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A ratio-dependent predator-prey model with two time delays is studied. By means of an iteration technique, sufficient conditions
are obtained for the global attractiveness of the positive equilibrium. By comparison arguments, the global stability of the semitrivial
equilibrium is addressed. By using the theory of functional equation and Hopf bifurcation, the conditions on which positive
equilibrium exists and the quality of Hopf bifurcation are given. Using a global Hopf bifurcation result of Wu (1998) for functional
differential equations, the global existence of the periodic solutions is obtained. Finally, an example for numerical simulations is
also included.

1. Introduction

The main purpose of this paper is to investigate the bifurca-
tion phenomena from the delays for the following predator-
prey system:

𝑥̇ (𝑡) = 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡) −

𝑎

12
𝑥 (𝑡) 𝑦 (𝑡 − 𝜏

2
)

𝑚𝑦

2
(𝑡 − 𝜏

2
) + 𝑥

2
(𝑡)

] ,

̇𝑦 (𝑡) =

𝑎

21
𝑥

2
(𝑡 − 𝜏

1
) 𝑦 (𝑡)

𝑚𝑦

2
(𝑡) + 𝑥

2
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1
)

− 𝑟

2
𝑦 (𝑡) ,

(1)

where 𝑥(𝑡) and 𝑦(𝑡) stand for the population (or den-
sity) of the prey and the predator at time 𝑡, respectively.
From the biological sense, we assume that 𝑥2 + 𝑦2 ̸= 0.
𝑟

1
, 𝑟

2
, 𝑎

11
, 𝑎

12
, 𝑎

21
, and 𝑚 are positive constants, in which

𝑟

1
denotes the intrinsic growth rate of the prey, 𝑎

11
is

the intraspecific competition rate of the prey, 𝑎
12

is the
capturing rate of the predator, 𝑎

21
/𝑎

12
describes the efficiency

of the predator in converting consumed prey into predator
offspring, 𝑚 is the interference coefficient of the predators,
and 𝑟

2
is the predator mortality rate.The delay 𝜏

1
≥ 0 denotes

the gestation period of the predator; 𝜏
2
≥ 0 is the hunting

delay of the predator to prey.

This model is labeled “ratio-dependent,” which means
that the functional and numerical responses depend on the
densities of both prey andpredators, especiallywhenpredator
has to search for food. Such a functional response is called a
ratio-dependent response function (see [1] for more details).
In system (1), the ratio-dependent response function is of the
form 𝑔(𝑥/𝑦) = 𝑐(𝑥/𝑦)2/(𝑚 + (𝑥/𝑦)2) = 𝑐𝑥2/(𝑚𝑦2 + 𝑥2).

The ratio-dependent predator-prey model has been stud-
ied by several researchers recently and very rich dynamics
have been observed [2–5]. For example, Xu et al. [4] studied a
delayed ratio-dependent predator-prey model with the same
ratio-dependent response function of system (1). Bymeans of
an iteration technique, they obtained the sufficient conditions
for the global attractiveness of the positive equilibrium. By
comparison arguments, they proved the global stability of the
semitrivial equilibrium. Finally using the theory of functional
equation and Hopf bifurcation, they gave the condition
on which positive equilibrium exists and the formulae to
determine the quality of Hopf bifurcation. But in their work,
the global continuation of local Hopf bifurcation was not
mentioned.

In general, periodic solutions through the Hopf bifurca-
tion in delay differential equations are local for the values
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of parameters which are only in a small neighborhood of
the critical values (see, e.g., [6, 7]). Therefore we would like
to know if these nonconstant periodic solutions obtained
through local bifurcation can continue for a large range of
parameter values. Recently, a great deal of research has been
devoted to the topics [8–12]. One of the methods used in
them is the global Hopf bifurcation theorem by Wu [13]. For
example, Song et al. [12] studied a predator-prey system with
two delays, and using the methods in [13], they get the global
existence of periodic solutions.

Motivated by [12], we will study the system (1); special
attention is paid to the global continuation of local Hopf
bifurcation. We suppose that the initial condition for system
(1) takes the form

𝑥 (𝜃) = 𝜙 (𝜃) , 𝑦 (𝜃) = 𝜓 (𝜃) , 𝜙 (𝜃) ≥ 0, 𝜓 (𝜃) ≥ 0,

𝜃 ∈ [−𝜏, 0] (𝜏 = 𝜏1
+ 𝜏

2
) , 𝜙 (0) > 0, 𝜓 (0) > 0,

(2)

where (𝜙(𝜃), 𝜓(𝜃)) ∈ C([−𝜏, 0],R2

+0
), which is the Banach

space of continuous functions mapping the interval [−𝜏, 0]
into R2

+0
, where R2

+0
= {(𝑥, 𝑦) | 𝑥 ≥ 0, 𝑦 ≥ 0}.

By the fundamental theory of functional differential
equations [14], system (1) has a unique solution (𝑥(𝑡), 𝑦(𝑡))
satisfying initial condition (2).

The rest of the paper is organized as follows. In Section 2,
we show the positivity and the boundedness of solutions
of system (1) with initial condition (2). In Section 3, we
study the existence of Hopf bifurcation for system (1) at the
positive equilibrium. In Section 4, using the normal form
theory and the center manifold reduction, explicit formulae
are derived to determine the direction of bifurcation and
the stability and other properties of bifurcating periodic
solutions. In Section 5, by means of an iteration technique,
sufficient conditions are obtained for the global attractiveness
of the positive equilibrium. In Section 6, we consider the
global existence of bifurcating periodic solutions and give
some numerical simulations. In Section 7, a brief discussion
is given.

2. Positivity and Boundedness

In this section, we study the positivity and boundedness of
solutions of system (1) with initial conditions (2).

Theorem 1. Solutions of system (1) with initial condition (2)
are positive for all 𝑡 ≥ 0.

Proof. Assume (𝑥(𝑡), 𝑦(𝑡)) to be a solution of system (1) with
initial condition (2). Let us consider 𝑦(𝑡) for 𝑡 ≥ 0. It follows
from the second equation of system (1) that

𝑦 (𝑡) = 𝑦 (0) 𝑒

∫
𝑡

0
((𝑎
21
𝑥
2
(𝑠−𝜏
1
)/𝑚𝑦
2
(𝑠)+𝑥
2
(𝑠−𝜏
1
))−𝑟
2
)𝑑𝑠
;

(3)

then, from initial condition (2), we have 𝑦(𝑡) > 0, for 𝑡 ≥ 0.
We derive from the first equation of system (1) that

𝑥 (𝑡) = 𝑥 (0) 𝑒

∫
𝑡

0
(𝑟
1
−𝑎
11
𝑥(𝑠)−(𝑎

12
𝑥(𝑠)𝑦(𝑠−𝜏

2
)/𝑚𝑦
2
(𝑠−𝜏
2
)+𝑥
2
(𝑠)))𝑑𝑠

;

(4)

that is, 𝑥(𝑡) > 0 for 𝑡 ≥ 0. This ends the proof.

For the following discussion of boundedness, we first
consider the following ordinary differential equation:

𝑢̇ =

𝑎

21
𝐴

2

1
𝑢 (𝑡)

𝑚𝑢

2
(𝑡) + 𝐴

2

1

− 𝑟

2
𝑢 (𝑡) , 𝑢 (0) > 0,

(5)

where 𝑎
21
, 𝑟

2
, 𝐴

1
, and𝑚 are positive constants. FromLemma

2.1 in [5], it is easy to verify the following result.

Lemma 2. If 𝑎
21
< 𝑟

2
, the trivial equilibrium 𝑢

0
= 0 of

(5) is globally stable. If 𝑎
21
> 𝑟

2
, then (5) admits a unique

positive equilibrium 𝑢∗ = √(𝑎
21
− 𝑟

2
)/𝑚𝑟

2
𝐴

1
which is globally

asymptotically stable in Λ = {𝑢 | 𝑢 ≥ 0}.

Theorem 3. Positive solutions of system (1) with initial condi-
tion (2) are ultimately bounded.

Proof. Let (𝑥(𝑡), 𝑦(𝑡)) be a positive solution of system (1) with
initial condition (2). From the first equation of system (1), we
have

𝑥̇ (𝑡) ≤ 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡)] , (6)

which yields

lim sup
𝑡→+∞

𝑥 (𝑡) ≤

𝑟

1

𝑎

11

; (7)

hence, for 𝜖 > 0 sufficiently small, there is a 𝑇
1
> 0 such that

if 𝑡 > 𝑇
1
, 𝑥(𝑡) < (𝑟

1
/𝑎

11
) + 𝜖.

We now consider the boundedness of 𝑦(𝑡). If 𝑎
21
≤ 𝑟

2
, we

derive from the second equation of system (1) that

̇𝑦 (𝑡) ≤ (𝑎

21
− 𝑟

2
) 𝑦 (𝑡) ≤ 0; (8)

from monotone bounded theorem, it is easy to show that
lim

𝑡→+∞
𝑦(𝑡) ≤ 𝑦(0).

Therefore, we assume below that 𝑎
21
> 𝑟

2
. We derive from

the second equation of system (1) that, for 𝑡 > 𝑇
1
+ 𝜏,

̇𝑦 (𝑡) ≤

𝑎

21
(𝑟

1
/𝑎

11
+ 𝜖)

2

𝑦 (𝑡)

𝑚𝑦

2
(𝑡) + (𝑟

1
/𝑎

11
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2
− 𝑟

2
𝑦 (𝑡) ; (9)

noting that 𝑎
21
> 𝑟

2
, by Lemma 2, a comparison argument

shows that

lim sup
𝑡→+∞

𝑦 (𝑡) ≤ √

𝑎

21
− 𝑟

2

𝑚𝑟

2

(

𝑟

1

𝑎

11

+ 𝜖) . (10)

This completes the proof.

3. Local Stability and Hopf Bifurcation

In this section, we discuss the local stability of the positive
equilibrium and the semitrivial equilibrium of system (1) and
establish the existence of Hopf bifurcation at the positive
equilibrium.
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It is easy to show that system (1) always has a semitrivial
equilibrium 𝐸

1
(𝑟

1
/𝑎

11
, 0). Further, if the following condition

holds:

(H1) 𝑟2
1
𝑎
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21
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12
𝑟

2
(𝑎

21
− 𝑟

2
) > 0,

then system (1) has a unique positive equilibrium 𝐸∗
(𝑥

∗
, 𝑦

∗
),

where

𝑥

∗
=

𝑟

1
𝑎

21
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2
𝑎

12
ℎ
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11
𝑎

21
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∗
, (11)

where

ℎ = √

𝑎

21
− 𝑟

2

𝑚𝑟

2

. (12)

For convenience, let us introduce new variables 𝑋(𝑡) =
𝑥(𝑡 − 𝜏

1
), 𝑌(𝑡) = 𝑦(𝑡), 𝜏 = 𝜏

1
+ 𝜏

2
, rewriting 𝑋(𝑡), 𝑌(𝑡) as

𝑥(𝑡), 𝑦(𝑡), so that system (1) can be written as the following
system with a single delay:

𝑥̇ (𝑡) = 𝑥 (𝑡) [𝑟
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(13)

Clearly, system (13) has the same equilibrium as system (1).
The characteristic equation of system (13) at the semitriv-

ial equilibrium 𝐸
1
(𝑟

1
/𝑎

11
, 0) is of the form

(𝜆 + 𝑟

1
) (𝜆 + 𝑟

2
− 𝑎

21
) = 0. (14)

Clearly, (14) always has a root 𝜆 = −𝑟
1
, and if 𝑎

21
< 𝑟

2
, the

other root of (14) is negative; if 𝑎
21
> 𝑟

2
, the other root of (14)

is positive. Hence the semitrivial equilibrium 𝐸
1
(𝑟

1
/𝑎

11
, 0) is

locally asymptotically stable (unstable) if 𝑎
21
< 𝑟

2
(𝑎

21
> 𝑟

2
).

The characteristic equation of system (13) at the positive
equilibrium 𝐸∗

(𝑥

∗
, 𝑦

∗
) is of the form

𝜆
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− 𝑟

2
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,

𝑝

2
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2
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2
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𝑎

3
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(16)

where ℎ is defined as (12).
When 𝜏 = 0, (15) becomes

𝜆

2
+ 𝑝

0
𝜆 + 𝑝

1
+ 𝑝

2
= 0. (17)

It is easy to show that

𝑝

1
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2
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1
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12
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2
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𝑎

2
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. (18)

Obviously, if (H1) holds, then 𝑝
1
+𝑝

2
> 0. Hence, the positive

equilibrium 𝐸

∗
(𝑥

∗
, 𝑦

∗
) of system (13) is locally stable when

𝜏 = 0 if

𝑟

1
>

2𝑎

12
𝑟

2

2
ℎ

𝑎

2

21

−

2𝑟

2
(𝑎

21
− 𝑟

2
)

𝑎

21

, (19)

and it is unstable when 𝜏 = 0 if

𝑟

1
<

2𝑎

12
𝑟

2

2
ℎ

𝑎

2

21

−

2𝑟

2
(𝑎

21
− 𝑟

2
)

𝑎

21

. (20)

We assume that 𝜆 = 𝑖𝜔(𝜔 > 0) is a root of (15); this is the
case if and only if 𝜔 satisfies the following equation:

−𝜔

2
+ 𝑝

0
𝜔𝑖 + 𝑝

1
+ 𝑝

2
𝑒

−𝑖𝜔𝜏
= 0. (21)

Separating the real and imaginary parts, we obtain the
following system for 𝜔:

𝑝

2
cos𝜔𝜏 = 𝜔2

− 𝑝

1
,

𝑝

2
sin𝜔𝜏 = 𝑝

0
𝜔.

(22)

It follows that

𝜔

4
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2

0
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1
) 𝜔

2
+ 𝑝

2

1
− 𝑝

2

2
= 0. (23)

Letting 𝑧 = 𝜔2, (42) becomes

𝑧

2
+ (𝑝

2

0
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1
) 𝑧 + 𝑝

2

1
− 𝑝

2

2
= 0. (24)

By a direct calculation, it follows that

𝑝

2
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1
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−
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2
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𝑎
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)

2

+ (
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2
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2
)

𝑎
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)

2

> 0,

𝑝

1
− 𝑝

2
=

2𝑟

2
(𝑎
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2
)

𝑎

21

(𝑟

1
−
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𝑟

2

2
ℎ + 𝑎

12
𝑎
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𝑟

2
ℎ

𝑎

2
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) .
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Note that if (H1) holds, then 𝑝
1
+ 𝑝

2
> 0. Hence if (H1) and

𝑝

1
− 𝑝

2
> 0 hold, (24) has no positive roots. Accordingly, if

(H1) and 𝑝
1
− 𝑝

2
> 0 hold, the positive equilibrium 𝐸

∗ of
system (13) exists and is locally asymptotically stable for all
𝜏 ≥ 0. If (H1) and 𝑝

1
− 𝑝

2
< 0 hold, then (24) has a unique

positive root 𝜔
0
, where

𝜔

2

0
=

1

2

(2𝑝

1
− 𝑝

2

0
+
√
𝑝

4

0
− 4𝑝

2

0
𝑝

1
+ 4𝑝

2

2
) . (26)

Then, we can get

𝜏

𝑛
=

1

𝜔

0

arccos
𝜔

2

0
− 𝑝

1

𝑝

2

+

2𝑛𝜋

𝜔

0

, 𝑛 = 0, 1, 2, . . . ,
(27)

at which (15) admits a pair of purely imaginary roots of the
form ±𝜔

0
.

Let 𝑝
1
− 𝑝

2
< 0 and 𝜏

0
be defined above. Denote

𝜆 (𝜏) = 𝛼 (𝜏) + 𝑖𝜔 (𝜏) (28)

the root of (15) satisfying

𝛼 (𝜏

𝑛
) = 0, 𝜔 (𝜏

𝑛
) = 𝜔

0
. (29)

It is not difficult to verify that the following result holds.
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Lemma 4. If (H1) and 𝑝
1
− 𝑝

2
< 0 hold, the transversal

condition (𝑑(Re 𝜆)/𝑑𝜏)|
𝜏=𝜏
𝑛

> 0 holds.

Proof. Differentiating (15) with respect 𝜏, we obtain that

2𝜆

𝑑𝜆

𝑑𝜏

+ 𝑝

0

𝑑𝜆

𝑑𝜏

− 𝑝

2
𝜏𝑒

−𝜆𝜏 𝑑𝜆

𝑑𝜏

= 𝑝

2
𝜆𝑒

−𝜆𝜏
;

(30)

it follows that

(

𝑑𝜆

𝑑𝜏

)

−1

=

2𝜆 + 𝑝

0

−𝜆𝑝

2
𝑒

−𝜆𝜏
−

𝜏

𝜆

; (31)

from (15) and (31), we have

(

𝑑𝜆

𝑑𝜏

)

−1

=

2𝜆 + 𝑝

0

−𝜆 (𝜆

2
+ 𝑝

0
𝜆 + 𝑝

1
)

−

𝜏

𝜆

. (32)

We therefore derive that

sign{ 𝑑 (Re 𝜆)
𝑑𝜏

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜏=𝜏
𝑛

}

= sign{Re(𝑑𝜆
𝑑𝜏

)

−1󵄨
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜏=𝜏
𝑛

}

= sign{Re[
2𝜆 + 𝑝

0

−𝜆 (𝜆

2
+ 𝑝

0
𝜆 + 𝑝

1
)

]

𝜏=𝜏
𝑛

}

= sign{
𝜔

2

0
(𝑝

2

0
− 2𝑝

1
+ 𝜔

2

0
)

𝜔

4

0
𝑝

2

0
+ (𝜔

0
𝑝

1
− 𝜔

3

0
)

2
} .

(33)

Noting that 𝑝2
0
−2𝑝

1
> 0, hence, if (H1) and 𝑝

1
−𝑝

2
< 0 hold,

we have (𝑑(Re 𝜆)/𝑑𝜏)|
𝜏=𝜏
𝑛

> 0. Accordingly, the transversal
condition holds and a Hopf bifurcation occurs at 𝜏 = 𝜏

𝑛
.

By Lemma B in [5], we have the following results.

Theorem 5. Suppose (H1) holds and let ℎ be defined in (12),
for system (13), one has the following.

(i) If 𝑟
1
> (2𝑎

12
𝑟

2

2
ℎ/𝑎

2

21
) − (2𝑟

2
(𝑎

21
− 𝑟

2
)/𝑎

21
) and 𝑟

1
>

(4𝑎

12
𝑟

2

2
ℎ+𝑎

12
𝑎

21
𝑟

2
ℎ)/𝑎

2

21
, then the positive equilibrium

𝐸

∗ is locally asymptotically stable for all 𝜏 ≥ 0.
(ii) If 𝑟

1
> (2𝑎

12
𝑟

2

2
ℎ/𝑎

2

21
) − (2𝑟

2
(𝑎

21
− 𝑟

2
)/𝑎

21
) and 𝑟

1
<

(4𝑎

12
𝑟

2

2
ℎ + 𝑎

12
𝑎

21
𝑟

2
ℎ)/𝑎

2

21
, then there exists a positive

number 𝜏
0
such that the positive equilibrium 𝐸

∗ is
locally asymptotically stable if 𝜏 ∈ [0, 𝜏

0
) and is

unstable if 𝜏 > 𝜏

0
. Further, system (13) undergoes a

Hopf bifurcation at 𝐸∗ when 𝜏 = 𝜏
0
.

4. Direction and Stability of Hopf Bifurcations

In Section 3,we have shown that system (13) admits a periodic
solution bifurcated from the positive equilibrium 𝐸

∗ at the
critical value 𝜏

0
. In this section, we derive explicit formulae

to determine the direction of Hopf bifurcations and stability
of periodic solutions bifurcated from the positive equilibrium

𝐸

∗ at critical value 𝜏
0
by using the normal form theory and the

center manifold reduction (see, e.g., [15, 16]).
Set 𝜏 = 𝜏

0
+ 𝜇; then 𝜇 = 0 is a Hopf bifurcation value of

system (13). Thus we can consider the problem above in the
phase spaceC = C([−𝜏, 0],R2

).
Let 𝑢

1
(𝑡) = 𝑥(𝑡) − 𝑥

∗
, 𝑢

2
(𝑡) = 𝑦(𝑡) − 𝑦

∗ . System (13) is
transformed into

𝑢̇

1
(𝑡) = 𝑐

1
𝑢

1
(𝑡) + 𝑐

4
𝑢

2
(𝑡 − 𝜏)

+ ∑

𝑖+𝑗≥2

1

𝑖!𝑗!

𝑓

(1)

𝑖𝑗
𝑢

𝑖

1
(𝑡) 𝑢

𝑗

2
(𝑡 − 𝜏) ,

𝑢̇

2
(𝑡) = 𝑐

2
𝑢

1
(𝑡) + 𝑐

3
𝑢

2
(𝑡) + ∑

𝑖+𝑗≥2

1

𝑖!𝑗!

𝑓

(2)

𝑖𝑗
𝑢

𝑖

1
(𝑡) 𝑢

𝑗

2
(𝑡) ,

(34)

where

𝑐

1
= − 𝑟

1
+

2𝑎

12
𝑟

2

2
ℎ

𝑎

2

21

, 𝑐

2
=

2𝑟

2
ℎ (𝑎

21
− 𝑟

2
)

𝑎

21

,

𝑐

3
= − 𝑟

2
+

𝑟

2
(2𝑟

2
− 𝑎

21
)

𝑎

21

, 𝑐

4
= −

𝑎

12
𝑟

2
(2𝑟

2
− 𝑎

21
)

𝑎

2

21

,

𝑓

(1)
= 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡) −

𝑎

12
𝑥 (𝑡) 𝑦 (𝑡 − 𝜏)

𝑚𝑦

2
(𝑡 − 𝜏) + 𝑥

2
(𝑡)

] ,

𝑓

(2)
=

𝑎

21
𝑥

2
(𝑡) 𝑦 (𝑡)

𝑚𝑦

2
(𝑡) + 𝑥

2
(𝑡)

− 𝑟

2
𝑦 (𝑡) ,

𝑓

(1)

𝑖𝑗
=

𝜕

𝑖+𝑗
𝑓

(1)

𝜕𝑥

𝑖
𝜕𝑦(𝑡 − 𝜏)

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨(𝑥
∗
,𝑦
∗
)

,

𝑓

(2)

𝑖𝑗
=

𝜕

𝑖+𝑗
𝑓

(2)

𝜕𝑥

𝑖
𝜕𝑦

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨(𝑥
∗
,𝑦
∗
)

, 𝑖, 𝑗 ≥ 0.

(35)

For the simplicity of notations, we rewrite (34) as

𝑢̇ (𝑡) = 𝐿

𝜇
𝑢

𝑡
+ 𝑓 (𝜇, 𝑢

𝑡
) , (36)

where 𝑢(𝑡) = (𝑢
1
(𝑡), 𝑢

1
(𝑡))

𝑇
∈ R2, 𝑢

𝑡
(𝜃) ∈ C is defined by

𝑢

𝑡
(𝜃) = 𝑢(𝑡 + 𝜃), and 𝐿

𝜇
: C → R,𝑓 : R ×C → R are given,

respectively, by

𝐿

𝜇
𝜙 = [

𝑐

1
0

𝑐

2
𝑐

3

] 𝜙 (0) + [

0 𝑐

4

0 0

] 𝜙 (−𝜏) , (37)

𝑓 (𝜇, 𝜙) =

[

[

[

[

∑

𝑖+𝑗≥2

1

𝑖!𝑗!

𝑓

(1)

𝑖𝑗
𝜙

𝑖

1
(𝑡) 𝜙

𝑗

2
(𝑡 − 𝜏)

∑

𝑖+𝑗≥2

1

𝑖!𝑗!

𝑓

(2)

𝑖𝑗
𝜙

𝑖

1
(𝑡) 𝜙

𝑗

2
(𝑡)

]

]

]

]

. (38)

By the Riesz representation theorem, there exists a function
𝜂(𝜃, 𝜇) of bounded variation for 𝜃 ∈ [−𝜏, 0] such that

𝐿

𝜇
𝜙 = ∫

0

−𝜏

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , for 𝜙 ∈ C. (39)



Abstract and Applied Analysis 5

In fact, we can choose

𝜂 (𝜃, 𝜇) = [

𝑐

1
0

𝑐

2
𝑐

3

] 𝛿 (𝜃) + [

0 𝑐

4

0 0

] 𝛿 (𝜃 + 𝜏) , (40)

where 𝛿 is the Dirac delta function. For 𝜙 ∈ C1
([−𝜏, 0],R2

),
define

𝐴 (𝜇) 𝜙 =

{

{

{

{

{

{

{

𝑑𝜙 (𝜃)

𝑑𝜃

,
𝜃 ∈ [−𝜏, 0) ,

∫

0

−𝜏

𝑑𝜂 (𝑠, 𝜇) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {

0, 𝜃 ∈ [−𝜏, 0) ,

𝑓 (𝜇, 𝜙) , 𝜃 = 0.

(41)

Then when 𝜃 = 0, system (36) is equivalent to

𝑢̇

𝑡
= 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (42)

where 𝑢
𝑡
(𝜃) = 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−𝜏, 0].

For 𝜓 ∈ C1
([0, 𝜏], (R2

)

∗
), define

𝐴

∗
𝜓 (𝑠) =

{

{

{

{

{

{

{

{

{

−

𝑑𝜓 (𝑠)

𝑑𝑠

, 𝑠 ∈ (0, 𝜏] ,

∫

0

−𝜏

𝑑𝜂

𝑇
(𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0,

(43)

and a bilinear inner product,

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−𝜏

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(44)

where 𝜂(𝜃) = 𝜂(𝜃, 0) and (⋅) denotes the conjugate complex of
(⋅).Then𝐴(0) and𝐴∗ are adjoint operators. By the discussion
in Section 3, we know that ±𝑖𝜔

0
are eigenvalues of𝐴(0).Thus,

they are also eigenvalues of 𝐴∗. We first need to compute the
eigenvector of 𝐴(0) and 𝐴∗ corresponding to 𝑖𝜔

0
and −𝑖𝜔

0
,

respectively.
Suppose that 𝑞(𝜃) = (1, 𝜌)𝑇𝑒𝑖𝜔0𝜃 is the eigenvector of𝐴(0)

corresponding to 𝑖𝜔
0
. Then 𝐴(0)𝑞(𝜃) = 𝑖𝜔

0
𝑞(𝜃). From the

definition of 𝐴(0), it is easy to get 𝜌 = (𝑖𝜔
0
− 𝑐

3
)/𝑐

2
.

Similarly, let 𝑞∗(𝑠) = 𝐷(1, 𝜌∗)𝑒−𝑖𝜔0𝑠 be the eigenvector of
𝐴

∗ corresponding to −𝑖𝜔
0
. By the definition of 𝐴∗, we can

compute 𝜌∗ = (−𝑖𝜔
0
− 𝑐

1
)/𝑐

2
.

In order to assure ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, we need to determine
the value of𝐷. From (44) and the definitions of 𝑞 and 𝑞∗, we
have𝐷 = 1/(1 + 𝜌∗𝜌 + 𝑐

4
𝜌𝜏

0
𝑒

𝑖𝜏
0
𝜔
0
) such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1

and ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.
In the following, we first compute the coordinates to

describe the center manifold 𝐶
0
at 𝜇 = 0. Define

𝑧 (𝑡) = ⟨𝑞

∗
, 𝑢

𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑢

𝑡
(𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(45)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

= 𝑊

20
(𝜃)

𝑧

2

2

+𝑊

11
(𝜃) 𝑧𝑧 +𝑊

02
(𝜃)

𝑧

2

2

+𝑊

30
(𝜃)

𝑧

3

6

+ ⋅ ⋅ ⋅ ,

(46)

where 𝑧 and 𝑧 are local coordinates for center manifold 𝐶
0
in

the directions of 𝑞 and 𝑞. Note that𝑊 is real if 𝑢
𝑡
is real. We

consider only real solutions. For the solution 𝑢
𝑡
∈ 𝐶

0
, since

𝜇 = 0, we have

𝑧̇ = 𝜔

0
𝑧 + 𝑖 ⟨𝑞

∗
(𝜃) , 𝑓 (0,𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃)

+2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝜔

0
𝑧 + 𝑞

∗
(0) 𝑓 (0,𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 0)

+ 2Re {𝑧 (𝑡) 𝑞 (0)})

≜ 𝑖𝜔

0
𝑧 + 𝑞

∗
(0) 𝑓

0
(𝑧, 𝑧) = 𝑖𝜔

0
𝑧 + 𝑔 (𝑧, 𝑧) ,

(47)

where
𝑔 (𝑧, 𝑧) = 𝑞

∗
(0) 𝑓

0
(𝑧, 𝑧)

= 𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

+ ⋅ ⋅ ⋅ .

(48)

By (45), we have

𝑢

𝑡
(𝜃) = (𝑢

1𝑡
(𝜃) , 𝑢

2𝑡
(𝜃))

𝑇

= 𝑊(𝑡, 𝜃) + 𝑧𝑞 (𝜃) + 𝑧𝑞 (𝜃) .

(49)
It follows from (38) and (48) that

𝑔

20
= 2𝐷[

1

2

𝑓

(1)

20
𝜌

2
+ 𝑓

(1)

11
𝜌𝑒

−𝑖𝜏
0
𝜔
0
+

1

2

𝑓

(1)

02
𝑒

−2𝑖𝜏
0
𝜔
0

+ 𝜌

∗
(

1

2

𝑓

(2)

20
𝜌

2
+ 𝑓

(2)

11
𝜌 +

1

2

𝑓

(2)

02
)] ,

𝑔

11
= 𝐷 [𝑓

(1)

20
𝜌𝜌 + 𝑓

(1)

11
(𝜌𝑒

𝑖𝜏
0
𝜔
0
+ 𝜌𝑒

−𝑖𝜏
0
𝜔
0
)

+𝑓

(1)

02
+ 𝜌

∗
(𝑓

(2)

20
𝜌𝜌 + 𝑓

(2)

11
(𝜌 + 𝜌) + 𝑓

(2)

02
)] ,

𝑔

02
= 2𝐷[

1

2

𝑓

(1)

20
𝜌

2
+ 𝑓

(1)

11
𝜌𝑒

𝑖𝜏
0
𝜔
0

+

1

2

𝑓

(1)

02
𝑒

2𝑖𝜏
0
𝜔
0
+ 𝜌

∗
(

1

2

𝑓

(2)

20
𝜌

2

+𝑓

(2)

11
𝜌 +

1

2

𝑓

(2)

02
)] ,

𝑔

21
= 2𝐷[

1

2

𝑓

(1)

20
(2𝜌𝑊

(1)

11
(0) + 𝜌𝑊

(1)

20
(0))

+ 𝑓

(1)

11
(𝜌𝑊

(2)

11
(−𝜏

0
) +

1

2

𝜌𝑊

(2)

20
(−𝜏

0
)

+

1

2

𝑊

(1)

20
(0) 𝑒

𝑖𝜏
0
𝜔
0
+𝑊

(1)

11
(0) 𝑒

−𝑖𝜏
0
𝜔
0
)

+

1

2

𝑓

(1)

02
(2𝑊

(2)

11
(−𝜏

0
) 𝑒

−𝑖𝜏
0
𝜔
0
+𝑊

(2)

20
(−𝜏

0
) 𝑒

𝑖𝜏
0
𝜔
0
)
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+

1

2

𝑓

(1)

21
(𝜌

2
𝑒

𝑖𝜏
0
𝜔
0
+ 2𝜌𝜌𝑒

−𝑖𝜏
0
𝜔
0
)

+

1

2

𝑓

(1)

12
(𝜌𝑒

−2𝑖𝜏
0
𝜔
0
+ 2𝜌)

+

1

2

𝑓

(1)

30
𝜌

2
𝜌 +

1

2

𝑓

(1)

03
𝑒

−𝑖𝜏
0
𝜔
0
]

+ 2𝐷𝜌

∗
[

1

2

𝑓

(2)

20
(2𝜌𝑊

(1)

11
(0) + 𝜌𝑊

(1)

20
(0))

+ 𝑓

(2)

11
(𝜌𝑊

(2)

11
(0) +

1

2

𝜌𝑊

(2)

20
(0)

+

1

2

𝑊

(1)

20
(0) + 𝑊

(1)

11
(0))

+

1

2

𝑓

(2)

02
(2𝑊

(2)

11
(0) + 𝑊

(2)

20
(0))

+

1

2

𝑓

(2)

21
(𝜌

2
+ 2𝜌𝜌)

+

1

2

𝑓

(2)

12
(𝜌 + 2𝜌) +

1

2

𝑓

(2)

30
𝜌

2
𝜌 +

1

2

𝑓

(2)

03
] .

(50)

In order to assure the value of 𝑔
21
, we need to compute

𝑊

20
(𝜃) and𝑊

11
(𝜃). By (42) and (45), we have

̇

𝑊 = 𝑢̇

𝑡
− 𝑧̇𝑞 −

̇

𝑧 𝑞

= {

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (𝜃)} , 𝜃 ∈ [−𝜏

0
, 0) ,

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (𝜃)} + 𝑓

0
, 𝜃 = 0,

≜ 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(51)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻

20
(𝜃)

𝑧

2

2

+ 𝐻

11
(𝜃) 𝑧𝑧 + 𝐻

02
(𝜃)

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(52)

Notice that near the origin on the centermanifold𝐶
0
, we have

̇

𝑊 = 𝑊

𝑧
𝑧̇ + 𝑊

𝑧
̇

𝑧; (53)

thus, we have

(𝐴 − 2𝑖𝜔

𝑘
𝜏

𝑘
𝐼)𝑊

20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴𝑊

11
(𝜃) = −𝐻

11
(𝜃) .

(54)

By (51), for 𝜃 ∈ [−𝜏
0
, 0), we have

𝐻(𝑧, 𝑧, 𝜃) = −𝑞

∗
(0) 𝑓

0
𝑞 (𝜃) − 𝑞

∗
(0) 𝑓

0
𝑞 (𝜃)

= −𝑔𝑞 (𝜃) − 𝑔𝑞 (𝜃) .

(55)

Comparing the coefficients with (51) gives that

𝐻

20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻

11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(56)

From (56), (54), and the definition of 𝐴(0), we can get

̇

𝑊

20
(𝜃) = 2𝑖𝜔

0
𝑊

20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) . (57)

Notice that 𝑞(𝜃) = 𝑞(0)𝑒𝑖𝜔0𝜃; we have

𝑊

20
(𝜃) =

𝑖𝑔

20

𝜔

0

𝑞 (0) 𝑒

𝑖𝜔
0
𝜃
+

𝑖𝑔

02

3𝜔

0

𝑞 (0) 𝑒

−𝑖𝜔
0
𝜃
+ 𝐸

1
𝑒

2𝑖𝜔
0
𝜃
, (58)

where 𝐸
1
= (𝐸

(1)

1
, 𝐸

(2)

1
) ∈ R2 is a constant vector. In the same

way, we can also obtain

𝑊

11
(𝜃) = −

𝑖𝑔

11

𝜔

0

𝑞 (0) 𝑒

𝑖𝜔
0
𝜃
+

𝑖𝑔

11

𝜔

0

𝑞 (0) 𝑒

−𝑖𝜔
0
𝜃
+ 𝐸

2
, (59)

where 𝐸
2
= (𝐸

(1)

2
, 𝐸

(2)

2
) ∈ R2 is also a constant vector. In what

follows, we will compute 𝐸
1
and 𝐸

2
. From the definition of

𝐴(0) and (54), we have

∫

0

−𝜏
0

𝑑𝜂 (𝜃)𝑊

20
(𝜃) = 2𝑖𝜔

0
𝑊

20
(0) − 𝐻

20
(0) , (60)

∫

0

−𝜏
0

𝑑𝜂 (𝜃)𝑊

11
(𝜃) = −𝐻

11
(0) , (61)

where 𝜂(𝜃) = 𝜂(0, 𝜃).
From (51), (58), and (60) and noting that

[𝑖𝜔

0
𝐼 − ∫

0

−𝜏
0

𝑒

𝑖𝜔
0
𝜃
𝑑𝜂 (𝜃)] 𝑞 (0) = 0, (62)

we have

𝐸

(1)

1
=

1

𝐴

1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

1
−𝑐

4
𝑒

−2𝑖𝜔
0
𝜏
0

𝑒

2
2𝑖𝜔

0
− 𝑐

3

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

, 𝐸

(2)

1
=

1

𝐴

1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

2𝑖𝜔

0
− 𝑐

1
𝑒

1

−𝑐

2
𝑒

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

,

(63)

where

𝐴

1
= (2𝑖𝜔

0
− 𝑐

1
) (2𝑖𝜔

0
− 𝑐

3
) − 𝑐

2
𝑐

4
𝑒

−2𝑖𝜔
0
𝜏
0
,

𝑒

1
= 𝑓

(1)

20
𝜌

2
+ 2𝑓

(1)

11
𝜌𝑒

−𝑖𝜏
0
𝜔
0
+ 𝑓

(1)

02
𝑒

−2𝑖𝜏
0
𝜔
0
,

𝑒

2
= 𝑓

(2)

20
𝜌

2
+ 2𝑓

(2)

11
𝜌 + 𝑓

(2)

02
.

(64)

From (52), (59), and (61) and noting that

[−𝑖𝜔

0
𝐼 − ∫

0

−𝜏
0

𝑒

−𝑖𝜔
0
𝜃
𝑑𝜂 (𝜃)] 𝑞 (0) = 0, (65)

we have

𝐸

(1)

2
=

1

𝐴

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

3
−𝑐

4

𝑒

4
−𝑐

3

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

, 𝐸

(2)

2
=

1

𝐴

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

−𝑐

1
𝑒

3

−𝑐

2
𝑒

4

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

, (66)

where

𝐴

2
= 𝑐

1
𝑐

3
− 𝑐

2
𝑐

4
,

𝑒

3
= 𝑓

(1)

20
𝜌𝜌 + 𝑓

(1)

11
(𝜌𝑒

𝑖𝜏
0
𝜔
0
+ 𝜌𝑒

−𝑖𝜏
0
𝜔
0
) + 𝑓

(1)

02
,

𝑒

4
= 𝑓

(2)

20
𝜌𝜌 + 𝑓

(2)

11
(𝜌 + 𝜌) + 𝑓

(2)

02
.

(67)
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Thus, we can determine𝑊
20
(𝜃) and𝑊

11
(𝜃) from (58) and

(59). Furthermore, we can determine each𝑔
𝑖𝑗
.Therefore, each

𝑔

𝑖𝑗
is determined by the parameters and delay in (13). Thus,

we can compute the following values [15]:

𝑐

1
(0) =

𝑖

2𝜔

0
𝜏

0

(𝑔

20
𝑔

11
− 2

󵄨

󵄨

󵄨

󵄨

𝑔

11

󵄨

󵄨

󵄨

󵄨

2

−

1

3

󵄨

󵄨

󵄨

󵄨

𝑔

02

󵄨

󵄨

󵄨

󵄨

2

) +

𝑔

21

2

,

𝜇

2
= −

Re {𝑐
1
(0)}

Re {𝜆󸀠 (𝜏
0
)}

,

𝑇

2
= −

Im {𝑐
1
(0)} + 𝜇

2
Im {𝜆󸀠 (𝜏

0
)}

𝜔

0
𝜏

0

,

𝛽

2
= 2Re {𝑐

1
(0)} ,

(68)

which determine the quantities of bifurcating periodic solu-
tions in the center manifold at the critical value 𝜏

𝑘
; that is,

𝜇

2
determines the directions of the Hopf bifurcation: if 𝜇

2
>

0 (< 0), then theHopf bifurcation is supercritical (subcritical)
and the bifurcation exists for 𝜏 > 𝜏

0
(< 𝜏

0
); 𝛽

2
determines the

stability of the bifurcation periodic solutions: the bifurcating
periodic solutions are stable (unstable) if 𝛽

2
< 0 (> 0); and 𝑇

2

determines the period of the bifurcating periodic solutions:
the period increases (decreases) if 𝑇

2
> 0 (< 0).

5. Global Attractiveness

In this section, following Chaplygin [17], taking into account
the upper and lower solution technique and using monotone
iterative methods [18, 19], we discuss the global attractiveness
of the positive equilibrium 𝐸∗

(𝑥

∗
, 𝑦

∗
) and the global stability

of the semitrivial equilibrium 𝐸

1
(𝑟

1
/𝑎

11
, 0) of system (1),

respectively.

Theorem 6. Suppose (H1) holds and let ℎ be defined above,
then the positive equilibrium𝐸∗

(𝑥

∗
, 𝑦

∗
) of system (1) is globally

attractive provided that the following holds:

(H2) 𝑟
1
> max{𝑎

12
/2√𝑚, (3𝑎

12
/𝑚) + (2𝑎

12
𝑟

2
/𝑎

21
)ℎ},

Proof. Let (𝑥(𝑡), 𝑦(𝑡)) be any positive solution of system (1)
with initial conditions (2).

Let

𝑈

1
= lim sup

𝑡→+∞

𝑥 (𝑡) , 𝑉

1
= lim inf

𝑡→+∞

𝑥 (𝑡) ,

𝑈

2
= lim sup

𝑡→+∞

𝑦 (𝑡) , 𝑉

2
= lim inf

𝑡→+∞

𝑦 (𝑡) .

(69)

Using iteration method, we will proof that 𝑈
1
= 𝑉

1
=

𝑥

∗
, 𝑈

2
= 𝑉

2
= 𝑦

∗.
From the first equation of system (1), we have

𝑥̇ (𝑡) ≤ 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡)] ; (70)

by comparison, it follows that

𝑈

1
= lim sup

𝑡→+∞

𝑥 (𝑡) ≤

𝑟

1

𝑎

11

:= 𝑀

𝑥

1
; (71)

hence, for 𝜖 > 0 sufficiently small, there exists a 𝑇
1
> 0 such

that if 𝑡 > 𝑇
1
, 𝑥(𝑡) ≤ 𝑀

𝑥

1
+ 𝜖.

From the second equation of system (1), we have, for 𝑡 >
𝑇

1
+ 𝜏,

̇𝑦 (𝑡) ≤

𝑎

21
(𝑀

𝑥

1
+ 𝜖)

2

𝑦 (𝑡)

𝑚𝑦

2
(𝑡) + (𝑀

𝑥

1
+ 𝜖)

2
− 𝑟

2
𝑦 (𝑡) . (72)

Consider the following auxiliary equation:

𝑢̇ (𝑡) =

𝑎

21
(𝑀

𝑥

1
+ 𝜖)

2

𝑢 (𝑡)

𝑚𝑢

2
(𝑡) + (𝑀

𝑥

1
+ 𝜖)

2
− 𝑟

2
𝑢 (𝑡) . (73)

Since (H1) holds, by Lemma 2, it follows from (73) that

lim
𝑡→+∞

𝑢 (𝑡) = (𝑀

𝑥

1
+ 𝜖) ℎ, (74)

where ℎ is defined in (12). By comparison, we obtain that

𝑈

2
= lim sup

𝑡→+∞

𝑦 (𝑡) ≤ (𝑀

𝑥

1
+ 𝜖) ℎ; (75)

since this inequality holds true for arbitrary 𝜖 > 0 sufficiently
small, it follows that 𝑈

2
≤ 𝑀

𝑦

1
, where

𝑀

𝑦

1
= 𝑀

𝑥

1
ℎ. (76)

Hence, for 𝜖 > 0 sufficiently small, there is a 𝑇
2
> 𝑇

1
+ 𝜏 such

that if 𝑡 > 𝑇
2
, 𝑦(𝑡) ≤ 𝑀

𝑦

1
+ 𝜖.

For 𝜖 > 0 sufficiently small, noting that𝑚𝑦2(𝑡−𝜏
2
)+𝑥

2
≥

2√𝑚𝑥𝑦(𝑡−𝜏

2
), we derive from the first equation of system (1)

that, for 𝑡 > 𝑇
2
,

𝑥̇ (𝑡) ≥ 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡) −

𝑎

12

2√𝑚

] ; (77)

by comparison, it follows that

𝑉

1
= lim inf

𝑡→+∞

𝑥 (𝑡) ≥

1

𝑎

11

(𝑟

1
−

𝑎

12

2√𝑚

) := 𝑁

𝑥

1
; (78)

hence, for 𝜖 > 0 sufficiently small, there is a 𝑇
3
> 𝑇

2
+ 𝜏, such

that if 𝑡 > 𝑇
3
, 𝑥(𝑡) ≥ 𝑁𝑥

1
− 𝜀.

For 𝜖 > 0 sufficiently small, we derive from the second
equation of system (1) that, for 𝑡 > 𝑇

3
+ 𝜏,

̇𝑦 (𝑡) ≥

𝑎

21
(𝑁

𝑥

1
− 𝜖)

2

𝑦 (𝑡)

𝑚𝑦

2
(𝑡) + (𝑁

𝑥

1
− 𝜖)

2
− 𝑟

2
𝑦 (𝑡) . (79)

Consider the following auxiliary equation:

𝑢̇ (𝑡) =

𝑎

21
(𝑁

𝑥

1
− 𝜖)

2

𝑢 (𝑡)

𝑚𝑢

2
(𝑡) + (𝑁

𝑥

1
− 𝜖)

2
− 𝑟

2
𝑢 (𝑡) . (80)

Since (H1) holds, by Lemma (5), it follows from (80) that

lim
𝑡→+∞

𝑢 (𝑡) = (𝑁

𝑥

1
− 𝜖) ℎ; (81)

by comparison we derive that

𝑉

2
= lim inf

𝑡→+∞

𝑦 (𝑡) ≥ (𝑁

𝑥

1
− 𝜖) ℎ. (82)
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Since this inequality holds true for arbitrary 𝜖 > 0 sufficiently
small, we conclude that 𝑉

2
≥ 𝑁

𝑦

1
, where

𝑁

𝑦

1
= 𝑁

𝑥

1
ℎ. (83)

Therefore, for 𝜖 > 0 sufficiently small, there is a 𝑇
4
> 𝑇

3
+ 𝜏

such that if 𝑡 > 𝑇
4
, 𝑦(𝑡) ≥ 𝑁𝑦

1
− 𝜖.

Again, for 𝜖 > 0 sufficiently small, it follows from the first
equation of system (1) that, for 𝑡 > 𝑇

4
,

𝑥̇ (𝑡) ≤ 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡) −

𝑎

12
(𝑁

𝑥

1
− 𝜖) (𝑁

𝑦

1
− 𝜖)

𝑚(𝑀

𝑦

1
+ 𝜖)

2

+ (𝑀

𝑥

1
+ 𝜖)

2
] ;

(84)

by comparison we derive that

𝑈

1
= lim sup

𝑡→+∞

𝑥 (𝑡) ≤

1

𝑎

11

(𝑟

1
−

𝑎

12
(𝑁

𝑥

1
− 𝜖) (𝑁

𝑦

1
− 𝜖)

𝑚(𝑀

𝑦

1
+ 𝜖)

2

+ (𝑀

𝑥

1
+ 𝜖)

2
) .

(85)

Since the above inequality holds true for arbitrary 𝜖 > 0

sufficiently small, it follows that 𝑈 ≤ 𝑀𝑥

2
, where

𝑀

𝑥

2
=

1

𝑎

11

(𝑟

1
−

𝑎

12
𝑁

𝑥

1
𝑁

𝑦

1

𝑚(𝑀

𝑦

1
)

2

+ (𝑀

𝑥

1
)

2
) ; (86)

hence, for 𝜖 > 0 sufficiently small, there is a 𝑇
5
> 𝑇

4
+ 𝜏 such

that if 𝑡 > 𝑇
5
, 𝑥(𝑡) ≤ 𝑀𝑥

2
+ 𝜖.

It follows from the second equation of system (1) that, for
𝑡 > 𝑇

5
,

̇𝑦 (𝑡) ≤

𝑎

21
(𝑀

𝑥

2
+ 𝜖)

2

𝑦 (𝑡)

𝑚𝑦

2
(𝑡) + (𝑀

𝑥

2
+ 𝜖)

2
− 𝑟

2
𝑦 (𝑡) . (87)

By Lemma 2 and a comparison argument we derive from (87)
that

𝑈

2
= lim sup

𝑡→+∞

𝑦 (𝑡) ≤ (𝑀

𝑥

2
+ 𝜖) ℎ; (88)

since this inequality holds true for 𝜖 > 0 sufficiently small, we
get 𝑈

2
≤ 𝑀

𝑦

2
, where

𝑀

𝑦

2
= 𝑀

𝑥

2
ℎ; (89)

hence, for 𝜖 > 0 sufficiently small, there is a 𝑇
6
> 𝑇

5
+ 𝜏 such

that if 𝑡 > 𝑇
6
, 𝑦(𝑡) ≤ 𝑀𝑦

2
+ 𝜖.

For 𝜖 > 0 sufficiently small, it follows from the first
equation of system (1) that, for 𝑡 > 𝑇

6
,

𝑥̇ (𝑡) ≥ 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡) −

𝑎

12
(𝑀

𝑥

2
+ 𝜖) (𝑀

𝑦

2
+ 𝜖)

𝑚(𝑁

𝑦

1
− 𝜖)

2

+ (𝑁

𝑥

1
− 𝜖)

2
] ;

(90)

by comparison, we can obtain that

𝑉

1
= lim inf

𝑡→+∞

𝑥 (𝑡) ≥

1

𝑎

11

(𝑟

1
−

𝑎

12
(𝑀

𝑥

2
+ 𝜖) (𝑀

𝑦

2
+ 𝜖)

𝑚(𝑁

𝑦

1
− 𝜖)

2

+ (𝑁

𝑥

1
− 𝜖)

2
) .

(91)

Since the above inequality holds true for arbitrary 𝜖 > 0

sufficiently small, it follows that 𝑉 ≥ 𝑁𝑥

2
, where

𝑁

𝑥

2
=

1

𝑎

11

(𝑟

1
−

𝑎

12
𝑀

𝑥

2
𝑀

𝑦

2

𝑚(𝑁

𝑦

1
)

2

+ (𝑁

𝑥

1
)

2
) ; (92)

therefore, for 𝜖 > 0 sufficiently small, there is a 𝑇
7
> 𝑇

6
+ 𝜏

such that if 𝑡 > 𝑇
7
, 𝑥(𝑡) ≥ 𝑁𝑥

2
− 𝜖.

For 𝜖 > 0 sufficiently small, we derive from the second
equation of system (1) that, for 𝑡 > 𝑇

7
+ 𝜏,

̇𝑦 (𝑡) ≥

𝑎

21
(𝑁

𝑥

2
− 𝜖)

2

𝑦 (𝑡)

𝑚𝑦

2
(𝑡) + (𝑁

𝑥

2
− 𝜖)

2
− 𝑟

2
𝑦 (𝑡) . (93)

Since (H1) holds, by Lemma 2 and a comparison argument, it
follows (93) that

𝑉

2
= lim inf

𝑡→+∞

𝑦 (𝑡) ≥ (𝑁

𝑥

2
− 𝜖) ℎ; (94)

since, for arbitrary 𝜖 > 0 sufficiently small, this inequality
holds true, we conclude that 𝑉

2
≥ 𝑁

𝑦

2
, where

𝑁

𝑦

2
= 𝑁

𝑥

2
ℎ. (95)

Continuing this process, we obtain four sequences
𝑀

𝑥

𝑛
,𝑀

𝑦

𝑛
, 𝑉

𝑥

𝑛
, and𝑉𝑦

𝑛
(𝑛 = 1, 2, . . .) such that, for 𝑛 ≥ 2,

𝑀

𝑥

𝑛
=

1

𝑎

11

(𝑟

1
−

𝑎

12
𝑁

𝑥

𝑛−1
𝑁

𝑦

𝑛−1

𝑚(𝑀

𝑦

𝑛−1
)

2

+ (𝑀

𝑥

𝑛−1
)

2
) ,

𝑁

𝑥

𝑛
=

1

𝑎

11

(𝑟

1
−

𝑎

12
𝑀

𝑥

𝑛
𝑀

𝑦

𝑛

𝑚(𝑁

𝑦

𝑛−1
)

2

+ (𝑁

𝑥

𝑛−1
)

2
) ,

𝑀

𝑦

𝑛
= 𝑀

𝑥

𝑛
ℎ, 𝑁

𝑦

𝑛
= 𝑁

𝑥

𝑛
ℎ,

(96)

where ℎ is defined in (12). It is readily seen that

𝑁

𝑥

𝑛
≤ 𝑉

1
≤ 𝑈

1
≤ 𝑀

𝑥

𝑛
, 𝑁

𝑦

𝑛
≤ 𝑉

2
≤ 𝑈

2
≤ 𝑀

𝑦

𝑛
. (97)

It is easy to know that the sequences 𝑀𝑥

𝑛
,𝑀

𝑦

𝑛
are not

increasing and the sequences𝑁𝑥

𝑛
, 𝑁

𝑦

𝑛
are not decreasing; from

accumulation point theorem, the limit of each sequence in
𝑀

𝑥

𝑛
,𝑀

𝑦

𝑛
, 𝑁

𝑥

𝑛
, and𝑁𝑦

𝑛
exists, Denote

𝑥 = lim
𝑡→+∞

𝑀

𝑥

𝑛
, 𝑥 = lim

𝑡→+∞

𝑁

𝑥

𝑛
,

𝑦 = lim
𝑡→+∞

𝑀

𝑦

𝑛
, 𝑦 = lim

𝑡→+∞

𝑁

𝑦

𝑛
.

(98)

We therefore obtain from (96) and (98) that

𝑥 =

1

𝑎

11

(𝑟

1
−

𝑎

12
𝑥𝑦

𝑚𝑦

2
+ 𝑥

2
) ,

𝑥 =

1

𝑎

11

(𝑟

1
−

𝑎

12
𝑥𝑦

𝑚𝑦

2
+ 𝑥

2
) ,

𝑦 = 𝑥ℎ, 𝑦 = 𝑥ℎ.

(99)
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To complete the proof, it is sufficient to prove that 𝑥 = 𝑥, 𝑦 =
𝑦. It follows from (99) that

𝑎

11
(1 + 𝑚ℎ

2
) 𝑥

3
= 𝑟

1
(1 + 𝑚ℎ

2
) 𝑥

2
− 𝑎

12
ℎ𝑥

2
, (100)

𝑎

11
(1 + 𝑚ℎ

2
) 𝑥

3
= 𝑟

1
(1 + 𝑚ℎ

2
) 𝑥

2
− 𝑎

12
ℎ𝑥

2
. (101)

Letting (100) minus (101), we have

𝑎

11
(1 + 𝑚ℎ

2
) (𝑥 − 𝑥) (𝑥

2
+ 𝑥𝑥 + 𝑥

2
)

= [𝑟

1
(1 + 𝑚ℎ

2
) + 𝑎

12
ℎ] (𝑥 − 𝑥) (𝑥 + 𝑥) .

(102)

If 𝑥 ̸= 𝑥, we derive from (102) that

𝑎

11
(1 + 𝑚ℎ

2
) (𝑥

2
+ 𝑥𝑥 + 𝑥

2
)

= [𝑟

1
(1 + 𝑚ℎ

2
) + 𝑎

12
ℎ] (𝑥 + 𝑥) .

(103)

Letting 𝐴 = 𝑎
11
(1 + 𝑚ℎ

2
), 𝐵 = 𝑟

1
(1 + 𝑚ℎ

2
) + 𝑎

12
ℎ, we derive

from (103) that

𝑥𝑥 = (𝑥 + 𝑥)

2

−

𝐵

𝐴

(𝑥 + 𝑥) . (104)

It follows from (104) that

(𝑥 + 𝑥)

2

− 4𝑥𝑥 = (𝑥 + 𝑥)

2

− 4 [(𝑥 + 𝑥)

2

−

𝐵

𝐴

(𝑥 + 𝑥)]

= (𝑥 + 𝑥) [

4𝐵

𝐴

− 3 (𝑥 + 𝑥)] ;

(105)

noting that 𝑥 ≥ 𝑁𝑥

1
, 𝑥 ≥ 𝑁

𝑥

1
, we derive from (105) that

(𝑥 + 𝑥)

2

− 4𝑥𝑥 ≤ 2 (𝑥 + 𝑥) [

2𝐵

𝐴

− 3𝑁

𝑥

1
] . (106)

Substituting (78) into (106), it follows that

(𝑥 + 𝑥)

2

− 4𝑥𝑥 ≤ −

2 (𝑥 + 𝑥)

𝑎

11

[𝑟

1
−

3𝑎

12

𝑚

−

2𝑎

12
ℎ

1 + 𝑚ℎ

2
] .

(107)

Hence, if (H2) holds, we have (𝑥 + 𝑥)2 − 4𝑥𝑥 < 0; this is a
contradiction. Accordingly, we have 𝑥 = 𝑥. Therefore, from
(99), we have 𝑦 = 𝑦. Hence, the positive equilibrium 𝐸

∗ is
globally attractive. The proof is complete.

Using the same methods in [4, 20], we can also get a
similar result.

Theorem 7. If 𝑟
1
> 𝑎

12
/2√𝑚 and 𝑎

21
< 𝑟

2
, the semitrivial

equilibrium 𝐸

1
(𝑟

1
/𝑎

11
, 0) of system (1) is globally asymptoti-

cally stable.

6. Global Continuation of
Local Hopf Bifurcations

In this section, we study the global continuation of periodic
solutions bifurcating from the positive equilibrium 𝐸

∗ of
system (13). Throughout this section, we follow closely the
notations in [13]. For simplification of notations, setting
𝑧(𝑡) = (𝑧

1
(𝑡), 𝑧

2
(𝑡))

𝑇
= (𝑥(𝑡), 𝑦(𝑡))

𝑇, we may rewrite system
(13) as the following functional differential equation:

𝑧̇ (𝑡) = F (𝑧

𝑡
, 𝜏, 𝑝) , (108)

where 𝑧
𝑡
(𝜃) = (𝑧

1𝑡
(𝜃), 𝑧

2𝑡
(𝜃))

𝑇
= (𝑧

1
(𝑡 + 𝜃), and 𝑧

2
(𝑡 + 𝜃))

𝑇
∈

C([−𝜏, 0],R2
). It is obvious that if (H1) holds, then system

(13) has a semitrivial equilibrium 𝐸
1
(𝑟

1
/𝑎

11
, 0) and a positive

equilibrium 𝐸∗
(𝑥

∗
, 𝑦

∗
). Following the work of [13], we need

to define
X = C ([−𝜏, 0] ,R2

) ,

Γ = Cl {(𝑧, 𝜏, 𝑝) ∈ X × R × R+
; 𝑧 is a nonconstant

periodic solution of (108)} ,

N = {(𝑧, 𝜏, 𝑝) ;F (𝑧, 𝜏, 𝑝) = 0} .

(109)

Let ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
denote the connected component passing

through (𝐸∗
, 𝜏

𝑗
, 2𝜋/𝜔

0
) in Γ, where 𝜏

𝑗
is defined by (26). From

Theorem 5, we know that ℓ
(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
is nonempty.

We first state the global Hopf bifurcation theory due to
Wu [13] for functional differential equations.

Lemma 8. Assume that (𝑧
∗
, 𝜏, 𝑝) is an isolated center satis-

fying the hypotheses (𝐴
1
)–(𝐴

4
) in [13]. Denote by ℓ

(𝑧
∗
,𝜏,𝑝)

the
connected component of (𝑧

∗
, 𝜏, 𝑝) in Γ. Then either

(i) ℓ
(𝑧
∗
,𝜏,𝑝)

is unbounded or
(ii) ℓ

(𝑧
∗
,𝜏,𝑝)

is bounded; ℓ
(𝑧
∗
,𝜏,𝑝)

∩ Γ is finite and

∑

(
𝑧,𝜏,𝑝
)
∈ℓ
(𝑧∗,𝜏,𝑝)

∩N

𝛾

𝑚
(𝑧

∗
, 𝜏, 𝑝) = 0, (110)

for all𝑚 = 1, 2, . . ., where 𝛾
𝑚
(𝑧

∗
, 𝜏, 𝑝) is the𝑚𝑡ℎ crossing num-

ber of (𝑧
∗
, 𝜏, 𝑝) if𝑚 ∈ 𝐽(𝑧

∗
, 𝜏, 𝑝) or it is zero if otherwise.

Clearly, if (ii) in Lemma 8 is not true, then ℓ
(𝑧
∗
,𝜏,𝑝)

is
unbounded. Thus, if the projections of ℓ

(𝑧
∗
,𝜏,𝑝)

onto 𝑧-space
and onto 𝑝-space are bounded, then the projection onto
𝜏-space is unbounded. Further, if we can show that the
projection of ℓ

(𝑧
∗
,𝜏,𝑝)

onto 𝜏-space is away from zero, then
the projection of ℓ

(𝑧
∗
,𝜏,𝑝)

onto 𝜏-space must include interval
[𝜏, +∞). Following this ideal, we can prove our results on the
global continuation of local Hopf bifurcation.

Lemma 9. If condition (H1) holds, then all nonconstant
periodic solutions of (13) with initial conditions,

𝑥 (𝜃) = 𝜙 (𝜃) , 𝑦 (𝜃) = 𝜓 (𝜃) , 𝜙 (𝜃) ≥ 0, 𝜓 (𝜃) ≥ 0,

𝜃 ∈ [−𝜏, 0] (𝜏 = 𝜏1
+ 𝜏

2
) , 𝜙 (0) > 0, 𝜓 (0) > 0,

(111)

are uniformly bounded.
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Proof. Suppose that 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) are nonconstant
periodic solutions of system (13) and define

𝑥 (𝜉

1
) = min {𝑥 (𝑡)} , 𝑥 (𝜂

1
) = max {𝑥 (𝑡)} ,

𝑦 (𝜉

2
) = min {𝑦 (𝑡)} , 𝑦 (𝜂

2
) = max {𝑦 (𝑡)} .

(112)

It follows from system (13) that

𝑥 (𝑡) = 𝑥 (0) exp{∫
𝑡

0

(𝑟

1
− 𝑎

11
𝑥 (𝑠)

−

𝑎

12
𝑥 (𝑠) 𝑦 (𝑠 − 𝜏)

𝑚𝑦

2
(𝑠 − 𝜏) + 𝑥

2
(𝑠)

) 𝑑𝑠} ,

𝑦 (𝑡) = 𝑦 (0) exp{∫
𝑡

0

(−𝑟

2
+

𝑎

21
𝑥

2
(𝑠)

𝑚𝑦

2
(𝑠) + 𝑥

2
(𝑠)

) 𝑑𝑠} ,

(113)

which implies that the solutions of system (13) cannot cross
the 𝑥-axis and 𝑦-axis. Thus the nonconstant periodic orbits
must be located in the interior of each quadrant. It follows
from initial conditions of system (13) that (𝑡) > 0, 𝑦(𝑡) > 0.
From system (13), we can get

0 = 𝑟

1
− 𝑎

11
𝑥 (𝜂

1
) −

𝑎

12
𝑥 (𝜂

1
) 𝑦 (𝜂

1
− 𝜏)

𝑚𝑦

2
(𝜂

1
− 𝜏) + 𝑥

2
(𝜂

1
)

,

0 = −𝑟

2
+

𝑎

21
𝑥

2
(𝜂

2
)

𝑚𝑦

2
(𝜂

2
) + 𝑥

2
(𝜂

2
)

.

(114)

Since 𝑥(𝑡) > 0, 𝑦(𝑡) > 0, it follows from the first equation of
(114) that

0 < 𝑥 (𝜂

1
) ≤

𝑟

1

𝑎

11

; (115)

on the other hand, by the second equation of (114) and (115),
we have

0 < 𝑦 (𝜂

2
) ≤ ℎ

𝑟

1

𝑎

11

, (116)

where ℎ is defined in (12). From the discussion above, the
lemma follows immediately.

Lemma 10. If conditions (H1) and (H2) hold, then system (13)
has no nonconstant periodic solution with period 𝜏.

Proof. Suppose for a contradiction that system (13) has
nonconstant periodic solution with period 𝜏. Then the
following system (117) of ordinary differential equations has
nonconstant periodic solution:

𝑥̇ (𝑡) = 𝑥 (𝑡) [𝑟

1
− 𝑎

11
𝑥 (𝑡) −

𝑎

12
𝑥 (𝑡) 𝑦 (𝑡)

𝑚𝑦

2
(𝑡) + 𝑥

2
(𝑡)

] ,

̇𝑦 (𝑡) =

𝑎

21
𝑥

2
(𝑡) 𝑦 (𝑡)

𝑚𝑦

2
(𝑡) + 𝑥

2
(𝑡)

− 𝑟

2
𝑦 (𝑡) ,

(117)

0 0.5 1 1.5
−1
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1

Variable r2

Figure 1:The bifurcation diagramof system (1) with 𝑎
11
= 0.1, 𝑎

12
=

1, 𝑎

21
= 3/2, and 𝑚 = 2, where 𝐿1 : 𝑟

1
= −(2/9)𝑟

2

2
+ 𝑟

2
/3, 𝐿2 :

𝑟

1
= (8/9)𝑟

2

2
√((3/2) − 𝑟

2
)/(2𝑟

2
) − (4/3)𝑟

2
((3/2) − 𝑟

2
), and 𝐿3 : 𝑟

1
=

((16/9)𝑟

2
+ (1/6))√((3/2) − 𝑟

2
)/(2𝑟

2
).

which has the same equilibria as system (13), that is, 𝐸
1
(𝑟

1
/

𝑎

11
, 0) and a positive equilibrium𝐸∗

(𝑥

∗
, 𝑦

∗
). Note that 𝑥-axis

and 𝑦-axis are the invariable manifold of system (13) and the
orbits of system (13) do not intersect each other.Thus, there is
no solution crossing the coordinate axis. On the other hand,
note the fact that if system (117) has a periodic solution, then
theremust be the equilibrium in its interior and𝐸

1
are located

on the coordinate axis. Thus, we conclude that the periodic
orbit of system (117) must lie in the first quadrant. From the
proof of Theorem 6, we known that if (H1) and (H2) hold,
the positive equilibrium is asymptotically stable and globally
attractive; thus, there is no periodic orbit in the first quadrant.
This ends the proof.

Theorem 11. Suppose the conditions (H1) and (H2) hold; let
𝜔

0
and 𝜏

𝑗
(𝑗 = 0, 1, . . .) be defined in (26). If (2𝑎

12
𝑟

2

2
ℎ/𝑎

2

21
) −

(2𝑟

2
(𝑎

21
− 𝑟

2
)/𝑎

21
) < 𝑟

1
< ((4𝑎

12
𝑟

2

2
ℎ + 𝑎

12
𝑎

21
𝑟

2
ℎ)/𝑎

2

21
), then

system (13) has at least 𝑗 − 1 periodic solutions for every 𝜏 >
𝜏

𝑗
, (𝑗 = 1, 2, . . .).

Proof. It is sufficient to prove that the projection of
ℓ

(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
onto 𝜏-space is [𝜏, +∞) for each 𝑗 > 0, where

𝜏 ≤ 𝜏

𝑗
.

The characteristic matrix of (108) at an equilibrium 𝑧 =

(𝑧

(1)
, 𝑧

(2)
) ∈ R2 takes the following form:

Δ (𝑧, 𝜏, 𝑝) (𝜆) = 𝜆Id − 𝐷F (𝑧, 𝜏, 𝑝) (𝑒

𝜆Id) . (118)

(𝑧, 𝜏, 𝑝) is called a center if F(𝑧, 𝜏, 𝑝) = 0 and
det(Δ(𝑧, 𝜏, 𝑝)((2𝜋/𝑝)𝑖)) = 0. A center is said to be isolated if it
is the only center in some neighborhood of (𝑧, 𝜏, 𝑝). It follows
from (118) that

det (Δ (𝐸
1
, 𝜏, 𝑝) (𝜆)) = (𝜆 + 𝑟

1
) (𝜆 + 𝑟

2
− 𝑎

21
) = 0, (119)

det (Δ (𝐸∗
, 𝜏, 𝑝) (𝜆)) = 𝜆

2
+ 𝑝

0
𝜆 + 𝑝

1
+ 𝑝

2
𝑒

−𝜆𝜏
= 0,

(120)
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Figure 2: The trajectories and phase graphs of system (1) with 𝜏 = 𝜏
1
+ 𝜏

2
= 6 + 4 = 10.

where 𝑝
0
, 𝑝

1
, and 𝑝

2
are defined as in Section 3. From the

discussion in Section 3, each of (119) and (120) has no purely
imaginary root provided that 𝑟

1
> (4𝑎

12
𝑟

2

2
ℎ + 𝑎

12
𝑎

21
𝑟

2
ℎ)/𝑎

2

21
.

Thus, we conclude that (108) has no the center of the form
as (𝐸

1
, 𝜏, 𝑝) and (𝐸∗

, 𝜏, 𝑝). On the other hand, from the
discussion in Section 3 about the local Hopf bifurcation, it
is easy to verify that (𝐸∗

, 𝜏

𝑗
, 2𝜋/𝜔

0
) is an isolated center, and

there exist 𝜖 > 0, 𝛿 > 0, and a smooth curve 𝜆 : (𝜏
𝑗
− 𝛿, 𝜏

𝑗
+

𝛿) → C such that det(Δ(𝜆(𝜏))) = 0, |𝜆(𝜏) − 𝜔
0
| < 𝜖 for all

𝜏 ∈ [𝜏

𝑗
− 𝛿, 𝜏

𝑗
+ 𝛿] and

𝜆 (𝜏

𝑗
) = 𝜔

0
𝑖,

𝑑Re 𝜆 (𝜏)
𝑑𝜏

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜏=𝜏
𝑗

> 0. (121)

Let

Ω

𝜖,(2𝜋/𝜔
0
)
= {(𝜂, 𝑝) ; 0 < 𝜂 < 𝜖,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑝 −

2𝜋

𝜔

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

< 𝜖} . (122)

It is easy to verify that, on [𝜏
𝑗
− 𝛿, 𝜏

𝑗
+ 𝛿] × 𝜕Ω

𝜖, 2𝜋/𝜔
0

,

det(Δ (𝐸∗
, 𝜏, 𝑝) (𝜂 +

2𝜋

𝑝

𝑖)) = 0

if and only if 𝜂 = 0, 𝜏 = 𝜏
𝑗
, 𝑝 =

2𝜋

𝜔

0

.

(123)

Therefore, the hypotheses (𝐴
1
)–(𝐴

4
) in [13] are satisfied.

Moreover, if we define

𝐻

±
(𝐸

∗
, 𝜏

𝑗
,

2𝜋

𝜔

0

) (𝜂, 𝑝)

= det(Δ (𝐸∗
, 𝜏

𝑗
± 𝛿, 𝑝) (𝜂 +

2𝜋

𝑝

𝑖)) ,

(124)
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Figure 3: The trajectories and phase graphs of system (1) with 𝜏 = 𝜏
1
+ 𝜏

2
= 6 + 6 = 12.

then we have the crossing number of isolated center (𝐸∗
,

𝜏

𝑗
, (2𝜋/𝜔

0
)) as follows:

𝛾(𝐸

∗
, 𝜏

𝑗
,

2𝜋

𝜔

0

) = deg
𝐵
(𝐻

−
(𝐸

∗
, 𝜏

𝑗
,

2𝜋

𝜔

0

) ,Ω

𝜖,2𝜋/𝜔
0

)

− deg
𝐵
(𝐻

+
(𝐸

∗
, 𝜏

𝑗
,

2𝜋

𝜔

0

) ,Ω

𝜖,2𝜋/𝜔
0

)

= −1.

(125)

Thus, we have

∑

(
𝑧,𝜏,𝑝
)
∈C
(𝐸
∗
,𝜏𝑗,2𝜋/𝜔0)

𝛾 (𝑧, 𝜏, 𝑝) < 0,

(126)

where (𝑧, 𝜏, 𝑝) has all or parts of the form (𝐸∗
, 𝜏

𝑘
, 2𝜋/𝜔

0
)(𝑘 =

0, 1, . . .). It follows from Lemma 8 that the connected compo-
nent ℓ

(𝐸
∗
,𝜏
𝑗
,2𝜋/𝜔

0
)
through (𝐸∗

, 𝜏

𝑗
, 2𝜋/𝜔

0
) in Γ is unbounded.

From (26), we can know that if (H1) holds, for 𝑗 ≥ 1,

𝜏

𝑗
=

1

𝜔

0

arccos
𝜔

2

0
− 𝑝

1

𝑝

2

+

2𝑗𝜋

𝜔

0

>

2𝜋

𝜔

0

.
(127)

Now we prove that the projection of ℓ
(𝐸
∗
, 𝜏
𝑗
, 2𝜋/𝜔

0
)
onto

𝜏-space is [𝜏, +∞), where 𝜏 ≤ 𝜏

𝑗
. Clearly, it follows from

the proof of Lemma 10 that system (13) with 𝜏 = 0 has
no nontrivial periodic solution. Hence, the projection of
ℓ

(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
onto 𝜏-space is away from zero.

For a contradiction, we suppose that the projection of
ℓ

(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
onto 𝜏-space is bounded; this means that the

projection of ℓ
(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
onto 𝜏-space is included in an

interval (0, 𝜏∗). Noticing (2𝜋/𝜔
0
) < 𝜏

𝑗
and applying

Lemma 10 we have 0 < 𝑝 < 𝜏

∗ for (𝑧(𝑡), 𝜏, 𝑝) belonging
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Figure 4: The trajectories and phase graphs of system (1) with 𝜏 = 𝜏
1
+ 𝜏

2
= 10 + 8 = 18.

to ℓ

(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
. Applying Lemma 9, we know that the

projection of ℓ
(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
onto 𝑧-space is bounded. So the

component of ℓ
(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
is bounded.This contradicts our

conclusion that ℓ
(𝐸
∗
, 𝜏
𝑗
, (2𝜋/𝜔

0
))
is unbounded. The contradic-

tion implies that the projection of ℓ
(𝐸
∗
𝜏
𝑗
, (2𝜋/𝜔

0
))
onto 𝜏-space

is unbounded above.
Hence, system (13) has at least 𝑗 − 1 periodic solution for

every 𝜏 > 𝜏
𝑗
, (𝑗 = 1, 2, . . .). This completes the proof.

Example 12. In system (1), we first choose 𝑎
11
= 0.1, 𝑎

12
=

1, 𝑎

21
= 3/2, and𝑚 = 2. As depicted in Figure 1, a bifurcation

diagram is given for system (1) with respect to the parameters
𝑟

1
and 𝑟

2
. By the discussion in Section 3, system (1) always

has a semitrivial equilibrium 𝐸

1
, and if 𝑟

2
> 𝑎

21
, 𝐸

1
is

asymptotically stable; otherwise, 𝐸
1
is unstable. So if we

choose 0 < 𝑟

2
< 𝑎

21
= 3/2, as depicted in Figure 1, 𝐸

1

is always unstable. In domains II, V, and VI, the positive
equilibrium is not feasible. In domains I, III, and IV, system (1)

has a unique positive equilibrium; it is locally asymptotically
stable in domain I and is unstable in domain IV. In domain
III, system (1) undergoes a Hopf bifurcation at the positive
equilibrium at some 𝜏

0
. Further, we choose 𝑟

1
= 5/12, 𝑟

2
= 1,

𝑎

11
= 0.1,𝑎

12
= 1, 𝑎

21
= 3/2, and 𝑚 = 2. In this case,

system (1) has a positive equilibrium 𝐸

∗
= (5/6, 5/12). By

computation, we have 𝜔
0
≈ 0.1063, 𝜏

0
≈ 10.8795, and

𝜏

1
≈ 69.9876. From Theorem 5, 𝐸∗ is stable when 𝜏 < 𝜏

0
as

illustrated by numerical simulations (see Figure 2). When 𝜏
passes through the critical value 𝜏

0
, the equilibrium 𝐸∗ loses

its stability and a Hopf bifurcation occurs; that is, a family
of periodic solution bifurcates from 𝐸

∗. By the algorithm
derived in Section 3 and Section 4, we have 𝜆󸀠(𝜏

0
) = 0.0053−

0.0058𝑖, 𝑐

1
(0) = −0.4357 + 0.0265𝑖, which implies that 𝜇

2
>

0, 𝛽

2
< 0, and 𝑇

2
> 0. Thus, by the discussion in Section 4,

theHopf bifurcation is supercritical for 𝜏 > 𝜏
0
, the bifurcating

periodic solutions from𝐸∗ at 𝜏
0
are asymptotically stable, and

the period of these periodic solutions is increasing with the
increasing of 𝜏, which are depicted in Figures 3, 4, and 5.
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Figure 5: The trajectories and phase graphs of system (1) with 𝜏 = 𝜏
1
+ 𝜏

2
= 10 + 60 = 70.

Furthermore, Figure 5 shows that the local Hopf bifurcation
implies the global Hopf bifurcation after the second critical
value of 𝜏

1
= 69.9876.

7. Discussion

In this paper, we have studied a ratio-dependent predator-
prey model with two time delays. By analyzing the corre-
sponding characteristic equation, the local stability of the
positive equilibrium and the semitrivial equilibrium of sys-
tem (1) was discussed.We have obtained the estimated length
of gestation delay which would not affect the stable coexis-
tence of both prey and predator species at their equilibrium
values. The existence of Hopf bifurcation for system (1) at the
positive equilibrium was also established. From theoretical
analysis it was shown that the larger values of gestation time
delay cause fluctuation in individual population density and
hence the system becomes unstable. As the estimated length

of delay to preserve stability and the critical length of time
delay for Hopf bifurcation are dependent upon the parame-
ters of system, it is possible to impose some control, which
will prevent the possible abnormal oscillation in population
density.The global attractiveness result inTheorem 6 implied
that system (1) is permanent if the intrinsic growth rate of the
prey and the conversion rate and the interference rate of the
predator are high, and the death rate of the predator is low.
FromTheorem 7we see that if the death rate of the predator is
greater than the conversion rate of the predator, the predator
population become extinct for any gestation delay. In par-
ticular, the results about boundedness and attractiveness are
similar to the results of [4]. From the discussion in Sections
3 and 4, we see that if the values of 𝑟

1
, 𝑟

2
, 𝑎

11
, 𝑎

12
, 𝑎

21
,

and 𝑚 are given, we can get the Hopf bifurcation value
of 𝜏, and further we may determine the direction of Hopf
bifurcation and the stability of periodic solutions bifurcating
from the positive equilibrium 𝐸

∗ at the critical point 𝜏
0
.
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Furthermore, we show that the local Hopf bifurcation implies
the global Hopf bifurcation after the second critical value of
delay.
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