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This paper gives a robust pseudospectral scheme for solving a class of nonlinear optimal control problems (OCPs) governed by
differential inclusions. The basic idea includes two major stages. At the first stage, we linearize the nonlinear dynamical system by
an interesting technique which is called linear combination property of intervals. After this stage, the linearized dynamical system
is transformed into a multi domain dynamical system via computational interval partitioning. Moreover, the integral form of this
multidomain dynamical system is considered. Collocating these constraints at the Legendre Gauss Lobatto (LGL) points together
with using the Legendre Gauss Lobatto quadrature rule for approximating the involved integrals enables us to transform the basic
OCPs into the associated nonlinear programming problems (NLPs). In all parts of this procedure, the associated control and state
functions are approximated by piecewise constants and piecewise polynomials, respectively. An illustrative example is provided for
confirming the accuracy and applicability of the proposed idea.

1. Introduction

Optimal control problems (OCPs) have received considerable
attention during the last four decades because of their
applications. Such problems arise in many areas of science
and engineering and play an important role in the modeling
of real-life phenomena in other fields of science.Theprincipal
difficulty in studying OCPs via traditional and classical
methods lies in their special nature. Obviously, most of OCPs
cannot be solved by the well-known indirect methods [1, 2].
Therefore, it is highly desirable to design accurate direct
numerical approaches to approximate the solutions of OCPs
[3].

Among all of the numerical techniques for solving
smooth OCPs, orthogonal functions and polynomials have
been applied in a huge size of research works. High accuracy
and ease of applying these polynomials and functions for
OCPs are two important advantages which have encouraged
many authors to use them for different types of problems. For
solving smooth OCPs, there exist a broad class of methods
based on orthogonal polynomials which were presented

by famous applied mathematics scientists such as [4, 5].
The fundamental idea of these methods is based upon
pseudospectral (or spectral collocation) operational matrices
of differentiation. However, Legendre spectral operational
matrix of differentiation was used in [6] (for other applica-
tions of spectral operational matrices of differentiation see
[7]). The best property of the spectral operational matrices
of differentiation is the sparsity, while the pseudospectral
ones are relatively filled matrices. Another computational
approach for solving OCPs which is based on high order
Gauss quadrature rules was presented in [8]. However, high
order of accuracy may be obtained by this method, but
suitable preconditionings should be explored because of its
ill-conditioning of the associated algebraic system.

In many real mathematical models, the controller should
be restricted. In other words, the control functions of OCPs
are bounded in many cases. According to the classical theory
of optimal control [9], if the control functions are bounded
and appear linearly in the cost functionals and dynamical
systems, the resulting problem is a Bang-Bang OCP. In this
case, the control functions are discontinuous. Therefore,
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we deal with a nonsmooth OCP. For dealing with such
nonsmooth OCPs, some new numerical methods have been
proposed in the literature such as [10, 11]. These approaches
are based on finite difference methods (FDMs). Simplicity of
the discretization by FDMs is usually easy to handle, but lower
order of accuracy may make them unsuccessful. Therefore,
we should look at high order numerical methods such as
spectral or pseudospectral techniques. But, as it is mentioned
in the literature, spectral schemes are the best tools just for
the problemswith smooth solutions and data. In other words,
if we apply these methods for approximating nonsmooth
functions we usually observe the Gibbs phenomena. The
following example illustrates this fact.

Example 1 (see [9]). We consider the following OCP:

Min 𝐽 = ∫

2

0

(3𝑢 (𝜏) − 2𝑦 (𝜏)) 𝑑𝜏

s.t. ̇𝑦 (𝜏) = 𝑦 (𝜏) + 𝑢 (𝜏) , 0 ≤ 𝜏 ≤ 2,

𝑦 (0) = 4, 𝑦 (2) = 39.392,

𝑢 (𝜏) ∈ [0, 2] , 0 ≤ 𝜏 ≤ 2.

(1)

Since the computational interval is [0, 2], we should
change it into [−1, 1] by a simple transformation as follows:

Min 𝐽 = ∫

1

−1

(3𝑢 (𝑡) − 2𝑦 (𝑡)) 𝑑𝑡

s.t. ̇𝑦 (𝑡) = 𝑦 (𝑡) + 𝑢 (𝑡) , −1 ≤ 𝑡 ≤ 1,

𝑦 (−1) = 4, 𝑦 (1) = 39.392,

𝑢 (𝑡) ∈ [0, 2] , −1 ≤ 𝑡 ≤ 1.

(2)

The optimal control of the above-mentioned problem is
given in the following form:

𝑢
∗
(𝑡) = {

2 −1 ≤ 𝑡 ≤ 0.096,

0 0.096 ≤ 𝑡 ≤ 1.
(3)

For approximating the control function of this problem,
we use the classical spectral method [6]. As it is depicted
in Figures 1 and 2, the desired optimal control cannot be
obtained in a good manner. From these Figures one can
observe that not only the exact value of switching point (i.e.,
𝑡 = 0.096) is not detected with a high accuracy, but also the
obtained solutions have additional jumps in the boundary
of domain. These are the disadvantages of the applying the
classical spectral methods for solving nonsmooth problems.

To delete these mentioned disadvantages, a robust spec-
tral method is presented in [12] for solving a class of non-
smooth OCPs that has some fundamental differences with
the classical spectral techniques. First, the computational
interval is partitioned into subintervals where the size of each
subinterval is considered as an unknown parameter, and this
enables us to compute the switching times more efficiently.
Second, in contrast with the classical spectral schemes,
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Figure 1: Approximate optimal control history of Example 1 for𝑁 =

21.
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Figure 2:Approximate optimal control history of Example 1 for𝑁 =

23.

the integral form of the dynamical system is considered.
This equivalent form is found by integrating the differential
dynamics and adding the initial conditions.

Our fundamental goal of this paper is to extend a new idea
which was introduced in [12] to approximate the control and
state functions of the following nonsmooth OCP:

Min 𝐽 = ∫

𝑡𝑓

0

𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡

s.t. ̇𝑦 (𝑡) ∈ 𝑑 (𝑡) , 𝑡 ∈ [0, 𝑡
𝑓
] ,

(𝑦 (0) , 𝑦 (𝑡
𝑓
)) ∈ 𝑆,

(4)
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where 𝑑(𝑡) is a set of continuous functions on [0, 𝑡
𝑓
] and 𝑆 is

a set which contains boundary points of state variable 𝑦(𝑡).
Also, 𝑦(𝑡) ∈ R𝑛, 𝑢(𝑡) ∈ R𝑛, and 𝑓(𝑡, 𝑦(𝑡)) ∈ R. According to
discussions in [11], we can assume that

𝑑 (𝑡) = {𝐷 (𝑡, 𝑢 (𝑡)) : 𝑢 (𝑡) ∈ 𝑈} , 𝑡 ∈ [0, 𝑡
𝑓
] , (5)

where 𝑈 ⊂ R𝑛 is a compact set and 𝐷(𝑡, 𝑢(𝑡)) = (𝐷
1
(𝑡, 𝑢(𝑡)),

𝐷
2
(𝑡, 𝑢(𝑡)), . . . , 𝐷

𝑛
(𝑡, 𝑢(𝑡)))

𝑇 is a continuous function on
[0, 𝑡
𝑓
] × 𝑈. Thus, OCP (4) can be rewritten in the form

Min 𝐽 = ∫

𝑡𝑓

0

𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡

s.t. ̇𝑦 (𝑡) = 𝐷 (𝑡, 𝑢 (𝑡)) , 𝑢 (𝑡) ∈ 𝑈,

𝑦 (0) = 𝑦
0
, 𝑦 (𝑡

𝑓
) = 𝑦
𝑓
.

(6)

It should be noted that the dynamical system of (6)
is nonlinear in terms of control 𝑢(𝑡). For handling OCP
(6) in a proper manner, we first linearize the nonlinear
dynamical system by an interesting technique which is called
linear combination property of intervals (LCPI). After this
stage, the linearized dynamical system is transformed into
a multidomain dynamical system via computational interval
partitioning. Collocating these constraints at the Legendre
Gauss Lobatto (LGL) points together with using the Leg-
endre Gauss Lobatto quadrature rule for approximating the
involved integrals enables us to transform the basicOCPs into
the associated nonlinear programming problems (NLPs).

The paper is organized as follows. Section 2 is devoted to
linearize the nonlinear dynamical system by using LCPI. In
Section 3, we design our basic idea which is based on approx-
imation of the associated control and state functions by
piecewise constant and piecewise polynomials, respectively. It
should be noted that Legendre Gauss Lobatto points are used
for collocating the linearized dynamical system. In Section 4,
we present a numerical example, demonstrating the efficiency
of the suggested numerical algorithm. Concluding remarks
are given in Section 5.

2. Dynamical System Linearization

Since 𝐷 : [0, 𝑡
𝑓
] × 𝑈 → R𝑛 is continuous and [0, 𝑡

𝑓
] × 𝑈

is a compact and connected subset ofR𝑛+1, then {𝐷(𝑡, 𝑢(𝑡)) :
𝑢 ∈ 𝑈} is a closed set in R𝑛. Thus, {𝐷

𝑖
(𝑡, 𝑢(𝑡)) : 𝑢 ∈ 𝑈} for

𝑖 = 1, 2, . . . , 𝑛 is closed inR. Now, suppose that the lower and
upper bounds of the {𝐷

𝑖
(𝑡, 𝑢(𝑡)) : 𝑢 ∈ 𝑈} are 𝑙

𝑖
(𝑡) and V

𝑖
(𝑡),

respectively. Therefore,

𝑙
𝑖
(𝑡) ≤ 𝐷

𝑖
(𝑡, 𝑢 (𝑡)) ≤ V

𝑖
(𝑡) , 𝑡 ∈ [0, 𝑡

𝑓
] . (7)

In other words,

𝑙
𝑖
(𝑡) = min

𝑢
{𝐷
𝑖
(𝑡, 𝑢 (𝑡)) : 𝑢 ∈ 𝑈} , 𝑡 ∈ [0, 𝑡

𝑓
] ,

V
𝑖
(𝑡) = max

𝑢
{𝐷
𝑖
(𝑡, 𝑢 (𝑡)) : 𝑢 ∈ 𝑈} , 𝑡 ∈ [0, 𝑡

𝑓
] .

(8)

By using LCPI, which was first introduced in [10],
𝐷
𝑖
(𝑡, 𝑢(𝑡)) can be approximated as a convex linear combina-

tion of its minimum 𝑙
𝑖
(𝑡) andmaximum V

𝑖
(𝑡) in the following

form:

𝐷
𝑖
(𝑡, 𝑢 (𝑡)) ≈ 𝜆

𝑖
(𝑡) V
𝑖
(𝑡) + (1 − 𝜆

𝑖
(𝑡)) 𝑙
𝑖
(𝑡)

= 𝜆
𝑖
(𝑡) 𝛼
𝑖
(𝑡) + 𝑙

𝑖
(𝑡) ,

(9)

where 𝛼
𝑖
(𝑡) = V

𝑖
(𝑡) − 𝑙

𝑖
(𝑡) and 𝜆

𝑖
(𝑡) ∈ [0, 1]. It should be

mentioned that all the 𝜆
𝑖
(𝑡) are the new associated control

variables. Now, the main problem (6) is approximated by the
following OCP:

Min ∫

𝑡𝑓

0

𝑓 (𝑡, 𝑦 (𝑡)) 𝑑𝑡

s.t. ̇𝑦 (𝑡) = 𝐴 (𝑡) Λ (𝑡) + 𝑙 (𝑡) ,

Λ (𝑡) ∈

𝑛 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[0, 1] × [0, 1] × ⋅ ⋅ ⋅ × [0, 1], 𝑡 ∈ [0, 𝑡

𝑓
] ,

𝑦 (0) = 𝑦
0
, 𝑦 (𝑡

𝑓
) = 𝑦
𝑓
,

(10)

where 𝐴(𝑡) = diag(𝛼
1
(𝑡), 𝛼
2
(𝑡), . . . , 𝛼

𝑛
(𝑡))
𝑛×𝑛

, Λ(𝑡) = (𝜆
1
(𝑡),

𝜆
2
(𝑡), . . . , 𝜆

𝑛
(𝑡))
𝑛×1

, and 𝑙(𝑡) = (𝑙
1
(𝑡), 𝑙
2
(𝑡), . . . , 𝑙

𝑛
(𝑡)))
𝑛×1

. Note
that problem (10) is a Bang-Bang OCP, because in this
problem the new controlΛ(𝑡) has lower 0 and upper 1 bounds
and appears linearly in the dynamical equations. As soon
as the controls are assumed to be bang-bang, the problem
of finding the required controls becomes one of finding the
switching times.

3. Discretization of the New OCP Containing
Linearized Dynamical System

In the sequel and for simplicity in the discretization proce-
dure, we assume that 𝑛 = 1 (in other words, Λ(𝑡) = 𝜆(𝑡))
and suppose that problem (10) has an optimal solution with
𝑚 ≥ 1 switching points denoted by 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑚
. So if we set

𝑡
0
= 0 and 𝑡

𝑚+1
= 𝑡
𝑓
, then the interval [0, 𝑡

𝑓
] breaks into𝑚+1

subintervals. That is,

[0, 𝑡
𝑓
] = [𝑡

0
, 𝑡
1
] ∪ [𝑡
1
, 𝑡
2
] ∪ ⋅ ⋅ ⋅ ∪ [𝑡

𝑚
, 𝑡
𝑚+1

] , (11)

where on each subinterval, 𝜆(𝑡) is constant.We denote 𝜆(𝑡) in
𝑘th subinterval with constant 𝑏𝑘. Since 0 ≤ 𝜆(𝑡) ≤ 1, we have

0 ≤ 𝑏
𝑘
≤ 1, 𝑘 = 1, 2, . . . , 𝑚 + 1. (12)

Moreover, we take the restriction of 𝑦(𝑡) to the 𝑘th
subinterval by 𝑦

𝑘
(𝑡). By considering (11), the dynamical

system of (10) is conveyed as

̇𝑦
𝑘
(𝑡) = 𝐴 (𝑡) 𝑏

𝑘
+ 𝑙 (𝑡) ,

𝑡
𝑘−1

≤ 𝑡 ≤ 𝑡
𝑘
, 𝑘 = 1, 2, . . . , 𝑚 + 1,

(13)

𝑦
1
(0) = 𝑦

0
, (14)

𝑦
𝑘
(𝑡
𝑘−1

) = 𝑦
𝑘−1

(𝑡
𝑘−1

) , 𝑘 = 2, 3, . . . , 𝑚 + 1. (15)
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It should be noted that (15) is assumed to guarantee the
continuity of state functions. Integrating (13) gives rise to the
following dynamic equations:

𝑦
𝑘
(𝑡) = 𝑐

𝑘−1
+ ∫

𝑡

𝑡𝑘−1

(𝐴 (𝑠) 𝑏
𝑘
+ 𝑙 (𝑠)) 𝑑𝑠,

𝑘 = 1, . . . , 𝑚 + 1,

(16)

where 𝑡
𝑘−1

≤ 𝑡 ≤ 𝑡
𝑘
and

𝑐
𝑘
= {

𝑦
0

𝑘 = 0,

𝑦
𝑘
(𝑡
𝑘
) 𝑘 = 1, 2, . . . , 𝑚.

(17)

Thefinal condition𝑦(𝑡
𝑓
) = 𝑦
𝑓
is imposed only on𝑦𝑚+1(𝑡)

as

𝑦
𝑚+1

(𝑡
𝑚+1

) = 𝑦
𝑓
. (18)

Therefore, problem (10) is transformed into the following
optimization problem:

Min 𝐽 =

𝑠+1

∑

𝑘=1

∫

𝑡𝑘

𝑡𝑘−1

𝑓 (𝑠, 𝑦
𝑘
(𝑠)) 𝑑𝑠

s.t. 𝑦
𝑘
(𝑡) = 𝑐

𝑘−1
+ ∫

𝑡

𝑡𝑘−1

(𝐴 (𝑠) 𝑏
𝑘
+ 𝑙 (𝑠)) 𝑑𝑠,

𝑡
𝑘−1

≤ 𝑡 ≤ 𝑡
𝑘

𝑘 = 1, 2, . . . , 𝑚 + 1,

𝑦
𝑠+1

(𝑡
𝑠+1
) = 𝑦
𝑓
,

0 ≤ 𝑏
𝑘
≤ 1, 𝑘 = 1, 2, . . . , 𝑚 + 1.

(19)

For discretizing (19), we assume 𝑠
𝑘

𝑖
, 𝑖 = 0, 1, . . . , 𝑁, to

be the shifted LGL nodes to subinterval [𝑡
𝑘−1

, 𝑡
𝑘
]; that is,

𝑠
𝑘

𝑖
= (𝑠
𝑖
)((𝑡
𝑘
− 𝑡
𝑘−1

)/2) + ((𝑡
𝑘
+ 𝑡
𝑘−1

)/2). By using Lagrange
interpolation, we approximate 𝑦𝑘(𝑡) by

𝑦
𝑘
(𝑡) ≈

𝑁

∑

𝑖=0

𝑦
𝑘

𝑖
�̂�
𝑘

𝑖
(𝑡) , (20)

where 𝑦𝑘
𝑖
= 𝑦
𝑘
(𝑠
𝑘

𝑖
) and

�̂�
𝑘

𝑖
(𝑡) = 𝐿

𝑖
(

2

𝑡
𝑘
− 𝑡
𝑘−1

𝑡 −
𝑡
𝑘
+ 𝑡
𝑘−1

𝑡
𝑘
− 𝑡
𝑘−1

) . (21)

It should be noted that 𝐿
𝑖
(𝑡) is the 𝑖th Lagrange basis

function. Since 𝑦
𝑘
(𝑡) is approximated, therefore 𝑓 can be

approximated in the 𝑘th subinterval as follows:

𝑓 (𝑠, 𝑦
𝑘
(𝑠)) ≈

𝑁

∑

𝑗=0

𝑓 (𝑠
𝑘

𝑗
, 𝑦
𝑘
(𝑠
𝑘

𝑗
)) �̂�
𝑘

𝑗
(𝑡)

=

𝑁

∑

𝑗=0

𝑓 (𝑠
𝑘

𝑗
, 𝑦
𝑘

𝑗
) �̂�
𝑘

𝑗
(𝑡) .

(22)

Now by substituting approximations (20) and (22) into
(19), we get

𝑁

∑

𝑗=0

𝑦
𝑘

𝑗
�̂�
𝑘

𝑗
(𝑡) = 𝑐

𝑘−1
+ ∫

𝑡

𝑡𝑘−1

(𝐴 (𝑠) 𝑏
𝑘
+ 𝑙 (𝑠)) 𝑑𝑠,

𝑡
𝑘−1

≤ 𝑡 ≤ 𝑡
𝑘
.

(23)

From (17) and (20) for 𝑘 = 1, . . . , 𝑚, we have 𝑐𝑘 = 𝑦
𝑘

𝑁
.

Now if we set 𝑦0
𝑁
= 𝑦
0
, then we obtain

𝑐
𝑘
= 𝑦
𝑘

𝑁
, 𝑘 = 0, . . . , 𝑚 + 1. (24)

Collocating (23) at 𝑠𝑘
𝑖
, 𝑖 = 0, . . . , 𝑁, 𝑘 = 1, . . . , 𝑚 + 1,

yields

𝑦
𝑘

𝑖
= 𝑦
𝑘−1

𝑁
+ 𝑏
𝑘
∫

𝑠
𝑘
𝑖

𝑡𝑘−1

𝐴 (𝑠) 𝑑𝑠 + ∫

𝑠
𝑘
𝑖

𝑡𝑘−1

𝑙 (𝑠) 𝑑𝑠,

𝑖 = 0, 1, . . . , 𝑁.

(25)

Now, by applying a simple linear transformation, we
transform the interval [𝑡

𝑘−1
, 𝑠
𝑘

𝑖
] into [−1, 1] as follows:

𝑠 =
𝑠
𝑘

𝑖
− 𝑡
𝑘−1

2
𝜂 +

𝑠
𝑘

𝑖
+ 𝑡
𝑘−1

2
, 𝑖 = 0, 1, . . . , 𝑁. (26)

Therefore, the Legendre Gauss Lobatto quadrature rule
can be applied in the following form:

𝑦
𝑘

𝑖
= 𝑦
𝑘−1

𝑁
+
𝑠
𝑘

𝑖
− 𝑡
𝑘−1

2
(𝑏
𝑘
∫

1

−1

𝐴 (𝜂) 𝑑𝜂 + ∫

1

−1

�̂� (𝜂) 𝑑𝜂)

≈ 𝑦
𝑘−1

𝑁
+
𝑠
𝑘

𝑖
− 𝑡
𝑘−1

2
{

𝑁

∑

𝑞=0

𝑤
𝑞
(𝑏
𝑘
𝐴(𝑠
𝑞
) + �̂� (𝑠

𝑞
))} ,

0 ≤ 𝑖 ≤ 𝑁,

(27)

where 𝐴(𝜂) = 𝐴(((𝑠
𝑘

𝑖
− 𝑡
𝑘−1

)/2)𝜂 + ((𝑠
𝑘

𝑖
+ 𝑡
𝑘−1

)/2)), �̂�(𝜂) =

𝑙(((𝑠
𝑘

𝑖
−𝑡
𝑘−1

)/2)𝜂+(𝑠
𝑘

𝑖
+𝑡
𝑘−1

)/2), 𝑤
𝑞
= (2/𝑁(𝑁+1))(1/𝑃

2

𝑁
(𝑠
𝑞
))

for 𝑞 = 0, 1, . . . , 𝑁 are the LGL weights and 𝑃
𝑁
(𝑥) is the𝑁th

degree Legendre Polynomial.
So by considering 𝑦

𝑚+1
(𝑡
𝑓
) = 𝑦

𝑚+1

𝑁
, problem (19) is

discretized to the following NLP:

Min 𝐽
𝑁,𝑚

=

𝑚+1

∑

𝑘=1

𝑁

∑

𝑗=0

𝑁

∑

𝑞=0

𝑡
𝑘
− 𝑡
𝑘−1

2
𝑓 (𝑠
𝑘

𝑗
, 𝑦
𝑘

𝑗
)𝑤
𝑞
𝐿
𝑗
(𝑠
𝑞
)

s.t. 𝑦
𝑘

𝑖
− 𝑦
𝑘−1

𝑁
−
𝑠
𝑘

𝑖
− 𝑡
𝑘−1

2
{

𝑁

∑

𝑞=0

𝑤
𝑞
(𝑏
𝑘
𝐴(𝑠
𝑞
) + �̂� (𝑠

𝑞
))}

= 0

𝑖 = 0, 1, . . . , 𝑁, 𝑘 = 1, 2, . . . , 𝑚 + 1,

𝑦
𝑠+1

𝑁
− 𝑦
𝑓
= 0,

0 ≤ 𝑏
𝑘
≤ 1, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑚 + 1.

(28)
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Here, 𝑏𝑘, 𝑦𝑘
𝑖
, 𝑖 = 0, . . . , 𝑁, 𝑘 = 1, . . . , 𝑚, and parameters

𝑡
1
, . . . , 𝑡

𝑠
, 𝑡
𝑓
are unknown variables in the NLP. Note that 𝑦0

𝑁

is known and 𝑦0
𝑁
= 𝑦
0
.

In the above discretization procedure, the number of
switching points, 𝑠, is considered as a known parameter. So at
first we should guess the number of switching points. This is
the disadvantage of the proposed method. It should be noted
that if the number of switching points, 𝑠, is chosen correctly,
then the resulting value of 𝑏𝑘 is equal to its lower or upper
bounds; furthermore, 𝑏𝑘 changes in each switching point.

4. Numerical Example

We now apply the proposed idea for solving a nonlinear
OCP governed by differential inclusion. This example was
first introduced in [11]. In the mentioned work, the authors
used the simplest form of FDMs. One of the advantages
of [11] is that we finally solve a Linear Programming (LP)
problem. However, this method has other disadvantages such
as needing higher values of approximations (i.e.,𝑁), and this
leads to ill-conditioning of the associated discrete problem.
Our presented ideas do not contains the difficulties of the
classical spectral methods and FDMs for solving nonsmooth
OCPs and also achieve superior results with respect to at least
3 other methods. These advantages confirm the efficiency of
this modern spectral approximation. The following example
ismodeled using themathematical software packageMAPLE,
and the corresponding nonlinear programming problem is
solved using the command NLPSolve. It should be noted
that if the NLP is univariate and unconstrained except
for finite bounds, quadratic interpolation method may be
used. If the problem is unconstrained and the gradient
of the objective function is available, the preconditioned
conjugate gradient (PCG) method may be used. Otherwise,
the sequential quadratic programming (SQP) method can be
used. According to the structure of our NLP, the SQPmethod
is used.

Example 2. We consider the following nonlinear OCP gov-
erned by differential inclusion:

Min 𝐽 = ∫

1

0

sin (3𝜋𝑡) 𝑦 (𝑡) 𝑑𝑡

s.t. ̇𝑦 (𝑡) ∈ {− tan(𝜋
8
𝑢
3
(𝑡) + 𝑡) : 𝑢 (𝑡) ∈ [0, 1]} ,

𝑦 (0) = 1, 𝑦 (1) = 0.

(29)

According to discussions in [11], the above OCP can be
rewritten in the following form:

Min 𝐽 = ∫

1

0

sin (3𝜋𝑡) 𝑦 (𝑡) 𝑑𝑡

s.t. ̇𝑦 (𝑡) = − tan(𝜋
8
𝑢
3
(𝑡) + 𝑡) ,

𝑢 (𝑡) ∈ [0, 1] , 𝑦 (0) = 1, 𝑦 (1) = 0.

(30)

Table 1: Numerical results of Example 2.

𝑁 𝑡
1

𝑡
2

𝑡
3

𝐽
𝑁

6 0.2218 0.4538 0.8874 0.0970
8 0.2214 0.4653 0.8683 0.0960
10 0.2214 0.4317 0.8341 0.0968
12 0.2214 0.4591 0.8890 0.0963
14 0.2214 0.4473 0.8762 0.0969
16 0.2214 0.4481 0.8971 0.0962

In this problem, the control function appears nonlinearly,
andwe should linearize the initial dynamical system. Accord-
ing to the idea of LCPI, the above OCP can be reduced to a
linear OCP which is Bang-Bang. Here,𝐷(𝑡, 𝑢(𝑡)) = − tan((𝜋/
8)𝑢
3
(𝑡) + 𝑡). Thus,

𝑙 (𝑡) = Min
𝑢

{− tan(𝜋
8
𝑢
3
(𝑡) + 𝑡) : 𝑢 (𝑡) ∈ [0, 1]}

= − tan(𝜋
8
+ 𝑡) ,

V (𝑡) = Max
𝑢

{− tan(𝜋
8
𝑢
3
(𝑡) + 𝑡) : 𝑢 (𝑡) ∈ [0, 1]}

= − tan (𝑡) ,

(31)

and hence, 𝛼(𝑡) = V(𝑡) − 𝑙(𝑡) = tan((𝜋/8) + 𝑡) − tan(𝑡).
Therefore,𝐷(𝑡, 𝑢(𝑡)) can be approximated as follows:

𝐷 (𝑡, 𝑢 (𝑡)) ≈ 𝛼 (𝑡) 𝜆 (𝑡) + 𝑙 (𝑡)

≈ (tan(𝜋
8
+ 𝑡) − tan (𝑡)) 𝜆 (𝑡) − tan(𝜋

8
+ 𝑡) .

(32)

It should be noted that 𝜆(𝑡) ∈ [0, 1] is the new control
function, which is called associated control. By considering
this approximation for 𝐷(𝑡, 𝑢(𝑡)), the basic OCP is approxi-
mated by the following Bang-Bang OCP:

Min 𝐽 = ∫

1

0

sin (3𝜋𝑡) 𝑦 (𝑡) 𝑑𝑡

s.t. ̇𝑦 (𝑡) = (tan(𝜋
8
+ 𝑡) − tan (𝑡)) 𝜆 (𝑡) − tan(𝜋

8
+ 𝑡) ,

𝜆 (𝑡) ∈ [0, 1] , 𝑦 (0) = 1, 𝑦 (1) = 0.

(33)

According to our experiences in [11], we assume that the
number of switching points is 𝑠 = 3. Since by applying
this assumption we reach to the exact results in which the
new associated control 𝜆(𝑡) is switched between its lower
and upper bounds, the numerical results related to the
values of switching points and objective function for different
values of𝑁 are provided in Table 1. Moreover, the associated
control 𝜆(𝑡), control 𝑢(𝑡), and optimal state 𝑦(𝑡) are depicted
in Figures 3, 4, and 5, respectively. Moreover, in Table 2
comparisons of the numerical results of the proposedmethod
with respect to the methods of [6, 10, 13] are given. From
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Table 2: Comparisons of the methods in evaluating the objective
function 𝐽∗.

𝑁
Proposed
method

Method of
[6]

Method of
[13]

Method of
[10]

6 0.0970 0.1196 0.1371 —
8 0.0960 0.1058 0.1289 —
10 0.0968 0.0964 0.1152 —
11 0.0960 0.1009 0.1094 —
100 — — — 0.0985
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Approximate optimal associated control history for N = 16

Figure 3: Approximate optimal associated control 𝜆(𝑡) history of
Example 2 for𝑁 = 16.

this table one can see the efficiency and applicability of the
suggested method for solving nonlinear OCPs governed by
differential inclusions.

5. Concluding Remarks

In this study, a robust numerical technique has been used for
solving a class of optimal control problems (OCPs) governed
by differential inclusions. The proposed idea includes lin-
earizing the dynamical system inwhich the resulting problem
is a Bang-Bang OCP. After obtaining this nonsmooth OCP,
we use the general idea of [12] for dealing with such problems
in the best manner. As observed in the numerical example,
the proposed scheme has superior results with regard to
at least 3 methods which confirm the applicability of the
method. One of the disadvantages of our method is more
sensitivity to initial guess in comparison with the classical
spectral schemes. However, our idea is terminated success-
fully by considering an initial guess from the solution of the
traditional spectral techniques, even for small values of𝑁.

0.8

1.0

1.2

0.6

0.4

0.2

0

−0.2
0 0.2 0.4 0.6 0.8 1

Approximate optimal control history for N = 16

Figure 4: Approximate optimal control 𝑢(𝑡) history of Example 2
for𝑁 = 16.

Approximate optimal state history for N = 16

0.8
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0.4

0.2
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t

Figure 5: Approximate optimal state 𝑦(𝑡) history of Example 2 for
𝑁 = 16.
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