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This paper addresses the consensus of second-order multiagent systems with general topology and time delay based on the nearest
neighbor rule. By using the Laplace transform technique, it is proved that the second-order multi-agent system in the presence of
time-delay can reach consensus if the network topology contains a globally reachable node and time delay is bounded. The bound
of time-delay only depends on eigenvalues of the Laplacian matrix of the system. The main contribution of this paper is that the
accurate state of the consensus center and the upper bound of the communication delay to make the agents reach consensus are
given. Some numerical simulations are given to illustrate the theoretical results.

1. Introduction

The wide applications of multiagent systems abounded in
nature and engineering area have stimulated a great deal
of interests in studying cooperative and coordinated control
problems. The mechanisms operational principles of multi-
agent systems can provide useful ideas for developing dis-
tributed cooperative control, formation control, unmanned
air vehicles, and sensing networks, and so forth. Recently,
the study of collective dynamics and coordination of multi-
agent systems becomes a hot topic and has attracted many
researchers from mathematics, physics, biology, sociology,
control science, computer science, artificial intelligence, and
so forth [1–25].

However, study of some fundamental issues concerning
the coordinated control of multi-agent systems, such as con-
sensus, stability, synchronization, and controllability analysis.
As in its usual sense, consensus means multiple agents can
reach an agreement on a common value by regulating their
neighbors. The consensus problem was firstly studied by
DeGroot [14], who proposed a weighted average method

to estimate probability distribution function of unknown
variables. Vicsek and Czirok [10] established a discrete model
of themulti-agents system called “VicsekModel.” Jadbabaie et
al. [11] developed “Vicsek Model,” which had been linearized
by graph theory and matrix theory. Usually, a multi-agent
system is interconnected through neighbor rules and hence
has a local and time-varying communication topology. In [4],
Olfati-Saber and Murray discussed linear systems with time-
delays.

Many papers on consensus problems of first-order multi-
agent system were presented (see, e.g., [1–4, 10, 11, 20, 21]
and the references therein). In [1], the first-order multi-
agent systems were firstly studied by the Laplace transform
technique and it was proved that the system could reach
consensus under certain conditions. In [2], the average
consensus problem was investigated in multi-agent systems
with undirected network topology andmultiple time-varying
communication delays by the linear matrix inequality (LMI)
method. Liu et al. [23] considered the consensus of multi-
agent systems with an active leader. The second-order multi-
agent systems were studied in [6, 7, 12, 13, 16–19, 22].
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Yu et al. [6] discussed the second-order system with time-
delays. They obtained the necessary and sufficient condition
and gave upper bound of time-delays. In [7], Ren considered
a consensus algorithm for second-order dynamics systems
with Cartesian coordinate coupling in three-dimensional
space. In [12], the authors discussed the consensus of con-
tinuous second-order multi-agent system in a sampled data
set. Lin and Jia [22] investigated the consensus of a class
of second-order multi-agent systems with time-delays and
jointly connected topologies.

In the view of [1], the Laplace transform has many advan-
tages in solving consensus problems, such as simplifying
the model of first-order systems and obtaining the accurate
state of the consensus center. Therefore, we will study the
consensus of the second-ordermulti-agent systemwith time-
delay and general topology by the Laplace transform in this
paper. We will prove the consensus can be achieved when
network topology contains a globally reachable node, and the
time-delays must be less than a critical value which depends
on the eigenvalues of the Laplacian matrix. Furthermore, the
accurate state of the consensus center of the second-order
multi-agent system and the upper bound of the communica-
tion delay to make the agents reach consensus are obtained.

The rest of this paper is organized as follows. In Section 2,
we present the mathematical model of the second-order
multi-agent system with time-delay and formulate it by
matrix form. In Section 3, the detailed theoretical analysis for
the model is given and the main results are derived. Then
some numerical simulations are given to verify the theoret-
ical results in Section 4. Finally, the conclusion is given in
Section 5.

2. Model

Consider the second-order multi-agent system with time-
delay and general topology is described by

𝑥̇

𝑖
= V
𝑖

V̇
𝑖
= − ∑

𝑗∈N𝑖

𝑎

𝑖𝑗
(𝑥

𝑖 (
𝑡 − 𝜏) − 𝑥

𝑗 (
𝑡 − 𝜏)) − V

𝑖
,

(1)

where 𝑥

𝑖
∈ R𝑛 and V

𝑖
∈ R𝑛 are position and velocity of agent

𝑖, respectively, and 𝑖 = 1, . . . , 𝑁;N
𝑖
is the neighbor set of agent

𝑖; 𝐴 = [𝑎

𝑖𝑗
] ∈ R𝑛×𝑛 (𝑖, 𝑗 = 1, . . . , 𝑁) with each 𝑎

𝑖𝑗
≥ 0 and

𝑎

𝑖𝑖
= 0 is the interaction (or coupling) matrix; 𝜏 > 0 is the

time-delay.
Let 𝑋 = (𝑥

1
, . . . , 𝑥

𝑁
)

𝑇 and 𝑉(𝑡) = (V
1
, V
2
, . . . , V

𝑁
)

𝑇 be the
stack vector of all the agent states and velocities; it follows that

̇

𝑋 = 𝑉

̇

𝑉 = −𝐿𝑋 (𝑡 − 𝜏) − 𝑉,

(2)

where the matrix 𝐿 is the Laplacian and has the following
properties: (i) the off-diagonal elements are all negative or
zero, and (ii) the row sums are all equal to zero. And we can
formulate the model with time-delay in the following form:

̈

𝑋 (𝑡) +

̇

𝑋 (𝑡) = −𝐿𝑋 (𝑡 − 𝜏) . (3)

For the Laplacian matrix 𝐿, we can have the following
lemmas.

Lemma 1 (see [7]). Laplacian matrix 𝐿 has at least one zero
eigenvalue with 1 = (1, 1, . . . , 1)

𝑇 as its eigenvector, and all
nonzero eigenvalues have positive real parts. Laplacian matrix
𝐿 has a simple zero eigenvalue if and only if G has a globally
reachable node.

Lemma 2 (see [1]). For Laplacian matrix 𝐿, the algebraic
complements of the elements in the same row are equal.

Lemma 3 (see [1]). For a column vector denoted as 𝑧, if a
column of Laplacian matrix 𝐿 is replaced by 𝑧, the new matrix
is denoted as 𝐿

1
, and if another column of 𝐿 is replaced by 𝑧,

the new matrix is denoted as 𝐿
2
, then det(𝐿

1
) = det(𝐿

2
).

3. Main Results

In this section, we will analyze the consensus of second-
order multi-agent systems with general topology and time-
delay based on the nearest neighbor rule. For this, we use the
Laplace transform technique into (3), then we can have

[(𝑠

2
+ 𝑠) 𝐼 + 𝑒

−𝑠𝜏
𝐿]L [𝑋 (𝑡)] = 𝑠𝑋 (0) + 𝑋 (0) + 𝑉 (0) , (4)

where 𝑋(0) = (𝑥

1
(0), 𝑥

2
(0), . . . , 𝑥

𝑁
(0))

𝑇 and 𝑉(0) =

(V
1
(0), V
2
(0), . . . , V

𝑁
(0))

𝑇 are initial values.
For simplicity and without loss of generality, we will

discuss the case𝑋(0) = 0 and𝑉(0) ̸= 0 throughout this paper.

Theorem 4. For second-order multi-agent system (1), if there
exists at least one globally reachable node in the network
topology, and the time-delay 𝜏 satisfies

𝜏 < min
𝑘={2,3,...,𝑁}

{

{

{

{

{

󵄨

󵄨
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󵄨
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󵄨
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𝑘
)

󵄨
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󵄨

󵄨

󵄩

󵄩
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󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

}

}

}

}

}

,

(5)

then system (1) can reach consensus, and as 𝑡 → ∞,

𝑋 (𝑡) 󳨀→ 𝑐(1, 1, . . . , 1)

𝑇
,

𝑉 (𝑡) 󳨀→ (0, 0, . . . , 0)

𝑇
,

(6)

where

𝑐 =

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

V1(0) 𝑙12 ⋅⋅⋅ 𝑙1𝑁
V2(0) 𝑙22 ⋅⋅⋅ 𝑙2𝑁

...
...
...

...
V𝑁(0) 𝑙𝑁2 ⋅⋅⋅ 𝑙𝑁𝑁

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜆2 ⋅⋅⋅ 𝜆ℎ 𝜆
𝑝

𝑗
⋅⋅⋅ 𝜆
𝑞

𝑙

,

(7)

and 𝜆

𝑖
is the nonzero eigenvalue of the Laplacian matrix 𝐿.
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Proof. Denoting X(𝑠) = L[𝑋(𝑡)], then (4) can be rewritten
as

[(𝑠

2
+ 𝑠) 𝐼 + 𝑒

−𝑠𝜏
𝐿]X (𝑠) = 𝑉 (0) . (8)

According to Cramer’s rule, we can have

X
𝑖 (
𝑠) =

det [(𝑠2 + 𝑠) 𝐼 + 𝑒

−𝑠𝜏
𝐿]

𝑖

det [(𝑠2 + 𝑠) 𝐼 + 𝑒

−𝑠𝜏
𝐿]

,

(9)

for 𝑖 = 1, 2, . . . , 𝑁, where det[(𝑠2 + 𝑠)𝐼 + 𝑒

−𝑠𝜏
𝐿] is the determi-

nant of matrix [(𝑠

2
+ 𝑠)𝐼 + 𝑒

−𝑠𝜏
𝐿], and det[(𝑠2 + 𝑠)𝐼 + 𝑒

−𝑠𝜏
𝐿]

𝑖

is the determinant of matrix [(𝑠

2
+ 𝑠)𝐼 + 𝑒

−𝑠𝜏
𝐿] in which the

𝑖th column has been replaced by 𝑉(0). For convenience, we
denote 𝑀

𝑖
(𝑠) = det[(𝑠2 + 𝑠)𝐼 + 𝑒

−𝑠𝜏
𝐿]

𝑖 and 𝑀(𝑠) = det[(𝑠2 +
𝑠)𝐼 + 𝑒

−𝑠𝜏
𝐿]. By Lemma 1, the Laplacian matrix only has a

zero eigenvalue, and the real parts of nonzero eigenvalues are
positive, denoted as follows:

0, 𝜆

2
, 𝜆

3
, . . . , 𝜆

ℎ
, 𝜆

𝑗
, . . . , 𝜆

𝑙
, (10)

where𝜆
𝑗
, . . . , 𝜆

𝑙
are themultiple eigenvalueswithmultiplicity

as 𝑝, . . . , 𝑞, then

𝑀(𝑠) = [(𝑠

2
+ 𝑠)] [(𝑠

2
+ 𝑠) + 𝑒

−𝑠𝜏
𝜆

2
] ⋅ ⋅ ⋅ [(𝑠

2
+ 𝑠) + 𝑒

−𝑠𝜏
𝜆

ℎ
]

× [(𝑠

2
+ 𝑠) + 𝑒

−𝑠𝜏
𝜆

𝑗
]

𝑝

⋅ ⋅ ⋅ [(𝑠

2
+ 𝑠) + 𝑒

−𝑠𝜏
𝜆

𝑙
]

𝑞

.

(11)

Applying Heaviside’s method, then

X
𝑖 (
𝑠) =

𝑐

𝑖

1

(𝑠

2
+ 𝑠)

+

𝑐

𝑖

2

(𝑠

2
+ 𝑠) + 𝑒

−𝑠𝜏
𝜆

2

+ ⋅ ⋅ ⋅

+

𝑐

𝑖

ℎ

(𝑠

2
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−𝑠𝜏
𝜆

ℎ

+

𝑐

𝑖

𝑗𝑝
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2
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𝜆

𝑗
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𝑝

+

𝑐

𝑖
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𝑝−1

)
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2
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𝑐

𝑖
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2
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1
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+

𝑐

𝑖
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2
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𝜆

𝑙
]

𝑞
+

𝑐

𝑖

𝑙(𝑞−1)

[(𝑠

2
+ 𝑠) + 𝑒

−𝑠𝜏
𝜆

𝑙
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(𝑞−1)

+ ⋅ ⋅ ⋅ +

𝑐

𝑖

𝑙1

[(𝑠

2
+ 𝑠) + 𝑒

−𝑠𝜏
𝜆

𝑙
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1
,

(12)

where

𝑐

𝑖

1
= 𝑠

𝑀

𝑖
(𝑠)

𝑀(𝑠)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑠=0

,

𝑐

𝑖

𝑒
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𝑒
)

𝑀

𝑖
(𝑠)

𝑀(𝑠)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑠=𝜆𝑒

, 𝑒 = 2, 3, . . . , ℎ,

𝑐

𝑖

𝑗𝑓
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𝑑

𝑝−𝑓
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𝑗
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󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨
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...
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𝑐
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𝑑
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𝑘
)
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󵄨

󵄨
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󵄨

󵄨

󵄨
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(13)

Therefore,

X
𝑖 (
𝑠) ≥ G

𝑖 (
𝑠)

=

𝑐

𝑖

1

(𝑠

2
+ 𝑠)

+

𝑐

𝑖

2

(𝑠 + 1)

2
+ 𝑒

−𝑠𝜏
𝜆

2

+ ⋅ ⋅ ⋅ +

𝑐

𝑖

ℎ

(𝑠 + 1)

2
+ 𝑒

−𝑠𝜏
𝜆

ℎ

+

𝑐

𝑖

𝑗𝑝

[(𝑠 + 1)

2
+ 𝑒

−𝑠𝜏
𝜆

𝑗
]

𝑝
+

𝑐

𝑖

𝑗
(
𝑝−1

)

[(𝑠 + 1)

2
+ 𝑒

−𝑠𝜏
𝜆

𝑗
]

(𝑝−1)

+ ⋅ ⋅ ⋅ +

𝑐

𝑖

𝑗1

[(𝑠 + 1)

2
+ 𝑒

−𝑠𝜏
𝜆

𝑗
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1

+ ⋅ ⋅ ⋅ +

𝑐

𝑖

𝑙𝑞
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+ 𝑒
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𝑞

+

𝑐

𝑖

𝑙
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+ 𝑒

−𝑠𝜏
𝜆

𝑙
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+ ⋅ ⋅ ⋅
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𝑐

𝑖

𝑙1
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2
+ 𝑒

−𝑠𝜏
𝜆

𝑙
]

1
,

X
𝑖 (
𝑠) ≤ H

𝑖 (
𝑠)

=

𝑐

𝑖

1

(𝑠

2
+ 𝑠)

+

𝑐

𝑖

2

𝑠 + 𝑒

−𝑠𝜏
𝜆

2

+ ⋅ ⋅ ⋅ +

𝑐

𝑖

ℎ

𝑠 + 𝑒

−𝑠𝜏
𝜆
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𝑐

𝑖
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𝑗
]

𝑝
+

𝑐

𝑖
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)
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+ ⋅ ⋅ ⋅ +

𝑐

𝑖

𝑗1

[𝑠 + 𝑒

−𝑠𝜏
𝜆

𝑗
]

1

+ ⋅ ⋅ ⋅ +

𝑐

𝑖

𝑙𝑞

[𝑠 + 𝑒

−𝑠𝜏
𝜆

𝑙
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𝑞

+

𝑐

𝑖

𝑙
(
𝑞−1
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[𝑠 + 𝑒

−𝑠𝜏
𝜆

𝑙
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+ ⋅ ⋅ ⋅

+

𝑐

𝑖

𝑙1

[𝑠 + 𝑒

−𝑠𝜏
𝜆

𝑙
]

1
.

(14)

In order to make G
𝑖
(𝑠) converge, the real parts of the follow-

ing equation’s roots

(𝑠 + 1)

2
+ 𝑒

−𝑠𝜏
𝜆

𝑘
= 0 (15)

must be negative. Denoting 𝑠 = 𝑥 + 𝑗𝑦, 𝜆
𝑘

= 𝛼

𝑘
+ 𝑗𝛽

𝑘
, and

𝑗

2
= −1, as well as using Euler’s formula, then

[(𝑥 + 1)

2
− 𝑦

2
+ 𝛼

𝑘
𝑒

−𝑥𝜏 cos (−𝑦𝜏) − 𝛽

𝑘
𝑒

−𝑥𝜏 sin (−𝑦𝜏)]

+ 𝑗 [2 (𝑥 + 1) 𝑦 + 𝛼

𝑘
𝑒

−𝑥𝜏 sin (−𝑦𝜏) − 𝛽

𝑘
𝑒

−𝑥𝜏 cos (−𝑦𝜏)]

= 0;

(16)

that is,

(𝑥 + 1)

2
− 𝑦

2
+ 𝛼

𝑘
𝑒

−𝑥𝜏 cos (−𝑦𝜏) − 𝛽

𝑘
𝑒

−𝑥𝜏 sin (−𝑦𝜏) = 0

2 (𝑥 + 1) 𝑦 + 𝛼

𝑘
𝑒

−𝑥𝜏 sin (−𝑦𝜏) − 𝛽

𝑘
𝑒

−𝑥𝜏 cos (−𝑦𝜏) = 0.

(17)

And then

(𝑥 + 1)

2
− 𝑦

2
+ 𝑒

−𝑥𝜏
√

𝛼

2

𝑘
+ 𝛽

2

𝑘
cos (−𝑦𝜏 + 𝜓

𝑘
) = 0

2 (𝑥 + 1) 𝑦 + 𝑒

−𝑥𝜏
√

𝛼

2

𝑘
+ 𝛽

2

𝑘
sin (−𝑦𝜏 + 𝜓

𝑘
) = 0,

(18)

where 𝜓

𝑘
= arg(𝜆

𝑘
) = arctan(𝛽

𝑘
/𝛼

𝑘
) and 𝜓

𝑘
∈ (−𝜋/2, 𝜋/2).

Then we can have

((𝑥 + 1)

2
+ 𝑦

2
)

2

= (𝛼

2

𝑘
+ 𝛽

2

𝑘
) 𝑒

−2𝑥𝜏
,

(19)

that is,

𝑦 = ±

√
√

𝛼

2

𝑘
+ 𝛽

2

𝑘
𝑒

−𝑥𝜏
− (𝑥 + 1)

2
.

(20)

Form (18) and (20), we can obtain

2(𝑥 + 1)

2
−

√
𝛼

2

𝑘
+ 𝛽

2

𝑘
𝑒

−𝑥𝜏
+

√
𝛼

2

𝑘
+ 𝛽

2

𝑘
𝑒

−𝑥𝜏

× cos(±

√
√

𝛼

2

𝑘
+ 𝛽

2

𝑘
𝑒

−𝑥𝜏
− (𝑥 + 1)

2
+ 𝜓

𝑘
) = 0,

2 (𝑥 + 1) (±

√
√

𝛼

2

𝑘
+ 𝛽

2

𝑘
𝑒

−𝑥𝜏
− (𝑥 + 1)

2
) +

√
𝛼

2

𝑘
+ 𝛽

2

𝑘
𝑒

−𝑥𝜏

× sin(±𝜏

√
√

𝛼

2

𝑘
+ 𝛽

2

𝑘
𝑒

−𝑥𝜏
− (𝑥 + 1)

2
+ 𝜓

𝑘
) = 0.

(21)

Considering the case 𝑥 = 0, we can obtain the upper bound
of time-delay

cos(𝜏

√
√

𝛼

2

𝑘
+ 𝛽

2

𝑘
− 1 ± 𝜓

𝑘
) =

√𝛼

2

𝑘
+ 𝛽

2

𝑘
− 2

√𝛼

2

𝑘
+ 𝛽

2

𝑘

, (22)

that is,

𝜏
√

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

− 1 ± arg (𝜆

𝑘
) = arccos(

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

− 2

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

) + 2𝑚𝜋,

𝑚 = 0, ±1, ±2, . . . .

(23)

To obtain the minimum critical value 𝜏

1
, we take𝑚 = 0, then

𝜏

1
= min
𝑘={2,3,...,𝑁}

{

{

{

{

{

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

arccos ((󵄩󵄩󵄩
󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

− 2) /

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

) − arg (𝜆

𝑘
)

√

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

− 1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

}

}

}

}

}

.

(24)

Thenwe can obtain the real parts of roots of (𝑠+1)

2
+𝑒

−𝑠𝜏
𝜆

𝑘
=

0 are negative as 𝜏 < 𝜏

1
.

Similarly, for H
𝑖
(𝑠), we can also get the upper bound of

time-delay 𝜏

2
; that is, for

𝑠 + 𝜆

𝑘
𝑒

−𝑠𝜏
= 0, (25)

the real parts of roots are negative. So

𝜏

2
= min
𝑘={2,3,...,𝑁}

{

𝜋/2 −

󵄨

󵄨

󵄨

󵄨

arg (𝜆

𝑘
)

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

} . (26)

When

𝜏 < min
𝑘={2,3,...,𝑁}

{

{

{

{

{

󵄨

󵄨

󵄨

󵄨

arccos ((󵄩󵄩󵄩
󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

− 2) /

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

) − arg (𝜆

𝑘
)

󵄨

󵄨

󵄨

󵄨

√

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

− 1

,

𝜋/2 −

󵄨

󵄨

󵄨

󵄨

arg (𝜆

𝑘
)

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

}

}

}

}

}

,

(27)
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Figure 1: The consensus in system (1) with the general topology as 𝜏 = 0.5.

then the roots of equations (𝑠+1)

2
+𝑒

−𝑠𝜏
𝜆

𝑘
= 0 and 𝑠+𝜆

𝑘
𝑒

−𝑠𝜏
=

0 are negative real parts.
By the inverse Laplace transform, we can obtain

L
−1

(G
𝑖 (
𝑠)) 󳨀→ 𝑐

𝑖

1
, L

−1
(H
𝑖 (
𝑠)) 󳨀→ 𝑐

𝑖

1
, (28)

as 𝑡 → ∞.
Since G

𝑖
(𝑠) ≤ X

𝑖
(𝑠) ≤ H

𝑖
(𝑠), as 𝑡 → ∞

L
−1

(X
𝑖 (
𝑠)) 󳨀→ 𝑐

𝑖

1
. (29)

According to Lemma 3, we can know that

𝑐

1

1
= 𝑐

2

1
= ⋅ ⋅ ⋅ = 𝑐

𝑁

1
= 𝑠

𝑀

𝑖 (
𝑠)

𝑀 (𝑠)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑠=0

= 𝑐 =

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

V1(0) 𝑙12 ⋅⋅⋅ 𝑙1𝑁
V2(0) 𝑙22 ⋅⋅⋅ 𝑙2𝑁

...
...
. . .

...
V𝑁(0) 𝑙𝑁2 ⋅⋅⋅ 𝑙𝑁𝑁

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜆2 ⋅⋅⋅ 𝜆ℎ 𝜆
𝑝

𝑗
⋅⋅⋅ 𝜆
𝑞

𝑙

.

(30)

Thus,

𝑥

1 (
𝑡) = 𝑥

2 (
𝑡) = ⋅ ⋅ ⋅ = 𝑥

𝑁 (𝑡) = 𝑐,

V
1 (

𝑡) = V
2 (

𝑡) = ⋅ ⋅ ⋅ = V
𝑁 (𝑡) = 0;

(31)

that is, as 𝑡 → ∞,

𝑋 (𝑡) 󳨀→ 𝑐(1, 1, . . . , 1)

𝑇
, (32)

𝑉 (𝑡) 󳨀→ (0, 0, . . . , 0)

𝑇
. (33)

This completes the proof.

Notice that if the network topology is undirected with a
globally reachable node and the adjacency matrix is symmet-
ric, then the eigenvalues of the Laplacian matrix 𝐿 are real, so
that 𝜓

𝑘
= 0.

Remark 5. Comparedwith the eigenvalue analysis in the time
and frequency domain, such as the [24], using Cramer rule
and Heavisides method, we can have obtained the accurate
state of the consensus center and the upper bound of the
communication delay to make the agents reach consensus.

Corollary 6. For second-order multi-agent system (1), if there
exists at least one globally reachable node in the undirected and
symmetric network topology, and the time-delay 𝜏 satisfies

𝜏 < min
𝑘={2,3,...,𝑁}

{

{

{

{

{

󵄨

󵄨

󵄨

󵄨

arccos ((

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

− 2) /

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

)

󵄨

󵄨

󵄨

󵄨

√

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

− 1

𝜋

2

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

}

}

}

}

}

,

(34)

then system (1) can reach consensus.

3.1. Further Extension. Consider the second-order multi-
agent system with time-delay and general topology is de-
scribed by

𝑥̇

𝑖
= V
𝑖

V̇
𝑖
= − ∑

𝑗∈N𝑖

𝑎

𝑖𝑗
(𝑥

𝑖 (
𝑡 − 𝜏) − 𝑥

𝑗 (
𝑡 − 𝜏)) − 𝛾V

𝑖
,

(35)

where 𝛾 > 0 is the feedback gain.
By the same way, the similar results are easy to obtain by

the Laplace transform.
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Figure 2:The consensus in system (1) with the symmetric topology
as 𝜏 = 0.1.

Theorem 7. For second-order multi-agent system (35), if there
exists at least one globally reachable node in the network
topology, and the time-delay 𝜏 satisfies

𝜏 < min
𝑘={2,3,...,𝑁}

{

{

{

{

{

󵄨

󵄨

󵄨

󵄨

󵄨

arccos ((

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

− 2𝛾

2
) /

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

) − arg (𝜆

𝑘
)

󵄨

󵄨

󵄨

󵄨

󵄨

√

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

− 𝛾

2

,

𝛾 (𝜋/2 −

󵄨

󵄨

󵄨

󵄨

arg (𝜆

𝑘
)

󵄨

󵄨

󵄨

󵄨

)

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

}

}

}

}

}

,

(36)

then system (35) can reach consensus, and as 𝑡 → ∞,

𝑋 (𝑡) 󳨀→ 𝑐(1, 1, . . . , 1)

𝑇
, 𝑉 (𝑡) 󳨀→ (0, 0, . . . , 0)

𝑇
. (37)
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Figure 3:The consensus in system (35) with the general topology as
𝜏 = 5, 𝛾 = 10.

Corollary 8. For second-order multi-agent system (35), if
there exists at least one globally reachable node in the undi-
rected and symmetric network topology, and the time-delay 𝜏

satisfies

𝜏 < min
𝑘={2,3,...,𝑁}

{

{

{

{

{

󵄨

󵄨

󵄨

󵄨

󵄨

arccos ((

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

− 2𝛾

2
) /

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

)

󵄨

󵄨

󵄨

󵄨

󵄨

√

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

− 𝛾

2

,

𝛾𝜋

2

󵄩

󵄩

󵄩

󵄩

𝜆

𝑘

󵄩

󵄩

󵄩

󵄩

}

}

}

}

}

,

(38)

then system (35) can reach consensus.

4. Numerical Simulations

In this section, we present some numerical simulations to
illustrate the consensus of second-order multi-agent systems
with time delay. These simulations are given with ten agents,
whose initial positions are zero and velocities are given
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Figure 4: The position states in system (35) with the symmetric
topology as 𝜏 = 5, 𝛾 = 10 and 𝜏 = 10, 𝛾 = 5.

randomly. The network topologies contain at least one glob-
ally reachable node in these simulations. Figure 1 describes
positions and velocities of ten agents in system (1) with
the general topology. From Figure 1, it can be seen that the
positions and velocities of all agents can reach consensus as
𝜏 = 0.5.

Figure 2 shows that positions and velocities can converge
to the common value in system (1) with symmetrical matrix
as 𝜏 = 0.1.

In Figure 3, the consensus can be achieved in system (35)
with the general topology as 𝜏 = 5, 𝛾 = 10. As we can see
from Figures 1–3, the consensus of systems can be achieved
when the time-delay is an appropriate value. The positions of
all agent converge on a fixed value and velocities reach 0.

Figure 4 presents that the positions of all agents with the
general topology can reach consensus as 𝜏 = 5, 𝛾 = 10, while
the positions diverge as 𝜏 = 10, 𝛾 = 5. From Figure 4, it can
be seen that the system can reach consensus under a certain
condition. According to the numerical simulations, we can

obtain that the topology of network topology, time-delay, and
feedback gain all affect consensus ofmulti-agent system in the
simulations.

5. Conclusion

In this paper, we have introduced the Laplace transform to
investigate the consensus of second-ordermulti-agent system
with time-delay in general topology. We have proved that the
system can achieve consensus when the network topology
contains a globally reachable node as well as when time-delay
is less than a critical value which only depends on eigenvalues
of the Laplacian matrix of network topology.
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