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We study here the Lie symmetries, conservation laws, reductions, and new exact solutions of (2 + 1) dimensional Zakharov-
Kuznetsov (ZK), Gardner Kadomtsev-Petviashvili (GKP), and Modified Kadomtsev-Petviashvili (MKP) equations. The multiplier
approach yields three conservation laws for ZK equation. We find the Lie symmetries associated with the conserved vectors, and
three different cases arise. The generalized double reduction theorem is then applied to reduce the third-order ZK equation to a
second-order ordinary differential equation (ODE) and implicit solutions are established. We use the Sine-Cosine method for the
reduced second-order ODE to obtain new explicit solutions of ZK equation. The Lie symmetries, conservation laws, reductions,
and exact solutions via generalized double reduction theorem are computed for the GKP and MKP equations. Moreover, for the
GKP equation, some new explicit solutions are constructed by applying the first integral method to the reduced equations.

1. Introduction

The association of conservation laws with Noether sym-
metries [1], Lie-Bäcklund symmetries [2], and nonlocal
symmetries [3, 4] has been of great interest during the last
few decades. This association results in double reduction
of a partial differential equation (PDE). For variational
partial differential equations (PDEs), the double reduction
was achieved by association of a Noether symmetry with a
conserved vector [5, 6]. Sjöberg [7, 8] developed a double
reduction formula for a nonvariational PDE of order 𝑞 with
two independent and 𝑚 dependent variables to reduce it
to an ODE of order (𝑞 − 1) provided that the PDE admits
a nontrivial conserved vector associated with at least one
symmetry. Recently, Bokhari et al. [9] generalized the double
reduction theory for the case of several independent vari-
ables. According to the generalized double reduction theory,
a nonlinear system of 𝑞th-order PDEs with 𝑛 independent

and 𝑚 dependent variables can be reduced to a nonlinear
system of (𝑞 − 1)th-order ODEs. In every reduction, at
least one symmetry should be associated with a nontrivial
conserved vector; otherwise, reduction is not possible. Naz
et al. [10] utilized the double reduction theory to find some
exact solutions of a class of nonlinear regularized long wave
equations.

Different methods are developed for the construction of
conservation laws compared by Naz et al. [11], and see also
references therein. We will use the multiplier approach. The
conservation law in characteristic form [12] can be expressed
as 𝐷
𝑖
𝑇
𝑖
= Λ
𝛼
𝐸
𝛼
, and one can compute the characteristics

(multipliers) by taking the variational derivative of 𝐷
𝑖
𝑇
𝑖
=

𝑄
𝛼
𝐸
𝛼
for the arbitrary functions not only for solutions of

system of partial differential equations [6]. It was successfully
applied to construct the conservation laws (see, e.g., [11, 13]).

In this paper, we consider (2+1) dimensional ZK [14, 15],
GKP [16], and MKP [17] equations. The conservation laws
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are computed by the multiplier approach. The symmetry
conservation law relation is used to determine symmetries
associated with the conserved vectors. Reductions and new
exact solutions are found by the generalized double reduction
theory for ZK, GKP, andMKP equations.We utilize the Sine-
Cosinemethod [18–20] and first integralmethod [21] to com-
pute new explicit solutions for the reduced conserved forms
of ZK and GKP equations. To the best of our knowledge, the
exact solutions derived here are new and not reported in the
literature.

The detail outline of the paper is as follows. In Section 2,
basic definitions, important relations, and the fundamen-
tal theorem of generalized double reduction theory are
presented. The Lie symmetries, conservation laws, reduced
forms, and new exact solutions via generalized double reduc-
tion theorem for ZK equation are constructed in Section 3.
In Sections 4 and 5, Lie symmetries, conservation laws,
reductions, and new exact solutions of GKP and MKP
equations are studied. Concluding remarks are summarized
in Section 6.

2. Fundamental Operators

The following definitions are adopted from the literature [7–
9, 11, 22].

Consider the following 𝑞th-order system of PDEs:

𝐸
]
= (𝑥, 𝑢, 𝑢

(1)
, 𝑢
(2)
, . . . , 𝑢

(𝑞)
) , ] = 1, 2, 3, . . . , 𝑚, (1)

where 𝑥 = (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) are the independent variables,
and 𝑢 = (𝑢1, 𝑢2, 𝑢3, . . . , 𝑢𝑚) are the dependent variables.

Definition 1. A Lie-Bäcklund or generalized operator is
defined by

𝑋 = 𝜉
𝑖 𝜕

𝜕𝑥
𝑖
+ 𝜂
𝛼 𝜕

𝜕𝑢
𝛼
+ 𝜁
𝛼

𝑖

𝜕

𝜕𝑢
𝛼

𝑖

+∑

𝑠≥1

𝜁
𝛼

𝑖
1
⋅⋅⋅𝑖
𝑠

𝜕

𝜕𝑢
𝛼

𝑖
1
⋅⋅⋅𝑖
𝑠

, (2)

and the additional coefficients 𝜁𝛼
𝑖
1
⋅⋅⋅𝑖
𝑠

can be found from

𝜁
𝛼

𝑖
= 𝐷
𝑖
(𝑊
𝛼
) + 𝜉
𝑗
𝑢
𝛼

𝑖𝑗
,

𝜁
𝛼

𝑖
1
⋅⋅⋅𝑖
𝑠

= 𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑠

(𝑊
𝛼
) + 𝜉
𝑗
𝑢
𝛼

𝑗𝑖
1
⋅⋅⋅𝑖
𝑠

, 𝑠 > 1,

(3)

in which𝑊𝛼 is the Lie characteristic function described by

𝑊
𝛼
= 𝜂
𝛼
− 𝜉
𝑗
𝑢
𝛼

𝑗
. (4)

Definition 2. The Euler operator is defined by

𝛿

𝛿𝑢
𝛼
=
𝜕

𝜕𝑢
𝛼
− 𝐷
𝑖

𝜕

𝜕𝑢
𝛼

𝑖

+ 𝐷
𝑖
𝐷
𝑗

𝜕

𝜕𝑢
𝛼

𝑖𝑗

− ⋅ ⋅ ⋅ , (5)

where

𝐷
𝑖
=
𝜕

𝜕𝑥
𝑖
+ 𝑢
𝛼

𝑖

𝜕

𝜕𝑢
𝛼
+ 𝑢
𝛼

𝑖𝑗

𝜕

𝜕𝑢
𝛼

𝑗

+ ⋅ ⋅ ⋅ , 𝑖 = 1, 2, . . . , 𝑛 (6)

is the total derivative operator with respect to 𝑥𝑖.

Definition 3. A conserved vector 𝑇 = (𝑇1, 𝑇2, . . . , 𝑇𝑛), 𝑇𝑖 ∈
A, 𝑖 = 1, 2, . . . , 𝑛 satisfies𝐷

𝑖
𝑇
𝑖
|
(1)
= 0 for all solutions of (1) is

called a local conservation law. Here A denotes the space of
all differential functions.

Definition 4. A Lie-Bäcklund operator 𝑋 given in (2) is
associated with the conserved vector 𝑇 of (1) if it satisfies the
following relation:

X (𝑇𝑖) + 𝑇𝑖𝐷
𝑗
(𝜉
𝑗
) − 𝑇
𝑗
𝐷
𝑗
(𝜉
𝑖
) = 0, 𝑖 = 1, 2, . . . , 𝑛. (7)

Equation (7) is known as the symmetry conservation laws
relationship [22].

New conservation laws can be derived from existing
conservation laws and the symmetries by using the following
theorem adopted from [22, 23].

Theorem 5. Suppose 𝑋 is any Lie-Bäcklund operator of (1)
and 𝑇𝑖, 𝑖 = 1, 2, 3, . . . , 𝑛 comprise the components of a
conserved vector of (1) then

�̃�
𝑖
= 𝑋(𝑇

𝑖
) + 𝑇
𝑖
𝐷
𝑗
(𝜉
𝑗
) − 𝑇
𝑗
𝐷
𝑗
(𝜉
𝑖
) , 𝑖 = 1, 2, 3, . . . , 𝑛

(8)

yields the components of a conserved vector of (1), and thus

𝐷
𝑖
�̃�
𝑖(1)
= 0. (9)

Theorem 6 (see [9]). Suppose 𝐷
𝑖
𝑇
𝑖
= 0 is a conservation law

of the PDE system (1). Then under a contact transformation,
there exist functions �̃�𝑖 such that 𝐽𝐷

𝑖
𝑇
𝑖
= 𝐷
𝑖
�̃�
𝑖 where �̃�𝑖 is

given by

(

(

�̃�
1

�̃�
2

⋅

⋅

⋅

�̃�
𝑛

)

)

= 𝐽(𝐴
−1
)
𝑇
(

(

𝑇
1

𝑇
2

⋅

⋅

⋅

𝑇
𝑛

)

)

,

𝐽(

(

𝑇
1

𝑇
2

⋅

⋅

⋅

𝑇
𝑛

)

)

= 𝐴
𝑇(

(

�̃�
1

�̃�
2

⋅

⋅

⋅

�̃�
𝑛

)

)

.

(10)
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In (10), 𝐴, 𝐴−1, and 𝐽 can be determined from

𝐴 =(

(

𝐷
1
𝑥
1
𝐷
1
𝑥
2
⋅ ⋅ ⋅ 𝐷

1
𝑥
𝑛

𝐷
2
𝑥
1
𝐷
2
𝑥
2
⋅ ⋅ ⋅ 𝐷

2
𝑥
𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐷
𝑛
𝑥
1
𝐷
𝑛
𝑥
2
⋅ ⋅ ⋅ 𝐷

𝑛
𝑥
𝑛

)

)

,

𝐴
−1
=(

(

𝐷
1
𝑥
1
𝐷
1
𝑥
2
⋅ ⋅ ⋅ 𝐷

1
𝑥
𝑛

𝐷
2
𝑥
1
𝐷
2
𝑥
2
⋅ ⋅ ⋅ 𝐷

2
𝑥
𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐷
𝑛
𝑥
1
𝐷
𝑛
𝑥
2
⋅ ⋅ ⋅ 𝐷

𝑛
𝑥
𝑛

)

)

,

(11)

and 𝐽 = det(𝐴).

The following is the fundamental theorem on double
reduction theory [9].

Theorem 7. Suppose 𝐷
𝑖
𝑇
𝑖
= 0 is a conservation law of the

PDE system (1). Then under a similarity transformation of a
symmetry 𝑋 of the form (2) for the PDE, there exist functions
�̃�
𝑖 such that 𝑋 is still symmetry for the PDE 𝐷

𝑖
�̃�
𝑖
= 0 and

(

(

𝑋�̃�
1

𝑋�̃�
2

⋅

⋅

⋅

𝑋�̃�
𝑛

)

)

= 𝐽(𝐴
−1
)
𝑇(
(

(

[𝑇
1
, 𝑋]

[𝑇
2
, 𝑋]

⋅

⋅

⋅

[𝑇
𝑛
, 𝑋]

)
)

)

, (12)

where

𝐴 =(

(

𝐷
1
𝑥
1
𝐷
1
𝑥
2
⋅ ⋅ ⋅ 𝐷

1
𝑥
𝑛

𝐷
2
𝑥
1
𝐷
2
𝑥
2
⋅ ⋅ ⋅ 𝐷

2
𝑥
𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐷
𝑛
𝑥
1
𝐷
𝑛
𝑥
2
⋅ ⋅ ⋅ 𝐷

𝑛
𝑥
𝑛

)

)

,

𝐴
−1
=(

(

𝐷
1
𝑥
1
𝐷
1
𝑥
2
⋅ ⋅ ⋅ 𝐷

1
𝑥
𝑛

𝐷
2
𝑥
1
𝐷
2
𝑥
2
⋅ ⋅ ⋅ 𝐷

2
𝑥
𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐷
𝑛
𝑥
1
𝐷
𝑛
𝑥
2
⋅ ⋅ ⋅ 𝐷

𝑛
𝑥
𝑛

)

)

, 𝐽 = det (𝐴) .

(13)

Corollary 8 (the necessary and sufficient condition for
reduced conserved form [9]). The conserved form 𝐷

𝑖
𝑇
𝑖
=

0 of the PDE system (1) can be reduced under a similarity
transformation of a symmetry 𝑋 to a reduced conserved form
𝐷
𝑖
�̃�
𝑖
= 0 if and only if 𝑋 is associated with the conservation

law 𝑇, that is, [𝑇,𝑋]|
(1)
= 0.

Corollary 9 (see [9]). A nonlinear system of 𝑞th-order PDEs
with 𝑛 independent and 𝑚 dependent variables which admits

a nontrivial conserved form that has at least one associated
symmetry in every reduction from the 𝑛 reductions (the first
step of double reduction) can be reduced to a (𝑞 − 1)th-order
nonlinear system of ODEs.

3. Lie Symmetries, Conservation Laws,
Reductions, and New Exact Solutions of
Zakharov-Kuznetsov Equation

The (2 + 1) dimensional Zakharov-Kuznetsov (ZK) equation
[14, 15] representing the model for nonlinear Rossby waves is

𝑢
𝑡
+ 𝑎𝑢
𝑥
+ 𝑏𝑢𝑢

𝑥
+ 𝑐𝑢
𝑥𝑥𝑥
+ 𝑑𝑢
𝑥𝑦𝑦
= 0, (14)

where 𝑎, 𝑏, 𝑐, and𝑑 are arbitrary constants. First wewill derive
the Lie symmetries of (14).The Lie point symmetry generator

𝑋 = 𝜉
1
(𝑡, 𝑥, 𝑦, 𝑢)

𝜕

𝜕𝑡
+ 𝜉
2
(𝑡, 𝑥, 𝑦, 𝑢)

𝜕

𝜕𝑥

+ 𝜉
3
(𝑡, 𝑥, 𝑦, 𝑢)

𝜕

𝜕𝑦
+ 𝜂 (𝑡, 𝑥, 𝑦, 𝑢)

𝜕

𝜕𝑢
,

(15)

of (14), is derived by solving

𝑋
[3]
[𝑢
𝑡
+ 𝑎𝑢
𝑥
+ 𝑏𝑢𝑢

𝑥
+ 𝑐𝑢
𝑥𝑥𝑥
+ 𝑑𝑢
𝑥𝑦𝑦
]
(14)
= 0, (16)

in which𝑋[3] is the third prolongation and can be computed
from (2). Equation (16), after expansion and separation, yields
the following overdetermined system of partial differential
equations for the unknown coefficients 𝜉1, 𝜉2, 𝜉3, and 𝜂:

𝜉
1

𝑢
= 0, 𝜉

1

𝑥
= 0, 𝜉

1

𝑦
= 0,

𝜉
2

𝑢
= 0, 𝜉

2

𝑦
= 0, 𝜉

2

𝑥𝑥
= 0,

𝜉
3

𝑢
= 0, 𝜉

3

𝑡
= 0, 𝜉

3

𝑥
= 0,

𝜂
𝑢𝑢
= 0, 𝜂

𝑥𝑢
= 0, 𝜉

3

𝑦
− 𝜉
2

𝑥
= 0,

𝜉
3

𝑦𝑦
− 2𝜂
𝑦𝑢
= 0, 𝜉

1

𝑡
− 3𝜉
2

𝑥
= 0,

𝜂
𝑡
+ (𝑎 + 𝑏𝑢) 𝜂𝑥 + 𝑐𝜂𝑥𝑥𝑥 + 𝑑𝜂𝑥𝑦𝑦 = 0,

𝜉
2

𝑡
− 2 (𝑎 + 𝑏𝑢) 𝜉

2

𝑥
− 𝑏𝜂 − 𝑑𝜂

𝑦𝑦𝑢
= 0.

(17)

The solution of system (17) gives the following Lie symme-
tries:

𝑋
1
=
𝜕

𝜕𝑡
, 𝑋

2
=
𝜕

𝜕𝑥
, 𝑋

3
=
𝜕

𝜕𝑦
,

𝑋
4
=
𝜕

𝜕𝑢
+ 𝑏𝑡
𝜕

𝜕𝑥
,

𝑋
5
= 3𝑡
𝜕

𝜕𝑡
+ (𝑥 + 2𝑎𝑡)

𝜕

𝜕𝑥
+ 𝑦
𝜕

𝜕𝑦
− 2𝑢
𝜕

𝜕𝑢
.

(18)

The conservation laws for (14) will be derived by the
multiplier approach. Consider the multipliers of the form
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Λ = Λ(𝑡, 𝑥, 𝑢) for (14). The determining equation for the
multipliers is

𝛿

𝛿𝑢
[Λ (𝑢

𝑡
+ 𝑎𝑢
𝑥
+ 𝑏𝑢𝑢

𝑥
+ 𝑐𝑢
𝑥𝑥𝑥
+ 𝑑𝑢
𝑥𝑦𝑦
)] = 0, (19)

where 𝛿/𝛿𝑢 is the standard Euler operator and can be
computed from (5). Expanding and then separating (19) with
respect to different combinations of derivatives of 𝑢 yields the
following overdetermined system for the multipliers:

Λ
𝑥𝑥
= 0, Λ

𝑥𝑦
= 0, Λ

𝑢𝑥
= 0,

Λ
𝑢𝑦
= 0, Λ

𝑢𝑢
= 0,

Λ
𝑡
= −Λ

𝑥 (𝑏𝑢 + 𝑎) , Λ
𝑢
𝑡

= 0.

(20)

The solution of system (20) can be expressed as

Λ = 𝑓 (𝑦) + (𝑥 − 𝑎𝑡 − 𝑏𝑡𝑢) 𝑐1 + 𝑐2𝑢, (21)

where 𝑐
1
and 𝑐

2
are arbitrary constants, and 𝑓(𝑦) is an

arbitrary function of 𝑦. Multipliers Λ for (14) satisfy

Λ(𝑢
𝑡
+ 𝑎𝑢
𝑥
+ 𝑏𝑢𝑢

𝑥
+ 𝑐𝑢
𝑥𝑥𝑥
+ 𝑑𝑢
𝑥𝑦𝑦
)

= 𝐷
𝑡
𝑇
𝑡
+ 𝐷
𝑥
𝑇
𝑥
+ 𝐷
𝑦
𝑇
𝑦
,

(22)

for all functions 𝑢(𝑡, 𝑥, 𝑦). From (21) and (22), we obtain three
conserved vectors, and they are given inTable 1. If we consider
multipliers of form Λ = Λ(𝑡, 𝑥, 𝑢, 𝑢

𝑡
, 𝑢
𝑥
, 𝑢
𝑦
), we get the same

conserved vectors.
Now,we apply the double reduction theorembased on Lie

symmetries and conservation laws to find the reductions and
exact solutions. Let 𝑇

1
= (𝑇
𝑡

1
, 𝑇
𝑥

1
, 𝑇
𝑦

1
), 𝑇
2
= (𝑇
𝑡

2
, 𝑇
𝑥

2
, 𝑇
𝑦

2
), and

𝑇
3
= (𝑇
𝑡

3
, 𝑇
𝑥

3
, 𝑇
𝑦

3
). Equation (7) for variables 𝑡, 𝑥, and 𝑦 yields

𝑋(

𝑇
𝑡

𝑇
𝑥

𝑇
𝑦

) −(

𝐷
𝑡
𝜉
1
𝐷
𝑥
𝜉
1
𝐷
𝑦
𝜉
1

𝐷
𝑡
𝜉
2
𝐷
𝑥
𝜉
2
𝐷
𝑦
𝜉
2

𝐷
𝑡
𝜉
3
𝐷
𝑥
𝜉
3
𝐷
𝑦
𝜉
3

)(

𝑇
𝑡

𝑇
𝑥

𝑇
𝑦

)

+ (𝐷
𝑡
𝜉
1
+ 𝐷
𝑥
𝜉
2
+ 𝐷
𝑦
𝜉
3
)(

𝑇
𝑡

𝑇
𝑥

𝑇
𝑦

) = 0.

(23)

Equation (23) is used to find symmetries associated with the
conserved vectors presented in Table 1. The symmetries 𝑋

1
,

𝑋
2
, and 𝑋

3
are associated with the conserved vector 𝑇

2
.

The symmetries 𝑋
1
, 𝑋
2
, 𝑋
3
, and𝑋

5
are associated with the

conserved vector 𝑇
3
only when 𝑓(𝑦) = 1.

3.1. Reduction via 𝑇
3
Using Combination of Symmetries 𝑋

1
,

𝑋
2
, 𝑋
3
. The conserved vector 𝑇

3
for 𝑓(𝑦) = 1 yields

𝑇
𝑡

3
= 𝑢, 𝑇

𝑥

3
=
𝑢
2
𝑏

2
+ 𝑎𝑢 + 𝑐𝑢

𝑥𝑥
, 𝑇

𝑦

3
= 𝑑𝑢
𝑥𝑦
. (24)

The combination of symmetries𝑋
1
,𝑋
2
, and𝑋

3

𝑋 =
𝜕

𝜕𝑡
+ 𝛼
𝜕

𝜕𝑥
+ 𝛽
𝜕

𝜕𝑦
(25)

can be used to obtain a reduced conserved form. The
generator,𝑋, has a canonical form𝑋 = 𝜕/𝜕𝑞 when

𝑑𝑡

1
=
𝑑𝑥

𝛼
=
𝑑𝑦

𝛽
=
𝑑𝑢

0
=
𝑑𝑟

0
=
𝑑𝑠

0
=
𝑑𝑞

1
=
𝑑V

0
, (26)

and thus the canonical variables are
𝑟 = 𝑦 − 𝛽𝑡, 𝑠 = 𝑥 − 𝛼𝑡, 𝑞 = 𝑡,

V (𝑟, 𝑠) = 𝑢 (𝑡, 𝑥, 𝑦) .
(27)

The formula (10) for the reduced conserved form in terms of
variables (𝑡, 𝑥, 𝑦) and (𝑟, 𝑠, 𝑞) can be expressed as

(

𝑇
𝑟

3

𝑇
𝑠

3

𝑇
𝑞

3

) = 𝐽(𝐴
−1
)
𝑇

(

𝑇
𝑡

3

𝑇
𝑥

3

𝑇
𝑦

3

) , (28)

where 𝐴−1 from (11) is given by

𝐴
−1
= (

𝐷
𝑡
𝑟 𝐷
𝑡
𝑠 𝐷
𝑡
𝑞

𝐷
𝑥
𝑟 𝐷
𝑥
𝑠 𝐷
𝑥
𝑞

𝐷
𝑦
𝑟 𝐷
𝑦
𝑠 𝐷
𝑦
𝑞

) , 𝐽 = det (𝐴) . (29)

Equations (28) and (29) for the conserved vector (24) results
in

𝑇
𝑟

3
= 𝛽V − 𝑑V

𝑠𝑟
,

𝑇
𝑠

3
= 𝛼V − 𝑎V − 𝑏

V2

2
− 𝑐V
𝑠𝑠
,

𝑇
𝑞

3
= −V,

(30)

and reduced conserved form is

𝐷
𝑟
𝑇
𝑟

3
+ 𝐷
𝑠
𝑇
𝑠

3
= 0. (31)

The generalized double reduction theorem reduced the third-
order ZK equation (14) from the third-order PDE in terms
of three independent variables (𝑡, 𝑥, 𝑦) to a system of two
second-order PDES with two independent variables (𝑟, 𝑠). It
can be further reduced to an ODE if the reduced form admits
symmetries, and at least one symmetry is associated with a
nontrivial conserved vector.The reduced conserved form (31)
admits the following two symmetries:

𝑋
1
=
𝜕

𝜕𝑟
, 𝑋

2
=
𝜕

𝜕𝑠
. (32)

Since 𝑋
1
and 𝑋

2
satisfy the symmetry conservation law

relation

𝑋(
𝑇
𝑟

𝑇
𝑠) − (
𝐷
𝑟
𝜉
𝑟
𝐷
𝑠
𝜉
𝑟

𝐷
𝑟
𝜉
𝑠
𝐷
𝑠
𝜉
𝑠)(
𝑇
𝑟

𝑇
𝑠)

+ (𝐷
𝑟
𝜉
𝑟
+ 𝐷
𝑠
𝜉
𝑠
) (
𝑇
𝑟

𝑇
𝑠) = 0,

(33)

therefore 𝑋
1
, and 𝑋

2
are the associated symmetries, and it is

possible to find second reduction. A reduced conserved form
can be obtained using

𝑌 =
𝜕

𝜕𝑟
+ 𝛾
𝜕

𝜕𝑠
. (34)
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Table 1: Multipliers and conserved vectors for (14).

Multipliers Conserved vector

Λ
1
= 𝑥 − 𝑎𝑡 − 𝑏𝑡𝑢

𝑇
𝑡

1
= 𝑥𝑢 − 𝑢𝑎𝑡 −

𝑢
2
𝑏𝑡

2

𝑇
𝑥

1
= −
𝑢
3
𝑏
2
𝑡

3
+
𝑢
2
𝑏𝑥

2
− 𝑎𝑏𝑡𝑢

2
− 𝑏𝑐𝑡𝑢𝑢

𝑥𝑥
+
𝑏𝑐𝑡𝑢
2

𝑥

2

−

𝑏𝑑𝑡𝑢𝑢
𝑦𝑦

2
+ 𝑎𝑢𝑥 − 𝑎

2
𝑡𝑢 + 𝑐𝑥𝑢

𝑥𝑥
− 𝑎𝑐𝑡𝑢

𝑥𝑥
− 𝑐𝑢
𝑥
+ 𝑑𝑥𝑢

𝑦𝑦
− 𝑎𝑑𝑡𝑢

𝑦𝑦

𝑇
𝑦

1
= −

𝑏𝑑𝑡𝑢𝑢
𝑥𝑦

2
+

𝑏𝑑𝑡𝑢
𝑦
𝑢
𝑥

2
− 𝑑𝑢
𝑦

Λ
2
= 𝑢

𝑇
𝑡

2
=
𝑢
2

2

𝑇
𝑥

2
=
𝑢
3
𝑏

3
+
𝑢
2
𝑎

2
+ 𝑐𝑢𝑢

𝑥𝑥
−
𝑐𝑢
2

𝑥

2
+

𝑑𝑢𝑢
𝑦𝑦

2

𝑇
𝑦

2
=

𝑑𝑢𝑢
𝑥𝑦

2
−

𝑑𝑢
𝑥
𝑢
𝑦

2

Λ
3
= 𝑓(𝑦)

𝑇
𝑡

3
= 𝑓(𝑦)𝑢

𝑇
𝑥

3
= 𝑓 (𝑦) [

𝑏𝑢
2

2
+ 𝑎𝑢 + 𝑐𝑢

𝑥𝑥
]

𝑇
𝑦

3
= 𝑓(𝑦)𝑑𝑢

𝑥𝑦

The canonical form of generator 𝑌 is 𝑌 = 𝜕/𝜕𝑚 with the
similarity variables

𝑛 = 𝛾𝑟 − 𝑠, 𝑚 = 𝑟, 𝑤 (𝑛) = V (𝑟, 𝑠) . (35)

In this case, the formula (10) for the reduced conserved form
results in

(
𝑇
𝑛

3

𝑇
𝑚

3

) = 𝐽(𝐴
−1
)
𝑇

(
𝑇
𝑟

3

𝑇
𝑠

3

) , (36)

with

𝐴
−1
= (
𝐷
𝑟
𝑛 𝐷
𝑟
𝑚

𝐷
𝑠
𝑛 𝐷
𝑠
𝑚
) . (37)

Equations (36) and (37) for the conserved vector (30) take the
following form:

(
𝑇
𝑛

3

𝑇
𝑚

3

) = (
𝛾 −1

1 0
)(

𝛽V − 𝑑Vs𝑟

𝛼V − 𝑎V − 𝑏
V2

2
− 𝑐V
𝑠𝑠

) . (38)

Equation (38) expressed in terms of variable 𝑛 becomes

𝑇
𝑛

3
= (𝛾𝛽 − 𝛼 + 𝑎)𝑤 +

𝑏

2
𝑤
2
+ (𝛾
2
𝑑 + 𝑐)𝑤

𝑛𝑛
,

𝑇
𝑚

3
= 𝛽𝑤 + 𝛾𝑑𝑤

𝑛𝑛
,

(39)

and the reduced conserved form is

𝐷
𝑛
𝑇
𝑛

3
= 0. (40)

Equation (40) gives 𝑇𝑛
3
= 𝑘
1
, and (39) can be written as

(𝛾𝛽 − 𝛼 + 𝑎)𝑤 +
𝑏

2
𝑤
2
+ (𝛾
2
𝑑 + 𝑐)𝑤

𝑛𝑛
= 𝑘
1
. (41)

The symmetries 𝑋
1
, 𝑋
2
, and 𝑋

3
are associated with the

conserved vector 𝑇
3
only when 𝑓(𝑦) = 1. For this case, the

generalized double reduction theorem is applied twice to ZK
equation (14) and it is reduced to second-order ODE (41).
Next, we find implicit and explicit solutions of reduced form
(41) and these constitute the exact solutions of ZK equation
(14).

The implicit solution of (41) using Maple is

±∫

√3 (𝛾
2
𝑑 + 𝑐)

√(𝛾
2
𝑑 + 𝑐) (3𝛼𝑤

2
− 3𝑎𝑤

2
− 𝑏𝑤
3
− 3𝛾𝛽𝑤

2
+ 3𝛾
2
𝑑𝑐
1
+ 3𝑐𝑐
1
+ 6𝑘𝑤)

𝑑𝑤 − 𝑛 − 𝑐
2
= 0. (42)

Now, we compute the explicit solutions of (41) by utilizing
the Sine-Cosine method [18–20]. The solution of (41) can be
expressed in the form

𝑤 (𝑛) = ] cos𝜅 (𝜔𝑛) , (43)

or

𝑤 (𝑛) = ] sin𝜅 (𝜔𝑛) , (44)

where ], 𝜅 ̸= 0 and 𝜔 are parameters need to be determined.
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Substituting the values of 𝑤 from (43) and setting 𝑘
1
= 0

in (41) yields

𝐴] cos𝜅 (𝜔𝑛) + 𝑏
2
]2cos2𝜅 (𝜔𝑛) + 𝐵]𝜅2𝜔2cos𝜅−2 (𝜔𝑛)

− 𝐵]𝜅2𝜔2cos𝜅 (𝜔𝑛) − 𝐵]𝜅𝜔2cos𝜅−2 (𝜔𝑛) = 0,
(45)

where𝐴 = 𝛾𝛽−𝛼+𝑎 and𝐵 = 𝛾2𝑑+𝑐. Equation (45) is satisfied
if

𝜅 − 2 = 2𝜅,

𝛾𝛽 − 𝛼 + 𝑎 − 4𝜇
2
𝛾
2
𝑑 − 4𝜇

2
𝑐 = 0,

1

2
𝑏𝜆 + 6𝜇

2
𝛾
2
𝑑 + 6𝜇

2
𝑐 = 0.

(46)

Ultimately, the solution of algebraic system (46) yields the
solution of (41) and is given by

𝑤 (𝑛) = −3
𝛾𝛽 + 𝑎 − 𝛼

𝑏
sec2(√

𝛾𝛽 + 𝑎 − 𝛼

4𝑐 + 4𝑑𝛾
2
𝑛) ,

𝑛 = 𝛾𝑦 − 𝑥 + 𝑡 (𝛼 − 𝛽𝛾) , 𝑤 = 𝑢.

(47)

Similarly, using the Sine function (44) one can easily obtain
the solution of (41) as

𝑤 (𝑛) = −3
𝛾𝛽 + 𝑎 − 𝛼

𝑏
csc2(√

𝛾𝛽 + 𝑎 − 𝛼

4𝑐 + 4𝑑𝛾
2
𝑛) , (48)

where 𝑛 = 𝛾𝑦 − 𝑥 + 𝑡(𝛼 − 𝛾𝛽), 𝑤 = 𝑢. The solutions (47) and
(48) can be finally expressed in terms of original variables as

𝑢 (𝑡, 𝑥, 𝑦) = − 3
𝛾𝛽 + 𝑎 − 𝛼

𝑏

× sec2(√
𝛾𝛽 + 𝑎 − 𝛼

4𝑐 + 4𝑑𝛾
2
[𝛾𝑦 − 𝑥 + 𝑡 (𝛼 − 𝛾𝛽)]) ,

(49)

𝑢 (𝑡, 𝑥, 𝑦) = − 3
𝛾𝛽 + 𝑎 − 𝛼

𝑏

× csc2(√
𝛾𝛽 + 𝑎 − 𝛼

4𝑐 + 4𝑑𝛾
2
[𝛾𝑦 − 𝑥 + 𝑡 (𝛼 − 𝛾𝛽)]) ,

(50)

and these constitute the exact solutions of ZK equation (14).

3.2. Reduction via 𝑇
2
Using Combination of Symmetries 𝑋

1
,

𝑋
2
, and 𝑋

3
. The symmetries 𝑋

1
, 𝑋
2
, and 𝑋

3
are associated

with the conserved vector 𝑇
2
, and a reduced conserved form

can be obtained by the combination 𝑋 given in (25). For the
conserved vector 𝑇

2
in terms of canonical variables (27), we

have

𝑇
𝑟

2
= 𝛽

V2

2
−
𝑑VV
𝑟𝑠

2
+
𝑑V
𝑟
V
𝑠

2
,

𝑇
𝑠

2
= 𝛼

V2

2
−
𝑏V3

3
−
𝑎V2

2
− 𝑐VV
𝑠𝑠
+
𝑐V2
𝑠

2
−
𝑑VV
𝑟𝑟

2
,

𝑇
𝑞

2
= −

V2

2
,

(51)

and reduced conserved form is𝐷
𝑟
𝑇
𝑟

2
+𝐷
𝑠
𝑇
𝑠

2
= 0.The reduced

conserved form admits the symmetries (32) and these sym-
metries satisfy the symmetry conservation law relation (33)
for the conserved vectors 𝑇𝑟

2
and 𝑇𝑠

2
. The combination of

symmetries yields the generator𝑌 and the similarity variables
(35). Equations (36) and (37) for the conserved vector (51)
gives

𝑇
𝑛

2
=
(𝛽𝛾 + 𝑎 − 𝛼)

2
𝑤
2
+ (𝛾
2
𝑑 + 𝑐)𝑤𝑤

𝑛𝑛

+
𝑏𝑤
3

3
−

(𝛾
2
𝑑 + 𝑐)

2
𝑤
2

𝑛
,

𝑇
𝑚

2
= −𝛽
𝑤
2

2
−
𝑑𝛾𝑤𝑤

𝑛𝑛

2
+
𝑑𝛾𝑤
2

𝑛

2
.

(52)

The reduced conserved form is

𝐷
𝑛
𝑇
𝑛

2
= 0, (53)

and this yields

(𝛽𝛾 + 𝑎 − 𝛼)

2
𝑤
2
+ (𝛾
2
𝑑 + 𝑐)𝑤𝑤

𝑛𝑛
+
𝑏𝑤
3

3
−

(𝛾
2
𝑑 + 𝑐)

2
𝑤
2

𝑛

= 𝑘
2
,

(54)

where 𝑘
2
is a constant. Using Maple, the solution of (54) is

± ∫

√3 (𝑑𝛾
2
+ 𝑐)

√(𝑑𝛾
2
+ 𝑐) (3𝛼𝑤

2
− 3𝑎𝑤

2
− 3𝛾𝛽𝑤

2
− 𝑏𝑤
3
+ 3𝑐𝑐
3
𝑤 + 3𝑐

3
𝑑𝛾
2
𝑤 − 6𝑘

2
)

𝑑𝑤 − 𝑛 − 𝑐
4
= 0,

𝑛 = 𝛾𝑦 − 𝑥 + 𝑡 (𝛼 − 𝛾𝛽) , 𝑤 = 𝑢,

(55)
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whereas (54) gives the same solution by employing Sine-
Cosine method as we have obtained in the previous case.
The symmetries 𝑋

1
, 𝑋
2
, and 𝑋

3
are associated with the

conserved vector 𝑇
2
, and in this case generalized double

reduction theorem gives one implicit solution (55) for the
ZK equation (14). It is interesting to notice that generalized
double reduction theorem yields two different reduced forms
(41) and (54) for traveling wave solutions (49) and (50),
whereas in [14, 15] only one reduced form (41) was obtained.
One can use the simple reduced form to construct exact or
approximate solutions.

3.3. Reduction via 𝑇
3
Using Symmetry𝑋

5
. The generator,𝑋

5
,

has canonical form𝑋 = 𝜕/𝜕𝑞 if

𝑑𝑡

3𝑡
=
𝑑𝑥

𝑥 + 2𝑎𝑡
=
𝑑𝑦

𝑦
=
𝑑𝑢

−2𝑢
=
𝑑𝑟

0
=
𝑑𝑠

0
=
𝑑𝑞

1
=
𝑑V

0
,

(56)

and thus we have

𝑞 =
1

3
ln 𝑡, 𝑟 =

𝑦

𝑡
1/3
, 𝑠 =

(𝑥 − 𝑎𝑡)

𝑡
1/3
,

V (𝑟, 𝑠) = 𝑢 (𝑡, 𝑥, 𝑦) 𝑡2/3.

(57)

Equations (28) and (29) for the conserved vector 𝑇
3
in terms

of canonical variables (57) result in

𝑇
𝑟

3
= 𝑟V − 3𝑑V

𝑟𝑠
,

𝑇
𝑠

3
= 𝑠V −
3

2
𝑏V2 − 3𝑐V

𝑠𝑠
,

(58)

and reduced conserved form is 𝐷
𝑟
𝑇
𝑟

3
+ 𝐷
𝑠
𝑇
𝑠

3
= 0. The

conserved form (58) cannot be further reduced because it
does not admit any symmetry, however one can perform the
numerical simulation or any other approximate method to
construct the approximate solutions.

The generalized double reduction theorem gives two
different reduced forms (41) and (54) for traveling wave
solutions. The Sine-Cosine method for each of the reduced
forms gives the explicit solutions (49) and (50) for the ZK
equation. Also we find two implicit solutions (42) and (55) by
Maple. The transformations (57) are obtained due to double
reduction theorem, and these transformations are different
from the traveling wave transformations. These transforma-
tions provide the reduced form (58), and numerical method
can be applied to obtain approximate solutions for the ZK
equation (14). The exact solutions for ZK equation obtained
here are different from the class of exact solutions computed
by Exp-function method [14] and by transformation of
elliptic equation [15].

4. Lie Symmetries, Conservation Laws, and
Exact Solutions of Gardner KP Equation

The Gardner KP equation [16] is

𝑢
𝑡𝑥
+ 6𝑢𝑢

𝑥𝑥
+ 6𝑢
2

𝑥
+ 6𝑢
2
𝑢
𝑥𝑥
+ 12𝑢𝑢

2

𝑥
+ 𝑢
𝑥𝑥𝑥𝑥
+ 𝑢
𝑦𝑦
= 0.

(59)

The Lie symmetry generator determining equation for Gard-
ner KP equation (59) is

𝑋
[4]
[𝑢
𝑡𝑥
+ 6𝑢𝑢

𝑥𝑥
+ 6𝑢
2

𝑥
+ 6𝑢
2
𝑢
𝑥𝑥
+12𝑢𝑢

2

𝑥
+ 𝑢
𝑥𝑥𝑥𝑥
+ 𝑢
𝑦𝑦
]
(59)

= 0,

(60)

where 𝑋[4] is the fourth prolongation. Solving (60), after
expansion, we have

𝑋
1
=
𝜕

𝜕𝑡
, 𝑋

2
=
𝜕

𝜕𝑥
, 𝑋

3
=
𝜕

𝜕𝑦
,

𝑋
4
= 𝑦
𝜕

𝜕𝑥
− 2𝑡
𝜕

𝜕𝑦
,

𝑋
5
= −6𝑡
𝜕

𝜕𝑡
+ (−2𝑥 + 6𝑡)

𝜕

𝜕𝑥
− 4𝑦
𝜕

𝜕𝑦
+ (2𝑢 + 1)

𝜕

𝜕𝑢
,

(61)

as the Lie symmetry generators for the Gardner KP equation
(59). Consider the multipliers of the form Λ = Λ(𝑡, 𝑥, 𝑢) for
(59). The determining equation for the multipliers is

𝛿

𝛿𝑢
[Λ (𝑢

𝑡𝑥
+ 6𝑢𝑢

𝑥𝑥
+ 6𝑢
2

𝑥

+6𝑢
2
𝑢
𝑥𝑥
+ 12𝑢𝑢

2

𝑥
+ 𝑢
𝑥𝑥𝑥𝑥
+ 𝑢
𝑦𝑦
)] = 0.

(62)

Equation (62) finally presents

Λ
𝑢
= 0, Λ

𝑥𝑥
= 0, Λ

𝑥𝑦𝑦
= 0,

Λ
𝑦𝑦𝑦𝑦
= 0, Λ

𝑡𝑥
+ Λ
𝑦𝑦
= 0,

(63)

and this results in four multipliers. The multipliers and
conserved vectors are presented in Table 2.

The symmetry conservation law relation (23) is not satis-
fied for the conserved vectors 𝑇

1
, 𝑇
2
, and 𝑇

3
. The symmetries

𝑋
1
,𝑋
2
, and𝑋

3
are associated with the conserved vector 𝑇

4
if

𝑓(𝑡) = 1. Thus we can get a reduced conserved form by the
combination of 𝑋 given in (25). Equations (28) and (29) for
the conserved vector 𝑇

4
in terms of canonical variables (27)

yield the following three components of �̃�
4
:

𝑇
𝑟

4
= 𝛽V
𝑠
− V
𝑟
,

𝑇
𝑠

4
= 𝛼V
𝑠
− V
𝑠𝑠𝑠
− 6V2V

𝑠
− 6VV
𝑠
,

𝑇
𝑞

4
= −V
𝑠
,

(64)

and reduced conserved form is

𝐷
𝑟
𝑇
𝑟

4
+ 𝐷
𝑠
𝑇
𝑠

4
= 0. (65)

The reduced conservation law admits the following symme-
tries:

𝑋
1
=
𝜕

𝜕𝑟
, 𝑋

2
=
𝜕

𝜕𝑠
. (66)

The symmetries 𝑋
1
and 𝑋

2
satisfy the symmetry conserva-

tion law relation (33) for the conserved vectors 𝑇𝑟
4
and 𝑇𝑠

4
.
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Table 2: Multipliers and conserved vectors for (59).

Multipliers Conserved vector

Λ
1
= 𝑓(𝑡)𝑥𝑦 −

1

6
𝑓
𝑡
𝑦
3

𝑇
𝑡

1
=
1

6
𝑦𝑢
𝑥
(6𝑥𝑓 (𝑡) − 𝑓

𝑡
𝑦
2
)

𝑇
𝑥

1
= −
1

6
𝑦𝑓 (𝑡) (−36𝑥𝑢

2
𝑢
𝑥
+ 12𝑢

3
− 36𝑥𝑢𝑢

𝑥
+ 18𝑢

2
− 6𝑥𝑢

𝑥𝑥𝑥
+ 6𝑢
𝑥𝑥
)

−
1

6
𝑦𝑓
𝑡
(6𝑦
2
𝑢
2
𝑢
𝑥
+ 6𝑦
2
𝑢𝑢
𝑥
+ 𝑦
2
𝑢
𝑥𝑥𝑥
+ 6𝑢𝑥) +

1

6
𝑓
𝑡𝑡
𝑦
3
𝑢

𝑇
𝑦

1
= 𝑓 (𝑡) (𝑥𝑦𝑢

𝑦
− 𝑢𝑥) + 𝑓

𝑡
(
1

2
𝑦
2
𝑢 −
1

6
𝑦
3
𝑢
𝑦
)

Λ
2
= 𝑓(𝑡)𝑥 −

1

2
𝑓
𝑡
𝑦
2

𝑇
𝑡

2
=
1

2
𝑢
𝑥
(2𝑥𝑓 (𝑡) − 𝑓

𝑡
𝑦
2
)

𝑇
𝑥

2
= 𝑓 (𝑡) (6𝑥𝑢

2
𝑢
𝑥
− 2𝑢
3
+ 6𝑥𝑢𝑢

𝑥
− 3𝑢
2
+ 𝑥𝑢
𝑥𝑥𝑥
− 𝑢
𝑥𝑥
)

−𝑓
𝑡
(3𝑦
2
𝑢
2
𝑢
𝑥
+ 3𝑦
2
𝑢𝑢
𝑥
+
1

2
𝑦
2
𝑢
𝑥𝑥𝑥
+ 𝑥𝑢) +

1

2
𝑢𝑓
𝑡𝑡
𝑦
2

𝑇
𝑦

2
= 𝑓(𝑡)𝑥𝑢

𝑦
+ 𝑓
𝑡
(𝑦𝑢 −
1

2
𝑦
2
𝑢
𝑦
)

Λ
3
= 𝑓(𝑡)𝑦

𝑇
𝑡

3
= 𝑓(𝑡)𝑦𝑢

𝑥

𝑇
𝑥

3
= 𝑦𝑓 (𝑡) (6𝑢

2
𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥
+ 6𝑢𝑢

𝑥
) − 𝑢𝑦𝑓

𝑡

𝑇
𝑦

3
= 𝑓 (𝑡) (−𝑢 + 𝑦𝑢

𝑦
)

Λ
4
= 𝑓(𝑡)

𝑇
𝑡

4
= 𝑓(𝑡)𝑢

𝑥

𝑇
𝑥

4
= (6𝑢

2
𝑢
𝑥
+ 6𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥
) 𝑓(𝑡) − 𝑓

𝑡
𝑢

𝑇
𝑦

4
= 𝑓(𝑡)𝑢

𝑦

Taking the combination of these symmetries yields the same
generator 𝑌 as given in (34), and the canonical form 𝑌 =
𝜕/𝜕𝑚 can be obtained from similarity variables (35). Using
formula (36), one has the following two components of ̃̃𝑇

4
:

𝑇
𝑛

4
= (𝛼 − 𝛽𝛾 − 𝛾

2
)𝑤
𝑛
− 6𝑤
2
𝑤
𝑛
− 6𝑤𝑤

𝑛
− 𝑤
𝑛𝑛𝑛
,

𝑇
𝑚

4
= − (𝛽 + 𝛾)𝑤

𝑛
.

(67)

The reduced conserved form satisfies𝐷
𝑛
𝑇
𝑛
= 0, and we have

(𝛼 − 𝛽𝛾 − 𝛾
2
)𝑤
𝑛
− 6𝑤
2
𝑤
𝑛
− 6𝑤𝑤

𝑛
− 𝑤
𝑛𝑛𝑛
= 𝑘
3
. (68)

The integration of (68) provides

(𝛼 − 𝛽𝛾 − 𝛾
2
)𝑤 − 2𝑤

3
− 3𝑤
2
− 𝑤
𝑛𝑛
= 𝑘
3
𝑛 + 𝑘
4
. (69)

Next, we find implicit and explicit solutions of reduced form
(69) and these constitute the exact solutions of GKP equation
(59).

Equation (69) gives the following solution if 𝑘
3
= 0:

± ∫
1

√(𝛼 − 𝛽𝛾 − 𝛾
2
) 𝑤
2
− 2𝑤
3
− 𝑤
4
− 2𝑘
4
𝑤 + 𝑐
5

𝑑𝑤

− 𝑛 − 𝑐
6
= 0,

(70)

where 𝑛 = (𝛼 − 𝛽𝛾)𝑡 + 𝛾𝑦 − 𝑥, 𝑤 = 𝑢 and 𝑐
5
, 𝑐
6
and 𝑘

4
are

constants.
For explicit solution, we apply the first integral method to

the reduced form (69). We substitute𝑤 = 𝑋 and𝑤 = 𝑌 with

𝑘
3
= 𝑘
4
= 0 which converts (69) into the following system of

ODEs:

𝑋

= 𝑌,

𝑌

= 𝐴𝑋 − 3𝑋

2
− 2𝑋
3
,

(71)

where 𝐴 = 𝛼 − 𝛽𝛾 − 𝛾2. Next, we apply the division theorem
to seek the first integral to (71). Assume that 𝑋 = 𝑋(𝑛) and
𝑌 = 𝑌(𝑛) are the nontrivial solutions to (71) and

𝑝 (𝑋 (𝑛) , 𝑌 (𝑛)) = ∑𝑎𝑖 (𝑋 (𝑛)) 𝑌
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑚

(72)

is an irreducible polynomial in 𝑐|𝑋, 𝑌| such that

𝑝 (𝑋 (𝑛) , 𝑌 (𝑛)) = ∑𝑎𝑖 (𝑋 (𝑛)) 𝑌(𝑛)
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑚,

(73)

where 𝑎
𝑖
(𝑋), (𝑖 = 1, 2, . . . , 𝑚) are polynomials of 𝑋 and all

relatively prime in 𝑐|𝑋, 𝑌|, 𝑎
𝑚
(𝑋) ̸= 0. Equation (73) is also

called the first integral to (71). Suppose that𝑚 = 1 in (73). By
division theorem, there exist polynomials𝐻(𝑋, 𝑌) = 𝑔(𝑋) +
ℎ(𝑋)𝑌 in 𝑐|𝑋, 𝑌| such that

𝑑𝑝

𝑑𝑛
=
𝜕𝑝

𝜕𝑋

𝜕𝑋

𝜕𝑛
+
𝜕𝑝

𝜕𝑌

𝜕𝑌

𝜕𝑛

= (𝑔 (𝑋) + ℎ (𝑋)𝑌) (𝑎0 (𝑋) + 𝑎1 (𝑋) 𝑌) ,

(74)

or

(𝑎


0
(𝑋) + 𝑎



1
(𝑋) (𝑌)) 𝑌 + 𝑎1 (𝑋) 𝑌



= (𝑔 (𝑋) + ℎ (𝑋)𝑌) (𝑎0 (𝑋) + 𝑎1 (𝑋) 𝑌) .

(75)
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Substituting 𝑌 from (71) in (75) and then separating with
respect to powers of 𝑌, we obtain

𝑎


1
(𝑋) = ℎ (𝑋) 𝑎1 (𝑋) ,

𝑎


0
(𝑋) = 𝑔 (𝑋) 𝑎1 (𝑋) + ℎ (𝑋) 𝑎0 (𝑋) ,

𝑎
1 (𝑋) (𝐴𝑋 − 3𝑋

2
− 2𝑋
3
) = 𝑔 (𝑋) 𝑎0 (𝑋) .

(76)

Solving the system (76) for 𝑎
0
and 𝑎
1
and then substituting it

into (73) yields an ODE which finally gives

𝑢 (𝑡, 𝑥, 𝑦) =
1

𝑐
5
𝑒
𝜄(𝛾𝑦−𝛾𝛽𝑡−𝑥+(𝛾𝛽+𝛾

2
−1)𝑡)
− 1

,

𝑢 (𝑡, 𝑥, 𝑦) =
1

𝑐
6
𝑒
−𝜄(𝛾𝑦−𝛾𝛽𝑡−𝑥+(𝛾𝛽+𝛾

2
−1)𝑡)
− 1

.

(77)

The explicit solutions (77) form exact solution of GKP
equation (59).

The generalized double reduction theorem is applied
twice to the GKP equation (59), and it is reduced to an
integrable third-order ODE (68). On integration, the third
orderODE (68) is further reduced to second-orderODE (69).
Using Maple equation (69) yields one implicit solution (70)
for the GKP equation (59). Also two explicit solutions (77)
for the GKP equation are obtained utilizing the first integral
method to the reduced second-order ODE (69). The exact
solutions derived here are different from class of multiple-
soliton solutions obtained by Hirota’s bilinear method [16].

5. Lie Symmetries, Conservation Laws, and
Exact Solutions of Modified KP Equation

TheMKP equation [17] describing the soliton propagation in
multitemperature electrons plasmas is

𝑢
𝑡𝑥
+ 𝑎𝑢𝑢

𝑥𝑥
+ 𝑎𝑢
2

𝑥
+ 2𝑑𝑢𝑢

2

𝑥
+ 𝑑𝑢
2
𝑢
𝑥𝑥

+ 𝑏𝑢
𝑥𝑥𝑥𝑥
+ 𝑐 (𝑢

𝑥𝑥
+ 𝑢
𝑦𝑦
) = 0,

(78)

where 𝑎, 𝑏, 𝑐, and 𝑑 are plasma parameters. For (78) the
multipliers of the form Λ = Λ(𝑡, 𝑥, 𝑦, 𝑢) are considered.
The multipliers and conserved vectors are given in Table 3.
The MKP equation (78) has the following Lie symmetry
generators:

𝑋
1
=
𝜕

𝜕𝑡
, 𝑋

2
=
𝜕

𝜕𝑥
,

𝑋
3
=
𝜕

𝜕𝑦
, 𝑋

4
= 𝑦
𝜕

𝜕𝑥
− 2𝑐𝑡
𝜕

𝜕𝑦
,

𝑋
5
= − 6𝑑𝑡

𝜕

𝜕𝑡
+ (−2𝑑𝑥 − 4𝑡𝑐𝑑 + 𝑎

2
𝑡)
𝜕

𝜕𝑥

− 4𝑑𝑦
𝜕

𝜕𝑦
+ (2𝑑𝑢 + 𝑎)

𝜕

𝜕𝑢
.

(79)

Only the Lie symmetries 𝑋
1
, 𝑋
2
, and 𝑋

3
are associated with

the conserved vector 𝑇
4
when 𝑓(𝑡) = 1. By using their

combination as we have done in Section 3, and with the aid
of 𝑇
4
, we obtain

(−𝛽𝛾 − 𝑐𝛾
2
+ 𝛼 − 𝑐)𝑤 −

𝑎

2
𝑤
2
− 𝑏𝑤
𝑛𝑛
−
𝑑

3
𝑤
3
= 𝑘
5
𝑛 + 𝑘
6
.

(80)

A particular solution of (80) can be found for the case 𝑘
5
= 0

and is given by

±∫
6𝑏

√−6𝑏 (6 (𝛽𝛾 + 𝑐𝛾
2
− 𝛼 + 𝑐)𝑤

2
+ 2𝑎𝑤

3
+ 𝑑𝑤
4
− 12𝑘

6
𝑤 − 6𝑏𝑐

5
)

𝑑𝑤 − 𝑛 − 𝑐
6
= 0, (81)

where 𝑛 = 𝛾𝑦 − 𝛾𝛽𝑡 − 𝑥 + 𝛼𝑡, 𝑤 = 𝑢.
A class of solitary wave solutions were reported in [17]

using (80), whereas the above solution is not reported there.

6. Conclusions

The generalized double reduction theorem provides a power-
ful tool in constructing reduced forms and exact solutions. It
enables a systematic way to find not only the transformations
providing traveling wave solutions but also other types of
transformations. These transformations reduce a nonlinear
system of 𝑞th-order PDEs with 𝑛 independent and𝑚 depen-
dent variables to a nonlinear system of (𝑞 − 1)th-order ODEs
provided that in every reduction at least one symmetry is
associated with a nontrivial conserved vector. The reduced
ODE can be solved either analytically or numerically to

derive exact or approximate solutions. It is interesting that
the transformations yielding travelingwave solutions can give
sometimes more than one reduced form, and one can use the
simple one to find exact solution.

The Lie symmetries, conservation laws, reduced forms
and new exact solutions of (2 + 1) dimensional ZK, GKP,
and MKP equations were derived. First of all ZK equation
was considered, and the Lie symmetries and conservation
laws were constructed. Multiplier approach yielded three
conserved vectors. The symmetry conservation laws rela-
tionship was used to determine symmetries associated with
the conserved vectors. Three symmetries were associated
with the conserved vector 𝑇

3
if 𝑓(𝑦) = 1. The generalized

double reduction theorem was applied twice to ZK equation
to convert it to a second-order ordinary differential equation
(41). Thus third-order (2 + 1) dimensional ZK equation was
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Table 3: Multipliers and conserved vectors for (78).

Multipliers Conserved vector

Λ
1
=
1

6𝑐
[−𝑓
𝑡
𝑦
3
+ 6𝑐𝑓 (𝑡) 𝑥𝑦]

𝑇
𝑡

1
=
1

6𝑐
[−𝑓
𝑡
𝑦
3
+ 6𝑐𝑓 (𝑡) 𝑥𝑦] 𝑢

𝑥

𝑇
𝑥

1
= −
1

6𝑐
𝑦𝑓 (𝑡) (−6𝑑𝑐𝑥𝑢

2
𝑢
𝑥
+ 2𝑑𝑐𝑢

3
− 6𝑎𝑐𝑥𝑢𝑢

𝑥
+ 3𝑐𝑎𝑢

2
+ 6𝑏𝑐𝑢

𝑥𝑥
+ 6𝑐
2
𝑢 − 6𝑐

2
𝑥𝑢
𝑥
− 6𝑏𝑐𝑥𝑢

𝑥𝑥𝑥
)

+
1

6𝑐
𝑓
𝑡𝑡
𝑦
3
𝑢 −
1

6𝑐
𝑦𝑓
𝑡
(𝑑𝑦
2
𝑢
2
𝑢
𝑥
+ 𝑎𝑦
2
𝑢𝑢
𝑥
+ 6𝑐𝑥𝑢 + 𝑐𝑦

2
𝑢
𝑥
+ 𝑏𝑦
2
𝑢
𝑥𝑥𝑥
)

𝑇
𝑦

1
= 𝑓 (𝑡) (−𝑐𝑥𝑢 + 𝑐𝑥𝑦𝑢

𝑦
) + 𝑓
𝑡
(
1

2
𝑦
2
𝑢 −
1

6
𝑦
3
𝑢
𝑦
)

Λ
2
=
1

2𝑐
[−𝑓
𝑡
𝑦
2
+ 2𝑐𝑥𝑓 (𝑡)]

𝑇
𝑡

2
= −
1

2𝑐
𝑢
𝑥
(𝑓
𝑡
𝑦
2
− 2𝑓 (𝑡) 𝑐𝑥)

𝑇
𝑥

2
= −
1

6𝑐
𝑓 (𝑡) (−6𝑑𝑐𝑥𝑢

2
𝑢
𝑥
+ 2𝑑𝑐𝑢

3
− 6𝑎𝑐𝑥𝑢𝑢

𝑥
+ 3𝑐𝑎𝑢

2
+ 6𝑏𝑐𝑢

𝑥𝑥
+ 6𝑐
2
𝑢 − 6𝑐

2
𝑥𝑢
𝑥
− 6𝑏𝑐𝑥𝑢

𝑥𝑥𝑥
)

+
1

2𝑐
𝑓
𝑡𝑡
𝑦
2
𝑢 −
1

6𝑐
𝑓
𝑡
(6𝑐𝑥𝑢 + 3𝑐𝑦

2
𝑢
𝑥
+ 3𝑏𝑦

2
𝑢
𝑥𝑥𝑥
+ 3𝑑𝑦

2
𝑢
2
𝑢
𝑥
+ 3𝑎𝑦

2
𝑢𝑢
𝑥
)

𝑇
𝑦

2
= 𝑓
𝑡
(𝑦𝑢 −
1

2
𝑦
2
𝑢
𝑦
) + 𝑓(𝑡)𝑐𝑥𝑢

𝑦

Λ
3
= 𝑦𝑓(𝑡)

𝑇
𝑡

3
= 𝑓(𝑡)𝑦𝑢

𝑥

𝑇
𝑥

3
= 𝑦𝑓 (𝑡) (𝑑𝑢

2
𝑢
𝑥
+ 𝑎𝑢𝑢

𝑥
+ 𝑐𝑢
𝑥
+ 𝑏𝑢
𝑥𝑥𝑥
) − 𝑦𝑓

𝑡
𝑢

𝑇
𝑦

3
= −𝑓(𝑡)𝑐𝑢 + 𝑓(𝑡)𝑐𝑦𝑢

𝑦

Λ
4
= 𝑓(𝑡)

𝑇
𝑡

4
= 𝑓(𝑡)𝑢

𝑥

𝑇
𝑥

4
= 𝑓 (𝑡) [𝑑𝑢

2
𝑢
𝑥
+ 𝑎𝑢𝑢

𝑥
+ 𝑐𝑢
𝑥
+ 𝑏𝑢
𝑥𝑥𝑥
] − 𝑓
𝑡
𝑢

𝑇
𝑦

4
= 𝑓(𝑡)𝑐𝑢

𝑦

reduced to a second-order ordinary differential equation in
terms of canonical variables. Furthermore, one implicit solu-
tion was found for (41) which constituted the exact solution
of ZK equation. The Sine-Cosine method was applied to the
reduced second-order ODE (41), and two explicit solutions
were computed for ZK equation. Likewise, symmetries 𝑋

1
,

𝑋
2
, and𝑋

3
were associated with the conserved vector 𝑇

2
and

reduced conserved form of ZK equation was derived. One
implicit solution was constructed usingMaple, whereas same
explicit solutions were obtained as in the previous case. The
symmetry 𝑋

5
was associated with the conserved vector 𝑇

3
,

and ZK equation was reduced to second-order system (58).
It was not possible to further reduce system (58) because it
does not admit any symmetry associated with it, however one
can apply approximate methods or numerical techniques to
compute the approximate solutions.

The Lie symmetries and conservation laws for GKP
equation were established. The GKP equation was reduced
to a third-order ODE (68), and on integration it was further
reduced to a second-order ODE (69). An implicit solution
for (70) was found for GKP equation. Two explicit solutions
of GKP equation were derived utilizing the first integral
method. For MKP equation, we derived the Lie symmetries,
conservation laws, reduced form, and one implicit solution.

The solutions found here are new and not found in litera-
ture. Due to the lack of experimental basis, the derived solu-
tions cannot be interpreted physically but in applied mathe-
matics these will play a vital role for numerical simulations.
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