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The homotopy decomposition method, a relatively new analytical method, is used to solve the 2D and 3D Poisson equations and
biharmonic equations.Themethod is chosen because it does not require the linearization or assumptions of weak nonlinearity, the
solutions are generated in the form of general solution, and it is more realistic compared to the method of simplifying the physical
problems.Themethod does not require any corrected function or any Lagrangemultiplier and it avoids repeated terms in the series
solutions compared to the existing decompositionmethod including the variational iterationmethod, the Adomian decomposition
method, and Homotopy perturbation method. The approximated solutions obtained converge to the exact solution as N tends to
infinity.

1. Introduction

The numerical solution of Poisson equations and biharmonic
equations is an important problem in numerical analysis.
A vast arrangement of investigating effort has been pub-
lished on the development of numerical solution of Poisson
equations and biharmonic equations. The finite difference
schemes of second and fourth order for the solution of
Poisson’s equation in polar coordinates have been derived by
Mittal andGahlaut [1]. A numericalmethod to interpolate the
source terms of Poisson’s equation by using B-spline approx-
imation has been devised by Perrey-Debain and ter Morsche
[2]. Sutmann and Steffen [3] proposed compact approxima-
tion schemes for the Laplace operator of fourth and sixth
order; the schemes are based on a Padé approximation of the
Taylor expansion for the discretized Laplace operator. Ge [4]
used fourth-order compact difference discretization scheme
with unequal mesh sizes in different coordinate directions to
solve a 3DPoisson equation on a cubic domain. Gumerov and
Duraiswami [5] developed a complete translation theory for

the biharmonic equation in three dimensions. Khattar et al.
[6] derived a fourth-order finite difference approximation
based on arithmetic average discretization for the solution
of three-dimensional nonlinear biharmonic partial differen-
tial equations on a 19-point compact stencil using coupled
approach. Altas et al. [7] used multigrid and precondi-
tioned Krylov iterative methods to solve three-dimensional
nonlinear biharmonic partial differential equations. Jeon
[8] derived scalar boundary integral equation formulas for
both interior and exterior biharmonic equations with the
Dirichlet boundary data. A spectral collocation method for
numerically solving two-dimensional biharmonic boundary-
value problems has been reported in [9]. An indirect radial-
basis-function collocation method for numerically solving
biharmonic boundary-value problems has been reported in
[10]. A high-order boundary integral equationmethod for the
solution of biharmonic equations has been presented in [11].
A Galerkin boundary node method for solving biharmonic
problems was developed in [12]. An integral collocation
approach based on Chebyshev polynomials for numerically
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solving biharmonic equations for the case of irregularly
shaped domains has been developed by Mai-Duy et al.
[13]. A numerical method, based on neural-network-based
functions, for solving partial differential equations has been
in [14]. Mai-Duy and Tanner [15] presented a collocation
method based on a Cartesian grid and a 1D integrated radial
basis function scheme for numerically solving partial differ-
ential equations in rectangular domains and Haar wavelet
presented in [16]. The aim of this paper is to solve these
problems via the homotopy decomposition method.

2. Method

In this study we follow the method of [17–20]. In order to
illustrate the basic idea of this method we consider a gen-
eral nonlinear nonhomogeneous partial differential equation
with initial conditions of the following form

𝜕
𝑚

𝑈 (𝑥, 𝑡)

𝜕𝑡𝑚
= 𝐿 (𝑈 (𝑥, 𝑡)) + 𝑁 (𝑈 (𝑥, 𝑡)) + 𝑓 (𝑥, 𝑡) ,

𝑚 = 1, 2, 3, . . . ,

(1)

subject to the initial conditions

𝜕
𝑖

𝑈 (𝑥, 0)

𝜕𝑡𝑖
= 𝑓
𝑚
(𝑥) ,

𝜕
𝑚−1

𝑈 (𝑥, 0)

𝜕𝑡𝑚−1
= 0,

𝑖 = 0, 1, 2, . . . , 𝑚 − 2,

(2)

where 𝑓 is a known function,𝑁 is the general nonlinear dif-
ferential operator, and 𝐿 represents a linear differential oper-
ator. The method’s first step here is to apply the inverse
operator 𝜕𝑚/𝜕𝑡𝑚 of on both sides (1) to obtain

𝑈 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!

𝑑
𝑘

𝑢 (𝑥, 0)

𝑑𝑡𝑘

+ ∫

𝑡

0

∫

𝑡
1

0

⋅ ⋅ ⋅ ∫

𝑡
𝑚−1

0

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+ 𝑓 (𝑥, 𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡.

(3)

The multi-integrals in (3) can be transformed to

∫

𝑡

0

∫

𝑡
1

0

⋅ ⋅ ⋅ ∫

𝑡
𝑚−1

0

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+ 𝑓 (𝑥, 𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡
1

=
1

(𝑚 − 1)!
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+ 𝑓 (𝑥, 𝜏) 𝑑𝜏.

(4)
So that (3) can be reformulated as
𝑈 (𝑥, 𝑡)

=

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
{
𝑑
𝑘

𝑢 (𝑥, 0)

𝑑𝑡𝑘
}

+
1

(𝑚 − 1)!
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+ 𝑓 (𝑥, 𝜏) 𝑑𝜏.

(5)

Using the homotopy scheme the solution of the previous
integral equation is given in a series form as

𝑈(𝑥, 𝑡, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝑡) ,

𝑈 (𝑥, 𝑡) = lim
𝑝→1

𝑈 (𝑥, 𝑡, 𝑝)

(6)

and the nonlinear term can be decomposed as

𝑁𝑈(𝑟, 𝑡) =

∞

∑

𝑛=1

𝑝
𝑛

H
𝑛
(𝑈) , (7)

where 𝑝 ∈ (0, 1] is an embedding parameter. H
𝑛
(𝑈) is He’s

polynomials [21] that can be generated by

H
𝑛
(𝑈
0
, . . . , 𝑈

𝑛
) =

1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[

[

𝑁(

𝑛

∑

𝑗=0

𝑝
𝑗

𝑈
𝑗
(𝑥, 𝑡))]

]

,

𝑛 = 0, 1, 2 . . . .

(8)

The homotopy decomposition method is obtained by the
graceful coupling of decomposition method with He’s poly-
nomials and is given by
∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝑡)

= 𝑇 (𝑥, 𝑡)

+ 𝑝
1

(𝑚 − 1)!
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

× [𝑓 (𝑥, 𝜏) + 𝐿(

∞

∑

𝑛=0

𝑝
𝑛

𝑈
𝑛
(𝑥, 𝜏))

+

∞

∑

𝑛=0

𝑝
𝑛

H
𝑛
(𝑈)] 𝑑𝜏

(9)
with

𝑇 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
{
𝑑
𝑘

𝑢 (𝑥, 𝑡)

𝑑𝑡𝑘
| 𝑡 = 0} . (10)

Comparing the terms of the same power of 𝑝 gives the solu-
tions of various orders.The initial guess of the approximation
is 𝑇(𝑥, 𝑡). Some further related results can be seen in [22–25].

Lemma 1 (see [17]). The complexity of the homotopy decom-
position method is of order 𝑂(𝑛).

Proof. Thenumber of computations including product, addi-
tion, subtraction, and division are as follows.

In step 2
𝑈
0
: 0 because it is obtained directly from the initial

conditions
𝑈
1
: 3

...
𝑈
𝑛
: 3.

Now in step 4 the total number of computations is equal to
∑
𝑛

𝑗=0
𝑈
𝑗
(𝑥, 𝑡) = 3𝑛 = 𝑂(𝑛).
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3. Solutions of the Main Problems

Problem 1. Consider the following equation

𝜕
2

𝑢

𝜕𝑥2
+
𝜕
2

𝑢

𝜕𝑦2
= sin (𝜋𝑥) sin (𝜋𝑦) ;

𝑢 (𝑥, 𝑦) = 0 along the boundaries, 0 ≤ 𝑥, 𝑦 ≤ 1;

𝑢
𝑥
(0, 𝑦) = −

sin (𝑦𝜋)
2𝜋

.

(11)

The exact solution of the previous equation is given as

𝑢 (𝑥, 𝑦) =
sin (𝑥𝜋) sin (𝜋𝑦)

−2𝜋2
. (12)

In the view of the homotopy decomposition method, (11) can
be first transformed to

𝑢 (𝑥, 𝑦) = 𝑢 (0, 𝑦) −
sin (𝜋𝑦)
2𝜋

𝑥

+ ∫

𝑥

0

(𝑥 − 𝜏) [sin (𝜋𝜏) sin (𝜋𝑦) − 𝑢
𝑦𝑦
(𝜏, 𝑦)] ,

𝑢 (𝑥, 𝑦, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑦) .

(13)

Following the decomposition techniques, we obtain the fol-
lowing equation

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑦)

= 𝑇 (𝑥, 𝑦)

+ 𝑝∫

𝑥

0

(𝑥 − 𝜏) [ sin (𝜋𝜏) sin (𝜋𝑦)

−
𝜕
2

𝜕𝑦2
[

∞

∑

𝑛=0

𝑝
𝑛

𝑢
𝑛
(𝑥, 𝑦)]] .

(14)

Comparing the terms of the same power of 𝑝 leads to

𝑝
0

: 𝑢
0
(𝑥, 𝑦) = −

sin (𝜋𝑦)
2𝜋

𝑥,

𝑝
1

: 𝑢
1
(𝑥, 𝑦) = ∫

𝑥

0

(𝑥 − 𝜏) [sin (𝜋𝜏) sin (𝜋𝑦) − 𝜕
2

𝜕𝑦2
[𝑢
0
]] 𝑑𝜏,

𝑢
1
(𝑥, 𝑦)=0 along the boundaries,

𝑝
2

: 𝑢
2
(𝑥, 𝑦) = ∫

𝑥

0

(𝑥 − 𝜏) [−
𝜕
2

𝜕𝑦2
[𝑢
1
]] 𝑑𝜏,

𝑝
3

: 𝑢
3
(𝑥, 𝑦) = ∫

𝑥

0

(𝑥 − 𝜏) [−
𝜕
2

𝜕𝑦2
[𝑢
2
]] 𝑑𝜏,

𝑝
𝑛

: 𝑢
𝑛
(𝑥, 𝑦) = ∫

𝑥

0

(𝑥 − 𝜏) [−
𝜕
2

𝑢
𝑛−1

𝜕𝑦2
]𝑑𝜏,

𝑢
𝑛
(𝑥, 𝑦) = 0 along the boundaries.

(15)

The following solutions are obtained:

𝑢
0
(𝑥, 𝑦) = −

sin (𝜋𝑦)
2𝜋

𝑥,

𝑢
1
(𝑥, 𝑦) = [

𝑥

𝜋
−

𝜋𝑥
3

2 × 3!
] sin (𝜋𝑦) −

sin (𝜋𝜏) sin (𝜋𝑦)
𝜋2

,

𝑢
2
(𝑥, 𝑦) = [−

𝑥

𝜋
+
𝜋𝑥
3

6
−
𝜋
3

𝑥
5

240
]sin (𝜋𝑦)+

sin (𝜋𝜏) sin (𝜋𝑦)
𝜋2

,

𝑢
3
(𝑥, 𝑦) = [

𝑥

𝜋
−
𝜋𝑥
3

6
+
𝜋
3

𝑥
5

120
−
𝜋
5

𝑥
7

10080
] sin (𝜋𝑦)

−
sin (𝜋𝜏) sin (𝜋𝑦)

𝜋2
,

𝑢
4
(𝑥, 𝑦)

= [−
𝑥

𝜋
+
𝜋𝑥
3

6
−
𝜋
3

𝑥
5

120
+
𝜋
5

𝑥
7

5040
−

𝜋
7

𝑥
9

725760
] sin (𝜋𝑦)

+
sin (𝜋𝜏) sin (𝜋𝑦)

𝜋2
,

𝑢
5
(𝑥, 𝑦)

=[
𝑥

𝜋
−
𝜋𝑥
3

6
+
𝜋
3

𝑥
5

120
−
𝜋
5

𝑥
7

5040
+
𝜋
7

𝑥
9

362880
−

𝜋
9

𝑥
11

79833600
] sin (𝜋𝑦)

−
sin (𝜋𝜏) sin (𝜋𝑦)

𝜋2
,

𝑢
6
(𝑥, 𝑦)

= [−
𝑥

𝜋
+
𝜋𝑥
3

6
−
𝜋
3

𝑥
5

120
+
𝜋
5

𝑥
7

5040
−

𝜋
7

𝑥
9

362880

+
𝜋
9

𝑥
11

39916800
−

𝜋
11

𝑥
13

12454041600
] sin (𝜋𝑦)

+
sin (𝜋𝜏) sin (𝜋𝑦)

𝜋2
,

𝑢
7
(𝑥, 𝑦)

= [
𝑥

𝜋
−
𝜋𝑥
3

6
+
𝜋
3

𝑥
5

120
−
𝜋
5

𝑥
7

5040
+

𝜋
7

𝑥
9

362880
−

𝜋
9

𝑥
11

39916800

+
𝜋
11

𝑥
13

6227020800
−

𝜋
13

𝑥
15

2615348736000
] sin (𝜋𝑦)

−
sin (𝜋𝜏) sin (𝜋𝑦)

𝜋2
.

(16)
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Table 1: Evaluation of numerical errors for𝑁 = 4.

𝑥 𝑌 𝑢(𝑥, 𝑦) exact 𝑢(𝑥, 𝑦) 𝑁 = 4 Error

0.25

0.25 −0.0253303 −0.0253303 6.27007 ⋅ 10
−11

0.5 −0.0358224 −0.0358224 8.86722 ⋅ 10
−11

0.75 −0.0253303 −0.0253303 6.27007 ⋅ 10
−11

0.95 −0.00560387 −0.00560387 1.38714 ⋅ 10
−11

0.5

0.25 −0.0358224 −0.0358224 1.26904 ⋅ 10
−11

0.5 −0.0506606 −0.0506604 1.79469 ⋅ 10
−7

0.75 −0.0358224 −0.0358223 1.26904 ⋅ 10
−11

0.95 −0.00792506 −0.00792506 2.80752 ⋅ 10
−8

0.75

0.25 −0.0253303 −0.0253195 1.07646 ⋅ 10
−5

0.5 −0.0358224 −0.0358072 1.52235 ⋅ 10
−5

0.75 −0.0253303 −0.0253195 1.07646 ⋅ 10
−5

0.95 −0.00560387 −0.00560148 2.38148 ⋅ 10
−6

0.95

0.25 −0.00560387 −0.00546191 0.000141956
0.5 −0.00792506 −0.00772431 000200756
0.75 −0.00560387 −0.00546191 0.000141956
0.95 −0.00123975 −0.00120835 3.14051 ⋅ 10

−5

In the same manner one can obtain the rest of the compo-
nents. But for eight terms were computed and the asymptotic
solution is given by

𝑢
𝑁=8

(𝑥, 𝑦)

= [
𝑥

2𝜋
−

𝜋𝑥
3

2 × 3!
+
𝜋
3

𝑥
5

2 × 5!
−
𝜋
5

𝑥
7

2 × 7!
+
𝜋
7

𝑥
9

2 × 9!

−
𝜋
9

𝑥
11

2 × 11!
+
𝜋
11

𝑥
13

2 × 13!
−
𝜋
13

𝑥
15

2 × 15!
] sin (𝜋𝑦)

−
1

𝜋2
sin (𝑥𝜋) sin (𝑦𝜋) .

(17)

Therefore in general for any𝑁 > 8 we have

𝑢
𝑁=𝑛

(𝑥, 𝑦) = [
1

2𝜋2

𝑁

∑

𝑛=0

(−1)
𝑛

(𝑥𝜋)
2𝑛+1

(2𝑛 + 1)!
] sin (𝜋𝑦)

−
1

𝜋2
sin (𝑥𝜋) sin (𝑦𝜋) ,

lim
𝑁→∞

𝑢
𝑁
(𝑥, 𝑦) =

1

2𝜋2
sin (𝜋𝑥) sin (𝜋𝑦)

−
1

𝜋2
sin (𝑥𝜋) sin (𝑦𝜋)

= −
1

2𝜋2
sin (𝑥𝜋) sin (𝑦𝜋) .

(18)

This is the exact solution of the problem. Figures 1 and 2 show
the comparison of the exact solution and the approximated
one for 𝑁 = 4. The approximate solution and the exact
solution are compared in Figures 1 and 2, respectively.

The numerical errors for𝑁 = 4 are evaluated in Table 1.
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Figure 1: Exact solution.
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Figure 2: Approximated solution for the 4 first terms.

Problem 2. Consider 3D Poisson equation:

𝜕
2

𝑢

𝜕𝑥2
+
𝜕
2

𝑢

𝜕𝑦2
+
𝜕
2

𝑢

𝜕𝑧2
= sin (𝜋𝑥) sin (𝜋𝑦) sin (𝜋𝑧) ,

𝑢 (𝑥, 𝑦, 𝑧) = 0 along the boundaries, 0 ≤ 𝑥, 𝑦 ≤ 1.

(19)

Following the discussion presented earlier we obtain the fol-
lowing set of integral equations:

𝑝
0

: 𝑢
0
(𝑥, 𝑦) = −

sin (𝜋𝑦) sin (𝜋𝑧)
3𝜋

𝑥,

𝑝
1

: 𝑢
1
(𝑥, 𝑦)

= ∫

𝑥

0

(𝑥 − 𝜏) [sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧) −
𝜕
2

𝑢
0

𝜕𝑦2
]𝑑𝜏,

𝑝
𝑛

: 𝑢
𝑛
(𝑥, 𝑦) = ∫

𝑥

0

(𝑥 − 𝜏) [−
𝜕
2

𝑢
𝑛−1

𝜕𝑦2
]𝑑𝜏,

𝑢
𝑛
(𝑥, 𝑦) = 0 along the boundaries, 𝑛 ≥ 2.

(20)
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The following solutions are obtained:

𝑢
0
(𝑥, 𝑦, 𝑧) = −

sin (𝜋𝑦) sin (𝜋𝑧)
3𝜋

𝑥,

𝑢
1
(𝑥, 𝑦, 𝑧) = [

1

𝜋
𝑥 −

𝜋𝑥
3

9
] sin (𝜋𝑦) sin (𝜋𝑧)

−
sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

𝜋2
,

𝑢
2
(𝑥, 𝑦, 𝑧) = [−

2

𝜋
𝑥 +

𝜋𝑥
3

9
−
𝜋
3

𝑥
5

90
] sin (𝜋𝑦) sin (𝜋𝑧)

+
2 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

𝜋2
,

𝑢
3
(𝑥, 𝑦, 𝑧)

= [
4

𝜋
𝑥 −

2𝜋𝑥
3

3
+
𝜋
3

𝑥
5

30
−
𝜋
5

𝑥
7

1890
] sin (𝜋𝑦) sin (𝜋𝑧)

−
4 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

𝜋2
,

𝑢
4
(𝑥, 𝑦, 𝑧)

= [−
8

𝜋
𝑥 +

4𝜋𝑥
3

3
−
𝜋
3

𝑥
5

15
+
𝜋
5

𝑥
7

630
] sin (𝜋𝑦) sin (𝜋𝑧)

+
8 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

𝜋2
,

𝑢
5
(𝑥, 𝑦, 𝑧) = [

16

𝜋
𝑥 −

8𝜋𝑥
3

3
+
2𝜋
3

𝑥
5

15
−
𝜋
5

𝑥
7

315

+
𝜋
7

𝑥
9

22680
−

𝜋
7

𝑥
11

3742200
] sin (𝜋𝑦) sin (𝜋𝑧)

−
16 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

𝜋2
.

(21)

In the same manner one can obtain the rest of the compo-
nents. But for six terms were computed and the asymptotic
solution is given by

𝑢(𝑥, 𝑦, 𝑧)
𝑁=6

= [
𝑥

3𝜋
−
𝜋𝑥
3

18
+
𝜋
3

𝑥
5

360
−
𝜋
5

𝑥
7

15120
+

𝜋
7

𝑥
9

1088640

−
𝜋
9

𝑥
11

119750400
] sin (𝜋𝑦) sin (𝜋𝑧)

−
2 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

𝜋2
,

𝑢(𝑥, 𝑦, 𝑧)
𝑁=6

=
1

3𝜋2
[
𝑥

3𝜋
−
𝜋𝑥
3

18
+
𝜋
3

𝑥
5

360
−
𝜋
5

𝑥
7

15120
+

𝜋
7

𝑥
9

1088640

−
𝜋
9

𝑥
11

119750400
]sin (𝜋𝑦) sin (𝜋𝑧)

−
2 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

3𝜋2
,

𝑢(𝑥, 𝑦, 𝑧)
𝑁=6

=
1

3𝜋2
[𝜋𝑥 −

(𝜋𝑥)
3

3!
+
(𝜋𝑥)
5

5!
−
(𝜋𝑥)
7

7!

+
(𝜋𝑥)
9

9!
−
(𝜋𝑥)
3

11!
]sin(𝜋𝑦) sin(𝜋𝑧)

−
2 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

3𝜋2
.

(22)

Therefore, for any 𝑛 ≥ 6, the partial sum is given as

𝑢
𝑁=𝑛

(𝑥, 𝑦, 𝑧) =
1

3𝜋2
[

𝑁

∑

𝑘=1

(−1)
𝑘

(𝜋𝑥)
2𝑘+1

(2𝑘 + 1)!
] sin (𝜋𝑦) sin (𝜋𝑧)

−
2 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

3𝜋2
.

(23)

Thus

𝑢 (𝑥, 𝑦, 𝑧) = lim
𝑁→∞

𝑢
𝑁=𝑛

(𝑥, 𝑦, 𝑧)

=
sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

3𝜋2

−
2 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

3𝜋2

= −
sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

3𝜋2
.

(24)

And this is the exact solution to the problem. One can
evaluate error committed by choosing the 𝑁 first terms in
the series solutions, in the same manner as in Table 1. The
accuracy of the results is estimated by error function

𝑅
𝑁
(𝑥, 𝑦, 𝑧) =

󵄨󵄨󵄨󵄨𝑢𝑁 (𝑥, 𝑦, 𝑧) − 𝑢 (𝑥, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨 . (25)

Problem 3. Let us consider the following biharmonic equa-
tion

𝑑
4

𝑢 (𝑥)

𝑑𝑥4
+ 4𝑢 (𝑥) = 0, (26)

for which the exact solution is

𝑢 (𝑥) =
Exp [1 − 𝑥] cos [𝑥]

cos [1]
. (27)

The aim of this part is to compare the numerical results
obtained via HDM and the method used in [26].
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Table 2: Comparison of the HDM and [1] results with the exaction
solution for𝑁 = 6.

𝑥 HDM Exact ADM Err for HDM Err for ADM
−1.0 7.38906 7.38906 7.38906 6.78𝐸 − 16 8.88𝐸 − 16

−0.6 7.56598 7.56598 7.56598 4.76𝐸 − 12 7.96𝐸 − 12

−0.2 6.02244 6.02244 6.02244 0.015𝐸 − 11 1.46𝐸 − 11

0.2 4.03696 4.03696 4.03696 0.017𝐸 − 11 1.80𝐸 − 11

0.6 2.27883 2.27883 2.27883 0.015𝐸 − 11 1.46𝐸 − 11

1.0 1.0 1.0 1.0 1.24𝐸 − 15 2.22𝐸 − 15

Applying the steps involved in the HDM, we arrive at the
following:

𝑢
0
(𝑥) = 𝑒 Sec (1) (1 − 𝑥 + 𝑥

3

3
) ,

𝑢
1
(𝑥) = −𝑒 Sec (1) [𝑥

4

4
−
𝑥
5

20
+
𝑥
7

420
] ,

𝑢
2
(𝑥) = −𝑒 Sec (1) [− 𝑥

8

1120
+

𝑥
9

10080
−

𝑥
11

554400
] ,

𝑢
3
(𝑥) = −𝑒 Sec (1) [ 𝑥

12

2217600
−

𝑥
13

64864800
+

𝑥
15

1135134000
] ,

𝑢
4
(𝑥)

= −𝑒 Sec (1) [− 𝑥
16

16144128000
+

𝑥
17

274450176000

−
𝑥
19

46930980096000
] ,

𝑢
5
(𝑥)

= −𝑒 Sec (1) [ 𝑥
20

312873200640000
−

𝑥
21

6570337213440000

+
𝑥
23

1662295315000320000
] .

(28)

In the same manner, one can obtain the remaining term by
using the following recursive formula:

𝑢
𝑛+1

(𝑥) = −∫

𝑥

0

(𝑥 − 𝑡)
3

𝑢
𝑛
(𝑡) 𝑑𝑡. (29)

In this paper we consider only the first six terms of the series
solution as follows:

𝑢
𝑁=6

=

5

∑

𝑛=0

𝑢
𝑛
(𝑥) . (30)

To access the accuracy of the method used in paper, we com-
pare in Table 2 the numerical results of the above equation,
the solution obtained in [26] with the exact solution.

Problem 4. We consider the 2D biharmonic equation

𝜕
4

𝑢

𝜕𝑥4
+ 2

𝜕
4

𝑢

𝜕𝑥2𝜕𝑦2
+
𝜕
4

𝑢

𝜕𝑥4
= sin (3𝜋𝑥) sin (3𝜋𝑦) , 0≤𝑥, 𝑦≤1,

(31)

subject to the initial conditions:

𝜕𝑢 (𝑥, 𝑦)

𝜕𝑥
| (𝑥 = 0) =

sin (3𝜋𝑦)
108𝜋3

, 𝜕
𝑥,𝑥
𝑢 (0, 𝑦) = 0,

𝜕
𝑥,𝑥,𝑥

𝑢 (0, 𝑦) = −
sin (3𝜋𝑦)
12𝜋

.

(32)

In the view of the homotopy decomposition method, the fol-
lowing integral equations are obtained:

𝑝
0

: 𝑢
0
(𝑥, 𝑦) =

sin (3𝜋𝑦)
108𝜋3

𝑥 −
sin (3𝜋𝑦)
12𝜋

𝑥

3!

3

,

𝑝
1

: 𝑢
1
(𝑥, 𝑦)

= ∫

𝑥

0

(𝑥 − 𝜏)[sin (𝜋𝜏) sin (𝜋𝑦) −
𝜕
2

𝑢
0

𝜕𝑦2
− 2

𝜕
4

𝑢
0

𝜕𝑥2𝜕𝑦2
]𝑑𝜏,

𝑝
𝑛

: 𝑢
𝑛
(𝑥, 𝑦) = ∫

𝑥

0

(𝑥 − 𝜏) [−
𝜕
2

𝑢
𝑛−1

𝜕𝑦2
− 2

𝜕
4

𝑢
0

𝜕𝑥2𝜕𝑦2
]𝑑𝜏,

𝑢
𝑛
(𝑥, 𝑦) = 0 along the boundaries, 𝑛 ≥ 2.

(33)

It is worth noting that if the zeroth component 𝑢
0
(𝑥, 𝑦) is

defined, then the remaining components 𝑛 ≥ 1 can be com-
pletely determined such that each term is determined by
using the previous terms, and the series solutions are thus
entirely determined. Finally, the solution 𝑢(𝑥, 𝑦) is approxi-
mated for 𝑛 = 4:

𝑢 (𝑥, 𝑦)

= sin (3𝜋𝑦) [ 𝑥

108𝜋3
−
𝑥
3

72𝜋
+
𝜋𝑥
5

160
−
3𝜋
3

𝑥
7

2240
+
3𝜋
5

𝑥
9

17920

−
27𝜋
7

𝑥
11

1971200
+

81𝜋
9

𝑥
13

102502400
−

81𝜋
11

𝑥
15

7175168000
] ,

(34)

𝑢 (𝑥, 𝑦)

=
sin (3𝜋𝑦)
324𝜋4

[3𝜋𝑥 −
(3𝜋𝑥)

3

3!
+
(3𝜋𝑥)

5

5!
−
(3𝜋𝑥)

7

7!
+
(3𝜋𝑥)

9

9!

−
(3𝜋𝑥)

11

11!
+
(3𝜋𝑥)

13

13!
−
(3𝜋𝑥)

15

15!
] .

(35)

Therefore for any𝑁 ≥ 4 we have the following:

𝑢
𝑁
(𝑥, 𝑦) =

sin (3𝜋𝑦)
324𝜋4

𝑁

∑

𝑛=0

(3𝜋𝑥)
2𝑛+1

(2𝑛 + 1)!
. (36)
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Figure 3: Analytical solution.

0.00003
0.00002
0.00001

0

0.0

Ap
pr

ox
im

at
e

0.0

0.5

0.5

1.0

1.0

x

y

Figure 4: Absolute value of the solution.

Thus

lim
𝑁→∞

𝑢
𝑁
(𝑥, 𝑦) =

sin (3𝜋𝑦) sin (3𝜋𝑥)
324𝜋4

. (37)

The exact solution of (31) is given by

sin (3𝜋𝑦) sin (3𝜋𝑥)
324𝜋4

= 𝑢 (𝑥, 𝑦) . (38)

Figures 3 and 4 are the graphical representation of the previ-
ous solution. We have plotted the solution for (31) in Figure 3
and showed absolute value of the solution in Figure 4.

Theorem 2. Let 𝑚 be a nonzero natural number and let
(x, y) ∈ [0, 1] × [0, 1]; then two dimensional biharmonic equa-
tion of form

𝜕
4

𝑢

𝜕𝑥4
+ 2

𝜕
4

𝑢

𝜕𝑥2𝜕𝑦2
+
𝜕
4

𝑢

𝜕𝑦4
= sin (𝑚𝜋𝑥) sin (𝑚𝜋𝑦) (39)

with 𝑢(𝑥, 𝑦) = 0 along the boundaries has an exact solution as
follows

𝑢 (𝑥, 𝑦) =
sin (𝑚𝜋𝑥) sin (𝑚𝜋𝑦)

4𝑚
4
𝜋4

. (40)

Proof. Use the step of the homotopy decomposition method.

Problem 5. We consider the 3D biharmonic equation:

𝜕
4

𝑢

𝜕𝑥4
+ 2

𝜕
4

𝑢

𝜕𝑥2𝜕𝑦2
+ 2

𝜕
4

𝑢

𝜕𝑥2𝜕𝑧2
+ 2

𝜕
4

𝑢

𝜕𝑧2𝜕𝑦2
+
𝜕
4

𝑢

𝜕𝑦4
+
𝜕
4

𝑢

𝜕𝑧4

= sin (𝜋𝑥) sin (𝜋𝑦) sin (𝜋𝑧) ,

0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1,

𝑢 = 0, 𝑢
𝑥,𝑥

= 𝑢
𝑦,𝑦
= 𝑢
𝑧,𝑧
= 0.

(41)

In the view of the homotopy decomposition method, the fol-
lowing integral equations are obtained:

𝑝
0

: 𝑢
0
(𝑥, 𝑦) =

sin (3𝜋𝑦)
108𝜋3

𝑥 −
sin (3𝜋𝑦)
12𝜋

𝑥

3!

3

,

𝑝
1

: 𝑢
1
(𝑥, 𝑦)

= ∫

𝑥

0

(𝑥 − 𝜏) [ sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

− 2
𝜕
4

𝑢
0

𝜕𝑥2𝜕𝑦2
− 2

𝜕
4

𝑢
0

𝜕𝑥2𝜕𝑧2

−2
𝜕
4

𝑢
0

𝜕𝑧2𝜕𝑦2
−
𝜕
4

𝑢
0

𝜕𝑦4
−
𝜕
4

𝑢
0

𝜕𝑧4
]𝑑𝜏,

𝑝
𝑛

: 𝑢
𝑛
(𝑥, 𝑦)

= ∫

𝑥

0

(𝑥 − 𝜏) [−2
𝜕
4

𝑢
𝑛−1

𝜕𝑥2𝜕𝑦2
− 2

𝜕
4

𝑢
𝑛−1

𝜕𝑥2𝜕𝑧2

−2
𝜕
4

𝑢
𝑛−1

𝜕𝑧2𝜕𝑦2
−
𝜕
4

𝑢
𝑛−1

𝜕𝑦4
−
𝜕
4

𝑢
𝑛−1

𝜕𝑧4
]𝑑𝜏,

𝑢
𝑛
(𝑥, 𝑦) = 0 along the boundaries, 𝑛 ≥ 2.

(42)

Solving the previous integral equations, the series solutions
for the first𝑁 terms are given as

𝑢
𝑁
(𝑥, 𝑦, 𝑧) =

sin (𝑧𝜋) sin (𝜋𝑦)
9𝜋4

𝑁

∑

𝑛=0

(𝜋𝑥)
2𝑛+1

(2𝑛 + 1)!
. (43)

Therefore taking the limit at𝑁 tending to infinitywe obtained

𝑢 (𝑥, 𝑦, 𝑧) = lim
𝑁→∞

𝑢
𝑁
(𝑥, 𝑦, 𝑧) =

sin (𝑥𝜋) sin (𝑧𝜋) sin (𝜋𝑦)
9𝜋4

.

(44)

4. Conclusion

In this paper the recent homotopy decomposition [18–21] is
used to solve the 2D and 3D Poisson equations and bihar-
monic equations. The method is chosen because it does not
require the linearization or assumptions of weak nonlinearity,
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the solutions are generated in the form of general solution,
and it ismore realistic compared to themethod of simplifying
the physical problems. The method does not require any
corrected function any Lagrange multiplier and it avoids
repeated terms in the series solutions compared to the
existing decomposition method including the variational
iteration method and the Adomian decomposition method.
The approximated solutions obtained converge to the exact
solution as 𝑁 tends to infinity. The numerical values are
presented in Table 1 shows that the method is very efficient
and accurate.
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