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A finite volume element method for approximating the solution to two-dimensional Burgers equation is presented. Upwind
technique is applied to handle the nonlinear convection term. We present the semi-discrete scheme and fully discrete scheme,
respectively. We show that the schemes are convergent to order one in space in L2-norm. Numerical experiment is presented finally
to validate the theoretical analysis.

1. Introduction

Weconsider the following two-dimensional Burgers equation
[1–3]:

(a) 𝜕𝑢
𝜕𝑡
+ 𝑢
𝜕𝑢

𝜕𝑥
1

+ 𝑣
𝜕𝑢

𝜕𝑥
2

= 𝜁Δ𝑢, 𝑥 = (𝑥
1
, 𝑥
2
) ∈ Ω,

𝑡 ∈ 𝐽 = (0, 𝑇] ,

(b) 𝜕𝑣
𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
1

+ 𝑣
𝜕𝑣

𝜕𝑥
2

= 𝜁Δ𝑣, (𝑥, 𝑡) ∈ Ω × 𝐽,

(c) 𝑢 (𝑥, 0) = 𝜙 (𝑥) , 𝑣 (𝑥, 0) = 𝜓 (𝑥) , 𝑥 ∈ Ω,

(d) 𝑢 = 𝑔
1
, 𝑣 = 𝑔

2
, (𝑥, 𝑡) ∈ 𝜕Ω × 𝐽,

(1)

for the unknown functions 𝑢 and 𝑣 in a bounded spatial
domain Ω ⊂ R2, over a time interval [0, 𝑇]. The coefficient
𝜁 is a positive number.

Burgers equation is the simplest nonlinear convection-
diffusionmodel [1]. It is often used inmodeling such physical
phenomena as turbulence, shocks, and so forth. The study of
Burgers equation has been a very active area because of its
importance.

It is well known that strictly parabolic discretization
schemes applied to Burgers equation do notworkwell when it

is advection dominated. Effective discretization schemes rec-
ognize to some extent the hyperbolic nature of the equation.

The finite volume element method (FVEM) [4–12] is
an important discretization technique for partial differential
equations, especially those that arise from physical conser-
vation laws. FVEM has ability to be faithful to the physics
in general and conservation in particular, to produce simple
stencils, and to treat effectively Neumann boundary condi-
tions and nonuniform grids, and so forth.

Liang [11, 12] combined the upwind technique and the
FVEM to handle the linear convection-dominated problems.
In this paper, we will consider upwind finite volume element
method for the approximation of (1). Upwind approximation
is applied to handle the nonlinear convection term.The semi-
discrete and fully discrete schemes are defined, respectively.
We prove that they are both convergent to order one in space.
Numerical experiments are presented finally to validate the
theoretical analysis.

In this paper, we use the following Sobolev spaces and the
norms associated with these spaces:

𝐿
2
(Ω) = {𝑓 : ∫

Ω

𝑓

2

𝑑𝑥 < ∞} ,
𝑓
 = [∫

Ω

𝑓

2

𝑑𝑥]
1/2

,

𝐿
∞
(Ω) = {𝑓 : ess sup

Ω

𝑓
 < ∞} ,

𝑓
∞ = ess sup

Ω

𝑓
 ,
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𝐻
𝑚
(Ω) = {𝑓 :

𝜕|𝛼|𝑓

𝜕𝑥𝛼
∈ 𝐿
2
(Ω) , |𝛼| ≤ 𝑚} ,

𝑚 ≥ 0,

𝑓
𝑚 = [ ∑

|𝛼|≤𝑚



𝜕|𝛼|𝑓

𝜕𝑥𝛼



2

]

1/2

,

𝑊
𝑚

∞
(Ω) = {𝑓 :

𝜕|𝛼|𝑓

𝜕𝑥𝛼
∈ 𝐿
∞
(Ω) , |𝛼| ≤ 𝑚} ,

𝑚 ≥ 0.

𝑓
𝑚,∞ = max

|𝛼|≤𝑚



𝜕|𝛼|𝑓

𝜕𝑥𝛼

𝐿∞
,

(2)

In particular,𝐻0(Ω) = 𝐿2(Ω), 𝑊0
∞
(Ω) = 𝐿∞(Ω). Let [𝑎, 𝑏] ⊂

[0, 𝑇] and let 𝑋 be any of the spaces just defined. If 𝑓(𝑥, 𝑡)
represents functions onΩ × [𝑎, 𝑏], we set

𝐻
𝑚
(𝑎, 𝑏; 𝑋) = {𝑓 : ∫

𝑏

𝑎



𝜕𝛼𝑓

𝜕𝑡𝛼
(⋅, 𝑡)


2

𝑋

𝑑𝑡 < ∞, 𝛼 ≤ 𝑚} ,

𝑓
𝐻𝑚(𝑎,𝑏;𝑋) = [

𝑚

∑
𝛼=0

∫
𝑏

𝑎



𝜕𝛼𝑓

𝜕𝑡𝛼
(⋅, 𝑡)


2

𝑋

𝑑𝑡]

1/2

, 𝑚 ≥ 0,

𝑊
𝑚

∞
(𝑎, 𝑏; 𝑋) = {𝑓 : ess sup

[𝑎,𝑏]



𝜕𝛼𝑓

𝜕𝑡𝛼
(⋅, 𝑡)
𝑋
< ∞, 𝛼 ≤ 𝑚} ,

𝑓
𝑊𝑚
∞
(𝑎,𝑏;𝑋)

= max
0≤𝛼≤𝑚

ess sup
[𝑎,𝑏]



𝜕𝛼𝑓

𝜕𝑡𝛼
(⋅, 𝑡)
𝑋
, 𝑚 ≥ 0,

𝐿
2
(𝑎, 𝑏; 𝑋) = 𝐻

0
(𝑎, 𝑏; 𝑋) ,

𝐿
∞
(𝑎, 𝑏; 𝑋) = 𝑊

0

∞
(𝑎, 𝑏; 𝑋) .

(3)

If [𝑎, 𝑏] = [0, 𝑇], we drop it from the notation. We also drop
Ω; thus, we write 𝐿∞(𝑊1

∞
) for 𝐿∞(0, 𝑇;𝑊1

∞
(Ω)).

If 𝑤 = (𝑤
1
, 𝑤
2
) is a vector function, we say that 𝑤 ∈ 𝑋2 if

𝑤
1
∈ 𝑋 and 𝑤

2
∈ 𝑋.

An outline of the paper follows. In the next section we
define the upwind finite volume element schemes for (1).
Some lemmas are presented in Section 3. We derive the 𝐿2-
norm error estimates for the semi-discrete scheme and the
fully discrete scheme in Sections 4 and 5, respectively. Finally
in Section 6, we give some numerical experiments.

Throughout the paper we will denote by 𝐶 and 𝐶
𝑖
(𝑖 =

1, 2, . . .) generic constants independent of the mesh parame-
ters, whichmay take different values in different occurrences.

2. The Approximation Schemes

In order to rewrite (1) as the vector form we define
some vector notations. The gradient of a vector function

𝑤 = (𝑤
1
, 𝑤
2
) : R2 → R2 is a matrix, and the divergence

of a matrix function𝐴 = (𝑎
𝑖𝑗
)
1≤𝑖,𝑗≤2

: R2 → R2 × 2 is a vector

∇𝑤 = (
𝜕𝑤
𝑖

𝜕𝑥
𝑗

)

1≤𝑖,𝑗≤2

,

∇ ⋅ 𝐴 = (

2

∑
𝑗=1

𝜕𝑎
1𝑗

𝜕𝑥
𝑗

,

2

∑
𝑗=1

𝜕𝑎
2𝑗

𝜕𝑥
𝑗

) .

(4)

Consequently, we have for a vector function 𝑤 = (𝑤
1
, 𝑤
2
)

Δ𝑤 = ∇ ⋅ ∇𝑤 = (Δ𝑤
1
, Δ𝑤
2
) . (5)

Let 𝜃 = (𝑢, 𝑣), 𝜃
0
(𝑥) = (𝑢

0
(𝑥), 𝑣
0
(𝑥)), and let 𝑔 = (𝑔

1
, 𝑔
2
);

then the system (1) can be written as the following vector
form:

(a) 𝜕𝜃
𝜕𝑡
+ 𝜃 ⋅ ∇𝜃 − 𝜁Δ𝜃 = 0, (𝑥, 𝑡) ∈ Ω × 𝐽,

(b) 𝜃 (𝑥, 0) = 𝜃
0
(𝑥) , 𝑥 ∈ Ω,

(c) 𝜃 (𝑥, 𝑡) = 𝑔, (𝑥, 𝑡) ∈ 𝜕Ω × 𝐽,

(6)

where

𝜃 ⋅ ∇𝜃 = 𝑢
𝜕𝜃

𝜕𝑥
1

+ 𝑣
𝜕𝜃

𝜕𝑥
2

. (7)

LetT
ℎ
= {𝐾} be a triangulation of the domain Ω, and as

usual, we assume the triangles 𝐾 to be shape regular. Denote
by Ω
ℎ
= {𝑃
𝑖
} the set of the vertices of all the triangles 𝐾, and

letΩ
ℎ
= Ω
ℎ
\ 𝜕Ω. For a given triangulationT

ℎ
, we construct

a dual mesh T∗
ℎ
whose elements are called control volumes.

Each triangle 𝐾 ∈ T
ℎ
can be divided into three subdomains

by connecting an inner point of the triangle to the midpoints
of the three edges. Around each 𝑃

𝑖
∈ Ω
ℎ
, we associate a

control volume 𝐾∗
𝑖
= 𝐾∗
𝑃
𝑖

, which consists of the union of
subregions having 𝑃

𝑖
as a vertex. For a vertex 𝑃

𝑖
∈ 𝜕Ω, we can

define its control volume in a similar way.Then we define the
dual partitionT∗

ℎ
= {𝐾∗
𝑃
𝑖

, 𝑃
𝑖
∈ Ω
ℎ
} to be the union of all the

control volumes. Usually we can choose the inner points as
the barycenters or the circum centers, and in the later case
we assume that all the inner angles of each triangle are not
larger than 𝜋/2. We will use the barycenters duel mesh in this
paper, while, with some trivial changes, our analysis can be
also applied to the case when the circum centers are used.

We now characterize the finite-dimensional spaces which
will be employed in approximating (6). For the sake of
simplicity, we will assume that 𝑔

1
= 𝑔
2
= 0. We define the

following finite dimensional spaces:

𝑃
ℎ
= {𝜔
ℎ
∈ 𝐻
1

0
(Ω), 𝜔

ℎ

𝐾
∈ P
1
(𝐾) , 𝐾 ∈ 𝑇

ℎ
} ,

𝑌
ℎ
= {𝜑

ℎ
∈ 𝐿
2
(Ω), 𝜑

ℎ

𝐾∗
𝑖

∈ P
0
(𝐾
∗
) ,

𝑃
𝑖
∈ Ω
ℎ
; 𝜑
ℎ

𝐾∗
𝑖

= 0, 𝑃
𝑖
∈ 𝜕Ω} ,

𝑈
ℎ
= 𝑃
2

ℎ
, 𝑉

ℎ
= 𝑌
2

ℎ
,

(8)
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where P
𝑙
(𝑉) (𝑙 = 0, 1) denotes the set of polynomials on 𝑉

with a degree of not more than 𝑙.
Multiplying (6a) by test function 𝑧 ∈ 𝑉

ℎ
and integrating

by parts yield

(
𝜕𝜃

𝜕𝑡
, 𝑧) + 𝐵

1
(𝜃; 𝜃, 𝑧) + 𝐵

2
(𝜃; 𝜃, 𝑧)

+ 𝐴 (𝜃, 𝑧) = 0, ∀𝑧 ∈ 𝑉
ℎ
,

(9)

where

𝐵
1
(𝜑; 𝑤, 𝑧) = − ∑

𝑃
𝑖
∈Ω
ℎ

𝑧 (𝑃
𝑖
) ⋅ ∫
𝐾
∗

𝑖

(∇ ⋅ 𝑤) 𝜑 𝑑𝑥,

𝐵
2
(𝜑; 𝑤, 𝑧) = ∑

𝑃
𝑖
∈Ω
ℎ

𝑧 (𝑃
𝑖
) ⋅ ∫
𝜕𝐾
∗

𝑖

(𝜑 ⋅ 𝜈)𝑤𝑑𝑠,

𝐴 (𝑤, 𝑧) = ∑
𝑃
𝑖
∈Ω
ℎ

𝑧 (𝑃
𝑖
) ⋅ ∫
𝜕𝐾
∗

𝑖

𝜁 (𝜈 ⋅ ∇𝑤) 𝑑𝑠,

(10)

here 𝜈 is the unit outward normal vector of 𝜕𝐾∗
𝑖
.

Now we approximate 𝐵
2
(𝜑; 𝑤, 𝑧) by using the upwind

technique.
Let Λ

𝑖
= {𝑗 : 𝑃

𝑗
is adjoint with 𝑃

𝑖
}. Assuming that 𝑗 ∈ Λ

𝑖
,

let Γ
𝑖𝑗
= 𝜕𝐾∗
𝑖
∩ 𝜕𝐾∗
𝑗
and 𝛾
𝑖𝑗
is the length of Γ

𝑖𝑗
. Denote by 𝜈

𝑖𝑗

the unit outward normal vector of Γ
𝑖𝑗
when Γ

𝑖𝑗
is regarded as

the boundary of𝐾∗
𝑖
. Define

𝛽
𝑖𝑗
(𝜑) = ∫

Γ
𝑖𝑗

𝜑 ⋅ 𝜈
𝑖𝑗
𝑑𝑠. (11)

Let
𝛽
+

𝑖𝑗
(𝜑) = max (𝛽

𝑖𝑗
(𝜑) , 0) , 𝛽

−

𝑖𝑗
(𝜑) = max (−𝛽

𝑖𝑗
(𝜑) , 0) ,

∫
𝜕𝐾
∗

𝑖

(𝜑 ⋅ 𝜈)𝑤𝑑𝑠 ≈ ∑
𝑗∈Λ
𝑖

{𝛽
+

𝑖𝑗
(𝜑)𝑤 (𝑃

𝑖
) − 𝛽
−

𝑖𝑗
(𝜑)𝑤 (𝑃

𝑗
)} .

(12)

The upwind discretization of the nonlinear term 𝐵
2
(𝜑; 𝑤, 𝑧)

is defined by the form

𝐵
2ℎ
(𝜑; 𝑤, 𝑧)

= ∑
𝑃
𝑖
∈Ω
ℎ

∑
𝑗∈Λ
𝑖

{𝛽
+

𝑖𝑗
(𝜑)𝑤 (𝑃

𝑖
) − 𝛽
−

𝑖𝑗
(𝜑)𝑤 (𝑃

𝑗
)} ⋅ 𝑧 (𝑃

𝑖
) .

(13)

Using the heaviside function

𝐻(𝑟) = {
1, 𝑟 ≥ 0,

0, 𝑟 < 0,
(14)

we can write 𝐵
2ℎ
(𝜑; 𝑤, 𝑧) as

𝐵
2ℎ
(𝜑; 𝑤, 𝑧)

= ∑
𝑃
𝑖
∈Ω
ℎ

∑
𝑗∈Λ
𝑖

𝛽
𝑖𝑗
(𝜑)

× {𝐻 (𝛽
𝑖𝑗
(𝜑))𝑤 (𝑃

𝑖
) + (1 − 𝐻(𝛽

𝑖𝑗
(𝜑)))𝑤 (𝑃

𝑗
)}

⋅ 𝑧 (𝑃
𝑖
) .

(15)

Introduce the interpolation operators Π
ℎ
: 𝐻1
0
(Ω) → 𝑃

ℎ

and Π∗
ℎ
: 𝑃
ℎ
→ 𝑌
ℎ
, respectively. For 𝑤 = (𝑤

1
, 𝑤
2
), define

Π
ℎ
𝑤 = (Π

ℎ
𝑤
1
, Π
ℎ
𝑤
2
) and Π∗

ℎ
𝑤 = (Π∗

ℎ
𝑤
1
, Π∗
ℎ
𝑤
2
). Assuming

that𝑤 ∈ 𝐻2(Ω)2, we can easily get the following interpolation
estimates:

𝑤 − Πℎ𝑤
𝑠 ≤ ℎ

2−𝑠
‖𝑤‖2, 𝑠 = 0, 1. (16)

The semi-discrete upwind finite volume scheme of (6) is
as follows: find 𝜃

ℎ
: [0, 𝑇] → 𝑈

ℎ
such that

(
𝜕𝜃
ℎ

𝜕𝑡
, Π
∗

ℎ
𝑧
ℎ
) + 𝐵

1
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝑧
ℎ
) + 𝐵
2ℎ
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝑧
ℎ
)

+ 𝐴 (𝜃
ℎ
, Π
∗

ℎ
𝑧
ℎ
) = 0, ∀𝑧

ℎ
∈ 𝑈
ℎ
,

𝜃
ℎ
(𝑥, 0) = 𝜃

0ℎ
(𝑥) ,

(17)

where 𝜃
0ℎ
(𝑥) is the interpolation projection of 𝜃

0
, that is,

𝜃
0ℎ
(𝑥) = Π

ℎ
𝜃
0
.

Partition [0, 𝑇] into 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑁 = 𝑇, with
𝜏𝑛 = 𝑡𝑛−𝑡𝑛−1. Our analysis is valid for variable time steps, but
we drop the superscript from 𝜏 for convenience. For functions
𝑓 on Ω × 𝐽, we write 𝑓𝑛(𝑥) for 𝑓(𝑥, 𝑡𝑛). By approximating
𝜕𝜃
ℎ
/𝜕𝑡 at the time 𝑡 = 𝑡

𝑛
with the backward difference 𝜕

𝑡
𝜃𝑛
ℎ
=

(𝜃𝑛
ℎ
−𝜃𝑛−1
ℎ
)/𝜏, we define the fully discrete upwind finite volume

scheme for (6) as follows: find 𝜃𝑛
ℎ
∈ 𝑈
ℎ
, such that

(𝜕
𝑡
𝜃
𝑛

ℎ
, Π
∗

ℎ
𝑧
ℎ
) + 𝐵
1ℎ
(𝜃
𝑛−1

ℎ
; 𝜃
𝑛

ℎ
, Π
∗

ℎ
𝑧
ℎ
) + 𝐵
2ℎ
(𝜃
𝑛−1

ℎ
; 𝜃
𝑛

ℎ
, Π
∗

ℎ
𝑧
ℎ
)

+ 𝐴 (𝜃
𝑛

ℎ
, Π
∗

ℎ
𝑧
ℎ
) = 0, 𝑛 ≥ 1, ∀𝑧

ℎ
∈ 𝑈
ℎ
,

𝜃
0

ℎ
= 𝜃
0ℎ
.

(18)

3. Some Lemmas

Now we present several Lemmas. Let 𝑤
ℎ
= (𝑤
1
, 𝑤
2
) ∈ 𝑈

ℎ
,

𝑤
ℎ
= (𝑤
1
, 𝑤
2
) ∈ 𝑈
ℎ
.

Lemma 1. (i) Π∗
ℎ
is a self-adjoint operator, that is,

(𝑤
ℎ
, Π
∗

ℎ
𝑤
ℎ
) = (𝑤

ℎ
, Π
∗

ℎ
𝑤
ℎ
) , ∀𝑤

ℎ
, 𝑤
ℎ
∈ 𝑈
ℎ
. (19)

(ii) Let |‖𝑤
ℎ
‖| = (𝑤

ℎ
, Π∗
ℎ
𝑤
ℎ
)
1/2. Then, for some positive

constants 𝐶
1
and 𝐶

2
that are independent of ℎ,

𝐶
1

𝑤ℎ
 ≤

𝑤ℎ

 ≤ 𝐶2

𝑤ℎ
 , ∀𝑤

ℎ
∈ 𝑈
ℎ
. (20)

Proof. It is easy to know that

(𝑤
ℎ
, Π
∗

ℎ
𝑤
ℎ
) = (𝑤

1
, Π
∗

ℎ
𝑤
1
) + (𝑤

2
, Π
∗

ℎ
𝑤
2
) ,


𝑤ℎ


2

= (𝑤
ℎ
, Π
∗

ℎ
𝑤
ℎ
) = (𝑤

1
, Π
∗

ℎ
𝑤
1
) + (𝑤

2
, Π
∗

ℎ
𝑤
2
) .

(21)

From [4] we know that for 𝑤
1
, 𝑤
2
, 𝑤
1
, 𝑤
2
∈ 𝑃
ℎ
,

(𝑤
1
, Π
∗

ℎ
𝑤
1
) = (𝑤

1
, Π
∗

ℎ
𝑤
1
) , (𝑤

2
, Π
∗

ℎ
𝑤
2
) = (𝑤

2
, Π
∗

ℎ
𝑤
2
) ,

𝐶
2

1

𝑤1

2

≤ (𝑤
1
, Π
∗

ℎ
𝑤
1
) ≤ 𝐶
2

2

𝑤1

2

,

𝐶
2

1

𝑤2

2

≤ (𝑤
2
, Π
∗

ℎ
𝑤
2
) ≤ 𝐶
2

2

𝑤2

2

,

(22)
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where 𝐶
1
and 𝐶

2
are some positive constants that are inde-

pendent of ℎ. Thus we obtain (19) and (20) immediately.

Lemma 2. For the bilinear form 𝐴(⋅, Π∗
ℎ
⋅), one has the follow-

ing conclusions:

(i) For 𝑤
ℎ
, 𝑤
ℎ
∈ 𝑈
ℎ
, one has

𝐴 (𝑤
ℎ
, Π
∗

ℎ
𝑤
ℎ
) = 𝐴 (𝑤

ℎ
, Π
∗

ℎ
𝑤
ℎ
) . (23)

(ii) There exists a positive constant 𝐶 such that
𝐴 (𝑤 − Πℎ𝑤,Π

∗

ℎ
𝑤
ℎ
)


≤ 𝐶ℎ‖𝑤‖
2

𝑤ℎ
1, ∀𝑤 ∈ 𝐻

2
(Ω)
2
, 𝑤
ℎ
∈ 𝑈
ℎ
.

(24)

(iii) There exists a positive constant 𝛼 such that

𝐴 (𝑤
ℎ
, Π
∗

ℎ
𝑤
ℎ
) ≥ 𝛼

𝑤ℎ

2

1
, ∀𝑤

ℎ
∈ 𝑈
ℎ
. (25)

Proof. For 𝜙, 𝜓 ∈ 𝑃
ℎ
, define the bilinear form

𝑎 (𝜙, Π
∗

ℎ
𝜓) = − ∑

𝑃
𝑖
∈Ω
ℎ

𝜓 (𝑃
𝑖
) ∫
𝜕𝐾
∗

𝑖

𝜁∇𝜙 ⋅ 𝜈 𝑑𝑠. (26)

Then, we get

𝐴 (𝑤
ℎ
, Π
∗

ℎ
𝑤
ℎ
) = − ∑
𝑃
𝑖
∈Ω
ℎ

𝑤
ℎ
(𝑃
𝑖
) ⋅ ∫
𝜕𝐾
∗

𝑖

𝜁 (𝜈 ⋅ ∇𝑤
ℎ
) 𝑑𝑠

= − ∑
𝑃
𝑖
∈Ω
ℎ

𝑤
1
(𝑃
𝑖
) ∫
𝜕𝐾
∗

𝜁∇𝑤
1
⋅ 𝜈 𝑑𝑠

− ∑
𝑃
𝑖
∈Ω
ℎ

𝑤
2
(𝑃
𝑖
) ∫
𝜕𝐾
∗

𝑖

𝜁∇𝑤
2
⋅ 𝜈 𝑑𝑠

= 𝑎 (𝑤
1
, Π
∗

ℎ
𝑤
1
) + 𝑎 (𝑤

2
, Π
∗

ℎ
𝑤
2
) ,

𝐴 (𝑤 − Π
ℎ
𝑤,Π
∗

ℎ
𝑤
ℎ
) = 𝑎 (𝑤

1
− Π
ℎ
𝑤
1
, Π
∗

ℎ
𝑤
1
)

+ 𝑎 (𝑤
2
− Π
ℎ
𝑤
2
, Π
∗

ℎ
𝑤
2
) .

(27)

By combining the above results and the corresponding con-
clusions for 𝑎(⋅, Π∗

ℎ
⋅) in [4], we can obtain (23)–(25).

Lemma 3. For 𝜑 ∈ (𝑊0
∞
(Ω))
2
, 𝜃 ∈ (𝐻1

0
(Ω))
2
, 𝜑
ℎ
∈ 𝑈
ℎ
, and

𝑧
ℎ
∈ 𝑈
ℎ
, one has

𝐵2 (𝜑; 𝜃, Π
∗

ℎ
𝑧
ℎ
) − 𝐵
2ℎ
(𝜑
ℎ
; Π
ℎ
𝜃, Π
∗

ℎ
𝑧
ℎ
)


≤
𝑧ℎ
1 {ℎ

𝜑
∞|𝜃|1 + ‖𝜃‖∞ (

𝜑 − 𝜑ℎ
 + ℎ

𝜑 − 𝜑ℎ
1)} .

(28)

Proof. First we have

𝐵
2
(𝜑; 𝜃, Π

∗

ℎ
𝑧
ℎ
) − 𝐵
2ℎ
(𝜑
ℎ
; Π
ℎ
𝜃, Π
∗

ℎ
𝑧
ℎ
)

= 𝐵
2
(𝜑; 𝜃, Π

∗

ℎ
𝑧
ℎ
) − 𝐵
2ℎ
(𝜑
ℎ
; 𝜃, Π
∗

ℎ
𝑧
ℎ
)

+ 𝐵
2ℎ
(𝜑
ℎ
; 𝜃, Π
∗

ℎ
𝑧
ℎ
) − 𝐵
2ℎ
(𝜑
ℎ
; Π
ℎ
𝜃, Π
∗

ℎ
𝑧
ℎ
) .

(29)

Noting that 𝜃(𝑃
𝑖
) = Π
ℎ
𝜃(𝑃
𝑖
), 𝑃
𝑖
∈ Ω
ℎ
, we can easily deduce

𝐵
2ℎ
(𝜑
ℎ
; 𝜃, Π
∗

ℎ
𝑧
ℎ
) − 𝐵
2ℎ
(𝜑
ℎ
; Π
ℎ
𝜃, Π
∗

ℎ
𝑧
ℎ
) = 0 (30)

by the definition of 𝐵
2ℎ
(⋅; ⋅, Π∗

ℎ
⋅). Now we only need to bound

𝐵
2
(𝜑; 𝜃, Π

∗

ℎ
𝑧
ℎ
) − 𝐵
2ℎ
(𝜑
ℎ
; 𝜃, Π
∗

ℎ
𝑧
ℎ
)

= ∑
𝑃
𝑖
∈Ω
ℎ

𝑧
ℎ
(𝑃
𝑖
) ⋅ ∑
𝑗∈Λ
𝑖

∫
Γ
𝑖𝑗

(𝜑 ⋅ 𝜈
𝑖𝑗
) 𝜃 𝑑𝑠

− ∑
𝑃
𝑖
∈Ω
ℎ

𝑧
ℎ
(𝑃
𝑖
) ⋅ ∑
𝑗∈Λ
𝑖

𝛽
𝑖𝑗
(𝜑
ℎ
)

× [𝐻 (𝛽
𝑖𝑗
(𝜑
ℎ
)) 𝜃 (𝑃

𝑖
) + (1 − 𝐻(𝛽

𝑖𝑗
(𝜑
ℎ
))) 𝜃 (𝑃

𝑗
)]

= ∑
𝑃
𝑖
∈Ω
ℎ

𝑧
ℎ
(𝑃
𝑖
)

⋅ ∑
𝑗∈Λ
𝑖

∫
Γ
𝑖𝑗

(𝜑 ⋅ 𝜈
𝑖𝑗
)

× {𝜃 − [𝐻 (𝛽
𝑖𝑗
(𝜑
ℎ
)) 𝜃 (𝑃

𝑖
)

+ (1 − 𝐻(𝛽
𝑖𝑗
(𝜑
ℎ
))) 𝜃 (𝑃

𝑗
)]} 𝑑𝑠

+ ∑
𝑃
𝑖
∈Ω
ℎ

𝑧
ℎ
(𝑃
𝑖
) ⋅ ∑
𝑗∈Λ
𝑖

∫
Γ
𝑖𝑗

(𝜑 − 𝜑
ℎ
) ⋅ 𝜈
𝑖𝑗
𝑑𝑠

× [𝐻 (𝛽
𝑖𝑗
(𝜑
ℎ
)) 𝜃 (𝑃

𝑖
) + (1 − 𝐻(𝛽

𝑖𝑗
(𝜑
ℎ
))) 𝜃 (𝑃

𝑗
)] .

(31)

We denote the last two terms on the right-hand side of (31) by
𝐼
1
and 𝐼
2
, respectively. We now turn to analyze the two terms.

Noting that 𝛽
𝑖𝑗
= −𝛽
𝑗𝑖
, we rewrite 𝐼

1
as

𝐼
1
=
1

2
∑
𝐾∈T
ℎ

∑
𝑖,𝑗∈Λ

𝐾

[𝑧
ℎ
(𝑃
𝑖
) − 𝑧
ℎ
(𝑃
𝑗
)] ⋅

∫
Γ
𝑖𝑗
∩𝐾

(𝜑 ⋅ 𝜈
𝑖𝑗
) [𝐻 (𝛽

𝑖𝑗
(𝜑
ℎ
)) (𝜃 − 𝜃 (𝑃

𝑖
))

+ (1 − 𝐻(𝛽
𝑖𝑗
(𝜑
ℎ
))) (𝜃 − 𝜃 (𝑃

𝑗
))] 𝑑𝑠,

(32)

here Λ
𝐾
is the set of vertex of 𝐾. From the Taylor’s Formula

and the linear property of 𝑧
ℎ
= (𝑧
1
, 𝑧
2
), we obtain that


𝑧
ℎ
(𝑃
𝑖
) − 𝑧
ℎ
(𝑃
𝑗
)


2

≤ ℎ
2
(
∇𝑧1


2

+
∇𝑧2


2

) = ℎ
2
|𝑧|
2

1,𝐾
.

(33)
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Applying the trace inequality, we get

∫
Γ
𝑖𝑗
∩𝐾

𝜃 − 𝜃 (𝑃𝑖)
 𝑑𝑠

≤ 𝐶ℎ
1/2
{∫
Γ
𝑖𝑗
∩𝐾

𝜃 − 𝜃 (𝑃𝑖)

2

𝑑𝑠}

1/2

≤ 𝐶ℎ
1/2
{∫
Γ
𝑖𝑗
∩𝐾

[
𝑢 − 𝑢 (𝑃𝑖)


2

+
𝑣 − 𝑣 (𝑃𝑖)


2

] 𝑑𝑠}

1/2

≤ 𝐶ℎ {(ℎ
−1𝑢 − 𝑢 (𝑃𝑖)

0,𝐾 +
𝑢 − 𝑢 (𝑃𝑖)

1,𝐾)
2

+(ℎ
−1𝑣 − 𝑣 (𝑃𝑖)

0,𝐾 +
𝑣 − 𝑣 (𝑃𝑖)

1,𝐾)
2

}
1/2

≤ 𝐶ℎ(|𝑢|
2

1,𝐾
+ |𝑣|
2

1,𝐾
)
1/2

= 𝐶ℎ|𝜃|1,𝐾.

(34)

Similarly, we can deduce that

∫
Γ
𝑖𝑗
∩𝐾


𝜃 − 𝜃 (𝑃

𝑗
)

𝑑𝑠 ≤ 𝐶ℎ|𝜃|

1,𝐾
. (35)

We conclude that
𝐼1
 ≤ 𝐶ℎ

𝜑
∞
𝑧ℎ
1|𝜃|1. (36)

The similar argument yields the estimate

𝐼2
 =



1

2
∑
𝐾∈T
ℎ

∑
𝑖,𝑗∈Λ

𝐾

∫
Γ
𝑖𝑗
∩𝐾

[(𝜑 − 𝜑
ℎ
) ⋅ 𝑛] 𝑑𝑠

× [𝐻 (𝛽
𝑖𝑗
(𝜑
ℎ
)) 𝜃 (𝑃

𝑖
) + (1 − 𝐻(𝛽

𝑖𝑗
(𝜑
ℎ
))) 𝜃 (𝑃

𝑗
)]

⋅ [𝑧
ℎ
(𝑃
𝑖
) − 𝑧
ℎ
(𝑃
𝑗
)]



≤ 𝐶‖𝜃‖
∞

𝑧ℎ
1 (
𝜑 − 𝜑ℎ

 + ℎ
𝜑 − 𝜑ℎ

1) .

(37)

Substituting the estimates (36) and (37) into (31), we
obtain

𝐵2 (𝜑; 𝜃, Π
∗

ℎ
𝑧
ℎ
) − 𝐵
2ℎ
(𝜑
ℎ
; 𝜃, Π
∗

ℎ
𝑧
ℎ
)


≤ 𝐶
𝑧ℎ
1 {ℎ

𝜑
∞|𝜃|1 + ‖𝜃‖∞

× (
𝜑 − 𝜑ℎ

 + ℎ
𝜑 − 𝜑ℎ

1)} .

(38)

This yields the desired result immediately.

4. Error Bounds for Semi-Discrete Scheme

Theorem4. Assume that 𝜃 and 𝜃
ℎ
are solutions to (6) and (17),

respectively. also assumes that 𝜃 is regular enough. Then there
exists a positive constant 𝐶 such that

𝜃 − 𝜃ℎ
 ≤ 𝐶ℎ, (39)

where 𝐶 depends on principally ‖𝜃
0
‖
2
, ‖𝜃‖
𝐿
∞
((𝑊
1

∞
)
2

)
, and

‖𝜃‖
𝐻
1
((𝐻
2
)
2

)
.

Proof. We derive the following error equation from (6) and
(17):

(
𝜕𝜃

𝜕𝑡
−
𝜕𝜃
ℎ

𝜕𝑡
, Π
∗

ℎ
𝑧
ℎ
) + 𝐵

1
(𝜃; 𝜃, Π

∗

ℎ
𝑧
ℎ
) − 𝐵
1
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝑧
ℎ
)

+ 𝐵
2
(𝜃; 𝜃, Π

∗

ℎ
𝑧
ℎ
) − 𝐵
2ℎ
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝑧
ℎ
)

+ 𝐴 (𝜃 − 𝜃
ℎ
, Π
∗

ℎ
𝑧
ℎ
) = 0.

(40)

Let 𝜌 = 𝜃 − Π
ℎ
𝜃, 𝜉 = Π

ℎ
𝜃 − 𝜃
ℎ
. We rewrite the previously

mentioned equation as

(
𝜕𝜉

𝜕𝑡
, Π
∗

ℎ
𝑧
ℎ
) + 𝐵

1
(𝜃; 𝜃, Π

∗

ℎ
𝑧
ℎ
) − 𝐵
1
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝑧
ℎ
)

+ 𝐵
2
(𝜃; 𝜃, Π

∗

ℎ
𝑧
ℎ
) − 𝐵
2ℎ
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝑧
ℎ
) + 𝐴 (𝜉, Π

∗

ℎ
𝑧
ℎ
)

= −(
𝜕𝜌

𝜕𝑡
, Π
∗

ℎ
𝑧
ℎ
) − 𝐴 (𝜌,Π

∗

ℎ
𝑧
ℎ
) .

(41)

We choose 𝑧
ℎ
= 𝜉 in (41) to get

(
𝜕𝜉

𝜕𝑡
, Π
∗

ℎ
𝜉) + 𝐴 (𝜉, Π

∗

ℎ
𝜉)

= −(
𝜕𝜌

𝜕𝑡
, Π
∗

ℎ
𝜉) − 𝐴 (𝜌,Π

∗

ℎ
𝜉)

− [𝐵
1
(𝜃; 𝜃, Π

∗

ℎ
𝜉) − 𝐵

1
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝜉)]

− [𝐵
2
(𝜃; 𝜃, Π

∗

ℎ
𝜉) − 𝐵

2ℎ
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝜉)] .

(42)

Using Lemmas 1, 2 and Young’s inequality, we have

1

2

𝑑

𝑑𝑡


𝜉


2

+ 𝛼
𝜉

2

1

≤ 𝐶(


𝜕𝜌

𝜕𝑡



2

+
𝜉

2

+ ℎ
2
‖𝜃‖
2

2
) + 𝜀

𝜉

2

1

+
𝐵1 (𝜃; 𝜃, Π

∗

ℎ
𝜉) − 𝐵

1
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝜉)


+
𝐵2 (𝜃; 𝜃, Π

∗

ℎ
𝜉) − 𝐵

2ℎ
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝜉)
 .

(43)

Now we bound the last two terms on the right-hand side of
(43). We need the following induction hypothesis:

(log 1
ℎ
)
1/2
𝜉
 (𝑠) → 0, ℎ → 0, 0 ≤ 𝑠 < 𝑡, 0 < 𝑡 ≤ 𝑇.

(44)

We know from [13] that

𝜙
∞ ≤ 𝐶(log

1

ℎ
)
1/2
𝜙
1, ∀𝜙 ∈ 𝑃

ℎ
. (45)

This implies that

𝜑
∞ ≤ 𝐶(log

1

ℎ
)
1/2
𝜑
1, ∀𝜑 ∈ 𝑈

ℎ
. (46)
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Also we have the following inverse inequality:

𝜑
1 ≤ 𝐶ℎ

−1 𝜑
 , ∀𝜑 ∈ 𝑈

ℎ
. (47)

Using (46), we get

𝐵1 (𝜃; 𝜃, Π
∗

ℎ
𝜉) − 𝐵

1
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝜉)


≤ ∑
𝑃
𝑖
∈Ω
ℎ

𝜉 (𝑃𝑖)
 ∫
𝐾
∗

𝑖

(∇ ⋅ 𝜃) 𝜃 − (∇ ⋅ 𝜃ℎ) 𝜃ℎ
 𝑑𝑥

≤ ∑
𝑃
𝑖
∈Ω
ℎ

𝜉 (𝑃𝑖)
 ∫
𝐾
∗

𝑖

{|(∇ ⋅ 𝜃)|
𝜃 − 𝜃ℎ

 +
∇ ⋅ 𝜃 − ∇ ⋅ 𝜃ℎ



× (
𝜉
 +
Πℎ𝜃

)} 𝑑𝑥

≤ 𝐶 {‖∇ ⋅ 𝜃‖
∞

𝜃 − 𝜃ℎ

𝜉
 +
∇ ⋅ (𝜃 − 𝜃ℎ)



×
𝜉
 (
𝜉
∞ + ‖𝜃‖∞)}

≤ 𝐶{
𝜌
1 +

𝜉
1 + (log

1

ℎ
)
1/2
𝜉
1

× (
𝜌
1 +

𝜉
1) }

𝜉


≤ 𝐶{
𝜌

2

1
+
𝜉

2

+
𝜉
 (log

1

ℎ
)
1/2
𝜉

2

1
} + 𝜀

𝜉

2

1
.

(48)

Next, we write

𝐵2 (𝜃; 𝜃, Π
∗

ℎ
𝜉) − 𝐵

2ℎ
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝜉)


≤
𝐵2 (𝜃; 𝜃, Π

∗

ℎ
𝜉) − 𝐵

2ℎ
(𝜃
ℎ
; Π
ℎ
𝜃, Π
∗

ℎ
𝜉)


+
𝐵2ℎ (𝜃ℎ; 𝜉, Π

∗

ℎ
𝜉)
 = 𝐷1 + 𝐷2.

(49)

By Choosing 𝜑 = 𝜃, 𝜑
ℎ
= 𝜃
ℎ
, and 𝑧

ℎ
= 𝜉 in Lemma 3, using

(47) and the Young’s inequality, we can obtain

𝐷
1
≤ 𝐶
𝜉
1 {ℎ‖𝜃‖∞|𝜃|1 + ‖𝜃‖∞

× (
𝜃 − 𝜃ℎ

 + ℎ
𝜃 − 𝜃ℎ

1)}

≤ 𝐶 {ℎ
2
|𝜃|
2

1
+
𝜌

2

1
+
𝜉

2

} + 𝜀
𝜉

2

1
.

(50)

By an argument like (36) and then by (46) and (47), we have

𝐷
2
=



∑
𝑃
𝑖
∈Ω
ℎ

𝜉 (𝑃
𝑖
) ⋅ ∑
𝑗∈Λ
𝑖

∫
Γ
𝑖𝑗

(𝜃
ℎ
⋅ 𝜈
𝑖𝑗
) 𝑑𝑠

× [𝐻 (𝛽
𝑖𝑗
) 𝜉 (𝑃
𝑖
) + (1 − 𝐻(𝛽

𝑖𝑗
)) 𝜉 (𝑃

𝑗
)]



≤
1

2
∑
𝐾∈𝑇
ℎ

∑
𝑖,𝑗∈Λ

𝐾


𝜉 (𝑃
𝑖
) − 𝜉 (𝑃

𝑗
)


×

𝐻 (𝛽
𝑖𝑗
) 𝜉 (𝑃
𝑖
) + (1 − 𝐻(𝛽

𝑖𝑗
)) 𝜉 (𝑃

𝑗
)


× ∫
Γ
𝑖𝑗
∩𝐾


𝜉 ⋅ 𝜈
𝑖𝑗


𝑑𝑠

+
1

2
∑
𝐾∈𝑇
ℎ

∑
𝑖,𝑗∈Λ

𝐾


𝜉 (𝑃
𝑖
) − 𝜉 (𝑃

𝑗
)


×

𝐻 (𝛽
𝑖𝑗
) 𝜉 (𝑃
𝑖
) + (1 − 𝐻(𝛽

𝑖𝑗
)) 𝜉 (𝑃

𝑗
)


× ∫
Γ
𝑖𝑗
∩𝐾


Π
ℎ
𝜃 ⋅ 𝜈
𝑖𝑗


𝑑𝑠

≤ 𝐶 {
𝜉
1 (
𝜉
 + ℎ

𝜉
1)
𝜉
∞ +

Πℎ𝜃
∞
𝜉
1
𝜉
}

≤ 𝐶{
𝜉

2

+
𝜉
 (log

1

ℎ
)
1/2
𝜉

2

1
} + 𝜀

𝜉

2

1
.

(51)

Substituting (50) and (51) into (49), we get
𝐵2 (𝜃; 𝜃, Π

∗

ℎ
𝜉) − 𝐵

2ℎ
(𝜃
ℎ
; 𝜃
ℎ
, Π
∗

ℎ
𝜉)


≤ 𝐶 {ℎ
2
|𝜃|
2

1
+
𝜌

2

1
+
𝜉

2

}

+ 𝐶
𝜉
 (log

1

ℎ
)
1/2
𝜉

2

1
+ 2𝜀

𝜉

2

1
.

(52)

Make (43), (48), and (52) together to obtain

1

2

𝑑

𝑑𝑡


𝜉


2

+ 𝛼
𝜉

2

1

≤ 𝐶{ℎ
2
‖𝜃‖
2

2
+


𝜕𝜌

𝜕𝑡



2

+
𝜌

2

1
+
𝜉

2

}

+ 𝐶
𝜉
 (log

1

ℎ
)
1/2
𝜉

2

1
+ 4𝜀

𝜉

2

1
.

(53)

Integrating the previously mentioned equation from 0 to 𝑡
and noting (44), we obtain that

1

2
{

𝜉


2

(𝑡) −

𝜉


2

(0)} +
𝛼

2
∫
𝑡

0

𝜉

2

1
𝑑𝜏

≤ {ℎ
2
‖𝜃‖
2

2
+ ∫
𝑡

0



𝜕𝜌

𝜕𝑡



2

𝑑𝜏 + ∫
𝑡

0

𝜌

2

1
𝑑𝜏

+∫
𝑡

0

𝜉

2

𝑑𝜏}

(54)

for sufficiently small ℎ and 𝜀. By using Lemma 2(ii) and the
Gronwall’s inequality, we have that

𝜉

2

(𝑡) + ∫
𝑡

0

𝜉

2

1
𝑑𝜏

≤ 𝐶{ℎ
2
‖𝜃‖
2

2
+ ∫
𝑡

0



𝜕𝜌

𝜕𝑡



2

𝑑𝜏 + ∫
𝑡

0

𝜌

2

1
𝑑𝜏} .

(55)
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It follows from the interpolation estimates that

𝜉

2

(𝑡) + ∫
𝑡

0

𝜉

2

1
𝑑𝜏

≤ 𝐶{ℎ
2
(
𝜃0

2

2
+ ∫
𝑇

0



𝜕𝜃

𝜕𝑡



2

2

𝑑𝜏)

+ℎ
4
∫
𝑇

0



𝜕𝜃

𝜕𝑡



2

2

𝑑𝜏 + ℎ
2
∫
𝑇

0

‖𝜃‖
2

2
𝑑𝜏} .

(56)

Now we prove the induction hypothesis (44). Noting that
‖𝜉‖(0) = 0, we know that (44) holds obviously for 𝑡 = 0. It
follows from (56) that

(log 1
ℎ
)
1/2
𝜉
 (𝑡) ≤ 𝐶ℎ(log

1

ℎ
)
1/2

→ 0, ℎ → 0.

(57)

Then (44) holds for any 𝑡 ∈ [0, 𝑇].
By (16), we have

𝜌
 ≤ 𝐶ℎ

2
‖𝜃‖2 ≤ 𝐶ℎ

2
{
𝜃0
2 + ∫

𝑡

0

‖𝜃‖2𝑑𝜏} . (58)

From the triangle inequality, we obtain
𝜃 − 𝜃ℎ

 ≤ 𝐶ℎ, (59)

where 𝐶 depends on ‖𝜃
0
‖
2
, ‖𝜃‖
𝐻
1
((𝑊
1

∞
)
2

)
, and ‖𝜃‖

𝐻
1
((𝐻
2
)
2

)
. We

now complete the proof of the theorem.

5. Error Bound for the Fully Discrete Scheme

Theorem 5. Assume that 𝜃 satisfies the necessary regularities
and the discretization parameters obey the relation 𝜏 = 𝑂(ℎ).
Then the error of the approximation (18) of (6) satisfies

max
0≤𝑛≤𝑇/𝜏

𝜃
𝑛
− 𝜃
𝑛

ℎ

 ≤ 𝐶 {ℎ + 𝜏} , (60)

where 𝐶 depends on ‖𝜃
0
‖
2
, ‖𝜃‖
𝐿
∞
((𝑊
1

∞
)
2

)
, ‖𝜃‖
𝐻
1
((𝐻
2
)
2

)
, and

‖𝜃‖
𝐻
2
((𝐿
2
)
2

)
.

Proof. Subtract (18) from (9) to obtain that

(
𝜕𝜃𝑛

𝜕𝑡
− 𝜕
𝑡
𝜃
𝑛

ℎ
, Π
∗

ℎ
𝑧
ℎ
) + 𝐵

1
(𝜃
𝑛
; 𝜃
𝑛
, Π
∗

ℎ
𝑧
ℎ
)

− 𝐵
1
(𝜃
𝑛−1

ℎ
; 𝜃
𝑛

ℎ
, Π
∗

ℎ
𝑧
ℎ
) + 𝐵
2
(𝜃
𝑛
; 𝜃
𝑛
, Π
∗

ℎ
𝑧
ℎ
)

− 𝐵
2ℎ
(𝜃
𝑛−1

ℎ
; 𝜃
𝑛

ℎ
, Π
∗

ℎ
𝑧
ℎ
) + 𝐴 (𝜃

𝑛
− 𝜃
𝑛

ℎ
, Π
∗

ℎ
𝑧
ℎ
) = 0.

(61)

Choose 𝑧
ℎ
= 𝜉𝑛 to obtain that

(𝜕
𝑡
𝜉
𝑛
, Π
∗

ℎ
𝜉
𝑛
) + 𝐴 (𝜉

𝑛
, Π
∗

ℎ
𝜉
𝑛
)

= −(
𝜕𝜃𝑛

𝜕𝑡
− 𝜕
𝑡
𝜃
𝑛
, Π
∗

ℎ
𝜉
𝑛
) − (𝜕

𝑡
𝜌
𝑛
, Π
∗

ℎ
𝜉
𝑛
) − 𝐴 (𝜌

𝑛
, Π
∗

ℎ
𝜉
𝑛
)

− [𝐵
1
(𝜃
𝑛
; 𝜃
𝑛
, Π
∗

ℎ
𝜉
𝑛
) − 𝐵
1
(𝜃
𝑛−1

ℎ
; 𝜃
𝑛

ℎ
, Π
∗

ℎ
𝜉
𝑛
)]

− [𝐵
2
(𝜃
𝑛
; 𝜃
𝑛
, Π
∗

ℎ
𝜉
𝑛
) − 𝐵
2ℎ
(𝜃
𝑛−1

ℎ
; 𝜃
𝑛

ℎ
, Π
∗

ℎ
𝜉
𝑛
)] .

(62)

For the left-hand side of (62), from Lemmas 1 and 2, we have

(𝜕
𝑡
𝜉
𝑛
, Π
∗

ℎ
𝜉
𝑛
) =
1

𝜏
(𝜉
𝑛
− 𝜉
𝑛−1
, Π
∗

ℎ
𝜉
𝑛
)

=
1

2𝜏
(𝜉
𝑛
− 𝜉
𝑛−1
, Π
∗

ℎ
(𝜉
𝑛
+ 𝜉
𝑛−1
))

+
1

2𝜏
(𝜉
𝑛
− 𝜉
𝑛−1
, Π
∗

ℎ
(𝜉
𝑛
− 𝜉
𝑛−1
))

≥
1

2𝜏
(

𝜉
𝑛

2

−



𝜉
𝑛−1



2

) ,

𝐴 (𝜉
𝑛
, Π
∗

ℎ
𝜉
𝑛
) ≥ 𝛼

𝜉
𝑛
2

1
.

(63)

We denote terms on the right-hand side of (62) by 𝑇
1
, . . . , 𝑇

5
.

Then, (62) can be rewritten as

1

2𝜏
(

𝜉
𝑛

2

−



𝜉
𝑛−1



2

) + 𝛼
𝜉
𝑛
2

1
≤ 𝑇
1
+ ⋅ ⋅ ⋅ + 𝑇

5
. (64)

Now we estimates the terms 𝑇
1
, . . . , 𝑇

5
one by one. From

the Taylor’s formula, we have

𝜕𝜃𝑛

𝜕𝑡
− 𝜕
𝑡
𝜃
𝑛
=
1

𝜏
∫
𝑡
𝑛

𝑡
𝑛−1

(𝑡 − 𝑡
𝑛−1
)
𝜕2𝜃

𝜕𝑡2
𝑑𝑡. (65)

It follows that

𝑇1
 ≤ 𝐶



𝜕𝜃𝑛

𝜕𝑡
− 𝜕
𝑡
𝜃
𝑛



𝜉
𝑛

≤ 𝐶{𝜏∫
𝑡
𝑛

𝑡
𝑛−1



𝜕2𝜃

𝜕𝑡2



2

𝑑𝑡 +
𝜉
𝑛
2

} .

(66)

For the next two terms, we have

𝑇2
 ≤ 𝐶

𝜕𝑡𝜌
𝑛
𝜉
𝑛

≤ 𝐶{𝜏
−1
∫
𝑡
𝑛

𝑡
𝑛−1



𝜕𝜌

𝜕𝑡



2

𝑑𝑡 +
𝜉
𝑛
2

} ,

𝑇3
 ≤ 𝐶ℎ

𝜃
𝑛2
𝜉
𝑛1

≤ 𝐶ℎ
2𝜃
𝑛
2

2
+ 𝜀
𝜉
𝑛
2

1
.

(67)

We make the following induction hypothesis:


𝜉
𝑛−1

(log 1
ℎ
)
1/2

→ 0, ℎ → 0, 1 ≤ 𝑛 ≤ 𝐿. (68)
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For 𝑇
4
, using the similar argument as (48) and noting

(68), we deduce that
𝑇4
 =

𝐵
1
(𝜃
𝑛
; 𝜃
𝑛
, Π
∗

ℎ
𝜉
𝑛
) − 𝐵
1
(𝜃
𝑛−1

ℎ
; 𝜃
𝑛

ℎ
, Π
∗

ℎ
𝜉
𝑛
)


≤ ∑
𝑃
𝑖
∈Ω
ℎ

𝜉
𝑛
(𝑃
𝑖
)
 ∫
𝐾
∗

𝑖


(∇ ⋅ 𝜃
𝑛
) 𝜃
𝑛
− (∇ ⋅ 𝜃

𝑛

ℎ
) 𝜃
𝑛−1

ℎ


𝑑𝑥

≤ ∑
𝑃
𝑖
∈Ω
ℎ

𝜉
𝑛
(𝑃
𝑖
)
 ∫
𝐾
∗

𝑖

{
∇ ⋅ 𝜃
𝑛

𝜃
𝑛
− 𝜃
𝑛−1

ℎ


+
∇ ⋅ 𝜃
𝑛
− ∇ ⋅ 𝜃

𝑛

ℎ



× (

𝜉
𝑛−1
+

Π
ℎ
𝜃
𝑛−1
) } 𝑑𝑥

≤ 𝐶 {
∇ ⋅ 𝜃
𝑛∞


𝜃
𝑛
− 𝜃
𝑛−1

ℎ


𝜉
𝑛 +

∇ ⋅ (𝜃
𝑛
− 𝜃
𝑛

ℎ
)


× (
𝜉
𝑛∞


𝜉
𝑛−1

+

Π
ℎ
𝜃
𝑛−1∞

𝜉
𝑛) }

≤ 𝐶{[(𝜏∫
𝑡
𝑛

𝑡
𝑛−1



𝜕𝜃

𝜕𝑡



2

𝑑𝑡)

1/2

+

𝜌
𝑛−1

+

𝜉
𝑛−1
]

×
∇ ⋅ 𝜃
𝑛∞

𝜉
𝑛 + (

𝜌
𝑛1 +

𝜉
𝑛1)

× [(log 1
ℎ
)
1/2 
𝜉
𝑛−1

𝜉
𝑛1 +


𝜃
𝑛−1∞

𝜉
𝑛]}

≤ 𝐶{𝜏∫
𝑡
𝑛

𝑡
𝑛−1



𝜕𝜃

𝜕𝑡



2

𝑑𝑡 +

𝜌
𝑛−1

2

+
𝜌
𝑛
2

1

+

𝜉
𝑛−1

2

+
𝜉
𝑛
2

}

+ 𝐶(log 1
ℎ
)
1/2 
𝜉
𝑛−1

𝜉
𝑛
2

1
+ 𝜀
𝜉
𝑛
2

1
.

(69)

Now, we write
𝑇5
 =

𝐵
2
(𝜃
𝑛
; 𝜃
𝑛
, Π
∗

ℎ
𝜉
𝑛
) − 𝐵
2ℎ
(𝜃
𝑛−1

ℎ
; 𝜃
𝑛

ℎ
, Π
∗

ℎ
𝜉
𝑛
)


≤

𝐵
2
(𝜃
𝑛
; 𝜃
𝑛
, Π
∗

ℎ
𝜉
𝑛
) − 𝐵
2ℎ
(𝜃
𝑛−1

ℎ
; Π
ℎ
𝜃
𝑛
, Π
∗

ℎ
𝜉
𝑛
)


+

𝐵
2ℎ
(𝜃
𝑛−1

ℎ
; 𝜉
𝑛
, Π
∗

ℎ
𝜉
𝑛
)


= 𝐸
1
+ 𝐸
2
.

(70)

𝐸
1
and 𝐸

2
can be handled as 𝐷

1
and 𝐷

2
in Theorem 4. Thus,

we have

𝐸
1
=

𝐵
2
(𝜃
𝑛
; 𝜃
𝑛
, Π
∗

ℎ
𝜉
𝑛
) − 𝐵
2ℎ
(𝜃
𝑛−1

ℎ
; Π
ℎ
𝜃
𝑛
, Π
∗

ℎ
𝜉
𝑛
)


≤ 𝐶
𝜃
𝑛∞
𝜉
𝑛1 [ℎ

𝜃
𝑛1 + (


𝜃
𝑛
− 𝜃
𝑛−1

ℎ


+ ℎ

𝜃
𝑛
− 𝜃
𝑛−1

ℎ

1
)]

≤ 𝐶
𝜃
𝑛∞
𝜉
𝑛1

× {ℎ
𝜃
𝑛1 +


𝜌
𝑛−1

+

𝜉
𝑛−1

+ (𝜏∫
𝑡
𝑛

𝑡
𝑛−1



𝜕𝜃

𝜕𝑡



2

𝑑𝑡)

1/2

+ℎ[(𝜏∫
𝑡
𝑛

𝑡
𝑛−1



𝜕𝜃

𝜕𝑡



2

1

𝑑𝑡)

1/2

+

𝜌
𝑛−11

+

𝜉
𝑛−11

]}

≤ 𝐶{

𝜌
𝑛−1

2

+

𝜉
𝑛−1

2

+
𝜉
𝑛
2

+ 𝜏∫
𝑡
𝑛

𝑡
𝑛−1



𝜕𝜃

𝜕𝑡



2

1

𝑑𝑡}

+ 𝜀

𝜉
𝑛−1

2

1
+ 𝜀
𝜉
𝑛
2

1
,

𝐸
2
=

𝐵
2ℎ
(𝜃
𝑛−1

ℎ
; 𝜉
𝑛
, Π
∗

ℎ
𝜉
𝑛
)


=



∑
𝑃
𝑖
∈Ω
ℎ

𝜉
𝑛
(𝑃
𝑖
) ⋅ ∑
𝑗∈Λ
𝑖

∫
Γ
𝑖𝑗

(𝜃
𝑛−1

ℎ
⋅ 𝜈
𝑖𝑗
) 𝑑𝑠

× [𝐻 (𝛽
𝑖𝑗
(𝜃
𝑛−1

ℎ
)) 𝜉
𝑛
(𝑃
𝑖
)

+ (1 − 𝐻(𝛽
𝑖𝑗
(𝜃
𝑛−1

ℎ
))) 𝜉
𝑛

(𝑃
𝑗
) ]



≤
1

2
∑
𝐾∈𝑇
ℎ

∑
𝑖,𝑗∈Λ

𝐾


𝜉
𝑛
(𝑃
𝑖
) − 𝜉
𝑛
(𝑃
𝑗
)

∫
Γ
𝑖𝑗
∩𝐾


𝜉
𝑛−1
⋅ 𝜈
𝑖𝑗


𝑑𝑠

×

𝐻 (𝛽
𝑖𝑗
(𝜃
𝑛−1

ℎ
)) 𝜉
𝑛
(𝑃
𝑖
) + (1 − 𝐻(𝛽

𝑖𝑗
(𝜃
𝑛−1

ℎ
))) 𝜉
𝑛
(𝑃
𝑗
)


+
1

2
∑
𝐾∈𝑇
ℎ

∑
𝑖,𝑗∈Λ

𝐾


𝜉
𝑛
(𝑃
𝑖
) − 𝜉
𝑛
(𝑃
𝑗
)

∫
Γ
𝑖𝑗
∩𝐾


Π
ℎ
𝜃
𝑛−1
⋅ 𝜈
𝑖𝑗


𝑑𝑠

×

𝐻 (𝛽
𝑖𝑗
(𝜃
𝑛−1

ℎ
)) 𝜉 (𝑃

𝑖
) + (1 − 𝐻(𝛽

𝑖𝑗
(𝜃
𝑛−1

ℎ
))) 𝜉 (𝑃

𝑗
)


≤ 𝐶 {
𝜉
𝑛1 (


𝜉
𝑛−1

+ ℎ

𝜉
𝑛−11

)
𝜉
𝑛∞

+

Π
ℎ
𝜃
𝑛−1∞

𝜉
𝑛1
𝜉
𝑛}

≤ 𝐶{
𝜉
𝑛
2

+

𝜉
𝑛−1

(log 1
ℎ
)
1/2
𝜉
𝑛
2

1
} + 𝜀

𝜉
𝑛
2

1
.

(71)

Substituting the previously mentioned estimates into
(64), we get

1

2𝜏
(

𝜉
𝑛

2

−



𝜉
𝑛−1



2

) + 𝛼
𝜉
𝑛
2

1

≤ 𝐶{ℎ
2𝜃
𝑛
2

2
+
𝜌
𝑛
2

1
+

𝜌
𝑛−1

2

1
+
𝜉
𝑛
2

+

𝜉
𝑛−1

2

}

+ 𝐶𝜏∫
𝑡
𝑛

𝑡
𝑛−1

(



𝜕2𝜃

𝜕𝑡2



2

+


𝜕𝜃

𝜕𝑡



2

1

)𝑑𝑡 + 𝐶𝜏
−1
∫
𝑡
𝑛

𝑡
𝑛−1



𝜕𝜌

𝜕𝑡



2

𝑑𝑡

+ 𝐶(log 1
ℎ
)
1/2 
𝜉
𝑛−1

𝜉
𝑛
2

1
+ 𝜀

𝜉
𝑛−1

2

1
+ 4𝜀

𝜉
𝑛
2

1
.

(72)

Multiplying (72) by 2𝜏 and summing over 1 ≤ 𝑛 ≤ 𝐿, we
have




𝜉
𝐿



2

−



𝜉
0



2

+ 2𝜏𝛼

𝐿

∑
𝑛=1

𝜉
𝑛
2

1

≤ 𝐶{ℎ
2𝜃
𝑛
2

2
+ 𝜏

𝐿

∑
𝑛=0

𝜌
𝑛
2

1
+ 𝜏

𝐿

∑
𝑛=1

𝜉
𝑛
2

}



Abstract and Applied Analysis 9

Table 1: Numerical results for 𝜁 = 1.

ℎ 1/8 1/16 1/32 1/64
𝑢 − 𝑢ℎ

ℎ 1.18416𝑒 − 007 5.33942𝑒 − 008 2.52582𝑒 − 008 1.22755𝑒 − 008

Rate 1.15 1.08 1.05
𝑣 − 𝑣ℎ

ℎ 6.73307𝑒 − 008 2.36565𝑒 − 008 9.49449𝑒 − 009 4.21298𝑒 − 009

Rate 1.51 1.32 1.17

0.64

0.635

0.63

0.625

0.62

0.615
1

0.5

0 0
0.2

0.4
0.6

0.8
1

Figure 1: The exact solution 𝑢 when 𝜁 = 1 at 𝑡 = 1.0.

+ 𝐶𝜏
2
∫
𝑡
𝐿

0

(



𝜕
2
𝜃

𝜕𝑡2



2

+


𝜕𝜃

𝜕𝑡



2

1

)𝑑𝑡 + 𝐶∫
𝑡
𝐿

0



𝜕𝜌

𝜕𝑡



2

𝑑𝑡

+ 𝐶𝜏

𝐿

∑
𝑛=1

(log 1
ℎ
)
1/2 
𝜉
𝑛−1

𝜉
𝑛
2

1
+ 5𝜀

𝐿

∑
𝑛=1

𝜉
𝑛
2

1
.

(73)

By choosing ℎ and 𝜀 small enough and noting Lemma 2(ii),
we have


𝜉
𝐿

2

+ 𝜏

𝐿

∑
𝑛=1

𝜉
𝑛
2

1

≤ 𝐶{ℎ
2𝜃
𝑛
2

2
+ 𝜏

𝐿

∑
𝑛=0

𝜌
𝑛
2

1
}

+ 𝜏

𝐿

∑
𝑛=1

𝜉
𝑛
2

+ 𝐶𝜏
2
∫
𝑡
𝐿

0

(



𝜕
2
𝜃

𝜕𝑡2



2

+


𝜕𝜃

𝜕𝑡



2

1

)𝑑𝑡

+ 𝐶∫
𝑡
𝐿

0



𝜕𝜌

𝜕𝑡



2

𝑑𝑡.

(74)

Applying the Gronwall inequality and the interpolation
theory, we deduce that


𝜉
𝐿

2

≤ 𝐶𝜏
2
∫
𝑇

0

(



𝜕2𝜃

𝜕𝑡2



2

+


𝜕𝜃

𝜕𝑡



2

1

)𝑑𝑡

+ 𝐶ℎ
2
{
𝜃0

2

2
+ ∫
𝑇

0



𝜕𝜃

𝜕𝑡



2

2

𝑑𝑡} .

(75)
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Figure 2: The numerical solution 𝑢
ℎ
when 𝜁 = 1 at 𝑡 = 1.0, for

ℎ = 1/32.
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Figure 3: The exact solution 𝑢 when 𝜁 = 0.01 at 𝑡 = 1.0.

Now we prove the induction hypothesis (68). Noting that
𝜃0
ℎ
= Π
ℎ
𝜃
0
, we know that 𝜉0 = 0. From (75) and the

assumption 𝜏 = 𝑂(ℎ), we get that

(log 1
ℎ
)
1/2 
𝜉
𝐿
≤ 𝐶ℎ(log 1

ℎ
)
1/2

→ 0, ℎ → 0. (76)

Thus we know that (68) holds for any 1 ≤ 𝐿 ≤ 𝑁. Using
triangular inequality and the interpolation theory completes
the proof.
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Table 2: Numerical results for 𝜁 = 0.01.

ℎ 1/8 1/16 1/32 1/64
𝑢 − 𝑢ℎ

ℎ 7.57108𝑒 − 003 3.81036𝑒 − 003 1.92640𝑒 − 003 9.71683𝑒 − 004

Rate 0.99 0.98 0.99
𝑣 − 𝑣ℎ

ℎ 7.57108𝑒 − 003 3.81036𝑒 − 003 1.92640𝑒 − 003 9.71683𝑒 − 004

Rate 0.99 0.98 0.99
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Figure 4:The numerical solution of 𝑢
ℎ
when 𝜁 = 0.01 at 𝑡 = 1.0, for

ℎ = 1/32.
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Figure 5: The exact solution 𝑢 at 𝜁 = 0.001 at 𝑡 = 1.0.

6. Numerical Example

In this section, we will show the affectivity of our method by
numerical experiments. The exact solutions to problem (1)
can be obtained by employingCole-Hopf transformation. For
Ω = {(𝑥

1
, 𝑥
2
) : 0 ≤ 𝑥

1
, 𝑥
2
≤ 1}, we consider the following

solutions:

𝑢 =
3

4
−

1

4 (1 + exp (𝜂 (−4𝑥
1
+ 4𝑥
2
− 𝑡) /32))

,

𝑣 =
3

4
+

1

4 (1 + exp (𝜂 (−4𝑥
1
+ 4𝑥
2
− 𝑡) /32))

,

(77)
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Figure 6: The numerical solution 𝑢
ℎ
by FVEM with upwinding

when 𝜁 = 0.001 at 𝑡 = 1.
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Figure 7: The numerical solution �̃�
ℎ
by FVEM without upwinding

when 𝜁 = 0.001 at 𝑡 = 1.

where 𝜂 = 1/𝜁. We present numerical results for the 𝐿2-norm
estimates of 𝑢 − 𝑢

ℎ
and 𝑣 − 𝑣

ℎ
. In Tables 1 and 2, we present

the numerical results for 𝜁 = 1 and 𝜁 = 0.01, respectively. In
all runs, we use the uniform mesh step ℎ = Δ𝑡 and choose
the time 𝑡 = 1. As seen in these tables, in all cases the errors
decrease by a factor of about two as ℎ decreases by the factor
of two. This indicates that all 𝐿2-norm error estimates are
of first-order convergence, which is consistent with our
theoretical analysis.

When 𝜁 = 1.0 and 𝜁 = 0.01, the figures of the exact solu-
tions 𝑢 and the numerical solutions 𝑢

ℎ
at 𝑡 = 1 for ℎ = 1/32

are given in Figures 1, 2, 3, and 4. In order to show that our
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method keeps stable when 𝜁 is smaller, we also give the com-
parison figures of exact solution 𝑢 and numerical solution
𝑢
ℎ
for 𝜁 = 0.001 in Figures 5 and 6. The comparison figure

of numerical solution by using finite volume element method
(FVEM) without upwinding is given in Figure 7, which show
that the approximation produces unacceptable nonphysical
oscillations.
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