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The flight scheduling is a real-time optimization problem.Whenever the schedule is disrupted, it will not only cause inconvenience
to passenger, but also bring about a large amount of operational losses to airlines. Especially in case an irregular flight happens, the
event is unanticipated frequently. In order to obtain an optimal policy in airline operations, this paper presents a model in which
the total delay minutes of passengers are considered as the optimization objective through reassigning fleets in response to the
irregular flights and which takes into account available resources and the estimated cost of airlines. Owing to the uncertainty of the
problem and insufficient data in the decision-making procedure, the traditional modeling tool (probability theory) is abandoned,
the uncertainty theory is applied to address the issues, and an uncertain programming model is developed with the chance
constraint. This paper also constructs a solution method to solve the model based on the classical Hungarian algorithm under
uncertain conditions. Numerical example illustrates that the model and its algorithm are feasible to deal with the issue of irregular
flight recovery.

1. Introduction

A schedulewe havemade is frequently complex and dynamic,
and uncertainty fittingly characters its intrinsic nature. Vari-
ous unanticipated eventswill disrupt the system andmake the
schedule deviate from its intended course, evenmake it infea-
sible; furthermore, they will bring about a large quantity of
losses.Then, we apply amethod of disruptionmanagement to
cope with it, to reach our goals while minimizing all the neg-
ative impact caused by disruptions and to get back on track
in a timelymanner while effectively using available resources.
The disruption management refers to the real time dynamic
revision of an operational plan when a disruption occurs.
This is especially important in situationswhere an operational
plan has to be published in advance, and its execution is
subject to severe random disruptions. When a published
operational plan is revised, there will be some deviation cost
associated with the transition from the original plan to the
new plan. To reduce such deviation cost, it is essential to take
them into account when generating the new plan. Disruption
management is a real-time practice and often requires a quick
solution when a disruption occurs. The original planning

problem usually is regarded as a one-time effort, so it is prac-
tically acceptable if generating an optimal operational plan
takes a dozen of minutes or hours, or even longer. However,
when a disruption occurs, it is critical to immediately provide
a resolution to the responsible personnel.Therefore, real-time
optimization techniques are very important.

In the area of transportation network, the schedule is
not frequently executed according to the original plan; the
system is often disturbed because of uncertainties, time
delays, stochastic perturbations and so on. It is difficult to
deal with the situations. So, the complex dynamic systems are
raised by Gao et al. [1] in many varieties, including the areas
of transportation networks, energy generation, storage and
distribution, ecosystems, gene regulation and health delivery,
safety and security systems, and telecommunications. They
also present various mathematical methods and techniques
to discuss the issues.

Airlines spend a great deal of efforts developing flight
schedules for each of their fleets, and the daily operations of
an airline are strictly based on a predetermined flight sched-
ule. So, we know how important the fleet assignment is. But
there are many uncertain factors having effect on the flights,
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such as badweather, aircraft failure, and airline traffic control.
When the flight schedule is disrupted, a deviation from the
flight schedule causes not only inconvenience to passenger,
but also a large amount of operational cost because the airline
has tomake a new flight schedule that should satisfy all above
constraints. So, the recovery of irregular flights faced by all
airlines in the world is important and difficult to solve.

InUSA,DeltaAirline summedup 95,000 irregular flights,
which affected 8,500,000 passengers and caused $500million
of losses (not including satisfaction losses of passengers).
Each irregular flight caused losses up to more than $5,200
on average (not including losses to the passengers because of
delays). In China, the domestic three major airlines executed
1,492,031 flights, but there were 258,866 irregular flights, and
the rate of irregular flightwas 17.35% in 2008. In the same year,
the domestic airlines of small and medium sized had 176,785
flights, and 39,126 were irregular flights; the rate of irregular
flight was up to 22.13%. Hence, the irregular flights brought
a large amount of losses to airlines and inconvenience to
passenger in actual life.

Due to the complexity of irregular flight scheduling prob-
lem, it is impossible for airlines to optimize existing resources
relying on experience. The problem of searching fast and
efficient algorithm and software has not been solved [2].
Then Teodorović and Guberinić [3] proposed a branch and
boundmethod tominimize total delayminutes of passengers.
Teodorobic and Stojkovic [4] raised dynamic programming
model based on principle of lexicographic optimization,
in order to minimize the cancelled flights and the total
delay minutes of passengers. Jarrah et al. [5] introduced two
separatemodels tominimize delayminutes and cancellations,
respectively, solved by critical path method (CPD). Thus, the
models were not able to consider the trade-off between delay
and cancellation. Gang [6] constructed a two-commodities
network flow model without solving method. Yan and Yang
[7] formulated a model to minimize the duration of time
in which the flight scheduling was disrupted. Argüello et al.
[8, 9] presented resource allocation path flow model for fleet
assignment; the model had clear ideas describing the essence
of fleet assignment, but it was difficult to solve it. The period
network optimizationmodel about flight operations recovery
could be found in Bard et al. [10], and it transformed the
aircraft routing problem to a network flow model depend-
ing on discrete-time. Bratu and Barnhart [11] introduced
a model of flight recovery and algorithm, when irregular
flight happened, considering simultaneously aircraft, crew,
and passengers, to decide whether to cancel the flight or
not; the aim was to minimize the sum of total operation
cost of interconnection, cost of passengers, and canceling
cost. The objective function wished to search the trade-off
point between each cost. The essence of above models was to
construct flight leg and cancelled flight or not and select the
minimum cost of the program. But how to generate feasible
flight routes and calculate the cost of each route were difficult.
There was not a paper which found the exact optimal solution
by solving model directly for airlines up to now.

During the period of irregular flights, we cannot optimize
all situations, and the reasons resulting to irregular flights are
frequently uncertainty. For the decision making of uncertain

problem, Kouvelis and Yu [12] described robust discrete
optimization to deal with decision making in environment of
significant data uncertainty. Matsveichuk et al. [13–15] dealt
with the flow-shop minimum-length scheduling problem
with 𝑛 jobs processed on twomachines when processing time
is uncertain. Reference [15] presented minimal (maximal)
cardinality of a 𝐽-solution generated by Johnson’s algorithm
to solve the problem above; however, formost generalizations
of the two-machine flow-shop problem, the existence of
polynomial algorithms is unlikely. For the duration of each
irregular flight, we cannot analyze it without enough data,
and it is not feasible to be dealt with by using stochastic pro-
gramming. But we can invite experts to give the approximate
duration of delay time and its uncertainty distribution.Then,
we can apply uncertainty theory with a great premise. Here
we will apply uncertainty theory to component model with
uncertain programming and provide a stepwise algorithm for
the model. In this paper, we search for minimizing the total
delayminutes of passengers under the constraint of estimated
cost. Next, this paper gives introduction of uncertainty theory
and model, the method of constructing the model, the
algorithm of solving model, and numerical example for the
model. At last, we provide some future directions.

2. Preliminaries

In this section, some basic definitions are introduced, and
the arithmetic operations of uncertain theory which needed
throughout this paper are presented.

Definition 1 (Liu [16]). Let Γ be a nonempty set and L a 𝜎-
algebra over Γ. Each element Λ ∈ L is called an event. The
set functionM is called an uncertainmeasure if it satisfies the
following four axioms.

𝐴𝑥𝑖𝑜𝑚 1 (normality).M{Γ} = 1;
𝐴𝑥𝑖𝑜𝑚 2 (monotonicity). M{Λ

1
} ≤ M{Λ

2
} when-

ever Λ
1
⊂ Λ
2
;

𝐴𝑥𝑖𝑜𝑚 3 (self-duality). M{Λ} +M{Λ
𝑐
} = 1 for any

event Λ;
𝐴𝑥𝑖𝑜𝑚 4 (countable subadditivity). For every count-
able sequence of events {Λ

𝑖
}, we have

M{

∞

⋃

𝑖=1

Λ
𝑖
} ≤

∞

∑

𝑖=1

M {Λ
𝑖
} . (1)

Definition 2 (Liu [16]). Let Γ be a nonempty set, L a 𝜎-
algebra over Γ, andM an uncertain measure. Then the triple
(Γ,L,M) is called on uncertainty space.

Definition 3 (Liu [16]). An uncertain variable 𝜉 is a measur-
able function from the uncertainty space (Γ,L,M) to the set
of real numbers; that is, for any Borel set B of real numbers,
the set

{𝜉 ∈ B} = {𝛾 ∈ Γ | 𝜉 (𝛾) ∈ B} (2)

is an event.
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For a sequence of uncertain variables 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
and a

measurable function 𝑓, Liu [17] proved that

𝜉 = 𝑓 (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) (3)

defined as 𝜉(𝛾) = 𝑓(𝜉
1
(𝛾), 𝜉
2
(𝛾), . . . , 𝜉

𝑛
(𝛾)), for all 𝛾 ∈ Γ is

also an uncertain variable. In order to describe an uncertain
variable, a concept of uncertainty distribution is introduced
as follows.

Definition 4 (Liu [16]). The uncertainty distribution Φ of an
uncertain variable 𝜉 is defined by

Φ (x) =M {𝜉 ≤ x} (4)

for any real number x.

Peng and Li [18] proved that a function Φ : R → [0, 1]

is an uncertainty distribution if and only if it is a monotone
increasing function unlessΦ(𝑥) ≡ 0 orΦ(𝑥) ≡ 1.The inverse
functionΦ−1 is called the inverse uncertainty distribution of
𝜉. Inverse uncertainty distribution is an important tool in the
operation of uncertain variables.

Theorem 5 (Liu [16]). Let 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
be independent

uncertain variables with regular uncertainty distributions
Φ
1
,Φ
2
, . . . ,Φ

𝑛
, respectively. If 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is an increas-

ing function with respect to 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
and decreasing with

respect to 𝑥
𝑚+1

, 𝑥
𝑚+2

, . . . , 𝑥
𝑛
, then

𝜉 = 𝑓 (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) (5)

is an uncertain variable with inverse uncertainty distribution

Ψ
−1
(𝛼) = 𝑓 (Φ

−1

1
(𝛼) ,Φ

−1

2
(𝛼) , . . . ,Φ

−1

𝑚
(𝛼) ,

Φ
−1

𝑚+1
(1 − 𝛼) , . . . ,Φ

−1

𝑛
(1 − 𝛼)) .

(6)

Expected value is the average of an uncertain variable in
the sense of uncertain measure. It is an important index to
rank uncertain variables.

Definition 6 (Liu [16]). Let 𝜉 be an uncertain variable. Then
the expected value of 𝜉 is defined by

𝐸 [𝜉] = ∫
∞

0

M {𝜉 ≥ 𝑟} 𝑑𝑟 − ∫
0

−∞

M {𝜉 ≤ 𝑟} 𝑑𝑟 (7)

provided that at least one of the two integrals is finite.

In order to calculate the expected value via inverse
uncertainty distribution, Liu [17] proved that

𝐸 [𝜉] = ∫
1

0

𝑓 (Φ
−1

1
(𝛼) , . . . ,Φ

−1

𝑚
(𝛼) ,

Φ
−1

𝑚+1
(1 − 𝛼) , . . . ,Φ

−1

𝑛
(1 − 𝛼)) 𝑑𝛼

(8)

under the condition described in Theorem 5. Generally, the
expected value operator 𝐸 has no linearity property for

arbitrary uncertain variables. But, for independent uncertain
variables 𝜉 and 𝜂 with finite expected values, we have

𝐸 [𝑎𝜉 + 𝑏𝜂] = 𝑎𝐸 [𝜉] + 𝑏𝐸 [𝜂] (9)

for any real numbers 𝑎 and 𝑏.

Theorem 7 (Liu [16]). Assume the objective function 𝑓(x, 𝜉
1
,

𝜉
2
, . . . , 𝜉

𝑛
) is strictly increasing with respect to 𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑚

and strictly decreasing with respect to 𝜉
𝑚+1

, 𝜉
𝑚+2

, . . . , 𝜉
𝑛
. If 𝜉
1
,

𝜉
2
, . . . , 𝜉

𝑛
are independent uncertain variables with uncertainty

distribution Φ
1
, Φ
2
, . . . , Φ

𝑛
, respectively, then the expected

objective function

𝐸 [𝑓 (x, 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
)] (10)

is equal to

∫

1

0

𝑓 (x,Φ−1
1
(𝛼) , . . . ,Φ

−1

𝑚
(𝛼) ,

Φ
−1

𝑚+1
(1 − 𝛼) , . . . ,Φ

−1

𝑛
(1 − 𝛼)) 𝑑𝛼.

(11)

Theorem 8 (Liu [16]). Assume 𝑓(x, 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) is strictly

increasing with respect to 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑚
and strictly decreasing

with respect to 𝜉
𝑚+1

, 𝜉
𝑚+2

, . . . , 𝜉
𝑛
, and 𝑔

𝑗
(x, 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
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1
, 𝜉
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, . . . , 𝜉

𝑘
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, 𝜉
𝑘+2
, . . . , 𝜉

𝑛
, for 𝑗 = 1, 2, . . . , 𝑝.

If 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
are independent uncertain variables with

uncertainty distributionsΦ
1
, Φ
2
, . . . , Φ

𝑛
, respectively, then the

uncertain programming

min
𝑥

𝐸 [𝑓 (x, 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
)] ,

s.t. M {𝑔
𝑗
(x, 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) ≤ 𝐶} ≥ 𝛼

𝑗
, 𝑗 = 1, 2, . . . , 𝑝,

(12)

is equivalent to the crisp mathematical programming

min
𝑥

∫

1

0

𝑓 (x,Φ−1
1
(𝛼) , . . . ,Φ

−1

𝑚
(𝛼) ,

Φ
𝑚
+ 1
−1
(1 − 𝛼) , . . . ,Φ

−1

𝑛
(1 − 𝛼)) ,

s.t. 𝑔
𝑗
(x,Φ−1
1
(𝛼
𝑗
) , . . . ,Φ

−1

𝑘
(𝛼
𝑗
) ,Φ
−1

𝑘+1
(1 − 𝛼

𝑗
) , . . . ,

Φ
−1

𝑛
(1 − 𝛼

𝑗
)) ≤ 𝐶, 𝑗 = 1, 2, . . . , 𝑝.

(13)

3. Problem Description

For airlines, irregular flights are not expected but they are
inevitable frequently owing to objective factors in practice.
So, each airline has its own methods to deal with the issue.
At present, the irregular flight recovery is a complex and
huge project to airlines. Generally speaking, the Airline
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Figure 1: Flow chart of procedure.

Operational Control (AOC) of each airline takes the
following procedure for dealing with the irregular flights.
Step 1. Maintenance Control Center (MCC) reports delays to
AOC.
Step 2. AOC gets detailed information from relevant depart-
ments.
Step 3. AOC gives the expected minutes of flight delay
according to the information.
Step 4. AOC makes a decision whether the first delay flight
cancels or postpones.
Step 5. Making decisions to the following flights.
Step 6. AOC always pays attention to real-time situations and
whether the decision will be to remake or not based on real-
time changes.

The flow chart of procedure is shown in Figure 1. From
this flow chart, we can get that it is difficult to make a suitable
and reasonable schedule. In this paper, we resolve the irregu-
lar flight problem about fleet reassignment based on the flow
chart. When irregular flights happen, the durations of delay
time only are predicted through the data given by experts,
in order to help the decision makers to reassign fleets better.
During the period of delay time, the airlines can postpone
the flights, minimize the delay minutes or delay cost by
reassigning and canceling flights, or minimize the total delay
minutes under the constraint of estimated cost by reassigning
flights; in a word, the aim is to serve the passengers better.

Tobias [19] presented a tabu search and a simulated
annealing approach to the flight perturbation problem and
used a tree-search algorithm to find new schedules for
airlines, and it could be successfully used to solve the
flight perturbation problem. Gao et al. [20] put forward a
greedy simulated annealing algorithm which integrated the
characteristics of GRASP and simulated annealing algorithm,
and the algorithmwas able to solve large-scale irregular flight
schedule recovery. Xiuli [21] introduced a stepwise-delay
algorithm to research irregular flight problem. She solved the
problem from the delay cost and delay minutes, respectively.
In the paper, the delay minutes and delay cost were set down
as constant values. From comparing the two methods, Xiuli
got the result that to construct the model with delay minutes
obtained successful results.

But there are not enough data of irregular flights to
analyze; the data is difficult to deal with under the stochastic
condition. In actual situations, we cannot obtain enough data
to analyze, so, in this paper, we treat the duration of delay
time of aircraft as an uncertain variable during the period
of irregular flights happening, and its distribution is given by
experts. Under the constraints of estimated cost and aircraft
assignment model, the objective function is to minimize the
total delay minutes of passengers relying on irregular flights.
Then we solve the model and get the solution.

4. Model Development

In actual situations, the factors which cause irregular flights
are uncontrolled frequently. Especially when the weather is
bad and aircraft failure happens, the durations of bad weather
and aircraft failure cannot be predicted exactly because of
lacking enough data under stochastic condition. In this
model, we consider the delay time as an uncertain variable,
and its uncertainty distribution is given by experts.

Firstly, we introduce the following notations to present
the mathematical formulation throughout the remainder of
this paper.
Indices, Sets, and Parameters

𝑓: index for set of flights 𝐹
𝑠: index for set of airports 𝑆
𝑖: index for set of types of aircrafts 𝐼
𝐼: set of types of aircrafts
𝐹: set of flights
𝑆: set of airports
𝐴: set of available aircrafts
𝑡
𝑖
: ready time of aircraft 𝑖
𝑡
𝑑

𝑓
: planning departure time of flight 𝑓

𝑡
𝑎

𝑓
: planning arrival time of flight 𝑓

𝑡
𝑓

𝑖
: uncertain delay time of flight 𝑓 executed by type 𝑖

of aircraft, 𝑡𝑓
𝑖
∼ 𝜑
𝑖
(𝑡), 𝑖 ∈ 𝐴

𝑝
𝑏

𝑓
, 𝑝
𝑒

𝑓
: reservation number of business and economy

class in flight 𝑓
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𝑞
𝑏

𝑓
, 𝑞
𝑒

𝑓
: fare of a ticket of business and economy class

in flight 𝑓
𝑛
𝑓
: total reservations of flight 𝑓

𝑢: disappointment rate of passengers
V: losses value of passengers per minute

𝑝
𝑓

𝑖
: delay loss of flight 𝑓 executed by aircraft 𝑖, 𝑝𝑓

𝑖
=

𝑤𝑛
𝑓
𝑡
𝑓

𝑖
, when 𝑡𝑓

𝑖
> 0, or = 0

𝑃
𝑓
: cost of canceling flight 𝑓

𝛽: airport usage charge per minute
𝛾: cost of depreciation of aircraft per minute

𝑐
𝑓

𝑖
: delay cost of flight 𝑓 executed by aircraft 𝑖

𝑐
𝑓

0
: estimated cost of flight 𝑓

𝐶
𝑓
= (𝑐
𝑓

𝑖
), 𝐶
0
= (𝑐
𝑓

0
)

𝛼
0
: confidence level

𝑘: weight of cost of cancelling flight

𝑥
𝑓

𝑖
: binary variable, = 1 if flight 𝑓 is executed by

aircraft 𝑖 and 0 otherwise
𝑦
𝑓
: binary variable, = 1 if flight 𝑓 is canceled and 0

otherwise.
Xiuli [21] presented two models to deal with the irregular

flight. Their objective functions were to minimize delay
minutes and total delay cost:

min(∑

𝑓∈𝐹

∑

𝑖∈𝐴

𝑥
𝑓

𝑖
𝑝
𝑓

𝑖
+ ∑

𝑓∈𝐹

𝑘𝑛
𝑓
𝑦
𝑓
),

min𝐶𝑓 (x, 𝑡𝑓) .

(14)

In our paper, we construct the model under the basis
of the two models, and integrate them to one. Next, based
on the analysis of the decision making process, we integrate
the estimated cost and the total delay minutes of passengers
model and propose the following model:

min 𝐸

{

{

{

∑

𝑓∈𝐹

∑

𝑖∈𝐴

𝑥
𝑓

𝑖
𝑝
𝑓

𝑖
+ ∑

𝑓∈𝐹

𝑘𝑛
𝑓
𝑦
𝑓

}

}

}

, (15)

s.t. M {𝐶
𝑓
(x, 𝑡𝑓) < 𝐶

0
} ≥ 𝛼
0
, (16)

∑

𝑖∈𝐴

𝑥
𝑓

𝑖
+ 𝑦
𝑓
= 1, ∀𝑓 ∈ 𝐹, 𝑎, 𝑑 ∈ 𝑆, (17)

𝑐
𝑓

𝑖
= {𝑥
𝑓

𝑖
(𝑝
𝑒

𝑓
× 𝑞
𝑒

𝑓
+ 𝑝
𝑏

𝑓
× 𝑞
𝑏

𝑓
) × 𝑢

+ (𝛽 + 𝛾) 𝑡
𝑓

𝑖
+ 𝑝
𝑓
𝑦
𝑓
} ,

𝑦
𝑓
= 1 − 𝑥

𝑓

𝑖
,

(18)

∑

𝑓∈𝐹

𝑥
𝑓

𝑖
≤ 1, ∀𝑖 ∈ 𝐴, (19)

𝑥
𝑓

𝑖
∈ {0, 1} , 𝑦

𝑓
∈ {0, 1} . (20)

In the model, (15) is the objective function of minimizing
the total delay minutes of passengers, the former is the delay
minutes depending on the irregular flights, the latter is the
equivalent delay minutes relying on flights cancelled; (16) is
the constraint of estimated cost; (17) states a flight is either
flown once by an aircraft or canceled; (18) is the delay cost of
flight 𝑓 executed by aircraft 𝑖; (19) assigns no more than one
aircraft to execute flight 𝑓; and (20) is the integer constraint
of 0-1.

The model is to minimize the total delay minutes of
passengers under the estimated cost. Generally speaking, we
need to recur to intelligent algorithm to solve the model; it is
a huge project to get its solution [22].

But, it will be much easier under the uncertainty theory
to deal with the problem. Note that 𝐶𝑓(x, 𝑡𝑓) is strictly
increasingwith respect to 𝑡𝑓

𝑖
(𝑖 = 1, 2, . . . , 𝑛), and 𝑡𝑓

1
, 𝑡
𝑓

2
, . . . , 𝑡

𝑓

𝑛

are independent uncertain variables with uncertainty distri-
butions 𝑡𝑓

𝑖
∼ 𝜑
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛), respectively. According

to Theorem 8, the above model will be equivalent to the
following deterministic model:

min
{

{

{

∑

𝑓∈𝐹

∑

𝑖∈𝐴

(𝑥
𝑓

𝑖
𝑤𝑛
𝑓
∫

1

0

𝜑
−1

𝑖
(𝑡
𝑓

𝑖
, 𝛼) 𝑑𝛼)

+∑

𝑓∈𝐹

𝑘𝑛
𝑓
𝑦
𝑓

}

}

}

,

s.t. Φ
−1
(x, 𝛼
0
) < 𝐶
0
,

∑

𝑖∈𝐴

𝑏
𝑑𝑖

𝑓
𝑏
𝑎𝑖

𝑓
𝑥
𝑓

𝑖
+ 𝑦
𝑓
= 1, ∀𝑓 ∈ 𝐹, 𝑎, 𝑑 ∈ 𝑆,

𝑐
𝑓

𝑖
= {𝑥
𝑓

𝑖
(𝑝
𝑒

𝑓
× 𝑞
𝑒

𝑓
+ 𝑝
𝑏

𝑓
× 𝑞
𝑏

𝑓
) × 𝑢

+𝛽𝑡
𝑓

𝑖
+ 𝑝
𝑓
𝑦
𝑓
} , 𝑦

𝑓
= 1 − 𝑥

𝑓

𝑖
,

∑

𝑓∈𝐹

𝑥
𝑓

𝑖
≤ 1, ∀𝑖 ∈ 𝐴,

𝑥
𝑓

𝑖
∈ {0, 1} , 𝑦

𝑓
∈ {0, 1} .

(21)

In this model, the objective function is to minimize the
expected total delay minutes of passengers, and the estimated
cost is treated as a chance constraint, where

Φ
−1
(x, 𝛼) = (𝜑−1

𝑖
(𝑡
𝑓

𝑖
, 𝛼)) . (22)

5. Solution Method and Complexity

5.1. Solution Method. In the model, there is an objective
function, but it contains two kinds of decision variables 𝑥𝑓

𝑖

and 𝑦
𝑓
. To solve the model, we make use of a stepwise-delay

algorithm. The procedure of solution is as follows.

Step 1. Based on the information postponed, getting the
timetable of flights as 𝑌𝑊.
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Table 1: Estimated cost.

𝑓 𝑐
0
/RMB

xx1337 55224
xx1338 52452
xx1223 63540
xx1224 88740
xx1209 36546
xx1519 26760
xx1210 34880

Total: 35,8142

Step 2. Sorting the delay flights depending on original depar-
ture time from the timetable of delay flight, and searching the
first airport where delay happened. During the delay period,
we retrieve the serial number of aircrafts through the airport,
and note them down in the table 𝐶𝐻.

Step 3. Finding available aircrafts in the delay airport, a time
permutation table 𝑇 is built via the constraints, Φ−1(x, 𝛼) <
𝐶
0
. The delay minutes are replaced by 𝐸[𝑡𝑓

𝑖
]; then we can get

the following:

1∗ 2∗ ⋅ ⋅ ⋅ 𝑛∗

𝑇 = (𝐸 [𝑡
𝑓

𝑖
]) =

𝑓
1

𝑓
2

...
𝑓
𝑛

(

(

𝐸[𝑡
1

1
] 𝐸 [𝑡

2

1
] ⋅ ⋅ ⋅ 𝐸 [𝑡

𝑛

1
]

𝐸 [𝑡
1

2
] 𝐸 [𝑡

2

2
] ⋅ ⋅ ⋅ 𝐸 [𝑡

𝑛

2
]

...
...

...
...

𝐸 [𝑡
1

𝑛
] 𝐸 [𝑡

2

𝑛
] ⋅ ⋅ ⋅ 𝐸 [𝑡

𝑛

𝑛
]

)

)

.

(23)

Step 4. For 𝑇, we use Hungarian algorithm to reassign avail-
able aircraft and get the new timetable:

𝑝 =

1∗ 2∗ ⋅ ⋅ ⋅ 𝑛∗

𝑓
1

𝑓
2

...
𝑓
𝑛

(

1

0

...
0

0

0

...
1

⋅ ⋅ ⋅

⋅ ⋅ ⋅

...
⋅ ⋅ ⋅

0

0

...
0

)

. (24)

Step 5. Renewing the 𝑌𝑊, the relevant aircraft assignment
is replaced by the consequence from Step 4; then turn to
Step 2, and steps are repeated until there are no delay flights
or optimal flights. Then the results are put out.

5.2. Complexity. For one delay airport, we use Hungarian
algorithm to reassign fleets in that the complexity is 𝑂(𝑛2).
When the number of delay airports is 𝑚, the algorithm will
be iterated in each airport, so that the total complexity is
𝑂(𝑚𝑛

2
) which is a polynomial. So it is a feasible method in

applications.

6. Illustrative Example and
Computational Result

In order to test the model and the solution algorithms
applied in the actual situation, we perform numerical tests
based on the domestic operation department with reasonable
assumptions.

We suppose that the airline has the hub airport of 𝑠
1
; the

flights are 𝑠
1
to 𝑠
2
, 𝑠
1
to 𝑠
3
, and 𝑠

2
to 𝑠
3
. Its types of aircrafts are

𝐴310 and 𝐵737. Assume that the delay minutes of irregular
flights are linear uncertain variables, and their distributions
are as follows:

𝑡
1
∼L (10 : 40, 11 : 20) , 𝑡

2
∼L (15 : 50, 16 : 30) ,

𝑡
3
∼L (12 : 10, 12 : 50) , 𝑡

4
∼L (15 : 10, 15 : 50) ,

𝑡
5
∼L (16 : 20, 17 : 00) .

(25)

The disappointment rate of passengers 𝑢 = 0.07𝑡
𝑓

𝑖
/60 +

0.4. The delay minutes of passengers are as follows:

𝑝
𝑓

𝑖
=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

0.3𝑛
𝑓
×

𝑡
𝑓

𝑖

60

𝑡
𝑓

𝑖
∈ [0, 60) ,

0.5𝑛
𝑓
×

𝑡
𝑓

𝑖

60

𝑡
𝑓

𝑖
∈ [60, 120) ,

0.7𝑛
𝑓
×

𝑡
𝑓

𝑖

60

𝑡
𝑓

𝑖
∈ [120, 240) ,

0.9𝑛
𝑓
×

𝑡
𝑓

𝑖

60

𝑡
𝑓

𝑖
∈ [240,∞) .

(26)

We assume that the constraint of estimated cost is shown
in Table 1.
At last, we assume that the timetable is shown in Table 2.

The predetermined confidence level 𝛼
0
= 0.9.

Then, we use the algorithm and get the optimal solution
shown in Table 3.

Comparing Tables 1, 2 and 3, we can get the optimal
solution through the model. From Table 3, we can see that
the cost is 196,637 RMB under the constraint of 358,142 RMB,
and the flight delay time is ten minutes less than Table 2.
Based on Tables 3 and 2, there is a great difference in the
total delayminutes of passengers. Table 2 is about 5.5 times as
many as Table 3, and there is not a cancelled flight in Table 3.
So the reassignment of Table 3 is much better than Table 2.
The example shows that the model and algorithm can get a
method of flight recovery better.

7. Conclusions and Future Directions

The irregular flights always happen in actual situations; in
order to deal with the issue, in this paper, we developed a
model for fleet reassignment based on uncertain program-
ming during the period of irregular flights and presented a
stepwise optimization method strategy based on Hungarian
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Table 2: Timetable postponed.

𝑖 𝑓 𝑡
𝑑

𝑓
𝑡
𝑎

𝑓
𝑡
𝑖

𝐸(𝑡
𝑓

𝑖
)/minute 𝑝

𝑏

𝑓
/𝑞
𝑏

𝑓
𝑝
𝑒

𝑓
/𝑞
𝑒

𝑓
𝑏
𝑑𝑖

𝑓
𝑏
𝑎𝑖

𝑓

310/3912 xx3108 8:00 10:30 8:00 0 110/700 8/1400 𝑠
1

𝑠
2

310/3912 xx3109 11:00 13:30 11:00 0 120/700 8/1400 𝑠
2

𝑠
1

737/3010 xx1337 9:50 14:20 𝑡
1

70 144/1800 9/3600 𝑠
1

𝑠
3

737/3010 xx1338 15:00 19:30 𝑡
2

70 135/1800 8/3600 𝑠
3

𝑠
1

737/3023 xx1209 11:00 13:30 𝑡
3

90 157/700 10/1400 𝑠
1

𝑠
2

737/3023 xx1210 14:00 16:30 𝑡
4

90 140/700 10/1400 𝑠
2

𝑠
1

737/3982 xx1223 12:00 16:30 0:00 Canceled 175/1800 10/3600 𝑠
1

𝑠
3

737/3982 xx1224 17:00 21:30 0:00 Canceled 275/1800 10/3600 𝑠
3

𝑠
1

310/8010 xx1518 8:00 12:30 8:00 0 130/1800 10/3600 𝑠
3

𝑠
1

310/8010 xx1519 12:50 14:50 𝑡
5

230 30/1800 0/3600 𝑠
1

𝑠
2

Total delay minutes of flights: 550; canceled: 2; value of objective function: 226,587.

Table 3: Timetable after reassigning.

𝑖 𝑓 𝑡
𝑑

𝑓
𝑡
𝑎

𝑓
𝑡
𝑖

𝐸(𝑡
𝑓

𝑖
)/minute 𝑏

𝑑𝑖

𝑓
𝑏
𝑎𝑖

𝑓

737/3010 xx1337 9:50 14:20 11:00 70 𝑠
1

𝑠
3

737/3010 xx1338 15:30 19:30 16:10 70 𝑠
3

𝑠
1

737/3023 xx1223 12:00 16:30 12:30 30 𝑠
1

𝑠
3

737/3023 xx1224 17:00 21:30 15:30 30 𝑠
3

𝑠
1

310/8010 xx1518 8:00 12:30 8:00 0 𝑠
3

𝑠
1

310/8010 xx1209 11:00 13:30 13:00 120 𝑠
1

𝑠
2

310/3912 xx3108 8:00 10:30 8:00 0 𝑠
1

𝑠
2

310/3912 xx3109 11:00 13:30 11:00 0 𝑠
2

𝑠
1

310/3912 xx1519 15:50 14:50 14:00 70 𝑠
1

𝑠
2

310/3912 xx1210 14:00 16:30 16:30 150 𝑠
2

𝑠
1

Total delay minutes of flights: 540;, canceled: 0; value of objective function: 41,410.
Total cost of flights delay: 196,637 RMB.

algorithm to solve the problem. Compared with the tradi-
tional model, we introduce an uncertain variable into the
model and construct it based on uncertain programming.
We consider the delay minutes as uncertain variables with
their uncertainty distributions given by experts. We con-
struct a stepwise optimization method based on Hungarian
algorithm to solve the model. From results of the numerical
example, the total delay minutes of passengers are declined
extensively, and we can get that the model and algorithm are
feasible to deal with the issue of irregular flights.

A major contribution of this paper is that we provide
a comprehensive framework for fleet reassignment during
the period of irregular flights happen. Much work still needs
to be done to improve on the current framework. Partially,
we believe future research can be conducted on an integral
framework of fleet reassignment and crew schedule recovery.
Thus approaching the irregular flights problem is more
systematical. Furthermore, considering actual situations, we
can also construct an integral uncertain and stochasticmodel;
thus, dealing with the issue of irregular flights is more
comprehensive.
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