, Oriando, Fla, USA,
December 2001.

[14] B. Morris and J. W. Grizzle, “Hybrid invariant manifolds
in systems with impulse effects with application to periodic
locomotion in bipedal robots,” IEEE Transactions on Automatic
Control, vol. 54, no. 8, pp. 1751–1764, 2009.

[15] K. G. Dishlieva, “Differentiability of solutions of impulsive dif-
ferential equations with respect to the impulsive perturbations,”
Nonlinear Analysis: Real World Applications, vol. 12, no. 6, pp.
3541–3551, 2011.

[16] G. Jiang and Q. Lu, “Impulsive state feedback control of a
predator-prey model,” Journal of Computational and Applied
Mathematics, vol. 200, no. 1, pp. 193–207, 2007.

[17] L. Nie, Z. Teng, L. Hu, and J. Peng, “Qualitative analysis
of a modified Leslie-Gower and Holling-type II predator-
prey model with state dependent impulsive effects,” Nonlinear
Analysis: Real World Applications, vol. 11, no. 3, pp. 1364–1373,
2010.

[18] Z. Teng, L. Nie, and X. Fang, “The periodic solutions for general
periodic impulsive population systems of functional differential
equations and its applications,” Computers & Mathematics with
Applications, vol. 61, no. 9, pp. 2690–2703, 2011.

[19] M. Han and S. Gu, Theory and Method of Nonlinear System,
Science Press, Beijing, China, 2001.

[20] Z. Hu andM. Han, “Periodic solutions and bifurcations of first-
order periodic impulsive differential equations,” International
Journal of Bifurcation and Chaos in Applied Sciences and
Engineering, vol. 19, no. 8, pp. 2515–2530, 2009.


