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An estimation of uniqueness ball of a zero point of a mapping on Lie group is established. Furthermore, we obtain a unified
estimation of radius of convergence ball of Newton’s method on Lie groups under a generalized L-average Lipschitz condition. As
applications, we get estimations of radius of convergence ball under the Kantorovich condition and the 𝛾-condition, respectively.
In particular, under the 𝛾-condition, our results improve the corresponding results in (Li et al. 2009, Corollary 4.1) as showed in
Remark 17. Finally, applications to analytical mappings are also given.

1. Introduction

In a vector space framework, when 𝑓 is a differentiable
operator from some domain 𝐷 in a real or complex Banach
space 𝑋 to another 𝑌, Newton’s method is one of the most
important methods for finding the approximation solution of
the equation𝑓(𝑥) = 0, which is formulated as follows: for any
initial point 𝑥

0
∈ 𝐷,

𝑥
𝑛+1

= 𝑥
𝑛
− 𝑓

(𝑥
𝑛
)
−1
𝑓 (𝑥
𝑛
) , 𝑛 = 0, 1, . . . . (1)

As is well known, one of the most important results on
Newton’s method is Kantorovich’s theorem (cf. [1]), which
provides a simple and clear criterion ensuring quadratic
convergence of Newton’s method under the mild condition
that the second Fréchet derivative of 𝑓 is bounded (or more
generally, the first derivative is Lipschitz continuous) and the
boundedness of ‖𝑓(𝑥)−1‖ on a proper open metric ball of
the initial point 𝑥

0
. Another important result on Newton’s

method is Smale’s point estimate theory (i.e., 𝛼-theory and
𝛾-theory) in [2], where the notions of approximate zeros
were introduced and the rules to judge an initial point 𝑥

0
to

be an approximate zero were established, depending on the

information of the analytic nonlinear operator at this initial
point and at a solution 𝑥

∗, respectively. There are a lot of
works on the weakness and/or the extension of the Lipschitz
continuitymade on themappings; see, for example, [3–7] and
references therein. In particular, Wang introduced in [6] the
notion of Lipschitz conditions with 𝐿-average to unify both
Kantorovich’s and Smale’s criteria.

In a Riemannian manifold framework, an analogue of
the well-known Kantorovich theorem was given in [8] for
Newton’s method for vector fields on Riemannian manifolds
while the extensions of the famous Smale 𝛼-theory and 𝛾-
theory in [2] to analytic vector fields and analytic mappings
on Riemannian manifolds were done in [9]. In the recent
paper [10], the convergence criteria in [9] were improved by
using the notion of the 𝛾-condition for the vector fields and
mappings on Riemannianmanifolds.The radii of uniqueness
balls of singular points of vector fields satisfying the 𝛾-
conditions were estimated in [11], while the local behavior of
Newton’s method on Riemannian manifolds was studied in
[12, 13]. Furthermore, in [14], Li andWang extended the gen-
eralized 𝐿-average Lipschitz condition (introduced in [6]) to
Riemannianmanifolds and established a unified convergence
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criterion of Newton’s method on Riemannian manifolds.
Similarly, inspired by the previous work of Zabrejko and
Nguen in [7] on Kantorovich’s majorant method, Alvarez
et al. introduced in [15] a Lipschitz-type radial function
for the covariant derivative of vector fields and mappings
on Riemannian manifolds and gave a unified convergence
criterion of Newton’s method on Riemannian manifolds.

Note also that Mahony used one-parameter subgroups of
a Lie group to develop a version of Newton’s method on an
arbitrary Lie group in [16], where the algorithm presented
is independent of affine connections on the Lie group. This
means that Newton’s method on Lie groups is different from
the one defined on Riemannian manifolds. On the other
hand, motivated by looking for approaches to solv ordinary
differential equations on Lie groups, Owren and Welfert
also studied in [17] Newton’s method, independent of affine
connections on the Lie group, and showed the local quadrat-
ical convergence. Recently, Wang and Li [18] established
Kantorovich’s theorem (independent of the connection) for
Newton’s method on Lie group. More precisely, under the
assumption that the differential of 𝑓 satisfies the Lipschitz
condition around the initial point (which is in terms of
one-parameter semigroups and independent of the metric),
the convergence criterion of Newton’s method is presented.
Extensions of Smale’s point estimate theory for Newton’s
method on Lie groups were given in [19].

The purpose of the present paper is to continue the
study of Newton’s method on Lie groups. At first, we give an
estimation of uniqueness ball of a zero point of a mapping
on a Lie group. Second, we establish a unified estimation
of radius of convergence ball of Newton’s method on Lie
groups under a generalized 𝐿-average Lipschitz condition. As
applications, we obtain estimations of radius of convergence
ball under the Kantorovich condition and the 𝛾-condition,
respectively. In particular, under the 𝛾-condition, we get that
(see Theorem 16) if 𝑓(𝑥∗) = 0 and

 (𝑥
∗
, 𝑥
0
) <

3 − 2√2

2𝛾
, (2)

then the sequence {𝑥
𝑛
} generated by Newton’s method (28)

with initial point 𝑥
0
is well defined and converges quadrat-

ically to a zero 𝑦
∗ of 𝑓. This improves the corresponding

results in [19, Corollary 4.1], where it was proved under the
following assumption: there exists V ∈ g such that

𝑥
0
= 𝑥
∗ exp V, ‖V‖ ≤

𝑎
0

𝛾
, (3)

with 𝑎
0
= 0.081256 . . . being the smallest positive root of the

equation 𝑎
0
/(1 − 4𝑎

0
+ 2𝑎
2

0
)
2
= 3 − 2√2. Clearly,

𝑎
0

𝛾
<

3 − 2√2

2𝛾
. (4)

Note also that in general, there dose not exist V ∈ g satisfying
𝑥
0
= 𝑥
∗ exp V because the exponential map is not surjective

global, even if (𝑥∗, 𝑥
0
) < (3 − 2√2)/2𝛾. In view of this, our

results somewhat improve the corresponding results in [19,
Corollary 4.1].

The remainder of the paper is organized as follows. Some
preliminary results and notions are given in Section 2, while
the estimation of uniqueness ball is presented in Section 3. In
Section 4, the main results about estimations of convergence
ball are explored.Theorems under the Kantorovich condition
and the 𝛾-condition are provided in Section 5. In the final
section, we get the estimations of uniqueness ball and
convergence ball under the assumption that 𝑓 is analytic.

2. Notions and Preliminaries

Most of the notions and notations which are used in the
present paper are standard; see, for example, [20, 21]. A Lie
group (𝐺, ⋅) is a Hausdorff topological group with countable
bases which also has the structure of an analytic manifold
such that the group product and the inversion are analytic
operations in the differentiable structure given on the mani-
fold. The dimension of a Lie group is that of the underlying
manifold, andwewill always assume that it is𝑚-dimensional.
The symbol 𝑒 designates the identity element of𝐺. Let g be the
Lie algebra of the Lie group 𝐺 which is the tangent space 𝑇

𝑒
𝐺

of 𝐺 at 𝑒, equipped with Lie bracket [⋅, ⋅] : g × g → g.
In the sequel, we will make use of the left translation of

the Lie group 𝐺. We define for each 𝑦 ∈ 𝐺 the left translation
𝐿
𝑦
: 𝐺 → 𝐺 by

𝐿
𝑦
(𝑧) = 𝑦 ⋅ 𝑧 for each 𝑧 ∈ 𝐺. (5)

The differential of 𝐿
𝑦
at 𝑧 is denoted by (𝐿



𝑦
)
𝑧
which clearly

determines a linear isomorphism from 𝑇
𝑧
𝐺 to the tangent

space 𝑇
(𝑦⋅𝑧)

𝐺. In particular, the differential (𝐿
𝑦
)
𝑒
of 𝐿
𝑦
at 𝑒

determines a linear isomorphism form g to the tangent space
𝑇
𝑦
𝐺. The exponential map exp : g → 𝐺 is certainly the

most important construction associated with 𝐺 and g and is
defined as follows. Given 𝑢 ∈ g, let 𝜎

𝑢
: R → 𝐺 be the

one-parameter subgroupof𝐺determined by the left invariant
vector field𝑋

𝑢
: 𝑦 → (𝐿



𝑦
)
𝑒
(𝑢); that is, 𝜎

𝑢
satisfies that

𝜎
𝑢
(0) = 𝑒,

𝜎


𝑢
(𝑡) = 𝑋

𝑢
(𝜎
𝑢
(𝑡)) = (𝐿



𝜎
𝑢
(𝑡)
)
𝑒
(𝑢) for each 𝑡 ∈ R.

(6)

The value of the exponential map exp at 𝑢 is then defined by

exp (𝑢) = 𝜎
𝑢
(1) . (7)

Moreover, we have that

exp (𝑡𝑢) = 𝜎
𝑡𝑢 (1) = 𝜎

𝑢 (𝑡) for each 𝑡 ∈ R, 𝑢 ∈ g,

exp (𝑡 + 𝑠) 𝑢 = exp (𝑡𝑢) ⋅ exp (𝑠𝑢) for any 𝑡, 𝑠 ∈ R, 𝑢 ∈ g.

(8)

Note that the exponential map is not surjective in general.
However, the exponential map is a diffeomorphism on an
open neighborhood of 0 ∈ g. In the case when 𝐺 is Abelian,
exp is also a homomorphism from g to 𝐺; that is,

exp (𝑢 + V) = exp (𝑢) ⋅ exp (V) , ∀𝑢, V ∈ g. (9)
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In the non-Abelian case, exp is not a homomorphism and, by
the Baker-Campbell-Hausdorff (BCH) formula (cf. [21, page
114]), (9) must be replaced by

exp (𝑤) = exp (𝑢) ⋅ exp (V) , (10)

for all 𝑢, V in a neighborhood of 0 ∈ g, where 𝑤 is defined by

𝑤 := 𝑢 + V +
1

2
[𝑢, V] +

1

12
([𝑢, [𝑢, V]] + [V, [V, 𝑢]]) + ⋅ ⋅ ⋅ .

(11)

Let 𝑓 : 𝐺 → g be a 𝐶
1-map and let 𝑥 ∈ 𝐺. We use 𝑓



𝑥

to denote the differential of 𝑓 at 𝑥. Then, by [22, Page 9] (the
proof given there for a smooth mapping still works for a 𝐶

1-
map), for each Δ

𝑥
∈ 𝑇
𝑥
𝐺 and any nontrivial smooth curve

𝑐 : (−𝜀, 𝜀) → 𝐺 with 𝑐(0) = 𝑥 and 𝑐

(0) = Δ

𝑥
, one has

𝑓


𝑥
Δ
𝑥
= (

𝑑

𝑑𝑡
(𝑓 ∘ 𝑐) (𝑡))

𝑡=0

. (12)

In particular,

𝑓


𝑥
Δ
𝑥
= (

𝑑

𝑑𝑡
𝑓 (𝑥 ⋅ exp (𝑡(𝐿



𝑥
−1)
𝑥
Δ
𝑥
)))

𝑡=0

for each Δ
𝑥
∈ 𝑇
𝑥
𝐺.

(13)

Define the linear map 𝑑𝑓
𝑥
: g → g by

𝑑𝑓
𝑥
𝑢 = (

𝑑

𝑑𝑡
𝑓 (𝑥 ⋅ exp (𝑡𝑢)))

𝑡=0

for each 𝑢 ∈ g. (14)

Then, by (13),

𝑑𝑓
𝑥
= 𝑓


𝑥
∘ (𝐿


𝑥
)
𝑒
. (15)

Also, in view of definition, we have that, for all 𝑡 ≥ 0,

𝑑

𝑑𝑡
𝑓 (𝑥 ⋅ exp (𝑡𝑢)) = 𝑑𝑓

𝑥⋅exp(𝑡𝑢)𝑢 for each 𝑢 ∈ g, (16)

𝑓 (𝑥 ⋅ exp (𝑡𝑢)) − 𝑓 (𝑥) = ∫

𝑡

0

𝑑𝑓
𝑥⋅exp(𝑠𝑢)𝑢 𝑑𝑠 for each 𝑢 ∈ g.

(17)

For the remainder of the present paper, we always assume
that ⟨⋅, ⋅⟩ is an inner product on g and ‖ ⋅ ‖ is the associated
norm on g. We now introduce the following distance on 𝐺

which plays a key role in the study. Let 𝑥, 𝑦 ∈ 𝐺 and define

 (𝑥, 𝑦) := inf {
𝑘

∑

𝑖=1

𝑢𝑖
 | there exist 𝑘 ≥ 1 and 𝑢

1
, . . . , 𝑢

𝑘
∈ g

such that 𝑦 = 𝑥 ⋅ exp 𝑢
1
⋅ ⋅ ⋅ exp 𝑢

𝑘
} ,

(18)

where we adapt the convention that inf 0 = +∞. It is easy
to verify that (⋅, ⋅) is a distance on 𝐺 and that the topology

induced by this distance is equivalent to the original one on
𝐺.

Let 𝑥 ∈ 𝐺 and 𝑟 > 0. We denoted the corresponding ball
of radius 𝑟 around 𝑥 of 𝐺 by 𝐶

𝑟
(𝑥); that is,

𝐶
𝑟
(𝑥) := {𝑦 ∈ 𝐺 |  (𝑥, 𝑦) < 𝑟} . (19)

Let L(g) denote the set of all linear operators on g. Below,
we will modify the notion of the Lipschitz condition with
𝐿-average for mappings on Banach spaces to suit sections.
Let 𝐿 be a positive nondecreasing integrable function on
[0, 𝑅], where 𝑅 is a positive number large enough such that
∫
𝑅

0
(𝑅− 𝑠)𝐿(𝑠)𝑑𝑠 ≥ 𝑅. The notion of Lipschitz condition in the

inscribed sphere with the 𝐿 average for operators on Banach
spaces was first introduced in [23] by Wang for the study of
Smale’s point estimate theory.

Definition 1. Let 𝑟 > 0, 𝑥
0
∈ 𝐺 and let 𝑇 be a mapping from

𝐺 to L(g). Then 𝑇 is said to satisfy the 𝐿-average Lipschitz
condition on 𝐶

𝑟
(𝑥
0
) if

𝑇 (𝑥 ⋅ exp 𝑢) − 𝑇 (𝑥)
 ≤ ∫

(𝑥
0
,𝑥)+‖𝑢‖

(𝑥0 ,𝑥)

𝐿 (𝑠) 𝑑𝑠 (20)

holds for any𝑥 ∈ 𝐶
𝑟
(𝑥
0
) and𝑢 ∈ g such that ‖𝑢‖ < 𝑟−(𝑥, 𝑥

0
).

3. Uniqueness Ball of Zero Points of Mappings

This section is devoted to the study of uniqueness ball of zero
points of mappings. Let 𝑟 > 0. We use B(0, 𝑟) to denote the
open ball at 0 with radius 𝑟 on g; that is,

B (0, 𝑟) := {V ∈ g | ‖V‖ < 𝑟} . (21)

Write 𝑁(𝑥
∗
, 𝑟) := 𝑥

∗ exp(B(0, 𝑟)). Clearly, 𝑁(𝑥
∗
, 𝑟) ⊆

𝐶
𝑟
(𝑥
∗
). Let 𝑟 > 0 be such that

1

𝑟
∫

𝑟

0

𝐿 (𝑢) (𝑟 − 𝑢) 𝑑𝑢 = 1. (22)

Theorem 2. Let 0 < 𝑟 ≤ 𝑟. Suppose that 𝑓(𝑥∗) = 0 and
𝑑𝑓
−1

𝑥
∗ 𝑑𝑓 satisfies the 𝐿-average Lipschitz condition in𝑁(𝑥

∗
, 𝑟).

Then 𝑥
∗ is the unique zero point of 𝑓 in𝑁(𝑥

∗
, 𝑟).

Proof. Let 𝑦
∗

∈ 𝑁(𝑥
∗
, 𝑟) be another zero point of 𝑓 in

𝑁(𝑥
∗
, 𝑟). Then, there exists V ∈ g such that 𝑦∗ = 𝑥

∗ exp V
and ‖V‖ < 𝑟. As 𝐿(⋅) is a positive function, it follows from [6]
that the function 𝜓 defined by

𝜓 (𝑡) =
1

𝑡
∫

𝑡

0

𝐿 (𝑠)(𝑡 − 𝑠) 𝑑𝑠, ∀𝑡 ∈ (0, 𝑟] (23)

is strictly monotonically increasing. set

𝜆 :=
1

‖V‖
∫

‖V‖

0

𝐿 (𝑠)(‖V‖ − 𝑠) 𝑑𝑠. (24)

Then, by (22), we get

𝜆 <
1

𝑟
∫

𝑟

0

𝐿 (𝑠)(𝑟 − 𝑠) 𝑑𝑠 = 1. (25)
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To complete the proof, it suffices to show that

‖V‖ ≤ 𝜆 ‖V‖ . (26)

Granting this, one has that 𝑥∗ = 𝑦
∗. Now,

‖V‖ =

−𝑑𝑓
−1

𝑥
∗ (𝑓 (𝑦

∗
) − 𝑓 (𝑥

∗
)) + V



≤



−𝑑𝑓
−1

𝑥
∗ ∫

1

0

𝑑𝑓
𝑥
∗exp(𝑠V)V 𝑑𝑠 + V



≤ ∫

1

0


𝑑𝑓
−1

𝑥
∗ (𝑑𝑓𝑥∗exp(𝑠V) − 𝑑𝑓 (𝑥

∗
))

‖V‖ 𝑑𝑠

≤ ∫

1

0

∫

𝑠‖V‖

0

𝐿 (𝑡) 𝑑𝑡 ‖V‖ 𝑑𝑠

= ∫

‖V‖

0

𝐿 (𝑡) (‖V‖ − 𝑡) 𝑑𝑡 = 𝜆 ‖V‖ ,

(27)

where the third inequality holds because of (20) by selecting
𝑥 = 𝑥

0
= 𝑥
∗. Therefore, (26) is seen to hold and the proof is

completed

4. Convergence Ball of Newton’s Method

Following [17], we define Newton’s method with initial point
𝑥
0
for 𝑓 on a Lie group as follows:

𝑥
𝑛+1

= 𝑥
𝑛
⋅ exp (−𝑑𝑓

−1

𝑥
𝑛

𝑓 (𝑥
𝑛
)) for each 𝑛 = 0, 1, . . . .

(28)

Let 𝑟
0
> 0 and 𝑏 > 0 be such that

∫

𝑟
0

0

𝐿 (𝑠) 𝑑𝑠 = 1, 𝑏 = ∫

𝑟
0

0

𝐿 (𝑠) 𝑠 𝑑𝑠. (29)

Remark 3. (i) Since 𝐿(⋅) is a positive function, we always have
𝑏 ≤ 𝑟
0
. Indeed,

𝑏 − 𝑟
0
= ∫

𝑟
0

0

𝐿 (𝑠) 𝑠 𝑑𝑠 − 𝑟
0
∫

𝑟
0

0

𝐿 (𝑠) 𝑑𝑠

= ∫

𝑟
0

0

𝐿 (𝑠) (𝑠 − 𝑟
0
) 𝑑𝑠 ≤ 0.

(30)

(ii) Consider 𝑟
0

≤ 𝑟. Indeed, recall from [6] that the
function 𝜓 defined by

𝜓 (𝑡) =
1

𝑡
∫

𝑡

0

𝐿 (𝑠) (𝑡 − 𝑠) 𝑑𝑠, ∀𝑡 ∈ (0, 𝑟] (31)

is strictly monotonically increasing. Sine 𝜓(𝑟
0
) ≤ 1 = 𝜓(𝑟),

we get 𝑟
0
≤ 𝑟.

The following proposition plays a key role in this section,
which is taken from [24].

Proposition 4. Suppose that 𝑥
0

∈ 𝐺 is such that 𝑑𝑓
−1

𝑥
0

exists and 𝑑𝑓
−1

𝑥
0

𝑑𝑓 satisfies the 𝐿-average Lipschitz condition
on 𝐶
𝑟
0

(𝑥
0
) and that

𝛽 :=

d𝑓−1
𝑥
0

𝑓 (𝑥
0
)

≤ 𝑏. (32)

Then the sequence {𝑥
𝑛
} generated byNewton’smethod (28)with

initial point 𝑥
0
is well defined and converges to a zero point 𝑥∗

of 𝑓 and (𝑥
∗
, 𝑥
0
) < 𝑟
0
.

The remainder of this section is devoted to an estimate of
the convergence domain of Newton’s method on 𝐺 around a
zero 𝑥

∗ of𝑓. Below we will always assume that 𝑥∗ ∈ 𝐺 is such
that 𝑑𝑓−1

𝑥
∗ exists.

Lemma 5. Let 0 < 𝑟 ≤ 𝑟
0
and let 𝑥

0
∈ 𝐶
𝑟
(𝑥
∗
) be such that

there exist 𝑗 ≥ 1 and 𝑤
1
, . . . , 𝑤

𝑗
∈ g satisfying

𝑥
0
= 𝑥
∗
⋅ exp𝑤

1
⋅ ⋅ ⋅ exp𝑤

𝑗
, (33)

and 𝜌(𝑥
∗
, 𝑥
0
) := ∑

𝑗

𝑖=1
‖𝑤
𝑖
‖ < 𝑟. Suppose that d𝑓−1

𝑥
∗ d𝑓 satisfies

the 𝐿-average Lipschitz condition on 𝐶
𝑟
(𝑥
∗
). Then d𝑓−1

𝑥
0

exists,


d𝑓−1
𝑥
0

d𝑓
𝑥
∗


≤

1

1 − ∫
𝜌(𝑥
∗
,𝑥
0
)

0
𝐿 (𝑠) d𝑠

, (34)


d𝑓−1
𝑥
0

𝑓 (𝑥
0
)


≤
∫
𝜌(𝑥
∗

,𝑥
0
)

0
𝐿 (𝑠) (𝜌 (𝑥

∗
, 𝑥
0
) − 𝑠) d𝑠 + 𝜌 (𝑥

∗
, 𝑥
0
)

1 − ∫
𝜌(𝑥
∗
,𝑥
0
)

0
𝐿 (𝑠) d𝑠

.

(35)

Proof. It follows from [24, Lemma 2.1] that 𝑑𝑓−1
𝑥
0

exists and
(34) holds. Write 𝑦

0
= 𝑥
∗, 𝑦
𝑖
= 𝑦
𝑖−1

⋅ exp𝑤
𝑖
and 𝜌

𝑖
:=

∑
𝑖

𝑙=1
‖𝑤
𝑙
‖ for each 𝑖 = 1, . . . , 𝑗. Thus, by (33), we have 𝑦

𝑗
= 𝑥
0

and so 𝜌
𝑗
= 𝜌(𝑥

∗
, 𝑥
0
). Fix 𝑖, one has from (17) that

𝑓 (𝑦
𝑖
) − 𝑓 (𝑦

𝑖−1
) = ∫

1

0

𝑑𝑓
𝑦
𝑖−1
⋅exp(𝜏𝑤

𝑖
)
𝑤
𝑖
𝑑𝜏, (36)

which implies that

𝑑𝑓
−1

𝑥
∗ (𝑓 (𝑦

𝑖
) − 𝑓 (𝑦

𝑖−1
))

= ∫

1

0

𝑑𝑓
−1

𝑥
∗ (𝑑𝑓𝑦

𝑖−1
⋅exp(𝜏𝑤

𝑖
)
− 𝑑𝑓
𝑥
∗)𝑤
𝑖
𝑑𝜏 + 𝑤

𝑖
.

(37)

Since 𝑑𝑓
−1

𝑥
∗ 𝑑𝑓 satisfies the 𝐿-average Lipschitz condition on

𝐶
𝑟
(𝑥
∗
), it follows that


𝑑𝑓
−1

𝑥
∗ (𝑑𝑓𝑦

𝑖−1
⋅exp(𝜏𝑤

𝑖
)
− 𝑑𝑓
𝑥
∗)


≤

𝑑𝑓
−1

𝑥
∗ (𝑑𝑓𝑦

𝑖−1
⋅exp(𝜏𝑤

𝑖
)
− 𝑑𝑓
𝑦
𝑖−1

)


+

𝑖−1

∑

𝑙=1


𝑑𝑓
−1

𝑥
∗ (𝑑𝑓𝑦

𝑙

− 𝑑𝑓
𝑦
𝑙−1

)


≤ ∫

𝜌
𝑖−1
+𝜏‖𝑤
𝑖
‖

𝜌
𝑖−1

𝐿 (𝑠) 𝑑𝑠 +

𝑖−1

∑

𝑙=1

∫

𝜌
𝑙

𝜌
𝑙−1

𝐿 (𝑠) 𝑑𝑠

≤ ∫

𝜌
𝑖−1
+𝜏‖𝑤
𝑖
‖

0

𝐿 (𝑠) 𝑑𝑠,

(38)
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where 𝜌
0
= 0. Noting that 𝑓(𝑥

0
) = ∑

𝑗

𝑖=1
(𝑓(𝑦
𝑖
) − 𝑓(𝑦

𝑖−1
)), we

have from (37) and (38) that


𝑑𝑓
−1

𝑥
∗ 𝑓 (𝑥

0
)


≤

𝑗

∑

𝑖=1

(∫

1

0


𝑑𝑓
−1

𝑥
∗ (𝑑𝑓𝑦

𝑖−1
⋅exp(𝜏𝑤

𝑖
)
− 𝑑𝑓
𝑥
∗)


×
𝑤𝑖

 𝑑𝜏 +
𝑤𝑖

 )

≤

𝑗

∑

𝑖=1

(∫

1

0

∫

𝜌
𝑖−1
+𝜏‖𝑤
𝑖
‖

0

𝐿 (𝑠) 𝑑𝑠
𝑤𝑖

 𝑑𝜏 +
𝑤𝑖

) .

(39)

Write 𝐹(𝑡) := ∫
𝑡

0
𝐿(𝑠)𝑑𝑠. Then,

∫

1

0

∫

𝜌
𝑖−1
+𝜏‖𝑤
𝑖
‖

0

𝐿 (𝑠) 𝑑𝑠
𝑤𝑖

 𝑑𝜏

= ∫

1

0

𝐹 (𝜌
𝑖−1

+ 𝜏
𝑤𝑖

)
𝑤𝑖

 𝑑𝜏

= ∫

𝜌
𝑖

𝜌
𝑖−1

𝐹 (𝑡) 𝑑𝑡,

(40)

and so

𝑗

∑

𝑖=1

∫

1

0


𝑑𝑓
−1

𝑥
∗ (𝑑𝑓𝑦

𝑖−1
⋅exp(𝜏𝑤

𝑖
)
− 𝑑𝑓
𝑥
∗)


𝑤𝑖
 𝑑𝜏

≤

𝑗

∑

𝑖=1

∫

𝜌
𝑖

𝜌
𝑖−1

𝐹 (𝑡) 𝑑𝑡

= ∫

𝜌(𝑥
∗

,𝑥
0
)

0

𝐹 (𝑡) 𝑑𝑡

= ∫

𝜌(𝑥
∗

,𝑥
0
)

0

𝐿 (𝑠) (𝜌 (𝑥
∗
, 𝑥
0
) − 𝑠) 𝑑𝑠.

(41)

This, together with (39), yields that


𝑑𝑓
−1

𝑥
∗ 𝑓 (𝑥

0
)


≤ ∫

𝜌(𝑥
∗

,𝑥
0
)

0

𝐿 (𝑠) (𝜌 (𝑥
∗
, 𝑥
0
) − 𝑠) 𝑑𝑠 + 𝜌 (𝑥

∗
, 𝑥
0
) .

(42)

Combining this with (34) implies that


𝑑𝑓
−1

𝑥
0

𝑓 (𝑥
0
)


≤

𝑑𝑓
−1

𝑥
0

𝑑𝑓
𝑥
∗




𝑑𝑓
−1

𝑥
∗ 𝑓 (𝑥

0
)


≤
∫
𝜌(𝑥
∗

,𝑥
0
)

0
𝐿 (𝑠) (𝜌 (𝑥

∗
, 𝑥
0
) − 𝑠) 𝑑𝑠 + 𝜌 (𝑥

∗
, 𝑥
0
)

1 − ∫
𝜌(𝑥
∗
,𝑥
0
)

0
𝐿 (𝑠) 𝑑𝑠

,

(43)

which completes the proof of the lemma.

We make the following assumption throughout the
remainder of the paper:

𝑥
∗
∈ 𝐺 such that 𝑓 (𝑥

∗
) = 0, 𝑑𝑓

−1

𝑥
∗ exists. (44)

Theorem 6 below gives an estimation of convergence ball of
Newton’s method.

Theorem 6. Suppose that 𝑑𝑓
−1

𝑥
∗ 𝑑𝑓 satisfies the 𝐿-average

Lipschitz condition on𝐶
𝑟
0

(𝑥
∗
). Suppose that (𝑥∗, 𝑥

0
) < (𝑏/2).

Then the sequence {𝑥
𝑛
} generated byNewton’smethod (28)with

initial point 𝑥
0
is well defined and converges quadratically to a

zero point 𝑦∗ of 𝑓 and (𝑦
∗
, 𝑥
∗
) < 𝑟
0
.

Proof. Since (𝑥
∗
, 𝑥
0
) < (𝑏/2), there exist 𝑗 ≥ 1 and 𝑤

1
, . . . ,

𝑤
𝑗
∈ g satisfying

𝑥
0
= 𝑥
∗
⋅ exp𝑤

1
⋅ ⋅ ⋅ exp𝑤

𝑗
, (45)

and 𝜌(𝑥
∗
, 𝑥
0
) := ∑

𝑗

𝑖=1
‖𝑤
𝑖
‖ < (𝑏/2) ≤ 𝑟

0
, where the last

inequality holds because of Remark 3(i). By Lemma 5, 𝑑𝑓−1
𝑥
0

exists and

𝛽 :=

𝑑𝑓
−1

𝑥
0

𝑓 (𝑥
0
)


≤
∫
𝜌(𝑥
∗

,𝑥
0
)

0
𝐿 (𝑠) (𝜌 (𝑥

∗
, 𝑥
0
) − 𝑠) 𝑑𝑠 + 𝜌 (𝑥

∗
, 𝑥
0
)

1 − ∫
𝜌(𝑥
∗
,𝑥
0
)

0
𝐿 (𝑠) 𝑑𝑠

.

(46)

Write

𝐿 (𝑠) :=
𝐿 (𝑠 + 𝜌 (𝑥

∗
, 𝑥
0
))

1 − ∫
𝜌(𝑥
∗
,𝑥
0
)

0
𝐿 (𝑠) 𝑑𝑠

. (47)

Let 𝑟
0
, 𝑏 be such that

∫

𝑟
0

0

𝐿 (𝑠) 𝑑𝑠 = 1, 𝑏 = ∫

𝑟
0

0

𝐿 (𝑠) 𝑠 𝑑𝑠. (48)

This gives that

∫

𝑟
0

0

𝐿 (𝑠 + 𝜌 (𝑥
∗
, 𝑥
0
)) 𝑑𝑠

= 1 − ∫

𝜌(𝑥
∗

,𝑥
0
)

0

𝐿 (𝑠) 𝑑𝑠

= ∫

𝑟
0

0

𝐿 (𝑠) 𝑑𝑠 − ∫

𝜌(𝑥
∗

,𝑥
0
)

0

𝐿 (𝑠) 𝑑𝑠

= ∫

𝑟
0

𝜌(𝑥∗,𝑥0)

𝐿 (𝑠) 𝑑𝑠.

(49)

Hence,

∫

𝑟
0
+𝜌(𝑥
∗

,𝑥
0
)

𝜌(𝑥∗,𝑥0)

𝐿 (𝑠) 𝑑𝑠 = ∫

𝑟
0

𝜌(𝑥∗,𝑥0)

𝐿 (𝑠) 𝑑𝑠. (50)

As 𝐿(⋅) is a nondecreasing and positive integrable function,
one has

𝑟
0
+ 𝜌 (𝑥

∗
, 𝑥
0
) = 𝑟
0
. (51)
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Therefore,

𝑏 = ∫

𝑟
0

0

𝐿 (𝑠) 𝑠 𝑑𝑠 = ∫

𝑟
0
−𝜌(𝑥
∗

,𝑥
0
)

0

𝐿 (𝑠) 𝑠 𝑑𝑠

=

∫
𝑟
0

𝜌(𝑥∗ ,𝑥0)
𝐿 (𝑠) (𝑠 − 𝜌 (𝑥

∗
, 𝑥
0
)) 𝑑𝑠

1 − ∫
𝜌(𝑥
∗
,𝑥
0
)

0
𝐿 (𝑠) 𝑑𝑠

.

(52)

Below, we will show that

𝛽 =

𝑑𝑓
−1

𝑥
0

𝑓 (𝑥
0
)

≤ 𝑏. (53)

To do this, by (46), it remains to show that

∫

𝜌(𝑥
∗

,𝑥
0
)

0

𝐿 (𝑠) (𝜌 (𝑥
∗
, 𝑥
0
) − 𝑠) 𝑑𝑠 + 𝜌 (𝑥

∗
, 𝑥
0
)

≤ ∫

𝑟
0

𝜌(𝑥∗ ,𝑥0)

𝐿 (𝑠) (𝑠 − 𝜌 (𝑥
∗
, 𝑥
0
)) 𝑑𝑠;

(54)

that is,

𝜌 (𝑥
∗
, 𝑥
0
) ≤ ∫

𝑟
0

0

𝐿 (𝑠) (𝑠 − 𝜌 (𝑥
∗
, 𝑥
0
)) 𝑑𝑠

= ∫

𝑟
0

0

𝐿 (𝑠) 𝑠 𝑑𝑠 − 𝜌 (𝑥
∗
, 𝑥
0
) ∫

𝑟
0

0

𝐿 (𝑠) 𝑑𝑠

= 𝑏 − 𝜌 (𝑥
∗
, 𝑥
0
) ,

(55)

which always holds because 𝜌(𝑥∗, 𝑥
0
) ≤ (𝑏/2) by assumption.

Hence, (53) is seen to hold.
Then in order to ensure that Proposition 4 is applicable,

we have to show the following assertion: 𝑑𝑓−1
𝑥
0

𝑑𝑓 satisfies the
𝐿-average Lipschitz condition in 𝐶

𝑟
0

(𝑥
0
). To do this, let 𝑥 ∈

𝐶
𝑟
0

(𝑥
0
) be such that there exist V, V

1
, . . . , V

𝑙
∈ g satisfying 𝑥 =

𝑥
0
exp V
1
⋅ ⋅ ⋅ exp V

𝑙
, 𝜌(𝑥
0
, 𝑥) := ∑

𝑙

𝑖=1
‖V
𝑖
‖ and ‖V‖ + 𝜌(𝑥

0
, 𝑥) <

𝑟
0
. Since 𝑑𝑓−1

𝑥
∗ 𝑑𝑓 satisfies the 𝐿-average Lipschitz condition in

𝐶
𝑟
0

(𝑥
0
) and

𝜌 (𝑥
∗
, 𝑥
0
) + ‖V‖ + 𝜌 (𝑥

0
, 𝑥) < 𝜌 (𝑥

∗
, 𝑥
0
) + 𝑟
0
= 𝑟
0 (56)

thanks to (51), we obtain that


𝑑𝑓
−1

𝑥
∗ (𝑑𝑓𝑥 exp V − 𝑑𝑓 (𝑥))


≤ ∫

𝜌(𝑥
∗

,𝑥
0
)+𝜌(𝑥

0
,𝑥)+‖V‖

𝜌(𝑥
∗
,𝑥
0
)+𝜌(𝑥

0
,𝑥)

𝐿 (𝑠) 𝑑𝑠.

(57)

Combining this with (34) yields that

𝑑𝑓
−1

𝑥
0

(𝑑𝑓
𝑥 exp V − 𝑑𝑓 (𝑥))



≤

𝑑𝑓
−1

𝑥
0

𝑑𝑓
𝑥
∗




𝑑𝑓
−1

𝑥
∗ (𝑑𝑓𝑥 exp 𝑢 − 𝑑𝑓 (𝑥))



≤
1

1 − ∫
𝜌(𝑥
∗
,𝑥
0
)

0
𝐿 (𝑠) 𝑑𝑠

∫

𝜌(𝑥
∗

,𝑥
0
)+𝜌(𝑥

0
,𝑥)+‖V‖

𝜌(𝑥
∗
,𝑥
0
)+𝜌(𝑥

0
,𝑥)

𝐿 (𝑠) 𝑑𝑠

= ∫

𝜌(𝑥
0
,𝑥)+‖V‖

𝜌(𝑥
0
,𝑥)

𝐿 (𝑠 + 𝜌 (𝑥
∗
, 𝑥
0
))

1 − ∫
𝜌(𝑥
∗
,𝑥
0
)

0
𝐿 (𝑠) 𝑑𝑠

𝑑𝑠

= ∫

𝜌(𝑥
0
,𝑥)+‖V‖

𝜌(𝑥0,𝑥)

𝐿 (𝑠) 𝑑𝑠.

(58)

Hence, 𝑑𝑓−1
𝑥
0

𝑑𝑓 satisfies the 𝐿-average Lipschitz condition in
𝐶
𝑟
0

(𝑥
0
). Thus, we apply Proposition 4 to conclude that the

sequence {𝑥
𝑛
} generated byNewton’s method (28) with initial

point 𝑥
0
is well defined and converges to a zero 𝑦

∗ of 𝑓 and
(𝑦
∗
, 𝑥
0
) < 𝑟
0
. And

 (𝑦
∗
, 𝑥
∗
) ≤  (𝑦

∗
, 𝑥
0
) +  (𝑥

∗
, 𝑥
0
)

≤ 𝜌 (𝑥
∗
, 𝑥
0
) + 𝑟
0
= 𝑟
0
.

(59)

The proof of the theorem is completed.

Theorem 6 gives an estimate of the convergence domain
for Newton’s method. However, we do not know whether
the limit 𝑦∗ of the sequence generated by Newton’s method
with initial point 𝑥

0
from this domain is equal to the zero

𝑥
∗.The following corollary provides the convergence domain

from which the sequence generated by Newton’s method
with initial point 𝑥

0
converges to the zero 𝑥

∗. Recall that 𝑒
designates the identity element of 𝐺.

Corollary 7. Suppose that 𝑑𝑓−1
𝑥
∗ 𝑑𝑓 satisfies the 𝐿-average Lips-

chitz condition on𝐶
𝑟
0

(𝑥
∗
). Suppose that𝐶

𝑟
0

(𝑒) ⊆ exp(B(0, 𝑟
0
))

and (𝑥
∗
, 𝑥
0
) < (𝑏/2). Then, the sequence {𝑥

𝑛
} generated by

Newton’s method (28) with initial point 𝑥
0
is well defined and

converges quadratically to 𝑥
∗.

Proof. Since (𝑥
∗
, 𝑥
0
) < (𝑏/2), we apply Theorem 6 to con-

clude that the sequence {𝑥
𝑛
} generated by Newton’s method

(28) with initial point 𝑥
0
is well defined and converges

quadratically to a zero point 𝑦∗ of 𝑓 and (𝑦
∗
, 𝑥
∗
) < 𝑟
0
; that

is, ((𝑥∗)−1𝑦∗, 𝑒) < 𝑟
0
. Since 𝐶

𝑟
0

(𝑒) ⊆ exp(B(0, 𝑟
0
)), there

exists 𝑢 ∈ g such that ‖𝑢‖ ≤ 𝑟
0
and (𝑥

∗
)
−1
𝑦
∗

= exp 𝑢; that
is, 𝑦∗ = 𝑥

∗ exp 𝑢. Hence, 𝑦∗ ∈ 𝑁(𝑥
∗
, 𝑟
0
) := 𝑥

∗ exp(B(0, 𝑟
0
)).

As 𝑟
0
≤ 𝑟
𝑢
by Remark 3(ii), Theorem 2 is applicable, and so

𝑦
∗
= 𝑥
∗.

Recall that in the special case when 𝐺 is a compact
connected Lie group,𝐺 has a bi-invariant Riemannianmetric
(cf. [22, page 46]). Below, we assume that 𝐺 is a compact
connected Lie group and endowed with a bi-invariant Rie-
mannian metric. Therefore, an estimate of the convergence
domain with the same property as in Corollary 7 is described
in the following corollary.

Corollary 8. Let 𝐺 be a compact connected Lie group and
endowed with a bi-invariant Riemannian metric. Suppose that
𝑑𝑓
−1

𝑥
∗ 𝑑𝑓 satisfies the 𝐿-average Lipschitz condition on 𝐶

𝑟
0

(𝑥
∗
).

Suppose that (𝑥
∗
, 𝑥
0
) < (𝑏/2). Then, the sequence {𝑥

𝑛
}

generated by Newton’s method (28) with initial point 𝑥
0
is well

defined and converges quadratically to 𝑥
∗.

Proof. By Theorem 6, the sequence {𝑥
𝑛
} generated by New-

ton’s method (28) with initial point 𝑥
0
is well defined and

converges to a zero, say 𝑦
∗, of 𝑓 with (𝑥

∗
, 𝑦
∗
) < 𝑟
0
. Clearly,

there is a minimizing geodesic 𝑐 connecting 𝑥
∗−1

⋅ 𝑦
∗ and

𝑒. Since 𝐺 is a compact connected Lie group and endowed
with a bi-invariant Riemannian metric, it follows from [20,
page 224] that 𝑐 is also a one-parameter subgroup of 𝐺.



Abstract and Applied Analysis 7

Consequently, there exists 𝑢 ∈ g such that 𝑦∗ = 𝑥
∗
⋅ exp 𝑢

and ‖𝑢‖ = (𝑥
∗
, 𝑦
∗
) < 𝑟

0
. Hence, 𝑦∗ ∈ 𝑁(𝑥

∗
, 𝑟
0
) :=

𝑥
∗ exp(B(0, 𝑟

0
)). As 𝑟

0
≤ 𝑟 by Remark 3(ii), Theorem 2 is

applicable, and so 𝑦
∗
= 𝑥
∗.

5. Theorems under the Kantorovich
Condition and the 𝛾-Condition

This section is devoted to the study of some applications of the
results obtained in the preceding sections. At first, if 𝐿(⋅) is a
constant, then the 𝐿-average Lipschitz condition is reduced
to the classical Lipschitz condition.

Let 𝑟 > 0, 𝑥
0
∈ 𝐺 and let 𝑇 be a mapping from𝐺 toL(g).

Then 𝑇 is said to satisfy the 𝐿 Lipschitz condition on 𝐶
𝑟
(𝑥
0
)

if

𝑇 (𝑥 ⋅ exp 𝑢) − 𝑇 (𝑥)
 ≤ 𝐿 ‖𝑢‖ (60)

holds for any 𝑢, 𝑢
0
, . . . , 𝑢

𝑘
∈ g and 𝑥 ∈ 𝐶

𝑟
(𝑥
0
) such that

𝑥 = 𝑥
0
exp 𝑢
0
exp 𝑢
1
⋅ ⋅ ⋅ exp 𝑢

𝑘
and ‖𝑢‖ + 𝜌(𝑥, 𝑥

0
) < 𝑟, where

𝜌(𝑥, 𝑥
0
) = ∑
𝑘

𝑖=0
‖𝑢
𝑖
‖.

Hence, in the case when 𝐿(⋅) ≡ 𝐿, we obtain from (22) and
(29) that

𝑟
0
=

1

𝐿
, 𝑏 =

1

2𝐿
, 𝑟 =

2

𝐿
. (61)

Thus, by Theorems 2 and 6, we have the following results,
where Theorem 10 has been given in [18].

Theorem 9. Let 0 < 𝑟 ≤ (2/𝐿), Suppose that 𝑑𝑓−1
𝑥
∗ 𝑑𝑓 satisfies

the 𝐿 Lipschitz condition in 𝑁(𝑥
∗
, 𝑟). Then 𝑥

∗ is the unique
zero point of 𝑓 in𝑁(𝑥

∗
, 𝑟).

Theorem 10. Suppose that 𝑑𝑓
−1

𝑥
∗ 𝑑𝑓 satisfies the 𝐿 Lipschitz

condition on 𝐶
1/𝐿

(𝑥
∗
). Suppose that (𝑥∗, 𝑥

0
) < (1/4𝐿). Then

the sequence {𝑥
𝑛
} generated by Newton’s method (28) with

initial point 𝑥
0
is well defined and converges quadratically to

a zero 𝑦
∗ of 𝑓 and (𝑦

∗
, 𝑥
∗
) < (1/𝐿).

Furthermore, by Corollaries 7 and 8, one has the follow-
ing results.

Corollary 11. Suppose that 𝑑𝑓
−1

𝑥
∗ 𝑑𝑓 satisfies the 𝐿 Lip-

schitz condition on 𝐶
1/𝐿

(𝑥
∗
). Suppose that 𝐶

1/𝐿
(𝑒) ⊆

exp(B(0, (1/𝐿))) and (𝑥
∗
, 𝑥
0
) < (1/4𝐿). Then, the sequence

{𝑥
𝑛
} generated by Newton’s method (28) with initial point 𝑥

0
is

well defined and converges quadratically to 𝑥
∗.

Corollary 12. Let 𝐺 be a compact connected Lie group and
endowed with a bi-invariant Riemannian metric. Suppose that
𝑑𝑓
−1

𝑥
∗ 𝑑𝑓 satisfies the 𝐿 Lipschitz condition on𝐶

1/𝐿
(𝑥
∗
). Suppose

that (𝑥∗, 𝑥
0
) < (1/4𝐿). Then, the sequence {𝑥

𝑛
} generated by

Newton’s method (28) with initial point 𝑥
0
is well defined and

converges quadratically to 𝑥
∗.

Let 𝑘 be a positive integer, and assume further that 𝑓 :

𝐺 → g is a 𝐶𝑘-map. Define the map 𝑑
𝑘
𝑓
𝑥
: g𝑘 → g by

𝑑
𝑘
𝑓
𝑥
𝑢
1
⋅ ⋅ ⋅ 𝑢
𝑘

= (
𝜕
𝑘

𝜕𝑡
𝑘
⋅ ⋅ ⋅ 𝜕𝑡
1

𝑓 (𝑥 ⋅ exp 𝑡
𝑘
𝑢
𝑘
⋅ ⋅ ⋅ exp 𝑡

1
𝑢
1
))

𝑡
𝑘
=⋅⋅⋅=𝑡
1
=0

,

(62)

for each (𝑢
1
, . . . , 𝑢

𝑘
) ∈ g𝑘. In particular,

𝑑
𝑘
𝑓
𝑥
𝑢
𝑘
= (

𝑑
𝑘

𝑑𝑡𝑘
𝑓 (𝑥 ⋅ exp 𝑡𝑢))

𝑡=0

for each 𝑢 ∈ g. (63)

Let 1 ≤ 𝑖 ≤ 𝑘. Then, in view of the definition, one has

𝑑
𝑘
𝑓
𝑥
𝑢
1
⋅ ⋅ ⋅ 𝑢
𝑘
= 𝑑
𝑘−𝑖

(𝑑
𝑖
𝑓 ⋅ (𝑢
1
⋅ ⋅ ⋅ 𝑢
𝑖
))
𝑥
𝑢
𝑖+1

⋅ ⋅ ⋅ 𝑢
𝑘

for each (𝑢
1
, . . . , 𝑢

𝑘
) ∈ g
𝑘
.

(64)

In particular, for fixed 𝑢
1
, . . . , 𝑢

𝑖−1
, 𝑢
𝑖+1

, . . . , 𝑢
𝑘
∈ g,

𝑑
𝑖
𝑓
𝑥
𝑢
1
⋅ ⋅ ⋅ 𝑢
𝑖−1

(𝑢) = 𝑑 (𝑑
𝑖−1

𝑓 (𝑢
1
⋅ ⋅ ⋅ 𝑢
𝑖−1

)) (𝑢)

for each 𝑢 ∈ g.
(65)

This implies that 𝑑𝑖𝑓
𝑥
𝑢
1
⋅ ⋅ ⋅ 𝑢
𝑖−1

𝑢 is linear with respect to 𝑢 ∈

g and so is 𝑑𝑘𝑓
𝑥
𝑢
1
⋅ ⋅ ⋅ 𝑢
𝑖−1

𝑢𝑢
𝑖+1

⋅ ⋅ ⋅ 𝑢
𝑘
. Consequently, 𝑑𝑘𝑓

𝑥
is a

multilinear map from g𝑘 to g because 1 ≤ 𝑖 ≤ 𝑘 is arbitrary.
Thus, we can define the norm of 𝑑𝑘𝑓

𝑥
by


𝑑
𝑘
𝑓
𝑥


:= sup {


𝑑
𝑘
𝑓
𝑥
𝑢
1
𝑢
2
⋅ ⋅ ⋅ 𝑢
𝑘


| (𝑢
1
, . . . , 𝑢

𝑘
) ∈ g
𝑘

with each 
𝑢
𝑗


= 1} .

(66)

For the remainder of the paper, we always assume that 𝑓
is a 𝐶2-map from 𝐺 to g. Then taking 𝑖 = 2, we have

𝑑
2
𝑓
𝑧
V𝑢 = 𝑑(𝑑𝑓 ⋅ V)

𝑧
𝑢 for any 𝑢, V ∈ g and each 𝑧 ∈ 𝐺.

(67)

Thus, (17) is applied (with 𝑑𝑓⋅V in place of𝑓(⋅) for each V ∈ g)
to conclude the following formula:

𝑑𝑓
𝑥⋅exp(𝑡𝑢) − 𝑑𝑓

𝑥
= ∫

𝑡

0

𝑑
2
𝑓
𝑥⋅exp(𝑠𝑢)𝑢 𝑑𝑠

for each 𝑢 ∈ g, 𝑡 ∈ R.

(68)

The 𝛾-condition for nonlinear operators in Banach spaces
was first introduced by Wang and Han [25], and explored
further by Wang [26] to study Smale’s point estimate theory,
which has been extended in [19] for a map 𝑓 from a Lie
group to its Lie algebra in view of the map 𝑑

2
𝑓 as given in

Definition 13 below. Let 𝑟 > 0 and 𝛾 > 0 be such that 𝛾𝑟 ≤ 1.

Definition 13. Let 𝑥
0
∈ 𝐺 be such that 𝑑𝑓−1

𝑥
0

exists. 𝑓 is said to
satisfy the 𝛾-condition at 𝑥

0
on 𝐶
𝑟
(𝑥
0
) if, for any 𝑥 ∈ 𝐶

𝑟
(𝑥
0
)

with 𝑥 = 𝑥
0
exp 𝑢
0
exp 𝑢
1
⋅ ⋅ ⋅ exp 𝑢

𝑘
such that 𝜌(𝑥, 𝑥

0
) :=

∑
𝑘

𝑖=0
‖𝑢
𝑖
‖ < 𝑟,


𝑑𝑓
−1

𝑥
0

𝑑
2
𝑓
𝑥


≤

2𝛾

(1 − 𝛾𝜌 (𝑥, 𝑥
0
))
3
. (69)
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As shown in Proposition 20, if 𝑓 is analytic at 𝑥
0
, then 𝑓

satisfies the 𝛾-condition at 𝑥
0
.

Let 𝛾 > 0 and let 𝐿 be the function defined by

𝐿 (𝑠) =
2𝛾

(1 − 𝛾𝑠)
3

for each 0 < 𝑠 <
1

𝛾
. (70)

The following proposition shows that the 𝛾-condition implies
the 𝐿-average Lipschitz condition, which is taken from [24].

Proposition 14. Suppose that 𝑓 satisfies the 𝛾-condition at
𝑥
0
on 𝐶
𝑟
(𝑥
0
). Then 𝑑𝑓

−1

𝑥
0

𝑑𝑓 satisfies the 𝐿-average Lipschitz
condition on 𝐶

𝑟
(𝑥
0
) with 𝐿 being defined by (70).

In the case when 𝐿 is given by (70), we have from (22) and
(29) that

𝑟
0
=

2 − √2

2𝛾
, 𝑏 =

3 − 2√2

𝛾
, 𝑟 =

1

2𝛾
. (71)

Thus, byTheorems 2 and 6, we have the following results.

Theorem 15. Let 0 < 𝑟 ≤ (1/2𝛾). Suppose that 𝑓 satisfies
the 𝛾-condition in 𝑁(𝑥

∗
, 𝑟) := 𝑥

∗ exp(B(0, 𝑟)). Then 𝑥
∗ is the

unique zero point of 𝑓 in𝑁(𝑥
∗
, 𝑟).

Theorem 16. Suppose that 𝑓 satisfies the 𝛾-condition on
𝐶
(2−√2)/2𝛾

(𝑥
∗
). Suppose that (𝑥∗, 𝑥

0
) < (3 − 2√2)/2𝛾. Then

the sequence {𝑥
𝑛
} generated by Newton’s method (28) with

initial point 𝑥
0
is well defined and converges quadratically to

a zero point 𝑦∗ of 𝑓 and (𝑦
∗
, 𝑥
∗
) < (2 − √2)/2𝛾.

Remark 17. Theorem 16 improves the corresponding results
in [19, Corollary 4.1], where it was proved under the following
assumption: there exists V ∈ g such that 𝑥

0
= 𝑥
∗ exp V

and ‖V‖ ≤ (𝑎
0
/𝛾) with 𝑎

0
= 0.081256 . . . being the smallest

positive root of the equation 𝑎
0
/(1 − 4𝑎

0
+ 2𝑎
2

0
)
2
= 3 − 2√2.

Clearly, (𝑎
0
/𝛾) < (3 − 2√2)/2𝛾. Note also that in general,

there dose not exist V ∈ g satisfying 𝑥
0
= 𝑥
∗ exp V because the

exponential map is not surjective global, even if (𝑥∗, 𝑥
0
) <

(3 − 2√2)/2𝛾. In view of this, our results somewhat improves
the corresponding results in [19, Corollary 4.1].

Moreover, we get the following two corollaries from
Corollaries 7 and 8.

Corollary 18. Suppose that 𝑓 satisfies the 𝛾-condition on
𝐶
(2−√2)/2𝛾

(𝑥
∗
). Suppose that 𝐶

(2−√2)/2𝛾
(𝑒) ⊆ exp(B(0, (2 −

√2)/2𝛾)) and (𝑥
∗
, 𝑥
0
) < (3 − 2√2)/2𝛾. Then, the sequence

{𝑥
𝑛
} generated by Newton’s method (28) with initial point 𝑥

0
is

well defined and converges quadratically to 𝑥
∗.

Corollary 19. Let 𝐺 be a compact connected Lie group and
endowed with a bi-invariant Riemannian metric. Suppose that
𝑓 satisfies the 𝛾-condition on 𝐶

(2−√2)/2𝛾
(𝑥
∗
). Suppose that

(𝑥
∗
, 𝑥
0
) < (3 − 2√2)/2𝛾. Then, the sequence {𝑥

𝑛
} generated

by Newton’s method (28) with initial point 𝑥
0
is well defined

and converges quadratically to 𝑥
∗.

6. Applications to Analytic Maps

Throughout this section, we always assume that 𝑓 is analytic
on 𝐺. For 𝑥 ∈ 𝐺 such that 𝑑𝑓−1

𝑥
exists, we define

𝛾
𝑥
:= 𝛾 (𝑓, 𝑥) = sup

𝑖≥2



𝑑𝑓
−1

𝑥
𝑑
𝑖
𝑓
𝑥

𝑖!



1/(𝑖−1)

. (72)

Also we adopt the convention that 𝛾(𝑓, 𝑥) = ∞ if 𝑑𝑓
𝑥
is not

invertible. Note that this definition is justified, and, in the case
when 𝑑𝑓

𝑥
is invertible, 𝛾(𝑓, 𝑥) is finite by analyticity.

The following proposition is taken from [19].

Proposition 20. Let 𝛾
𝑥
∗ := 𝛾(𝑓, 𝑥

∗
) and let 𝑟 = (2−√2)/2𝛾

𝑥
∗ .

Then 𝑓 satisfies the 𝛾
𝑥
∗-condition at 𝑥∗ on 𝐶

𝑟
(𝑥
∗
).

Thus, byTheorems 15 and 16 and Proposition 20, we have
the following results.

Theorem 21. Let 0 < 𝑟 ≤ (1/2𝛾
𝑥
∗). Then 𝑥

∗ is the unique zero
point of 𝑓 in𝑁(𝑥

∗
, 𝑟).

Theorem 22. Suppose that (𝑥∗, 𝑥
0
) < (3 − 2√2)/2𝛾

𝑥
∗ . Then

the sequence {𝑥
𝑛
} generated by Newton’s method (28) with

initial point 𝑥
0
is well defined and converges quadratically to

a zero point 𝑦∗ of 𝑓 and (𝑦
∗
, 𝑥
∗
) < (2 − √2)/2𝛾

𝑥
∗ .

Moreover, we get the following two corollaries from
Corollaries 7 and 8 and Proposition 20.

Corollary 23. Suppose that 𝐶
(2−√2)/2𝛾

𝑥
∗
(𝑒) ⊆ exp(B(0, (2 −

√2)/2𝛾
𝑥
∗)) and (𝑥

∗
, 𝑥
0
) < ((3 − 2√2)/2𝛾

𝑥
∗). Then, the

sequence {𝑥
𝑛
} generated by Newton’s method (28) with initial

point 𝑥
0
is well defined and converges quadratically to 𝑥

∗.

Corollary 24. Let 𝐺 be a compact connected Lie group and
endowed with a bi-invariant Riemannian metric. Suppose that
(𝑥
∗
, 𝑥
0
) < (3−2√2)/2𝛾

𝑥
∗ . Then, the sequence {𝑥

𝑛
} generated

by Newton’s method (28) with initial point 𝑥
0
is well defined

and converges quadratically to 𝑥
∗.
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