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2Department of Mathematics, Fatih University, Hadımköy Campus, Büyükçekmece, 34500 Istanbul, Turkey
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The fine spectra of lower triangular triple-band matrices have been examined by several authors (e.g., Akhmedov (2006), Başar
(2007), and Furken et al. (2010)). Here we determine the fine spectra of upper triangular triple-band matrices over the sequence
space ℓ𝑝. The operator 𝐴(𝑟, 𝑠, 𝑡) on sequence space on ℓ𝑝 is defined by 𝐴(𝑟, 𝑠, 𝑡)𝑥 = (𝑟𝑥𝑘 + 𝑠𝑥𝑘+1 + 𝑡𝑥𝑘+2)

∞

𝑘=0
, where 𝑥 = (𝑥𝑘) ∈ ℓ𝑝,

with 0 < 𝑝 < ∞. In this paper we have obtained the results on the spectrum and point spectrum for the operator 𝐴(𝑟, 𝑠, 𝑡) on the
sequence space ℓ𝑝. Further, the results on continuous spectrum, residual spectrum, and fine spectrum of the operator 𝐴(𝑟, 𝑠, 𝑡) on
the sequence space ℓ𝑝 are also derived. Additionally, we give the approximate point spectrum, defect spectrum, and compression
spectrum of the matrix operator 𝐴(𝑟, 𝑠, 𝑡) over the space ℓ𝑝 and we give some applications.

1. Introduction

In functional analysis, the spectrum of an operator gener-
alizes the notion of eigenvalues for matrices. The spectrum
of an operator over a Banach space is partitioned into three
parts, which are the point spectrum, the continuous spec-
trum, and the residual spectrum. The calculation of these
three parts of the spectrumof an operator is called calculating
the fine spectrum of the operator.

Over the years and different names the spectrum and fine
spectra of linear operators defined by some triangle matrices
over certain sequence spaces were studied.

By 𝜔 we denote the space of all complex-valued sequen-
ces. Any vector subspace of 𝜔 is called a sequence space. We
write ℓ∞, 𝑐, 𝑐0, and 𝑏𝑣 for the spaces of all bounded, con-
vergent, null, and bounded variation sequences, respectively,
which are the Banach spaces with the sup-norm ‖𝑥‖∞ =

sup
𝑘∈N|𝑥𝑘| and ‖𝑥‖𝑏𝑣 = ∑

∞

𝑘=0
|𝑥𝑘 − 𝑥𝑘+1|, respectively, where

N = {0, 1, 2, . . .}. Also by ℓ1 and ℓ𝑝 we denote the spaces of all
absolutely summable and 𝑝-absolutely summable sequences,
which are the Banach spaces with the norm ‖𝑥‖𝑝 =

(∑
∞

𝑘=0
|𝑥𝑘|
𝑝
)
1/𝑝, respectively, where 1 ⩽ 𝑝 < ∞.

Several authors studied the spectrum and fine spectrum
of linear operators defined by some triangle matrices over
some sequence spaces. We introduce knowledge in the exist-
ing literature concerning the spectrum and the fine spectrum.
Cesàro operator of order one on the sequence space ℓ𝑝 was
studied by Gonzàlez [1], where 1 < 𝑝 < ∞. Also, weighted
mean matrices of operators on ℓ𝑝 have been investigated by
Cartlidge [2]. The spectrum of the Cesàro operator of order
one on the sequence spaces 𝑏𝑣0 and 𝑏𝑣 were investigated
by Okutoyi [3, 4]. The spectrum and fine spectrum of the
Rally operators on the sequence space ℓ𝑝 were examined by
Yıldırım [5]. The fine spectrum of the difference operator
Δ over the sequence spaces 𝑐0 and 𝑐 was studied by Altay
and Başar [6]. The same authors also worked out the fine
spectrum of the generalized difference operator 𝐵(𝑟, 𝑠) over
𝑐0 and 𝑐, in [7]. Recently, the fine spectra of the difference
operator Δ over the sequence spaces 𝑐0 and 𝑐 have been
studied by Akhmedov and Başar [8, 9], where 𝑏𝑣𝑝 is the space
consisting of the sequences 𝑥 = (𝑥𝑘) such that 𝑥 = (𝑥𝑘 −
𝑥𝑘−1) ∈ ℓ𝑝 and introduced by Başar and Altay [10] with 1 ⩽
𝑝 ⩽ ∞. In the recent paper, Furkan et al. [11] have studied the
fine spectrum of𝐵(𝑟, 𝑠, 𝑡) over the sequence spaces ℓ𝑝 and 𝑏𝑣𝑝
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with 1 < 𝑝 < ∞, where 𝐵(𝑟, 𝑠, 𝑡) is a lower triangular triple-
band matrix. Later, Karakaya and Altun have determined the
fine spectra of upper triangular double-band matrices over
the sequence spaces 𝑐0 and 𝑐, in [12]. Quite recently, Karaisa
[13] has determined the fine spectrum of the generalized
difference operator 𝐴(𝑟, 𝑠), defined as an upper triangular
double-band matrix with the convergent sequences 𝑟 = (𝑟𝑘)
and 𝑠 = (𝑠𝑘) having certain properties, over the sequence
space ℓ𝑝, where 1 < 𝑝 < ∞.

In this paper, we study the fine spectrum of the general-
ized difference operator 𝐴(𝑟, 𝑠, 𝑡) defined by a triple sequen-
tial band matrix acting on the sequence space ℓ𝑝 (0 < 𝑝 <
∞), with respect to Goldberg’s classification. Additionally, we
give the approximate point spectrum and defect spectrum
and give some applications.

2. Preliminaries, Background, and Notation

Let 𝑋 and 𝑌 be two Banach spaces and 𝑇 : 𝑋 → 𝑌 be a
bounded linear operator. By 𝑅(𝑇) we denote range of 𝑇, that
is,

𝑅 (𝑇) = {𝑦 ∈ 𝑌 : 𝑦 = 𝑇𝑥, 𝑥 ∈ 𝑋} . (1)

By𝐵(𝑋)we also denote the set of all bounded linear operators
on 𝑋 into itself. If 𝑇 ∈ 𝐵(𝑋) then the adjoint 𝑇∗ of 𝑇 is
a bounded linear operator on the dual 𝑋∗ of 𝑋 defined by
(𝑇
∗
𝑓)(𝑥) = 𝑓(𝑇𝑥) for all 𝑓 ∈ 𝑋∗ and 𝑥 ∈ 𝑋.
Let 𝑋 ̸= {𝜃} be a complex normed space and 𝑇 : 𝐷(𝑇) →

𝑋 be a linear operator with domain 𝐷(𝑇) ⊆ 𝑋. With 𝑇 we
associate the operator 𝑇𝛼 = 𝑇 − 𝛼𝐼, where 𝛼 is a complex
number and 𝐼 is the identity operator on 𝐷(𝑇). If 𝑇𝛼 has an
inverse which is linear, we denote it by 𝑇−1

𝛼
, that is,

𝑇
−1

𝛼
= (𝑇 − 𝛼𝐼)

−1 (2)

and call it the resolvent operator of 𝑇.
Many properties of 𝑇𝛼 and 𝑇

−1

𝛼
depend on 𝛼, and spectral

theory is concerned with those properties. For instance, we
shall be interested in the set of all 𝛼 in the complex plane such
that 𝑇−1

𝛼
exists. The boundedness of 𝑇−1

𝛼
is another property

that will be essential. We shall also ask for what 𝛼 the domain
of 𝑇−1
𝛼

is dense in 𝑋, to name just a few aspects For our
investigation of 𝑇, 𝑇𝛼, and 𝑇

−1

𝛼
, we need some basic concepts

in spectral theory which are given as follows (see [14, pp. 370-
371]).

Let 𝑋 ̸= {𝜃} be a complex normed space and 𝑇 : 𝐷(𝑇) →
𝑋 be a linear operator with domain 𝐷(𝑇) ⊆ 𝑋. A regular
value 𝛼 of 𝑇 is a complex number such that

(R1) 𝑇−1
𝛼

exists,
(R2) 𝑇−1

𝛼
is bounded,

(R3) 𝑇−1
𝛼

is defined on a set which is dense in 𝑋.

The resolvent set 𝜌(𝑇) of 𝑇 is the set of all regular values 𝛼 of
𝑇. Its complement C\𝜌(𝑇) in the complex plane C is called
the spectrum of 𝑇. Furthermore, the spectrum 𝜎(𝑇) is parti-
tioned into three disjoint sets as follows. The point spectrum
𝜎𝑝(𝑇) is the set such that 𝑇−1

𝛼
does not exist. 𝛼 ∈ 𝜎𝑝(𝑇) is

called an eigenvalue of 𝑇. The continuous spectrum 𝜎𝑐(𝑇) is
the set such that 𝑇−1

𝛼
exists and satisfies (R3) but not (R2).

The residual spectrum 𝜎𝑟(𝑇) is the set such that 𝑇−1
𝛼

exists but
does not satisfy (R3).

In this section, following Appell et al. [15], we define the
three more subdivisions of the spectrum called the approxi-
mate point spectrum, defect spectrum, and compression spec-
trum.

Given a bounded linear operator 𝑇 in a Banach space 𝑋,
we call a sequence (𝑥𝑘) in𝑋 as aWeyl sequence for𝑇 if ‖𝑥𝑘‖ =
1 and ‖𝑇𝑥𝑘‖ → 0, as 𝑘 → ∞.

In what follows, we call the set

𝜎ap (𝑇,𝑋)

:={𝛼 ∈ C : there exists a Weyl sequence for 𝛼𝐼−𝑇}
(3)

the approximate point spectrum of 𝑇. Moreover, the subspec-
trum

𝜎𝛿 (𝑇,𝑋) := {𝛼 ∈ C : 𝛼𝐼 − 𝑇 is not surjective} (4)

is called defect spectrum of 𝑇.
The two subspectra given by (3) and (4) form a (not

necessarily disjoint) subdivisions

𝜎 (𝑇,𝑋) = 𝜎ap (𝑇,𝑋) ∪ 𝜎𝛿 (𝑇,𝑋) (5)

of the spectrum. There is another subspectrum

𝜎co (𝑇,𝑋) = {𝛼 ∈ C : 𝑅 (𝛼𝐼 − 𝑇) ̸=𝑋} (6)

which is often called compression spectrum in the literature.
By the definitions given above, we can illustrate the sub-

divisions of spectrum in Table 1.
From Goldberg [16] if 𝑇 ∈ 𝐵(𝑋), 𝑋 a Banach space, then

there are three possibilities for 𝑅(𝑇):

(I) 𝑅(𝑇) = 𝑋,
(II) 𝑅(𝑇) ̸= 𝑅(𝑇) = 𝑋,
(III) 𝑅(𝑇) ̸=𝑋,

and three possibilities for 𝑇−1:

(1) 𝑇−1 exists and is continuous,
(2) 𝑇−1 exists but is discontinuous,
(3) 𝑇−1 does not exist.

If these possibilities are combined in all possible ways,
nine different states are created. These are labelled by 𝐼1, 𝐼2,
𝐼3, 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, 𝐼𝐼𝐼1, 𝐼𝐼𝐼2 and 𝐼𝐼𝐼3. If 𝛼 is a complex number
such that 𝑇𝛼 ∈ 𝐼1 or 𝑇𝛼 ∈ 𝐼𝐼1, then 𝛼 is in the resolvent set
𝜌(𝑋, 𝑇) of 𝑇. The further classification gives rise to the fine
spectrum of 𝑇. If an operator is in state 𝐼𝐼2, for example, then
𝑅(𝑇) ̸= 𝑅(𝑇) = 𝑋 and 𝑇−1 exists but is discontinuous and we
write 𝛼 ∈ 𝐼𝐼2𝜎(𝑋, 𝑇).

Let 𝜇 and 𝛾 be two sequence spaces and let 𝐴 = (𝑎𝑛𝑘)

be an infinite matrix of real or complex numbers 𝑎𝑛𝑘, where
𝑛, 𝑘 ∈ N = {0, 1, 2, . . .}. Then, we say that 𝐴 defines a matrix
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mapping from 𝜇 into 𝛾 and we denote it by writing 𝐴 : 𝜇 →
𝛾 if for every sequence 𝑥 = (𝑥𝑘) ∈ 𝜇 the sequence 𝐴𝑥 =
{(𝐴𝑥)𝑛}, the 𝐴-transform of 𝑥 is in 𝛾, where

(𝐴𝑥)𝑛 = ∑

𝑘

𝑎𝑛𝑘𝑥𝑘 for each 𝑛 ∈ N. (7)

By (𝜇 : 𝛾), we denote the class of all matrices 𝐴 such that
𝐴 : 𝜇 → 𝛾. Thus, 𝐴 ∈ (𝜇 : 𝛾) if and only if the series on the
right side of (7) converges for each 𝑛 ∈ N and every 𝑥 ∈ 𝜇,
and we have 𝐴𝑥 = {(𝐴𝑥)𝑛}𝑛∈N ∈ 𝛾 for all 𝑥 ∈ 𝜇.

Proposition 1 (see [15, Proposition 1.3, p. 28]). Spectra and
subspectra of an operator𝑇 ∈ 𝐵(𝑋) and its adjoint𝑇∗ ∈ 𝐵(𝑋∗)
are related by the following relations:

(a) 𝜎(𝑇∗, 𝑋∗) = 𝜎(𝑇,𝑋),
(b) 𝜎𝑐(𝑇

∗
, 𝑋
∗
) ⊆ 𝜎ap(𝑇,𝑋),

(c) 𝜎ap(𝑇
∗
, 𝑋
∗
) = 𝜎𝛿(𝑇,𝑋),

(d) 𝜎𝛿(𝑇
∗
, 𝑋
∗
) = 𝜎ap(𝑇,𝑋),

(e) 𝜎𝑝(𝑇
∗
, 𝑋
∗
) = 𝜎co(𝑇,𝑋),

(f) 𝜎co(𝑇
∗
, 𝑋
∗
) ⊇ 𝜎𝑝(𝑇,𝑋),

(g) 𝜎(𝑇,𝑋) = 𝜎ap(𝑇,𝑋) ∪ 𝜎𝑝(𝑇
∗
, 𝑋
∗
) = 𝜎𝑝(𝑇,𝑋) ∪

𝜎ap(𝑇
∗
, 𝑋
∗
).

The relations (c)–(f) show that the approximate point
spectrum is in a certain sense dual to defect spectrum and the
point spectrum dual to the compression spectrum.

The equality (g) implies, in particular, that 𝜎(𝑇,𝑋) =

𝜎ap(𝑇,𝑋) if 𝑋 is a Hilbert space and 𝑇 is normal. Roughly
speaking, this shows that normal (in particular, self-adjoint)
operators onHilbert spaces aremost similar tomatrices in finite
dimensional spaces (see [15]).

Lemma 2 (see [16, p. 60]). The adjoint operator 𝑇∗ of 𝑇 is
onto if and only if 𝑇 has a bounded inverse.

Lemma 3 (see [16, p. 59]). 𝑇 has a dense range if and only if
𝑇
∗ is one to one.

Our main focus in this paper is on the triple-band matrix
𝐴(𝑟, 𝑠, 𝑡), where

𝐴 (𝑟, 𝑠, 𝑡) =

[
[
[
[
[
[

[

𝑟 𝑠 𝑡 0 . . .

0 𝑟 𝑠 𝑡 . . .

0 0 𝑟 𝑠 . . .

0 0 0 𝑟 . . .

...
...

...
...

. . .

]
]
]
]
]
]

]

. (8)

We assume here and after that 𝑠 and 𝑡 are complex parameters
which do not simultaneously vanish. We introduce the intro-
duce the operator 𝐴(𝑟, 𝑠, 𝑡) from ℓ𝑝 to itself by

𝐴 (𝑟, 𝑠, 𝑡) 𝑥 = (𝑟𝑥𝑘 + 𝑠𝑥𝑘+1 + 𝑡𝑥𝑘+2)
∞

𝑘=0
,

where 𝑥 = (𝑥𝑘) ∈ ℓ𝑝.
(9)

3. Fine Spectra of Upper Triangular
Triple-Band Matrices over the Sequence
Space ℓ𝑝 (0 < 𝑝 ⩽ 1)

In this section, we prove that the operator 𝐴(𝑟, 𝑠, 𝑡) : ℓ𝑝 →
ℓ𝑝 is a bounded linear operator and compute its norm. We
essentially emphasize the fine spectrum of the operator
𝐴(𝑟, 𝑠, 𝑡) : ℓ𝑝 → ℓ𝑝 in the case 0 < 𝑝 ⩽ 1.

Theorem 4. The operator 𝐴(𝑟, 𝑠, 𝑡) : ℓ𝑝 → ℓ𝑝 is a bounded
linear operator and

‖𝐴 (𝑟, 𝑠, 𝑡)‖(ℓ𝑝 :ℓ𝑝)
= |𝑟|
𝑝
+ |𝑠|
𝑝
+ |𝑡|
𝑝
. (10)

Proof. Since the linearity of the operator 𝐴(𝑟, 𝑠, 𝑡) is trivial,
so it is omitted. Let us take 𝑒(2) ∈ ℓ𝑝. Then 𝐴(𝑟, 𝑠, 𝑡)𝑒(2) =
(𝑡, 𝑠, 𝑟, 0, . . .) and observe that

‖𝐴 (𝑟, 𝑠, 𝑡)‖(ℓ𝑝 :ℓ𝑝)
⩾


𝐴 (𝑟, 𝑠, 𝑡) 𝑒

(2)𝑝
𝑒
(2)𝑝

= |𝑟|
𝑝
+ |𝑠|
𝑝
+ |𝑡|
𝑝

(11)

which gives the fact that

‖𝐴 (𝑟, 𝑠, 𝑡)‖(ℓ𝑝 : ℓ𝑝)
⩾ |𝑟|
𝑝
+ |𝑠|
𝑝
+ |𝑡|
𝑝
. (12)

Let 𝑥 = (𝑥𝑘) ∈ ℓ𝑝, where 0 < 𝑝 ⩽ 1.Then, since (𝑡𝑥𝑘+2), (𝑟𝑥𝑘),
and (𝑠𝑥𝑘+1) ∈ ℓ𝑝, it is easy to see by triangle inequality that

‖𝐴 (𝑟, 𝑠, 𝑡) 𝑥‖𝑝 =

∞

∑

𝑘=0

𝑟𝑥𝑘 + 𝑠𝑥𝑘+1 + 𝑡𝑥𝑘+2

𝑝

⩽

∞

∑

𝑘=0

𝑟𝑥𝑘

𝑝
+

∞

∑

𝑘=0

𝑠𝑥𝑘+1

𝑝
+

∞

∑

𝑘=0

𝑡𝑥𝑘+2

𝑝

= |𝑟|
𝑝
∞

∑

𝑘=0

𝑥𝑘

𝑝
+ |𝑠|
𝑝
∞

∑

𝑘=0

𝑥𝑘+1

𝑝
+ |𝑡|
𝑝
∞

∑

𝑘=0

𝑥𝑘+2

𝑝

= |𝑠|
𝑝
‖𝑥‖𝑝 + |𝑟|

𝑝
‖𝑥‖𝑝 + |𝑡|

𝑝
‖𝑥‖𝑝

= (|𝑟|
𝑝
+ |𝑠|
𝑝
+ |𝑡|
𝑝
) ‖𝑥‖𝑝

(13)

which leads us to the result that

‖𝐴 (𝑟, 𝑠, 𝑡)‖(ℓ𝑝 : ℓ𝑝)
⩽ |𝑟|
𝑝
+ |𝑠|
𝑝
+ |𝑡|
𝑝
. (14)

Therefore, by combining the inequalities (12) and (14) we see
that (10) holds which completes the proof.

If 𝑇 : ℓ𝑝 → ℓ𝑝 is a bounded matrix operator with the
matrix 𝐴, then it is known that the adjoint operator 𝑇∗ :
ℓ
∗

𝑝
→ ℓ
∗

𝑝
is defined by the transpose of thematrix𝐴.The dual

space of ℓ𝑝 is isomorphic to ℓ∞, where 0 < 𝑝 < 1.
Before giving themain theorem of this section, we should

note the following remark. In this work, here and in what
follows, if 𝑧 is a complex number, then by √𝑧 we always
mean the square root of 𝑧 with a nonnegative real part. If
Re(√𝑧) = 0, then √𝑧 represents the square root of 𝑧 with
Im(√𝑧) > 0. The same results are obtained if √𝑧 represents
the other square root.
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Table 1: Subdivisions of spectrum of a linear operator.

1 2 3
𝑇
−1

𝛼
exists and is bounded 𝑇

−1

𝛼
exists and is unbounded 𝑇

−1

𝛼
does not exist

A 𝑅(𝛼𝐼 − 𝑇) = 𝑋 𝛼 ∈ 𝜌(𝑇,𝑋) — 𝛼 ∈ 𝜎𝑝(𝑇,𝑋)

𝛼 ∈ 𝜎ap(𝑇,𝑋)

B 𝑅(𝛼𝐼 − 𝑇) = 𝑋 𝛼 ∈ 𝜌(𝑇,𝑋)

𝛼 ∈ 𝜎𝑐(𝑇,𝑋) 𝛼 ∈ 𝜎𝑝(𝑇,𝑋)

𝛼 ∈ 𝜎ap(𝑇,𝑋) 𝛼 ∈ 𝜎ap(𝑇,𝑋)

𝛼 ∈ 𝜎𝛿(𝑇,𝑋) 𝛼 ∈ 𝜎𝛿(𝑇,𝑋)

C 𝑅(𝛼𝐼 − 𝑇) ̸=𝑋

𝛼 ∈ 𝜎𝑟(𝑇,𝑋) 𝛼 ∈ 𝜎𝑟(𝑇,𝑋) 𝛼 ∈ 𝜎𝑝(𝑇,𝑋)

𝛼 ∈ 𝜎𝛿(𝑇,𝑋) 𝛼 ∈ 𝜎ap(𝑇,𝑋) 𝛼 ∈ 𝜎ap(𝑇,𝑋)

𝛼 ∈ 𝜎𝛿(𝑇,𝑋) 𝛼 ∈ 𝜎𝛿(𝑇,𝑋)

𝛼 ∈ 𝜎co(𝑇,𝑋) 𝛼 ∈ 𝜎co(𝑇,𝑋) 𝛼 ∈ 𝜎co(𝑇,𝑋)

Theorem 5. Let 𝑠 be a complex number such that √𝑠2 = −𝑠
and define the set𝐷1 by

𝐷1 = {𝛼 ∈ C : 2 |𝑟 − 𝛼| ⩽

−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)


} . (15)

Then, 𝜎𝑐(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) ⊆ 𝐷1.

Proof. Let𝑦 = (𝑦𝑘) ∈ ℓ∞.Then, by solving the equation𝐴𝛼(𝑟,
𝑠, 𝑡)
∗
𝑥 = 𝑦 for 𝑥 = (𝑥𝑘) in terms of 𝑦, we obtain

𝑥0 =
𝑦0

𝑟 − 𝛼
,

𝑥1 =
𝑦1

𝑟 − 𝛼
+

−𝑠𝑦0

(𝑟 − 𝛼)
2
,

𝑥2 =
𝑦2

𝑟 − 𝛼
+

−𝑠𝑦1

(𝑟 − 𝛼)
2
+
[𝑠
2
− 𝑡 (𝑟 − 𝛼)] 𝑦0

(𝑟 − 𝛼)
3

,

(16)

... (17)

and if we denote 𝑎1 = 1/(𝑟 − 𝛼), 𝑎2 = −𝑠/(𝑟 − 𝛼)
2, and 𝑎3 =

(𝑠
2
− 𝑡(𝑟 − 𝛼))/(𝑟 − 𝛼)

3, we have
𝑥0 = 𝑎1𝑦0,

𝑥1 = 𝑎1𝑦1 + 𝑎2𝑦0,

𝑥2 = 𝑎1𝑦2 + 𝑎2𝑦1 + 𝑎3𝑦0,

...

𝑥𝑛 = 𝑎1𝑦𝑛 + 𝑎2𝑦𝑛−1 + ⋅ ⋅ ⋅ + 𝑎𝑛+1𝑦0 =

𝑛

∑

𝑘=0

𝑎𝑛+1−𝑘𝑦𝑘.

(18)

Now we must find 𝑎𝑛. We have 𝑦𝑛 = 𝑡𝑥𝑛−2 + 𝑠𝑥𝑛−1 + (𝑟 − 𝛼)𝑥𝑛
and if we use relation (18), we have

𝑦𝑛 = 𝑡

𝑛−2

∑

𝑘=0

𝑎𝑛−1−𝑘𝑦𝑘 + 𝑠

𝑛−1

∑

𝑘=0

𝑎𝑛−𝑘𝑦𝑘 + (𝑟 − 𝛼)

𝑛

∑

𝑘=0

𝑎𝑛+1−𝑘𝑦𝑘

= 𝑦0 (𝑡𝑎𝑛−1 + 𝑠𝑎𝑛 + (𝑟 − 𝛼) 𝑎𝑛+1)

+ 𝑦1 (𝑡𝑎𝑛−2 + 𝑠𝑎𝑛−1 + (𝑟 − 𝛼) 𝑎𝑛) + ⋅ ⋅ ⋅ + 𝑦𝑛𝑎1 (𝑟 − 𝛼) .

(19)

This implies that

𝑡𝑎𝑛−1 + 𝑠𝑎𝑛 + (𝑟 − 𝛼) 𝑎𝑛+1 = 0,

𝑡𝑎𝑛−2 + 𝑠𝑎𝑛−1 + (𝑟 − 𝛼) 𝑎𝑛 = 0, . . . , 𝑎1 (𝑟 − 𝛼) = 1.
(20)

In fact this sequence is obtained recursively by letting

𝑎1 =
1

𝑟 − 𝛼
, 𝑎2 =

−𝑠

(𝑟 − 𝛼)
2
,

𝑡𝑎𝑛−2 + 𝑠𝑎𝑛−1 + (𝑟 − 𝛼) 𝑎𝑛 = 0, ∀𝑛 ⩾ 3.

(21)

The characteristic polynomial of the recurrence relation is (𝑟−
𝛼)𝜆
2
+ 𝑠𝜆 + 𝑡 = 0. There are two cases.

Case 1. If Δ = 𝑠2 − 4𝑡(𝑟 − 𝛼) ̸= 0 whose roots are

𝜆1 =
−𝑠 + √Δ

2 (𝑟 − 𝛼)
, 𝜆2 =

−𝑠 − √Δ

2 (𝑟 − 𝛼)
, (22)

elementary calculation on recurrent sequence gives that

𝑎𝑛 =
𝜆
𝑛

1
− 𝜆
𝑛

2

√𝑠2 − 4𝑡 (𝑟 − 𝛼)
, ∀𝑛 ⩾ 1. (23)

In this case 𝑥𝑘 = (1/√Δ)∑
𝑛

𝑘=0
(𝜆
𝑛+1−𝑘

1
− 𝜆
𝑛+1−𝑘

2
)𝑦𝑘. Assume

that |𝜆1| < 1. So we have


1 + √
4𝑡 (𝑟 − 𝛼)

𝑠2



<



2 (𝑟 − 𝛼)

−𝑠


. (24)

Since |1 − √𝑧| ⩽ |1 + √𝑧| for any 𝑧 ∈ C, we must have


1 − √
4𝑡 (𝑟 − 𝛼)

𝑠2



<



2 (𝑟 − 𝛼)

−𝑠


. (25)

It follows that |𝜆2| < 1. Now, for |𝜆1| < 1 we can see that

𝑥𝑛
 ⩽

1

√Δ


𝑛

∑

𝑘=0


𝜆
𝑛+1−𝑘

1


𝑦𝑘
 +

𝑛

∑

𝑘=0


𝜆
𝑛+1−𝑘

2


𝑦𝑘
 (26)

for all 𝑛 ∈ N. Taking limit on the inequality (26) as 𝑛 → ∞,
we get

‖𝑥‖∞ ⩽
1 − (

𝜆2
 +
𝜆2
)


(1 −

𝜆2

1 − 𝜆2

)
√Δ


𝑦
∞. (27)
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Thus for |𝜆1| < 1, 𝐴𝛼(𝑟, 𝑠, 𝑡)
∗ is onto and by Lemma 2, 𝐴𝛼(𝑟,

𝑠, 𝑡) has a bounded inverse. This means that

𝜎𝑐 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝)

⊆ {𝛼 ∈ C : 2 |𝑟 − 𝛼| ⩽

−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)


}

= 𝐷1.

(28)

Case 2. If Δ = 𝑠2 − 4𝑡(𝑟 − 𝛼) = 0, a calculation on recurrent
sequence gives that

𝑎𝑛 = (
2𝑛

−𝑠
) [

−𝑠

2 (𝑟 − 𝛼)
]

𝑛

, ∀𝑛 ⩾ 1. (29)

Now, for | − 𝑠| < 2|𝑟 − 𝛼| we can see that

𝑥𝑛
 ⩽

𝑛

∑

𝑘=0

𝑎𝑛−𝑘𝑦𝑘
 (30)

for all 𝑛 ∈ N. Taking limit on the inequality (30) as 𝑛 → ∞,
we obtain that

‖𝑥‖∞ ⩽
𝑦
∞

∞

∑

𝑘=0

𝑎𝑘
 . (31)

∑
∞

𝑘=0
|𝑎𝑘| is convergent, since | − 𝑠| < 2|𝑟 − 𝛼|. Thus for | − 𝑠| <

2|𝑟 − 𝛼|, 𝐴𝛼(𝑟, 𝑠, 𝑡)
∗ is onto and by Lemma 2, 𝐴𝛼(𝑟, 𝑠, 𝑡) has a

bounded inverse. This means that

𝜎𝑐 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) ⊆ {𝛼 ∈ C : 2 |𝑟 − 𝛼| ⩽ |−𝑠|} ⊆ 𝐷1.

(32)

Theorem 6. 𝜎𝑝(𝐴(𝑟, 𝑠, 𝑡)
∗
, ℓ
∗

𝑝
) = 0.

Proof. Consider 𝐴(𝑟, 𝑠, 𝑡)∗𝑓 = 𝛼𝑓 with 𝑓 ̸= 𝜃 = (0, 0, 0, . . .) in
ℓ
∗

𝑝
= ℓ∞. Then, by solving the system of linear equations

𝑟𝑓0 = 𝛼𝑓0,

𝑠𝑓0 + 𝑟𝑓1 = 𝛼𝑓1,

𝑡𝑓0 + 𝑠𝑓1 + 𝑟𝑓2 = 𝛼𝑓2,

𝑡𝑓1 + 𝑠𝑓2 + 𝑟𝑓3 = 𝛼𝑓3,

...

𝑡𝑓𝑘−2 + 𝑠𝑓𝑘−1 + 𝑟𝑓𝑘 = 𝛼𝑓𝑘,

...

(33)

we find that 𝑓0 = 0 if 𝛼 ̸= 𝑟 and 𝑓1 = 𝑓2 = ⋅ ⋅ ⋅ = 0 if 𝑓0 = 0
which contradicts𝑓 ̸= 𝜃. If 𝑓𝑛0 is the first nonzero entry of the
sequence𝑓 = (𝑓𝑛) and𝛼 = 𝑟, thenwe get 𝑡𝑓𝑛0−2+𝑠𝑓𝑛0−1+𝑟𝑓𝑛0 =
𝛼𝑓𝑛0

which implies 𝑓𝑛0 = 0which contradicts the assumption
𝑓𝑛0

̸= 0. Hence, the equation𝐴(𝑟, 𝑠, 𝑡)∗𝑓 = 𝛼𝑓 has no solution
𝑓 ̸= 𝜃.

Theorem 7. 𝜎𝑝(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 𝐷2, where 𝐷2 = {𝛼 ∈ C :

2|𝑟 − 𝛼| < | − 𝑠 + √𝑠2 − 4𝑡(𝑟 − 𝛼)|}.

Proof. Let𝐴(𝑟, 𝑠, 𝑡)𝑥 = 𝛼𝑥 for 𝜃 ̸= 𝑥 ∈ ℓ𝑝.Then, by solving the
system of linear equations

𝑟𝑥0 + 𝑠𝑥1 + 𝑡𝑥2 = 𝛼𝑥0,

𝑟𝑥1 + 𝑠𝑥2 + 𝑡𝑥3 = 𝛼𝑥1,

𝑟𝑥2 + 𝑠𝑥3 + 𝑡𝑥4 = 𝛼𝑥2,

...

𝑟𝑥𝑘−2 + 𝑠𝑥𝑘−1 + 𝑡𝑥𝑘 = 𝛼𝑥𝑘,

...

(34)

and we have

𝑥2 =
−𝑠

𝑡
𝑥1 −

𝑟 − 𝛼

𝑡
𝑥0,

𝑥3 =
𝑠
2
− 𝑡 (𝑟 − 𝛼)

𝑡2
𝑥1 +

𝑠 (𝑟 − 𝛼)

𝑡2
𝑥0,

...

𝑥𝑛 =
𝑎𝑛(𝑟 − 𝛼)

𝑛

𝑡𝑛−1
𝑥1 −

𝑎𝑛−1(𝑟 − 𝛼)
𝑛

𝑡𝑛−1
𝑥0, ∀𝑛 ⩾ 2.

(35)

Assume that 𝛼 ∈ 𝐷2. Then, we choose 𝑥0 = 1 and 𝑥1 = 2(𝑟 −
𝛼)/(−𝑠+√𝑠2 − 4𝑡(𝑟 − 𝛼)). We show that 𝑥𝑛 = 𝑥

𝑛

1
for all 𝑛 ⩾ 2.

Since 𝜆1, 𝜆2 are roots of the characteristic equation (𝑟−𝛼)𝜆
2
+

𝑠𝜆 + 𝑡 = 0, we must have

𝜆1𝜆2 =
𝑡

𝑟 − 𝛼
, 𝜆1 − 𝜆2 =

√Δ

𝑟 − 𝛼
. (36)

Combining the fact 𝑥1 = 1/𝜆1 with relation (35), we can see
that

𝑥𝑛 =
𝑎𝑛(𝑟 − 𝛼)

𝑛

𝑡𝑛−1
𝑥1 −

𝑎𝑛−1(𝑟 − 𝛼)
𝑛

𝑡𝑛−1
𝑥0

= (
𝑟 − 𝛼

𝑡
)

𝑛−1

(𝑟 − 𝛼) (−𝑎𝑛−1𝑥0 + 𝑎𝑛𝑥1)

=
1

(𝜆1𝜆2)
𝑛−1

𝑟 − 𝛼

√Δ
(−𝜆
𝑛−1

1
+ 𝜆
𝑛−1

2
+ 𝜆
𝑛−1

1
− 𝜆
𝑛

2
𝜆
−1

1
)

=
1

𝜆𝑛−1
1
𝜆𝑛−1
2

(
1

𝜆1 − 𝜆2
)𝜆
𝑛−1

2
(
𝜆1 − 𝜆2

𝜆1
)

=
1

𝜆𝑛
1

= 𝑥
𝑛

1
.

(37)

The same result may be obtained in case Δ = 0. Now 𝑥 =
(𝑥𝑘) ∈ ℓ𝑝, since |𝑥1| < 1. This shows that 𝐷2 ⊆ 𝜎𝑝(𝐴(𝑟,

𝑠, 𝑡), ℓ𝑝).
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Now we assume that 𝛼 ∉ 𝐷2, that is, |𝜆1| ⩽ 1. We must
show that 𝛼 ∉ 𝜎𝑝(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝). Therefore we obtain from the
relation (35) that

𝑥𝑛+1

𝑥𝑛
= (

𝑟 − 𝛼

𝑡
)
𝑎𝑛−1

𝑎𝑛−2
(
−𝑥0 + (𝑎𝑛/𝑎𝑛−1) 𝑥1

−𝑥0 + (𝑎𝑛−1/𝑎𝑛−2) 𝑥1
) . (38)

Now we examine three cases.

Case 1 (|𝜆2| < |𝜆1| ⩽ 1). In this case we have 𝑠2 ̸= 4𝑡(𝑟−𝛼) and

𝑎𝑛

𝑎𝑛−1
=
𝜆
𝑛+1

1
− 𝜆
𝑛+1

2

𝜆𝑛
1
− 𝜆𝑛
2

=
𝜆1 [1 − (𝜆2/𝜆1)

𝑛+1
]

[1 − (𝜆2/𝜆1)
𝑛
]
. (39)

Then, we have

lim
𝑛→∞



𝑎𝑛

𝑎𝑛−1



𝑝

= lim
𝑛→∞



𝑎𝑛−1

𝑎𝑛−2



𝑝

= lim
𝑛→∞

𝜆1

𝑝
1 − (𝜆2/𝜆1)

𝑛+1

𝑝


1 − (𝜆2/𝜆1)

𝑛

𝑝
=
𝜆1

𝑝
.

(40)

Now, if −𝑥0 + 𝜆1𝑥1 = 0, then we have (𝑥𝑛) = (𝑥0/𝜆
𝑛

1
) which

is not in ℓ𝑝. Otherwise,

lim
𝑛→∞



𝑥𝑛+1

𝑥𝑛



𝑝

=
1

𝜆1

𝑝𝜆2


𝑝

𝜆1

𝑝
=

1

𝜆2

𝑝
> 1. (41)

Case 2 (|𝜆2| = |𝜆1| < 1). In this case we have 𝑠2 = 4𝑡(𝑟 − 𝛼)
and using the formula

𝑎𝑛 = (
2𝑛

−𝑠
) [

−𝑠

2 (𝑟 − 𝛼)
]

𝑛

∀𝑛 ⩾ 1, (42)

we obtain that

lim
𝑛→∞



𝑎𝑛

𝑎𝑛−1



𝑝

=



−𝑠

2 (𝑟 − 𝛼)



𝑝

=
𝜆1

𝑝 (43)

which leads to

lim
𝑛→∞



𝑥𝑛+1

𝑥𝑛



𝑝

=
1

𝜆1

𝑝𝜆2


𝑝

𝜆1

𝑝
=

1

𝜆2

𝑝
> 1. (44)

Case 3 (|𝜆2| = |𝜆1| = 1). In this case we have 𝑠2 = 4𝑡(𝑟−𝛼) and
so we have | − 𝑠/(2𝑡)| = 1. Assume that 𝛼 ∈ 𝜎𝑝(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝).
This implies that 𝑥 ∈ ℓ𝑝 and 𝑥 ̸= 𝜃. Thus we again derive (35)

𝑥𝑛 = (
−𝑠

2𝑡
)

𝑛−1

[− (𝑛 − 1)
−𝑠

2𝑡
𝑥0 + 𝑛𝑥1] . (45)

Since lim𝑛→∞𝑥𝑛 = 0, we must have 𝑥0 = 𝑥1 = 0. But this
implies that 𝑥 = 𝜃, a contradiction which means that 𝛼 ∉
𝜎𝑝(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝). Thus 𝜎𝑝(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) ⊆ 𝐷2. This completes
the proof.

Theorem 8. 𝜎𝑟(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 0.

Proof. By Proposition 1, 𝜎𝑟(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 𝜎𝑝(𝐴(𝑟, 𝑠, 𝑡)
∗
, ℓ
∗

𝑝
) \

𝜎𝑝(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝). Since byTheorem 6,

𝜎𝑝 (𝐴(𝑟, 𝑠, 𝑡)
∗
, ℓ
∗

𝑝
) = 0, 𝜎𝑟 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) = 0.

(46)

This completes the proof.

Theorem 9. Let 𝑠 be a complex number such that √𝑠2 = −𝑠
and define the set𝐷1 by

𝐷1 = {𝛼 ∈ C : 2 |𝑟 − 𝛼| ⩽

−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)


} .

(47)

Then, 𝜎(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 𝐷1.

Proof. ByTheorem 7, we get

{𝛼 ∈ C : 2 |𝑟 − 𝛼| <

−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)


}

⊆ 𝜎 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) .

(48)

Since the spectrum of any bounded operator is closed, we
have

{𝛼 ∈ C : 2 |𝑟 − 𝛼| ⩽

−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)


}

⊆ 𝜎 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝)

(49)

and again fromTheorems 5, 7, and 8,

𝜎 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) ⊆ {𝛼 ∈ C : 2 |𝑟 − 𝛼|

⩽

−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)


} .

(50)

Combining (49) and (50), we obtain that 𝜎(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) =
𝐷1, where𝐷1 is defined by (47).

Theorem 10. 𝜎𝑐(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 𝐷3 , where 𝐷3 = {𝛼 ∈ C :

2|𝑟 − 𝛼| = | − 𝑠 + √𝑠2 − 4𝑡(𝑟 − 𝛼)|}.

Proof. Because the parts 𝜎𝑐(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝), 𝜎𝑟(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝),
and 𝜎𝑝(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) are pairwise disjoint sets and the union
of these sets is 𝜎(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝), the proof immediately follows
fromTheorems 7, 8, and 9.

Theorem 11. If 𝛼 ∈ 𝐷2, 𝛼 ∈ 𝜎(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝)𝐼3.

Proof. From Theorem 7, 𝛼 ∈ 𝜎𝑝(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝). Thus, (𝐴(𝑟,
𝑠, 𝑡) − 𝛼𝐼)

−1 does not exist. By Theorem 6𝐴(𝑟, 𝑠, 𝑡)∗ − 𝛼𝐼 is
one to one, so 𝐴(𝑟, 𝑠, 𝑡) − 𝛼𝐼 has a dense range in ℓ𝑝 by
Lemma 3.

Theorem 12. The following statements hold:

(i) 𝜎ap(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 𝐷1,
(ii) 𝜎𝛿(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 𝐷3,
(iii) 𝜎co(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 0.
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Proof. (i) Since from Table 1,

𝜎ap (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝)=𝜎 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝)\𝜎 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) 𝐼𝐼𝐼1,

(51)

we have byTheorem 8

𝜎 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) 𝐼𝐼𝐼1 = 𝜎 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) 𝐼𝐼𝐼2 = 0. (52)

Hence

𝜎ap (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) = 𝐷1. (53)

(ii) Since the following equality

𝜎𝛿 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) = 𝜎 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) \ 𝜎 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) 𝐼3

(54)

holds from Table 1, we derive by Theorems 8 and 11 that
𝜎𝛿(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 𝐷2.

(iii) From Table 1, we have

𝜎co (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝)

= 𝜎 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) 𝐼𝐼𝐼1 ∪ 𝜎 (𝐴 (𝑟, 𝑠, 𝑡) , ℓ𝑝) 𝐼𝐼𝐼2

∪ 𝜎 (𝐴 (𝑟, 𝑠, 𝑡) , 𝑐0) 𝐼𝐼𝐼3.

(55)

ByTheorem 6 it is immediate that 𝜎co(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 0.

4. Fine Spectra of Upper Triangular
Triple-Band Matrices over the Sequence
Space ℓ𝑝 (1 < 𝑝 < ∞)

In the present section, we determine the fine spectrum of
the operator 𝐴(𝑟, 𝑠, 𝑡) : ℓ𝑝 → ℓ𝑝 in case 1 ⩽ 𝑝 < ∞.
We quote some lemmas which are needed in proving the
theorems given in Section 4.

Lemma 13 (see [17, p. 253, Theorem 34.16]). The matrix 𝐴 =
(𝑎𝑛𝑘) gives rise to a bounded linear operator 𝑇 ∈ 𝐵(ℓ1) from ℓ1
to itself if and only if the supremum of ℓ1 norms of the columns
of 𝐴 is bounded.

Lemma 14 (see [17, p. 245, Theorem 34.3]). The matrix 𝐴 =
(𝑎𝑛𝑘) gives rise to a bounded linear operator 𝑇 ∈ 𝐵(ℓ∞) from
ℓ∞ to itself if and only if the supremum of ℓ1 norms of the rows
of 𝐴 is bounded.

Lemma 15 (see [17, p. 254, Theorem 34.18]). Let 1 < 𝑝 < ∞
and 𝐴 ∈ (ℓ∞ : ℓ∞) ∩ (ℓ1 : ℓ1). Then, 𝐴 ∈ (ℓ𝑝 : ℓ𝑝).

Theorem 16. The operator 𝐴(𝑟, 𝑠, 𝑡) : ℓ𝑝 → ℓ𝑝 is a bounded
linear operator and

(|𝑟|
𝑝
+ |𝑠|
𝑝
+ |𝑡|
𝑝
)
1/𝑝
⩽ ‖𝐴 (𝑟, 𝑠, 𝑡)‖(ℓ𝑝 :ℓ𝑝)

⩽ |𝑟| + |𝑠| + |𝑡| .

(56)

Proof. Since the linearity of the operator𝐴(𝑟, 𝑠, 𝑡) is not hard,
we omit the details. Now we prove that (56) holds for the
operator 𝐴(𝑟, 𝑠, 𝑡) on the space ℓ𝑝. It is trivial that 𝐴(𝑟, 𝑠,
𝑡)𝑒
(2)
= (𝑡, 𝑠, 𝑟, 0, . . .) for 𝑒(2) ∈ ℓ𝑝. Therefore, we have

‖𝐴 (𝑟, 𝑠, 𝑡)‖(ℓ𝑝 :ℓ𝑝)
⩾


𝐴 (𝑟, 𝑠, 𝑡) 𝑒

(2)𝑝
𝑒
(2)𝑝

= (|𝑟|
𝑝
+ |𝑠|
𝑝
+ |𝑡|
𝑝
)
1/𝑝

(57)

which implies that

‖𝐴 (𝑟, 𝑠, 𝑡)‖(ℓ𝑝 :ℓ𝑝)
⩾ (|𝑟|
𝑝
+ |s|𝑝 + |𝑡|𝑝)1/𝑝. (58)

Let 𝑥 = (𝑥𝑘) ∈ ℓ𝑝, where 1 < 𝑝 < ∞. Then, since (𝑡𝑥𝑘+2),
(𝑟𝑥𝑘), and (𝑠𝑥𝑘+1) ∈ ℓ𝑝, it is easy to see by Minkowski’s ine-
quality that

‖𝐴 (𝑟, 𝑠, 𝑡) 𝑥‖𝑝

= (

∞

∑

𝑘=0

𝑟𝑥𝑘 + 𝑠𝑥𝑘+1 + 𝑡𝑥𝑘+2

𝑝
)

1/𝑝

⩽ (

∞

∑

𝑘=0

𝑟𝑥𝑘

𝑝
)

1/𝑝

+ (

∞

∑

𝑘=0

𝑠𝑥𝑘+1

𝑝
)

1/𝑝

+ (

∞

∑

𝑘=0

𝑡𝑥𝑘+2

𝑝
)

1/𝑝

= |𝑟| (

∞

∑

𝑘=0

𝑥𝑘

𝑝
)

1/𝑝

+ |𝑠| (

∞

∑

𝑘=0

𝑥𝑘+1

𝑝
)

1/𝑝

+ |𝑡| (

∞

∑

𝑘=0

𝑥𝑘+2

𝑝
)

1/𝑝

= |𝑠| ‖𝑥‖𝑝 + |𝑟| ‖𝑥‖𝑝 + |𝑡| ‖𝑥‖𝑝

= (|𝑟| + |𝑠| + |𝑡|) ‖𝑥‖𝑝

(59)

which leads us to the result that

(|𝑟|
𝑝
+ |𝑠|
𝑝
+ |𝑡|
𝑝
)
1/𝑝
⩽ ‖𝐴 (𝑟, 𝑠, 𝑡)‖(ℓ𝑝 :ℓ𝑝)

⩽ |𝑟| + |𝑠| + |𝑡| .

(60)

Therefore, by combining the inequalities in (58) and (59) we
have (56), as desired.

If 𝑇 : ℓ𝑝 → ℓ𝑝 is a bounded matrix operator with the
matrix 𝐴, then it is known that the adjoint operator 𝑇∗ :
ℓ
∗

𝑝
→ ℓ
∗

𝑝
is defined by the transpose of thematrix𝐴.The dual

space of ℓ𝑝 is isomorphic to ℓ𝑞, where 1 < 𝑝 < ∞.

Theorem 17. Let 𝑠 be a complex number such that √𝑠2 = −𝑠
and define the set𝐷1 by

𝐷1 = {𝛼 ∈ C : 2 |𝑟 − 𝛼| ⩽

−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)


} .

(61)

Then, 𝜎𝑐(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) ⊆ 𝐷1.
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Proof. We will show that 𝐴𝛼(𝑟, 𝑠, 𝑡)
∗ is onto, for 2|𝑟 − 𝛼| >

| − 𝑠 + √𝑠2 − 4𝑡(𝑟 − 𝛼)|. Thus, for every 𝑦 ∈ ℓ𝑞, we find 𝑥 ∈
ℓ𝑞. 𝐴𝛼(𝑟, 𝑠, 𝑡)

∗ is a triangle so it has an inverse. Also equation
𝐴𝛼(𝑟, 𝑠, 𝑡)

∗
𝑥 = 𝑦 gives [𝐴𝛼(𝑟, 𝑠, 𝑡)

∗
]
−1
𝑦 = 𝑥. It is sufficient

to show that [𝐴𝛼(𝑟, 𝑠, 𝑡)
∗
]
−1
∈ (ℓ𝑞 : ℓ𝑞). We calculate that

𝐴 = (𝑎𝑛𝑘) = [𝐴𝛼(𝑟, 𝑠, 𝑡)
∗
]
−1 as follows:

𝐴 = (𝑎𝑛𝑘) =

[
[
[
[

[

𝑎1 0 0 . . .

𝑎2 𝑎1 0 . . .

𝑎3 𝑎2 𝑎1 . . .

...
...

...
. . .

]
]
]
]

]

, (62)

where

𝑎1 =
1

𝑟 − 𝛼
,

𝑎2 =
−𝑠

(𝑟 − 𝛼)
2
,

𝑎3 =
𝑠
2
− 𝑡 (𝑟 − 𝛼)

(𝑟 − 𝛼)
3
,

...

(63)

It is known that fromTheorem 5

𝑎𝑛 =
𝜆
𝑛

1
− 𝜆
𝑛

2

√𝑠2 − 4𝑡 (𝑟 − 𝛼)
, ∀𝑛 ⩾ 1,

where 𝜆1 =
−𝑠 + √Δ

𝑟 − 𝛼
, 𝜆2 =

−𝑠 − √Δ

𝑟 − 𝛼
.

(64)

Now, we show that [𝐴𝛼(𝑟, 𝑠, 𝑡)
∗
]
−1
∈ (ℓ1 : ℓ1), for |𝜆1| < 1.

By Theorem 5, we know that if |𝜆1| < 1, |𝜆2| < 1. We assume
that 𝑠2 − 4𝑡(𝑟 − 𝛼) ̸= 0 and |𝜆1| < 1,


[𝐴𝛼(𝑟, 𝑠, 𝑡)

∗
]
−1(ℓ1 :ℓ1)

= sup
𝑛

∞

∑

𝑘=𝑛

𝑎𝑘
 =

∞

∑

𝑘=1

𝑎𝑘


⩽
1

|Δ|
(

∞

∑

𝑘=1

𝜆1

𝑘
+

∞

∑

𝑘=1

𝜆2

𝑘
) < ∞,

(65)

since |𝜆1| < 1 and |𝜆2| < 1. This shows that (𝐴𝛼(𝑟, 𝑠, 𝑡)
∗
]
−1
∈

(ℓ1 : ℓ1). Similarly we can show that [𝐴𝛼(𝑟, 𝑠, 𝑡)
∗
]
−1
∈ (ℓ∞ :

ℓ∞).
Now assume that 𝑠2 − 4𝑡(𝑟 − 𝛼) = 0. Then,

𝑎𝑛 = (
2𝑛

−𝑠
) [

−𝑠

2 (𝑟 − 𝛼)
]

𝑛

(66)

and simple calculation gives that (𝑎𝑛) ∈ ℓ𝑞 if and only if |−𝑠| <
2|𝑟 − 𝛼|,

[(𝐴 (𝑟, 𝑠, 𝑡) − 𝛼𝐼)
∗
]
−1
∈ (ℓ𝑞 : ℓ𝑞)

for 𝛼 ∈ C with 2 |𝑟 − 𝛼| >

−𝑠 + √𝑠2 − 4𝑡 (𝑟 − 𝛼)


.

(67)

Hence, 𝐴𝛼(𝑟, 𝑠, 𝑡)
∗ is onto. By Lemma 2, 𝐴𝛼(𝑟, 𝑠, 𝑡) has a

bounded inverse. This means that 𝜎𝑐(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) ⊆ 𝐷1,
where𝐷1 is defined by (61).

Theorem 18. 𝜎𝑝(𝐴(𝑟, 𝑠, 𝑡)
∗
, ℓ
∗

𝑝
) = 0.

Proof. Let 𝐴(𝑟, 𝑠, 𝑡)∗𝑓 = 𝛼𝑓 with 𝑓 ̸= 𝜃 = (0, 0, 0, . . .) in ℓ∗
𝑝
=

ℓ𝑞. Then, by solving the system of linear equations

𝑟𝑓0 = 𝛼𝑓0,

𝑠𝑓0 + 𝑟𝑓1 = 𝛼𝑓1,

𝑡𝑓0 + 𝑠𝑓1 + 𝑟𝑓2 = 𝛼𝑓2,

𝑡𝑓1 + 𝑠𝑓2 + 𝑟𝑓3 = 𝛼𝑓3,

...
𝑡𝑓𝑘−2 + 𝑠𝑓𝑘−1 + 𝑟𝑓𝑘 = 𝛼𝑓𝑘,

...

(68)

we find that 𝑓0 = 0 if 𝛼 ̸= 𝑟 and 𝑓1 = 𝑓2 = ⋅ ⋅ ⋅ = 0 if 𝑓0 = 0
which contradicts𝑓 ̸= 𝜃. If 𝑓𝑛0 is the first nonzero entry of the
sequence 𝑓 = (𝑓𝑛) and 𝛼 = 𝑟, then we get 𝑡𝑓𝑛0−2 + 𝑠𝑓𝑛0−1 +
𝑟𝑓𝑛0

= 𝛼𝑓𝑛0
which implies 𝑓𝑛0 = 0 which contradicts the

assumption𝑓𝑛0 ̸= 0. Hence, the equation𝐴(𝑟, 𝑠, 𝑡)
∗
𝑓 = 𝛼𝑓 has

no solution 𝑓 ̸= 𝜃.

In the case 1 < 𝑝 < ∞, since the proof of the theorems,
in Section 4, determining the spectrum and fine spectrum
of the matrix operator 𝐴(𝑟, 𝑠, 𝑡) on the sequence space ℓ𝑝
is similar to the case 0 < 𝑝 ⩽ 1; to avoid the repetition
of similar statements, we give the results by the following
theorem without proof.

Theorem 19. The following statements hold:
(i) 𝜎(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 𝐷1,
(ii) 𝜎𝑟(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 0,
(iii) 𝜎𝑝(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 𝐷2,
(iv) 𝜎𝑐(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 𝐷3,
(v) 𝜎ap(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 𝐷1,
(vi) 𝜎co(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 0,
(vii) 𝜎𝛿(𝐴(𝑟, 𝑠, 𝑡), ℓ𝑝) = 𝐷3.

5. Some Applications

In this section, we give two theorems related to Toeplitz ma-
trix.

Theorem 20. Let 𝑃 be a polynomial that corresponds to the 𝑛-
tuple 𝑎 and let 𝑧1, 𝑧2, 𝑧3, . . . , 𝑧𝑛−1 also be the roots of 𝑃. Define
𝑇 as a Toeplitz matrix associated with 𝑃, that is,

𝑇 =

[
[
[
[

[

𝑎0 𝑎1 𝑎2 . . . 𝑎𝑛 0 0 0 . . .

0 𝑎0 𝑎1 𝑎2 . . . 𝑎𝑛 0 0 . . .

0 0 𝑎0 𝑎1 𝑎2 . . . 𝑎𝑛 0 . . .

...
...

. . . . . . . . . . . . . . . . . . . . .

]
]
]
]

]

. (69)
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The resolvent operator 𝑇 over ℓ𝑝 with 1 < 𝑝 < ∞, where the
domain of the resolvent operator is the whole space ℓ𝑝, exists if
and if only all the roots of the polynomial are outside the unit
disc {𝑧 ∈ C : |𝑧| ⩽ 1}. That is 𝑇−1 ∈ (ℓ𝑝 : ℓ𝑝) if and if only
|𝑧𝑖| > 1, 1 ⩽ 𝑖 ⩽ 𝑛 − 1. In this case the resolvent operator is
represented by

𝑇
−1
=

1

𝑎𝑛−1
𝐴
−1
(−𝑧1, 1) 𝐴

−1
(−𝑧2, 1) ⋅ ⋅ ⋅ 𝐴

−1
(−𝑧𝑛−1, 1) ,

where

𝐴
−1
(−𝑧𝑖, 1) =−

[
[
[
[
[
[
[
[
[
[
[
[

[

1/𝑧𝑖 1/𝑧
2

𝑖
1/𝑧
3

𝑖
1/𝑧
4

𝑖
1/𝑧
5

𝑖
. . .

0 1/𝑧𝑖 1/𝑧
2

𝑖
1/𝑧
3

𝑖
1/𝑧
4

𝑖
. . .

0 0 1/𝑧𝑖 1/𝑧
2

𝑖
1/𝑧
3

𝑖
. . .

0 0 0 1/𝑧𝑖 1/𝑧
2

𝑖
. . .

0 0 0 0 1/𝑧𝑖 . . .

...
...

...
...

...
. . .

]
]
]
]
]
]
]
]
]
]
]
]

]

.

(70)

Proof. Suppose all the roots of the polynomial 𝑃(𝑧) = 𝑎0 +
𝑎1𝑧 + ⋅ ⋅ ⋅ + 𝑎𝑛−1𝑧

𝑛−1
= 𝑎𝑛(𝑧 − 𝑧1)(𝑧 − 𝑧2) ⋅ ⋅ ⋅ (𝑧 − 𝑧𝑛−1) are

outside the unit disc. The Toeplitz matrix associated with 𝑃
can be written as the product

𝑇 = 𝑎𝑛𝐴 (−𝑧1, 1) 𝐴 (−𝑧2, 1) ⋅ ⋅ ⋅ 𝐴 (−𝑧𝑛−1, 1) . (71)

Since multiplication of upper triangular Toeplitz matrices is
commutative, we can see that

𝑇
−1
=

1

𝑎𝑛−1
𝐴
−1
(−𝑧1, 1) 𝐴

−1
(−𝑧2, 1) ⋅ ⋅ ⋅ 𝐴

−1
(−𝑧𝑛−1, 1)

(72)

is left inverse of 𝑇. Since all roots are outside the unit disc,
then


𝑇
−1
(−𝑧𝑖, 1)

(ℓ∞ :ℓ∞)
= sup
𝑛

∞

∑

𝑘=𝑛

1

𝑧𝑖

𝑘+1−𝑛

=

∞

∑

𝑘=1

1

𝑧𝑖

𝑘
< ∞.

(73)

Therefore each 𝑇−1(−𝑧𝑖, 1) ∈ (ℓ∞ : ℓ∞), for 1 ⩽ 𝑖 ⩽ 𝑛 − 1.
Similarly we can say that 𝑇−1(−𝑧𝑖, 1) ∈ (ℓ1 : ℓ1). So we have
𝑇
−1
(−𝑧𝑖, 1) ∈ (ℓ𝑝 : ℓ𝑝).

Theorem 21. The resolvent operator of 𝐴(𝑟, 𝑠, 𝑡) over ℓ𝑝 with
1 < 𝑝 < ∞, where the domain of the resolvent operator is the
space ℓ𝑝, exists if and only if 2|𝑟| > | − 𝑠 + √𝑠2 − 4𝑡𝑟|. In this

case, the resolvent operator is represented by the infinite banded
Toeplitz matrix

𝐸 (𝑟, 𝑠, 𝑡)

=
1

𝑡

[
[
[
[
[
[
[
[
[
[

[

𝑢1 𝑢
2

1
𝑢
3

1
𝑢
4

1
. . .

0 𝑢1 𝑢
2

1
𝑢
3

1
. . .

0 0 𝑢1 𝑢
2

1
. . .

0 0 0 𝑢1 . . .

...
...

...
...

. . .

]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[

[

𝑢2 𝑢
2

2
𝑢
3

2
𝑢
4

2
. . .

0 𝑢2 𝑢
2

2
𝑢
3

2
. . .

0 0 𝑢2 𝑢
2

2
. . .

0 0 0 𝑢2 . . .

...
...

...
...

. . .

]
]
]
]
]
]
]
]
]
]

]

,

where 𝑢1 =
−𝑠 + √𝑠2 − 4𝑡𝑟

2𝑟
, 𝑢2 =

−𝑠 − √𝑠2 − 4𝑡𝑟

2𝑟
.

(74)

Proof. By Theorem 20, we can see that 𝐸(𝑟, 𝑠, 𝑡) is inverse
of the matrix of 𝐴(𝑟, 𝑠, 𝑡). But this is not enough to say it
is resolvent operator. By Lemmas 13, 14, and 15, 𝐸(𝑟, 𝑠, 𝑡) ∈
(ℓ𝑝 : ℓ𝑝), when 2|𝑟| > | − 𝑠 + √𝑠2 − 4𝑡𝑟|. That is for 2|𝑟| >
| − 𝑠 + √𝑠2 − 4𝑡𝑟|, 𝐸(𝑟, 𝑠, 𝑡) is a resolvent operator.
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