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We consider additive perturbation theorems for subgenerators of (a, k)-regularized C-resolvent families. A major part of our
research is devoted to the study of perturbation properties of abstract time-fractional equations, primarily from their importance
in modeling of various physical phenomena. We illustrate the results with several examples.

Dedicated to the memory of Slobodan Novaković

1. Introduction and Preliminaries

A recently introduced notion of an (𝑎, 𝑘)-regularized 𝐶-
resolvent family on a sequentially complete locally convex
space 𝐸 plays an important role in the theory of abstract
Volterra equations. A lot of effort has been directed towards
characterizing spectral properties of subgenerators of (𝑎, 𝑘)-
regularized 𝐶-resolvent families, smoothing and duality
properties, a generalized variation of parameters formula
and subordination principles. The aim of this paper is to
present a comprehensive survey of results about perturbation
properties of abstract Volterra equations.

The paper is organized as follows. In the second section,
we consider bounded perturbation theorems for subgenera-
tors of (𝑎, 𝑘)-regularized 𝐶-resolvent families. A new line of
approach to bounded commuting perturbations of abstract
time-fractional equations is developed in Theorem 5. Our
analysis is inspired, on the one side, by the incompleteness
of the study of bounded perturbations of integrated 𝐶-cosine
functions and, on the other side, by the possibilities of exten-
sion of [1, Theorem 2.5.3] to fractional operator families. We
consider an exponentially equicontinuous (𝑔

𝛼
, 𝑘)-regularized

𝐶-resolvent family (𝑅(𝑡))
𝑡≥0

with a subgenerator 𝐴 (𝑔
𝛼
(𝑡) ≡

𝑡𝛼−1/Γ(𝛼), 𝑡 > 0, 𝛼 > 0), a function 𝑘
1
(𝑡) satisfying certain

properties and an𝐴-bounded perturbation 𝐵 such that 𝐵𝐴 ⊆

𝐴𝐵 and 𝐵𝐶 = 𝐶𝐵. In order to prove the existence of
perturbed (𝑔

𝛼
, 𝑘

1
)-regularized 𝐶-resolvent family (𝑅

𝐵
(𝑡))

𝑡≥0

with a subgenerator 𝐴 + 𝐵, we employ the method that
involves only direct computations and differs from those
established in [2–12] in that we do not consider (𝑅

𝐵
(𝑡))

𝑡≥0

as the unique solution of a corresponding integral equation.
Themain objective inTheorem 7 is to show that, under some
additional conditions, the perturbed (𝑔

𝛼
, 𝑘

1
)-regularized 𝐶-

resolvent family (𝑅
𝐵
(𝑡))

𝑡≥0
inherits analytical properties from

(𝑅(𝑡))
𝑡≥0

. In case 𝛼 = 2 and 𝐵 satisfies the aforementioned
conditions, Corollary 8 produces significantly better results
comparedwith [13,Theorem 10.1] and [5,Theorem3.1].This is
important since Hieber [14] proved that the Laplacian Δ with
maximal distributional domain generates an exponentially
bounded 𝛼-times integrated cosine function on 𝐿𝑝(R𝑛) (1 ≤
𝑝 < ∞, 𝑛 ∈ N) for any 𝛼 ≥ (𝑛 − 1)|(1/2) − (1/𝑝)|.
Notice also that Keyantuo andWarma proved in [15] a similar
result for the Laplacian Δ on 𝐿

𝑝([0, 𝜋]
𝑛

), with Dirichlet or
Neumann boundary conditions. In Corollary 11, we focus
our attention to the case 𝑘(𝑡) = L−1(𝜆−𝛼𝑒−𝜆

𝜎

)(𝑡), 𝑡 ≥

0 (𝛼 > 1,  > 0, 𝜎 ∈ (0, 1)), which is important in
the theory of ultradistribution semigroups of Gevrey type.
As a special case of Corollary 11, we obtain that the class of
tempered ultradistribution sines of (𝑝!𝑠)-class ({𝑝!𝑠}-class) is
stable under bounded commuting perturbations (𝑠 > 1);
cf. [16], [17, Definition 13, Remark 15], [1, Section 3.5], [18],
and the final part of the third section for more details. It is
worthwhile to mention here the following fact: in order for
the proof of Theorem 5 to work, one has to assume that the
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considered (𝑔
𝛼
, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))

𝑡≥0
is

exponentially equicontinuous. It seems to be really difficult
to prove an analogue of Theorem 5 in the context of local
(𝑔

𝛼
, 𝑘)-regularized 𝐶-resolvent families (cf. [3, 7, 8, 13] and

[1, Section 2.5,Theorem 3.5.17] for further information in this
direction), which implies, however, that it is not clear whether
the class of ultradistribution sines of (𝑝!𝑠)-class ({𝑝!𝑠}-class)
retains the property stated above. In Theorems 13 and 14,
Remark 15, and Corollary 17, we continue the researches of
Arendt and Kellermann [2], Lizama and Sánchez [9], and
Rhandi [4]. The local Hölder continuity with exponent 𝜎 ∈

(0, 1] is the property stable under perturbations considered
in these assertions, as explained in Remark 16.

The final part of the paper is devoted to the study of
unbounded perturbation theorems. The main purpose of
Theorems 20 and 21 is to generalize perturbation results of
Kaiser and Weis [19]. The loss of regularity appearing in
Theorem 20 is slightly reduced in Theorem 21 by assuming
that the underlying Banach space 𝐸 has certain geomet-
rical properties. As an application, we consider (𝑔

𝛼
, 𝑔

𝑟+1
)-

regularized resolvent families generated by higher order dif-
ferential operators (0 < 𝛼 ≤ 2, 𝑟 ≥ 0). Perturbations of sub-
generators of analytic (𝑎, 𝑘)-regularized 𝐶-resolvent families
are also analyzed in Theorem 24, which might be surprising
in the case 𝐶 ̸= 𝐼. The above result is applied to abstract time-
fractional equations considered in [20, 21] and to differential
operators in the spaces of Hölder continuous functions
(von Wahl [22]). Possible applications of Corollary 8 and
Theorem 7 can be alsomade to coercive differential operators
considered by Li et al. [23, Section 4] and by the author
[24]. In the remainder of the third section, we reconsider
and slightly improve results of Arendt and Batty [25] and
Desch et al. [26] on rank-1 perturbations. Before we collect
the material needed later on, we would like to draw the
attention to paper [27] of Xiao et al. for the analysis of time-
dependent perturbations of abstract Volterra equations. The
results obtained in [27] can be straightforwardly generalized
to the class of (𝑎, 𝐶)-regularized resolvent families, and it is
not the intention in this paper to go into further details (cf.
also [28–30] and the review paper [31] for time-dependent
perturbations).

Henceforth, 𝐸 denotes a Hausdorff sequentially complete
locally convex space, SCLCS for short, and the abbreviation
⊛ stands for the fundamental system of seminorms which
defines the topology of 𝐸; if 𝐸 is a Banach space, then ||𝑥||

denotes the norm of an element 𝑥 ∈ 𝐸. If 𝐹 is a SCLCS,
then we denote by 𝐿(𝐸, 𝐹) the space of all continuous linear
mappings from 𝐸 into 𝐹; 𝐿(𝐸) := 𝐿(𝐸, 𝐸). We assume that
𝐴 is a closed linear operator acting on 𝐸 and that (with
the exception of assertions concerning rank-1 perturbations)
𝐿(𝐸) ∋ 𝐶 is an injective operator with 𝐶𝐴 ⊆ 𝐴𝐶; the
convolution like mapping ∗ is given by 𝑓 ∗ 𝑔(𝑡) := ∫

𝑡

0

𝑓(𝑡 −

𝑠)𝑔(𝑠) 𝑑𝑠, and the principal branch is always used to take the
powers. Given 𝑓 ∈ 𝐿1

loc([0,∞)) and 𝑛 ∈ N, 𝑓∗,𝑛(𝑡) denotes
the 𝑛th convolution power of 𝑓(𝑡), and 𝑓∗,0(𝑡) denotes the
Dirac 𝛿-distribution. If 𝑠 ∈ R and 𝛽 ∈ (0, 𝜋], then ⌈𝑠⌉ :=

inf{𝑘 ∈ Z : 𝑘 ≥ 𝑠} and Σ
𝛽
:= {𝑧 ∈ C : 𝑧 ̸= 0, | arg(𝑧)| <

𝛽}. The domain, range, and resolvent set of 𝐴 are denoted

by 𝐷(𝐴), 𝑅(𝐴), and 𝜌(𝐴), respectively. If 𝐷(𝐴) is not dense
in 𝐸, then 𝐷(𝐴) is a closed subspace of 𝐸 and therefore a
SCLCS itself; the fundamental system of seminorms which
defines the topology of𝐷(𝐴) is (𝑝

|𝐷(𝐴)
)
𝑝∈⊛

. Recall that the 𝐶-
resolvent set of𝐴, in short 𝜌

𝐶
(𝐴), is defined by 𝜌

𝐶
(𝐴) := {𝜆 ∈

C : 𝜆 − 𝐴 is injective and (𝜆 − 𝐴)
−1

𝐶 ∈ 𝐿(𝐸)}.
Fairly complete information on the general theory ofwell-

posed abstract Volterra equations in Banach spaces can be
obtained by consulting the monograph [10] of Prüss. The
following notion is crucially important in the theory of ill-
posed Volterra equations (cf. [32–35]).

Definition 1. (i) Let 𝐸 be an SCLCS, let 0 < 𝜏 ≤ ∞, 𝑘 ∈

𝐶([0, 𝜏)), 𝑘 ̸= 0, and let 𝑎 ∈ 𝐿
1

loc([0, 𝜏)), 𝑎 ̸= 0. A strongly
continuous operator family (𝑅(𝑡))

𝑡∈[0,𝜏)
is called a (local, if

𝜏 < ∞) (𝑎, 𝑘)-regularized 𝐶-resolvent family having 𝐴 as a
subgenerator if and only if the following holds:

(a) 𝑅(𝑡)𝐴 ⊆ 𝐴𝑅(𝑡), 𝑡 ∈ [0, 𝜏), 𝑅(0) = 𝑘(0)𝐶, and 𝐶𝐴 ⊆

𝐴𝐶;
(b) 𝑅(𝑡)𝐶 = 𝐶𝑅(𝑡), 𝑡 ∈ [0, 𝜏);

(c) 𝑅(𝑡)𝑥 = 𝑘(𝑡)𝐶𝑥+∫𝑡

0

𝑎(𝑡− 𝑠)𝐴𝑅(𝑠)𝑥 𝑑𝑠, 𝑡 ∈ [0, 𝜏), 𝑥 ∈

𝐷(𝐴).

(𝑅(𝑡))
𝑡∈[0,𝜏)

is said to be nondegenerate if the condition
𝑅(𝑡)𝑥 = 0, 𝑡 ∈ [0, 𝜏) implies 𝑥 = 0, and (𝑅(𝑡))

𝑡∈[0,𝜏)
is said

to be locally equicontinuous if, for every 𝑡 ∈ (0, 𝜏), the family
{𝑅(𝑠) : 𝑠 ∈ [0, 𝑡]} is equicontinuous. In case 𝜏 = ∞, (𝑅(𝑡))

𝑡≥0

is said to be exponentially equicontinuous if there exists 𝜔 ∈

R such that the family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 ≥ 0} is equicontinuous.
(ii) Let 𝛽 ∈ (0, 𝜋/2] and let (𝑅(𝑡))

𝑡≥0
be an (𝑎, 𝑘)-

regularized 𝐶-resolvent family. Then it is said that (𝑅(𝑡))
𝑡≥0

is an analytic (𝑎, 𝑘)-regularized𝐶-resolvent family of angle 𝛽,
if there exists a function R : Σ

𝛽
→ 𝐿(𝐸) satisfying that, for

every 𝑥 ∈ 𝐸, the mapping 𝑧 → R(𝑧)𝑥, 𝑧 ∈ Σ
𝛽
is analytic as

well as that

(a) R(𝑡) = 𝑅(𝑡), 𝑡 > 0 and
(b) lim

𝑧 → 0,𝑧∈Σ
𝛾

R(𝑧)𝑥 = 𝑘(0)𝐶𝑥 for all 𝛾 ∈ (0, 𝛽) and 𝑥 ∈
𝐸.

It is said that (𝑅(𝑡))
𝑡≥0

is an exponentially equicontinuous,
analytic (𝑎, 𝑘)-regularized𝐶-resolvent family of angle 𝛽, if for
every 𝛾 ∈ (0, 𝛽), there exists 𝜔

𝛾
≥ 0 such that the family

{𝑒−𝜔
𝛾
R𝑧R(𝑧) : 𝑧 ∈ Σ

𝛾
} is equicontinuous.

Since there is no risk for confusion, we will identify 𝑅(⋅)
and R(⋅).

(iii) An (𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))
𝑡≥0

is
said to be entire if, for every 𝑥 ∈ 𝐸, the mapping 𝑡 →

𝑅(𝑡)𝑥, 𝑡 ≥ 0 can be analytically extended to the whole
complex plane.

In the sequel of the paper, we will consider only non-
degenerate (𝑎, 𝑘)-regularized 𝐶-resolvent families. The set
which consists of all subgenerators of (𝑅(𝑡))

𝑡∈[0,𝜏)
need not

be finite. In case 𝑘(𝑡) = 𝑔
𝑟+1
(𝑡), where 𝑟 ≥ 0, it is also

said that (𝑅(𝑡))
𝑡∈[0,𝜏)

is an 𝑟-times integrated (𝑎, 𝐶)-regularized
resolvent family; 0-times integrated (𝑎, 𝐶)-regularized resol-
vent family is also called an (𝑎, 𝐶)-regularized resolvent family.
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Instructive examples of integrated (𝑎, 𝐶)-regularized resol-
vent families, providing possible applications of Theorem 14
and Corollary 17, can be constructed following the analysis
given in the proof of [36, Proposition 2.4]. If 𝑘(𝑡) =

∫
𝑡

0

𝐾(𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝜏), where 𝐾 ∈ 𝐿1

loc([0, 𝜏)) and 𝐾 ̸= 0, then
we obtain the unification concept for (local)𝐾-convoluted𝐶-
semigroups and cosine functions [1]. We refer the reader to
[23, 28, 32, 37, 38] for some applications of (𝑔

𝛼
, 𝑘)-regularized

𝐶-resolvent families in the study of the following abstract
time-fractional equation with 𝛼 > 0 :

D𝛼

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) , 𝑡 > 0,

𝑢
(𝑘)

(0) = 𝐶𝑥
𝑘
, 𝑘 = 0, 1, . . . , ⌈𝛼⌉ − 1,

(1)

where 𝑥
𝑘
∈ 𝐷(𝐴), 𝑘 = 0, 1, . . . , ⌈𝛼⌉ − 1 and D𝛼

𝑡
denotes

the Caputo fractional derivative of order 𝛼 ([28]). Henceforth,
we assume that 𝑘(𝑡) and 𝑘

1
(𝑡) are scalar-valued continuous

kernels.
The following conditions will be used frequently:

(P1) : 𝑘(𝑡) is Laplace transformable, that is, it is locally
integrable on [0,∞), and there exists 𝛽 ∈ R such
that �̃�(𝜆) := L(𝑘)(𝜆) := lim

𝑏 → ∞
∫

𝑏

0

𝑒
−𝜆𝑡

𝑘(𝑡) 𝑑𝑡 :=

∫
∞

0

𝑒−𝜆𝑡𝑘(𝑡) 𝑑𝑡 exists for all 𝜆 ∈ C with R𝜆 > 𝛽. Put
abs(𝑘) := inf{R𝜆 : �̃�(𝜆) exists}, 𝛿(𝜆) := 1 and denote
byL−1 the inverse Laplace transform.

(P2) : 𝑘(𝑡) satisfies (P1) and �̃�(𝜆) ̸= 0,R𝜆 > 𝛽 for some 𝛽 ≥
abs (𝑘).

For the sake of convenience, we recall the following result
from [32, 33].

Lemma 2. Let 𝑘(𝑡) and 𝑎(𝑡) satisfy (P1) and let (𝑅(𝑡))
𝑡≥0

be a
strongly continuous operator family such that there exists𝜔 ≥ 0

satisfying that the family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 ≥ 0} is equicontinuous.
Put 𝜔

0
:= max(𝜔, abs(a), abs(k)).

(i) Assume 𝐴 is a subgenerator of the global (𝑎, 𝑘)-
regularized 𝐶-resolvent family (𝑅(𝑡))

𝑡≥0
and

𝑅 (𝑡) 𝑥 = 𝑘 (𝑡) 𝐶𝑥 + 𝐴∫
𝑡

0

𝑎 (𝑡 − 𝑠) 𝑅 (𝑠) 𝑥 𝑑𝑠, 𝑡 ≥ 0, 𝑥 ∈ 𝐸.

(2)

Then, for every 𝜆 ∈ C withR𝜆 > 𝜔
0
and �̃�(𝜆) ̸= 0, the

operator 𝐼 − 𝑎(𝜆)𝐴 is injective and 𝑅 (𝐶) ⊆ 𝑅 (𝐼 −

𝑎(𝜆)𝐴). Furthermore,

�̃� (𝜆) (𝐼 − 𝑎 (𝜆)𝐴)
−1

𝐶𝑥 = ∫
∞

0

𝑒
−𝜆𝑡

𝑅 (𝑡) 𝑥 𝑑𝑡,

𝑥 ∈ 𝐸, R𝜆 > 𝜔
0
, �̃� (𝜆) ̸= 0,

{
1

𝑎 (𝜆)
: R𝜆 > 𝜔

0
, �̃� (𝜆) 𝑎 (𝜆) ̸= 0} ⊆ 𝜌

𝐶
(𝐴) .

(3)

(ii) Assume (3). Then 𝐴 is a subgenerator of the global
(𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))

𝑡≥0
satisfy-

ing (2).

Let 𝐴 be a subgenerator of a locally equicontinuous
(𝑎, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))

𝑡∈[0,𝜏)
satisfying

the equality (2) for all 𝑡 ∈ [0, 𝜏) and 𝑥 ∈ 𝐸. Given 𝑠 ∈ [0, 𝜏)

and 𝑥 ∈ 𝐸, set 𝑢(𝑡) := 𝑅(𝑡)𝑅(𝑠)𝑥 − 𝑅(𝑠)𝑅(𝑡)𝑥, 𝑡 ∈ [0, 𝜏).
Then it is not difficult to prove that 𝑢 ∈ 𝐶([0, 𝜏) : 𝐸) and
𝐴∫

𝑡

0

𝑎(𝑡 − 𝑠)𝑢(𝑠) 𝑑𝑠 = 𝑢(𝑡), 𝑡 ∈ [0, 𝜏). Using the proof of
[35, Theorem 2.7] (cf. also [33, Theorem 2.5]), it follows that
∫

𝑡

0

𝑘(𝑡 − 𝑠)𝐶𝑢(𝑠) 𝑑𝑠 = 0, 𝑡 ∈ [0, 𝜏). Since 𝑘(𝑡) is a kernel
and 𝐶 is injective, we obtain 𝑅(𝑡)𝑅(𝑠) = 𝑅(𝑠)𝑅(𝑡), 𝑡, 𝑠 ∈

[0, 𝜏), which remains true for perturbed resolvent families
considered in the paper. Assuming additionally that (𝑅(𝑡))

𝑡≥0

is a global exponentially equicontinuous (𝑎, 𝑘)-regularized𝐶-
resolvent family as well as that 𝑎(𝑡) and 𝑘(𝑡) satisfy (P1), one
can define the integral generator 𝐴 of (𝑅(𝑡))

𝑡≥0
by setting

𝐴 := { (𝑥, 𝑦) ∈ 𝐸 × 𝐸 : 𝑅 (𝑡) 𝑥 − 𝑘 (𝑡) 𝐶𝑥

= ∫
𝑡

0

𝑎 (𝑡 − 𝑠) 𝑅 (𝑠) 𝑦 𝑑𝑠, 𝑡 ≥ 0} .

(4)

In case that 𝑎(𝑡) is a kernel, the definition of integral
generator𝐴 of (𝑅(𝑡))

𝑡≥0
coincideswith the corresponding one

introduced in [33]. Notice that𝐴 is themaximal subgenerator
of (𝑅(𝑡))

𝑡≥0
with respect to the set inclusion and that Lemma 2

implies 𝐴 = 𝐶−1𝐴𝐶.

2. Bounded Perturbation Theorems

Assume 𝛼 > 0 and 𝑙 ∈ N. Set, for any 𝐸-valued func-
tion 𝑓(𝑡) satisfying (P1), 𝐹

𝛼,𝑓
(𝑧) := ∫

∞

0

𝑒−𝑧
1/𝛼

𝑡𝑓(𝑡) 𝑑𝑡, 𝑧 >

max(abs(𝑓), 0)𝛼. Using induction and elementary opera-
tional properties of vector-valued Laplace transform, one
can simply prove that there exist uniquely determined real
numbers (𝑐

𝑙
0
,𝑙,𝛼
)
1≤𝑙
0
≤𝑙
, independent of 𝐸 and 𝑓(𝑡), such that

𝑑𝑙

𝑑𝑧𝑙

𝐹
𝛼,𝑓

(𝑧) =

𝑙

∑
𝑙
0
=1

𝑐
𝑙
0
,𝑙,𝛼
𝑧

(𝑙
0
/𝛼)−𝑙

∫
∞

0

𝑒
−𝑧
(1/𝛼)

𝑡

𝑡
𝑙
0𝑓 (𝑡) 𝑑𝑡,

𝑧 > max (abs (𝑓) , 0)𝛼.

(5)

Furthermore, 𝑐
𝑙,𝑙,𝛼

= (−1)
𝑙

/𝛼𝑙, 𝑙 ≥ 1, 𝑐
1,𝑙,𝛼

= ((−1)/𝛼)((1/𝛼)−

1) ⋅ ⋅ ⋅ ((1/𝛼) − (𝑙 − 1)), 𝑙 ≥ 2 and the following nonlinear
recursive formula holds:

𝑐
𝑙
0
,𝑙+1,𝛼

=
(−1)

𝛼
𝑐
𝑙
0
−1, 𝑙,𝛼

+ (
𝑙
0

𝛼
− 𝑙) 𝑐

𝑙
0
,𝑙,𝛼
, 𝑙

0
= 2, . . . , 𝑙. (6)

The precise computation of coefficients (𝑐
𝑙
0
,𝑙,𝛼
) is a nontrivial

problem.

Lemma 3. There exists 𝜁 ≥ 1 such that

𝑙

∑
𝑙
0
=1

𝑙
0
!

𝑐
𝑙
0
,𝑙,𝛼


≤ 𝜁

𝑙

𝑙! ∀𝑙 ∈ N. (7)
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Proof. Clearly, 𝐿
𝛼
:= sup

𝑛∈N
0

| ( 1/𝛼

𝑛
) | < ∞. Applying (6), one

gets

𝑙+1

∑
𝑙
0
=1

𝑙
0
!

𝑐
𝑙
0
,𝑙+1,𝛼



≤


1

𝛼
(
1

𝛼
− 1) ⋅ ⋅ ⋅ (

1

𝛼
− 𝑙)



+

𝑙

∑
𝑙
0
=2

[
𝑙
0
!

𝛼


𝑐
𝑙
0
−1,𝑙,𝛼


+ 𝑙 (

1

𝛼
+ 1) 𝑙

0
!

𝑐
𝑙
0
,𝑙,𝛼


] +

(𝑙 + 1)!

𝛼𝑙+1

≤ 𝐿
𝛼
(
1

𝛼
+ 𝑙) 𝑙! +

𝑙

𝛼

𝑙−1

∑
𝑙
0
=1

𝑙
0
!

𝑐
𝑙
0
,𝑙,𝛼



+ 𝑙 (
1

𝛼
+ 1)

𝑙

∑
𝑙
0
=2

𝑙
0
!

𝑐
𝑙
0
,𝑙,𝛼


+
(𝑙 + 1)!

𝛼𝑙+1

, 𝑙 ≥ 2.

(8)

The preceding inequality implies inductively that (7) holds
provided 𝜁 ≥ 4 + (4/𝛼) + 4𝐿

𝛼
(1 + (1/𝛼)).

Set 𝜁
𝛼
:= inf{𝜁 ≥ 1 : ∑

𝑙

𝑙
0
=1
𝑙
0
!|𝑐

𝑙
0
,𝑙,𝛼
| ≤ 𝜁𝑙𝑙! for all 𝑙 ∈

N} and ((1/𝛼) + 1) ⋅ ⋅ ⋅ ((1/𝛼) + (𝑙 − 1)) := 1 if 𝑙 = 1. Clearly,
𝜁

1
= 1, 𝜁

𝛼
> 1/𝛼, 𝛼 ∈ (0, 1) and ∑𝑙

𝑙
0
=1
𝑙
0
!|𝑐

𝑙
0
,𝑙,𝛼
| ≤ 𝜁𝑙

𝛼
𝑙! for all

𝑙 ∈ N.
The following lemma will be helpful in the analysis of

growth order of perturbed integrated (𝑔
𝛼
, 𝐶)-regularized

resolvent families.

Lemma 4. Let 𝛼 > 1. Then 𝜁
𝛼
= 1 and

𝑙

∑
𝑙
0
=1

𝑙
0
!

𝑐
𝑙
0
,𝑙,𝛼


=
1

𝛼
(
1

𝛼
+ 1) ⋅ ⋅ ⋅ (

1

𝛼
+ (𝑙 − 1)) ≤

𝑙!

𝛼
∀𝑙 ∈ N.

(9)

Proof. Plugging 𝑓(𝑡) ≡ 1 in (5), we obtain

𝑙

∑
𝑙
0
=1

𝑙
0
!𝑐

𝑙
0
,𝑙,𝛼

= (−1)
𝑙
1

𝛼
(
1

𝛼
+ 1) ⋅ ⋅ ⋅ (

1

𝛼
+ (𝑙 − 1)) ∀𝑙 ∈ N.

(10)

Since𝛼 > 1, it follows inductively from (6) that (−1)𝑙𝑐
𝑙
0
,𝑙,𝛼

> 0,
provided 𝑙 ≥ 1 and 1 ≤ 𝑙

0
≤ 𝑙. Combined with (10), the above

implies (9) and 𝜁
𝛼
= 1.

Now we are in a position to state the following important
result.

Theorem 5. Suppose 𝛼 > 0, 𝑘(𝑡) and 𝑘
1
(𝑡) satisfy (P1),

𝐴 is a subgenerator of a (𝑔
𝛼
, 𝑘)-regularized 𝐶-resolvent

family (𝑅(𝑡))
𝑡≥0

satisfying (2) with 𝑎(𝑡) = 𝑔
𝛼
(𝑡), 𝜔 ≥

max(abs(k), 0), the family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 ≥ 0} is equicontin-
uous and the following conditions hold

(i) 𝐵 ∈ 𝐿(𝐸), there exists |𝐵|
⊛
> 0 such that 𝑝(𝐵𝑥) ≤

|𝐵|
⊛
𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑝 ∈ ⊛, 𝐵𝐴 ⊆ 𝐴𝐵 and 𝐵𝐶 = 𝐶𝐵.

There exist𝑀 ≥ 1, 𝜔 ≥ 0, 𝜔 ≥ 0 and 𝜔 ≥ max(𝜔+
𝜔, 𝜔 + 𝜔, abs(k1)) such that

{𝜆 ∈ C : R𝜆 > 𝜔


, 𝑘
1
(𝜆) ̸= 0}

⊆ {𝜆 ∈ C : R𝜆 > 𝜔


, �̃� (𝜆) ̸= 0}

(11)

as well as
(ii) For every 𝑖, 𝑙

0
, 𝑙 ∈ N with 1 ≤ 𝑙 ≤ 𝑖 and 1 ≤ 𝑙

0
≤ 𝑙, there

exists a function 𝑘
𝑖,𝑙
0
,𝑙
(𝑡) satisfying (P1) and

L (𝑘
𝑖,𝑙
0
,𝑙
(𝑡)) (𝜆) = 𝑐

𝑙
0
,𝑙,𝛼
𝜆

𝑙
0
−𝛼(𝑙−1)

𝑘
1
(𝜆)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖−𝑙)

𝑧=𝜆
𝛼

,

(12)

providedR𝜆 > 𝜔 and 𝑘
1
(𝜆) ̸= 0.

(iii) For every 𝑖 ∈ N
0
, there exists a function

𝑖
𝑘(𝑡) satisfying

(P1) and a constant 𝑐
𝑖
∈ C so that

𝑐
𝑖
+

𝑖
�̃� (𝜆) = 𝜆

𝛼

𝑘
1
(𝜆)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖)

𝑧=𝜆
𝛼

,

R𝜆 > 𝜔


, 𝑘
1
(𝜆) ̸= 0.

(13)

(iv)
∞

∑
𝑖=0

𝑐𝑖

|𝐵|

𝑖

⊛

𝑖!
< ∞,

∞

∑
𝑖=0

|𝐵|
𝑖

⊛

𝑖!
∫

𝑡

0

𝑖𝑘 (𝑠)
 𝑑𝑠 ≤ 𝑀𝑒

𝜔


𝑡

, 𝑡 ≥ 0,

(14)

(v)

∞

∑
𝑖=1

𝑖

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!
(
𝑖

𝑙
)∫

𝑡

0

(𝑡 − 𝑠)
𝑙
0


𝑘

𝑖,𝑙
0
,𝑙
(𝑠)

𝑑𝑠 ≤ 𝑀𝑒

𝜔


𝑡

, 𝑡 ≥ 0,

(15)

(vi)

∞

∑
𝑖=2

𝑖

∑
𝑙=2

𝑙−1

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!
𝑙 (
𝑖

𝑙
)∫

𝑡

0

(𝑡 − 𝑠)
𝑙
0


𝑘

𝑖−1,𝑙
0
,𝑙−1

(𝑠)

𝑑𝑠 ≤ 𝑀𝑒

𝜔


𝑡

,

𝑡 ≥ 0.

(16)

Then 𝐴 + 𝐵 is a subgenerator of an exponentially equicontin-
uous (𝑔

𝛼
, 𝑘

1
)-regularized 𝐶-resolvent family (𝑅

𝐵
(𝑡))

𝑡≥0
, which

is given by the following formula:

𝑅
𝐵
(𝑡) 𝑥 :=

∞

∑
𝑖=0

(−𝐵)
𝑖

𝑖!
[𝑐

𝑖
𝑅 (𝑡) 𝑥 + (

𝑖
𝑘 ∗ 𝑅 (⋅) 𝑥) (𝑡)]

+

∞

∑
𝑖=1

𝑖

∑
𝑙=1

𝑙

∑
𝑙
0
=1

(−𝐵)
𝑖

𝑖!
(
𝑖

𝑙
) (𝑘

𝑖,𝑙
0
,𝑙
∗ ⋅

𝑙
0𝑅 (⋅) 𝑥) (𝑡) ,

𝑡 ≥ 0, 𝑥 ∈ 𝐸.

(17)
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Furthermore,

𝑅
𝐵
(𝑡) 𝑥 = 𝑘

1
(𝑡) 𝐶𝑥 + (𝐴 + 𝐵)∫

𝑡

0

𝑔
𝛼
(𝑡 − 𝑠) 𝑅

𝐵
(𝑠) 𝑥 𝑑𝑠,

𝑡 ≥ 0, 𝑥 ∈ 𝐸,

(18)

and the family {𝑒−(𝜔+𝜔


)𝑡𝑅
𝐵
(𝑡) : 𝑡 ≥ 0} is equicontinuous.

Proof. By (iv)-(v), we obtain that the series in (17) con-
verge uniformly on compact subsets of [0,∞) as well as
that (𝑅

𝐵
(𝑡))

𝑡≥0
is strongly continuous and that the family

{𝑒−(𝜔+𝜔


)𝑡𝑅
𝐵
(𝑡) : 𝑡 ≥ 0} is equicontinuous. By (i) and

Lemma 2, (𝑧 − 𝐴)
−1

𝐶𝐵 = 𝐵(𝑧 − 𝐴)
−1

𝐶, 𝑧 ∈ 𝜌
𝐶
(𝐴) and,

for every 𝜆 ∈ C with R𝜆 > 𝜔 and �̃�(𝜆) ̸= 0 : 𝜆𝛼�̃�(𝜆)(𝜆𝛼 −

𝐴)
−1

𝐶𝐵𝑥 = ∫
∞

0

𝑒−𝜆𝑡𝑅(𝑡)𝐵𝑥 𝑑𝑡, 𝑥 ∈ 𝐸 and 𝜆𝛼�̃�(𝜆)𝐵(𝜆𝛼 −

𝐴)
−1

𝐶𝑥 = ∫
∞

0

𝑒−𝜆𝑡𝐵𝑅(𝑡)𝑥 𝑑𝑡, 𝑥 ∈ 𝐸. By the uniqueness
theorem for Laplace transform, one gets 𝑅(𝑡)𝐵 = 𝐵𝑅(𝑡), 𝑡 ≥

0. The closedness of 𝐴, 𝑅(𝑡)𝐴 ⊆ 𝐴𝑅(𝑡), 𝑡 ≥ 0 and (iv)-
(v) taken together imply 𝑅

𝐵
(𝑡)𝐴 ⊆ 𝐴𝑅

𝐵
(𝑡), 𝑡 ≥ 0. Hence,

𝑅
𝐵
(𝑡)(𝐴 + 𝐵) ⊆ (𝐴 + 𝐵)𝑅

𝐵
(𝑡), 𝑡 ≥ 0. By Lemma 2,

𝑧�̃� (𝑧
1/𝛼

) (𝑧 − 𝐴)
−1

𝐶𝑥 = ∫
∞

0

𝑒
−𝑧
1/𝛼

𝑡

𝑅 (𝑡) 𝑥 𝑑𝑡,

𝑥 ∈ 𝐸, R (𝑧
1/𝛼

) > 𝜔, �̃� (𝑧
1/𝛼

) ̸= 0.

(19)

Exploiting the closedness of𝐴 and the product rule, we easily
infer from (19) that, for every 𝑥 ∈ 𝐸, 𝑙 ∈ N and for every 𝑧 ∈ C

withR(𝑧1/𝛼) > 𝜔 and �̃�(𝑧1/𝛼) ̸= 0 :

𝐴
𝑑𝑙

𝑑𝑧𝑙

∫
∞

0

𝑒
−𝑧
1/𝛼

𝑡

𝑅 (𝑡) 𝑥 𝑑𝑡

= 𝐴
𝑑

𝑙

𝑑𝑧𝑙

[𝑧�̃� (𝑧
1/𝛼

) (𝑧 − 𝐴)
−1

𝐶𝑥]

=
𝑑𝑙

𝑑𝑧𝑙

[𝑧�̃� (𝑧
1/𝛼

)𝐴(𝑧 − 𝐴)
−1

𝐶𝑥]

= 𝑧
𝑑𝑙

𝑑𝑧𝑙

[𝑧�̃� (𝑧
1/𝛼

) (𝑧 − 𝐴)
−1

𝐶𝑥]

+ 𝑙
𝑑𝑙−1

𝑑𝑧𝑙−1

[𝑧�̃� (𝑧
1/𝛼

) (𝑧 − 𝐴)
−1

𝐶𝑥]

−
𝑑𝑙

𝑑𝑧𝑙

[𝑧�̃� (𝑧
1/𝛼

) 𝐶𝑥] .

(20)

Fix, for the time being, 𝑥 ∈ 𝐸 and 𝜆 ∈ C with R𝜆 > 𝜔

and 𝑘
1
(𝜆) ̸= 0. Then (11) implies �̃�(𝜆) ̸= 0. By (iv)-(v) and the

dominated convergence theorem, it follows that the Laplace
transform of power series appearing in (17) can be computed

term by term. Using this fact as well as (5), (19), and (ii)-(iii),
we obtain that

L (𝑅
𝐵
(𝑡) 𝑥) (𝜆) = 𝜆

𝛼

𝑘
1
(𝜆)

∞

∑
𝑖=0

(−𝐵)
𝑖

𝑖!

×

𝑖

∑
𝑙=0

(
𝑖

𝑙
)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖−𝑙)

𝑧=𝜆
𝛼

×(
𝑑𝑙

𝑑𝑧𝑙

[𝑧�̃� (𝑧
1/𝛼

) (𝑧 − 𝐴)
−1

𝐶𝑥])
𝑧=𝜆
𝛼

.

(21)

Our goal is to prove that

(𝐼 −
𝐴 + 𝐵

𝜆𝛼
)L (𝑅

𝐵
(𝑡) 𝑥) (𝜆) = 𝑘

1
(𝜆) 𝐶𝑥. (22)

By the product rule, we get

∞

∑
𝑖=1

(−𝐵)
𝑖

𝑖!

𝑖

∑
𝑙=1

(
𝑖

𝑙
)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖−𝑙)

𝑧=𝜆
𝛼

(
𝑑𝑙

𝑑𝑧𝑙

[𝑧�̃� (𝑧
1/𝛼

) 𝐶𝑥])
𝑧=𝜆
𝛼

= −𝜆
𝛼

�̃� (𝜆)

∞

∑
𝑖=1

(−𝐵)
𝑖

𝑖!
(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖)

𝑧=𝜆
𝛼

𝐶𝑥;

(23)

notice that the convergence of last series follows from the
conditions (iii)-(iv). Taking into account (5), (ii), and (vi), one
yields that

1

𝜆𝛼𝑘
1
(𝜆)

∫
∞

0

𝑒
−𝜆𝑡

∞

∑
𝑖=2

𝑖

∑
𝑙=2

𝑙−1

∑
𝑙
0
=1

(−𝐵)
𝑖

𝑖!
𝑙 (
𝑖

𝑙
)

× ∫
𝑡

0

(𝑡 − 𝑠)
𝑙
0𝑅 (𝑡 − 𝑠)

× 𝑘
𝑖−1,𝑙
0
,𝑙−1

(𝑠) 𝑥 𝑑𝑠 𝑑𝑡

=
1

𝜆𝛼𝑘
1
(𝜆)

∞

∑
𝑖=2

𝑖

∑
𝑙=2

𝑙−1

∑
𝑙
0
=1

(−𝐵)
𝑖

𝑖!
𝑙 (
𝑖

𝑙
)

× ∫
∞

0

𝑒
−𝜆𝑡

∫
𝑡

0

(𝑡 − 𝑠)
𝑙
0𝑅 (𝑡 − 𝑠)

× 𝑘
𝑖−1,𝑙
0
,𝑙−1

(𝑠) 𝑥 𝑑𝑠 𝑑𝑡

=

∞

∑
𝑖=2

𝑖

∑
𝑙=2

𝑙−1

∑
𝑙
0
=1

(−𝐵)
𝑖

𝑖!
𝑙 (
𝑖

𝑙
) 𝑐

𝑙
0
,𝑙−1,𝛼

𝜆
𝑙
0
−𝛼(𝑙−1)

× ∫
∞

0

𝑒
−𝜆𝑡

𝑡
𝑙
0𝑅 (𝑡) 𝑥 𝑑𝑡

=

∞

∑
𝑖=2

(−𝐵)
𝑖

𝑖!

×

𝑖

∑
𝑙=2

𝑙 (
𝑖

𝑙
)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖−𝑙)

𝑧=𝜆
𝛼

×(
𝑑𝑙−1

𝑑𝑧𝑙−1

[𝑧�̃� (𝑧
1/𝛼

) (𝑧 − 𝐴)
−1

𝐶𝑥])
𝑧=𝜆
𝛼

,

(24)
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which implies that the series
∞

∑
𝑖=1

(−𝐵)
𝑖

𝑖!

𝑖

∑
𝑙=1

𝑙 (
𝑖

𝑙
)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖−𝑙)

𝑧=𝜆
𝛼

×(
𝑑𝑙−1

𝑑𝑧𝑙−1

[𝑧�̃� (𝑧
1/𝛼

) (𝑧 − 𝐴)
−1

𝐶𝑥])
𝑧=𝜆
𝛼

(25)

is also convergent. Now we get from (20)-(21) and (23)-(24):

(𝐼 −
𝐴 + 𝐵

𝜆𝛼
)L (𝑅

𝐵
(𝑡) 𝑥) (𝜆)

= 𝜆
𝛼

∞

∑
𝑖=0

(−𝐵)
𝑖

𝑖!

𝑖

∑
𝑙=0

(
𝑖

𝑙
)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖−𝑙)

𝑧=𝜆
𝛼

× (
𝑑𝑙

𝑑𝑧𝑙

[𝑧�̃� (𝑧
1/𝛼

) (𝑧 − 𝐴)
−1

𝐶𝑥])
𝑧=𝜆
𝛼

−

∞

∑
𝑖=1

(−𝐵)
𝑖

𝑖!

𝑖

∑
𝑙=1

(
𝑖

𝑙
)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖−𝑙)

𝑧=𝜆
𝛼

× (𝑧
𝑑𝑙

𝑑𝑧𝑙

[𝑧�̃� (𝑧
1/𝛼

) (𝑧 − 𝐴)
−1

𝐶𝑥]

+ 𝑙
𝑑𝑙−1

𝑑𝑧𝑙−1

[𝑧�̃� (𝑧
1/𝛼

) (𝑧−𝐴)
−1

𝐶𝑥]

−
𝑑

𝑙

𝑑𝑧𝑙

[𝑧�̃� (𝑧
1/𝛼

)] 𝐶𝑥)
𝑧=𝜆
𝛼

− 𝜆
𝛼

�̃� (𝜆)

∞

∑
𝑖=0

(−𝐵)
𝑖

𝑖!
(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖)

𝑧=𝜆
𝛼

𝐴(𝜆
𝛼

− 𝐴)
−1

𝐶𝑥

+ 𝜆
𝛼

∞

∑
𝑖=0

(−𝐵)
𝑖+1

𝑖!

𝑖

∑
𝑙=0

(
𝑖

𝑙
)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖−𝑙)

𝑧=𝜆
𝛼

× (
𝑑𝑙

𝑑𝑧𝑙

[𝑧�̃� (𝑧
1/𝛼

) (𝑧 − 𝐴)
−1

𝐶𝑥])
𝑧=𝜆
𝛼

= 𝜆
2𝛼

�̃� (𝜆)

∞

∑
𝑖=0

(−𝐵)
𝑖

𝑖!
(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖)

𝑧=𝜆
𝛼

(𝜆
𝛼

− 𝐴)
−1

𝐶𝑥

−

∞

∑
𝑖=1

(−𝐵)
𝑖

𝑖!

𝑖

∑
𝑙=1

(
𝑖

𝑙
)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖−𝑙)

𝑧=𝜆
𝛼

×(𝑙
𝑑𝑙−1

𝑑𝑧𝑙−1

[𝑧�̃� (𝑧
1/𝛼

) (𝑧 − 𝐴)
−1

𝐶𝑥])
𝑧=𝜆
𝛼

− 𝜆
𝛼

�̃� (𝜆)

∞

∑
𝑖=1

(−𝐵)
𝑖

𝑖!
(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖)

𝑧=𝜆
𝛼

𝐶𝑥

− 𝜆
𝛼

�̃� (𝜆)

∞

∑
𝑖=0

(−𝐵)
𝑖

𝑖!
(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖)

𝑧=𝜆
𝛼

× (−𝐶𝑥 + 𝜆
𝛼

(𝜆
𝛼

− 𝐴)
−1

𝐶𝑥)

+ 𝜆
𝛼

∞

∑
𝑖=0

(−𝐵)
𝑖+1

𝑖!

𝑖

∑
𝑙=0

(
𝑖

𝑙
)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖−𝑙)

𝑧=𝜆
𝛼

×(
𝑑𝑙

𝑑𝑧𝑙

[𝑧�̃� (𝑧
1/𝛼

) (𝑧−𝐴)
−1

𝐶𝑥])
𝑧=𝜆
𝛼

= 𝐶𝑥 −

∞

∑
𝑖=1

(−𝐵)
𝑖

𝑖!

×

𝑖

∑
𝑙=1

(
𝑖

𝑙
)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖−𝑙)

𝑧=𝜆
𝛼

×(𝑙
𝑑𝑙−1

𝑑𝑧𝑙−1

[𝑧�̃� (𝑧
1/𝛼

) (𝑧−𝐴)
−1

𝐶𝑥])
𝑧=𝜆
𝛼

+ 𝜆
𝛼

∞

∑
𝑖=0

(−𝐵)
𝑖+1

𝑖!

𝑖

∑
𝑙=0

(
𝑖

𝑙
)(

1

𝑧�̃� (𝑧1/𝛼)
)

(𝑖−𝑙)

𝑧=𝜆
𝛼

× (
𝑑𝑙

𝑑𝑧𝑙

[𝑧�̃� (𝑧
1/𝛼

) (𝑧 − 𝐴)
−1

𝐶𝑥])
𝑧=𝜆
𝛼

= 𝐶𝑥,

(26)

because the sum of coefficients of (−𝐵)𝑖 (𝑖 ≥ 1) in the
last two series equals 0; this follows from an elementary
calculus involving only the product rule. Assume now 𝑥 ∈

𝐷(𝐴), R𝜆 > 𝜔, 𝑘
1
(𝜆) ̸= 0 and (𝐼 − ((𝐴 + 𝐵)/𝜆𝛼))𝑥 = 0. By

(22) and 𝑅
𝐵
(𝑡)(𝐴 + 𝐵) ⊆ (𝐴 + 𝐵)𝑅

𝐵
(𝑡), 𝑡 ≥ 0, we obtain that

𝑘
1
(𝜆) 𝐶𝑥 = (𝐼 −

𝐴 + 𝐵

𝜆𝛼
)L (𝑅

𝐵
(𝑡) 𝑥) (𝜆)

= L(𝑅
𝐵
(𝑡) (𝐼 −

𝐴 + 𝐵

𝜆𝛼
)𝑥) (𝜆) = 0,

(27)

which implies 𝐶𝑥 = 𝑥 = 0. Thus, {𝜆𝛼 : R𝜆 >

𝜔, 𝑘
1
(𝜆) ̸= 0} ⊆ 𝜌

𝐶
(𝐴 + 𝐵) and

𝑘
1
(𝜆) (𝐼 −

𝐴 + 𝐵

𝜆𝛼
)

−1

𝐶𝑥 = ∫
∞

0

𝑒
−𝜆𝑡

𝑅
𝐵
(𝑡) 𝑥 𝑑𝑡, 𝑥 ∈ 𝐸,

R𝜆 > 𝜔


, 𝑘
1
(𝜆) ̸= 0.

(28)

The proof of theorem completes an application of
Lemma 2.

Remark 6. (i) By [33, Proposition 2.4(i)], we get that
(𝑅

𝐵
(𝑡))

𝑡≥0
is a unique (𝑔

𝛼
, 𝑘

1
)-regularized 𝐶-resolvent family

with the properties stated in the formulation of Theorem 5.
(ii) The following comment is also applicable to

Theorem 7 given below. Assume 𝑘(𝑡) = 𝑘
1
(𝑡), 𝑡 ≥ 0, 𝑛 ∈ N

and the conditions (iv)-(vi) of Theorem 5 hold with |𝐵|𝑖
⊛
/𝑖!

replaced by |𝐵|𝑖
⊛
/𝑛𝑖𝑖! therein. Writing 𝐴 + 𝐵 as 𝐴 + ∑

𝑛

𝑖=1
𝐵/𝑛

and applying Theorem 5 successively 𝑛 times, we obtain
that 𝐴 + 𝐵 is a subgenerator of a global (𝑔

𝛼
, 𝑘)-regularized
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𝐶-resolvent family (𝑅
𝐵
(𝑡))

𝑡≥0
satisfying (18). Furthermore,

the family {𝑒−(𝜔+𝑛𝜔


)𝑡𝑅
𝐵
(𝑡) : 𝑡 ≥ 0} is equicontinuous.

(iii) It is not clear whether there exist functions 𝑘(𝑡)
and 𝑘

1
(𝑡) such that the conditions (ii)–(vi) of Theorem 5 are

fulfilled in the case 𝛼 ∈ (0, 1).

Theorem 7. Consider the situation of Theorem 5 with
(𝑅(𝑡))

𝑡≥0
being an exponentially equicontinuous, analytic

(𝑔
𝛼
, 𝑘)-regularized 𝐶-resolvent family of angle 𝛽 ∈ (0, 𝜋/2].

Assume that, for every 𝛾 ∈ (0, 𝛽), there exists 𝜔
𝛾
≥ 0 such

that the set {𝑒−𝜔
𝛾
R𝑧𝑅(𝑧) : 𝑧 ∈ Σ

𝛾
} is equicontinuous. Assume,

additionally, that there exists 𝜀 > 0 such that, for every
𝛾 ∈ (0, 𝛽), there exist 𝜔

𝛾,1
≥ max(sup{abs(ik) : i ≥ 1}, 𝜔

𝛾
)

and 𝜔
𝛾,2

≥ max(sup{abs(ki,l0 ,l) : 1 ≤ l ≤ i, 1 ≤ l0 ≤ l}, 𝜔
𝛾
+ 𝜀)

with the following properties.

(i) For every i ∈ N
0
, the function 𝜆 → ̃

ik(𝜆), 𝜆 > 𝜔
𝛾,1

can be analytically extended to the sector𝜔
𝛾,1
+Σ

(𝜋/2)+𝛾

and the following holds:

∞

∑
𝑖=0

|𝐵|
𝑖

⊛

𝑖!
sup

𝜆∈𝜔
𝛾,1

+Σ
(𝜋/2)+𝛾


̃
𝑖
𝑘 (𝜆)


< ∞. (29)

(ii) For every 𝑖, 𝑙
0
, 𝑙 ∈ N with 1 ≤ 𝑙 ≤ 𝑖 and 1 ≤ 𝑙

0
≤

𝑙, the function 𝜆 → L(𝑘
𝑖,𝑙
0
,𝑙
(𝑡))(𝜆), 𝜆 > 𝜔

𝛾,2
can be

analytically extended to the sector 𝜔
𝛾,2

+ Σ
(𝜋/2)+𝛾

and
the following holds:

∞

∑
𝑖=1

𝑖

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!
(
𝑖

𝑙
)

𝑙
0
!

√2𝜋𝑙
0
(𝜀 cos 𝛾)𝑙0

× sup
𝜆∈𝜔
𝛾,2

+Σ
(𝜋/2)+𝛾


L (𝑘

𝑖,𝑙
0
,𝑙
(𝑡)) (𝜆)


< ∞.

(30)

Then (𝑅
𝐵
(𝑡))

𝑡≥0
is an exponentially equicontinuous, analytic

(𝑔
𝛼
, 𝑘

1
)-regularized 𝐶-resolvent family of angle 𝛽.

Proof. Let 𝑝 ∈ ⊛, 𝑥 ∈ 𝐸, 𝛾 ∈ (0, 𝛽) and 𝜀 ∈ (0, (1/3)

min(𝛾, (𝜋/2) − 𝛾)). Then Stirling’s formula implies that there
exists 𝜅 ≥ 1 such that

|𝑧|
𝑙
0𝑒

𝜔
𝛾
R𝑧

≤
(R𝑧)

𝑙
0

(cos 𝛾)𝑙0
𝑒

𝜔
𝛾
R𝑧

≤
𝑒−𝑙
0

(cos 𝛾)𝑙0
𝑙
𝑙
0

0

𝜀𝑙
0

𝑒
(𝜔
𝛾
+𝜀)R𝑧

≤ 𝜅
𝑙
0
!

√2𝜋𝑙
0
(𝜀 cos 𝛾)𝑙0

𝑒
(𝜔
𝛾
+𝜀)R𝑧

≤ 𝜅
𝑙
0
!

√2𝜋𝑙
0
(𝜀 cos 𝛾)𝑙0

𝑒
𝜔
𝛾,2
R𝑧

(31)

for all 𝑧 ∈ Σ
𝛾
and 𝑙

0
∈ N. By [33, Theorem 3.4(i)] and the

proof of implication (i) ⇒ (ii) of [39, Theorem 2.6.1], we
obtain that the mapping 𝜆 → L(

𝑖
𝑘 ∗ 𝑅(⋅)𝑥)(𝜆), 𝜆 > 𝜔

𝛾,1
,

respectively, 𝜆 → L(𝑘
𝑖,𝑙
0
,𝑙
∗ ⋅𝑙0𝑅(⋅)𝑥)(𝜆), 𝜆 > 𝜔

𝛾,2
can be

analytically extended to the sector𝜔
𝛾,1
+Σ

(𝜋/2)+𝛾
, respectively,

𝜔
𝛾,2

+ Σ
(𝜋/2)+𝛾

, as well as that there exist 𝑐
𝑝
> 0 and 𝑞

𝑝
∈ ⊛,

independent of 𝑥, such that

sup
𝜆∈𝜔
𝛾,1

+Σ
(𝜋/2)+𝛾−𝜀

𝑝 ((𝜆 − 𝜔
𝛾,1
) ̃

𝑖
𝑘 (𝜆)L (𝑅 (𝑡) 𝑥) (𝜆))

≤
𝑐
𝑝
𝑞

𝑝
(𝑥)

sin 𝜀
sup

𝜆∈𝜔
𝛾,1

+Σ
(𝜋/2)+𝛾−𝜀


̃
𝑖
𝑘 (𝜆)



(32)

and that, for every 𝑖, 𝑙
0
, 𝑙 ∈ N with 1 ≤ 𝑙 ≤ 𝑖 and 1 ≤ 𝑙

0
≤ 𝑙,

sup
𝜆∈𝜔
𝛾,2

+Σ
(𝜋/2)+𝛾−𝜀

𝑝 ((𝜆−𝜔
𝛾,2
)L (𝑘

𝑖,𝑙
0
,𝑙
(𝑡)) (𝜆)L (𝑡

𝑙
0𝑅 (𝑡) 𝑥) (𝜆))

≤ 𝜅
𝑐
𝑝
𝑞

𝑝
(𝑥)

sin 𝜀
𝑙
0
!

√2𝜋𝑙
0
(𝜀 cos 𝛾)𝑙0

× sup
𝜆∈𝜔
𝛾,2

+Σ
(𝜋/2)+𝛾−𝜀


L (𝑘

𝑖,𝑙
0
,𝑙
(𝑡)) (𝜆)


.

(33)

Using (32)-(33), [33, Theorem 3.4(i)] and the proof of impli-
cation (ii) ⇒ (i) of [39, Theorem 2.6.1], it follows that the
functions 𝑡 → (

𝑖
𝑘 ∗ 𝑅(⋅)𝑥)(𝑡), 𝑡 > 0 and 𝑡 → (𝑘

𝑖,𝑙
0
,𝑙
∗

⋅𝑙0𝑅(⋅)𝑥)(𝑡), 𝑡 > 0 can be analytically extended to the sector
Σ

𝛾
and that the following estimates hold:

𝑝 ((
𝑖
𝑘 ∗ 𝑅 (⋅) 𝑥) (𝑧))

≤
𝑐
𝑝
𝑞

𝑝
(𝑥)

sin 𝜀
sup

𝜆∈𝜔
𝛾,1

+Σ
(𝜋/2)+𝛾−𝜀


̃
𝑖
𝑘 (𝜆)


(𝑒

1+𝜔
𝛾,1
R𝑧

+
𝑒𝜔
𝛾,1
R𝑧

𝜋 sin 𝜀
) ,

𝑧 ∈ Σ
𝛾−3𝜀

,

𝑝 ((𝑘
𝑖,𝑙
0
,𝑙
∗ ⋅

𝑙
0𝑅 (⋅) 𝑥) (𝑧))

≤ 𝜅
𝑐
𝑝
𝑞

𝑝
(𝑥)

sin 𝜀
𝑙
0
!

√2𝜋𝑙
0
(𝜀 cos 𝛾)𝑙0

× sup
𝜆∈𝜔
𝛾,2

+Σ
(𝜋/2)+𝛾−𝜀


L (𝑘

𝑖,𝑙
0
,𝑙
(𝑡)) (𝜆)



× (𝑒
1+𝜔
𝛾,2
R𝑧

+
𝑒𝜔
𝛾,2
R𝑧

𝜋 sin 𝜀
) , 𝑧 ∈ Σ

𝛾−3𝜀
.

(34)

Since Vitali’s theorem holds in our framework (cf. e.g. [33,
Lemma 3.3]), we easily infer from (29)-(30), (34), and the
arbitrariness of 𝛾 and 𝜀 that the mapping 𝑡 → 𝑅

𝐵
(𝑡)𝑥, 𝑡 > 0

can be analytically extended to the sector Σ
𝛽

by the
formula (17). Thanks to the proof of Theorem 5, the series
appearing in (17) converge uniformly on compact subsets
of [0,∞), which implies lim

𝑡 → 0+
∑

∞

𝑖=0
((−𝐵)

𝑖

/𝑖!)𝑐
𝑖
𝑅(𝑡)𝑥 =

∑
∞

𝑖=0
((−𝐵)

𝑖

/𝑖!)𝑐
𝑖
𝑅(0), lim

𝑡 → 0+
∑

∞

𝑖=0
((−𝐵)

𝑖

/𝑖!)(
𝑖
𝑘 ∗ 𝑅(⋅)𝑥)(𝑡) =

0, and lim
𝑡 → 0+

∑
∞

𝑖=1
∑

𝑖

𝑙=1
∑

𝑙

𝑙
0
=1
((−𝐵)

𝑖

/𝑖!) ( 𝑖

𝑙
) (𝑘

𝑖,𝑙
0
,𝑙

∗

⋅𝑙0𝑅(⋅)𝑥)(𝑡) = 0. Furthermore, the functions 𝑧 →

𝑓
1
(𝑧) := ∑

∞

𝑖=0
((−𝐵)

𝑖

/𝑖!)𝑐
𝑖
𝑅(𝑧)𝑥, 𝑧 ∈ Σ

𝛽
, 𝑧 → 𝑓

2
(𝑧) :=

∑
∞

𝑖=0
((−𝐵)

𝑖

/𝑖!)(
𝑖
𝑘 ∗ 𝑅(⋅)𝑥)(𝑧), 𝑧 ∈ Σ

𝛽
, and 𝑧 → 𝑓

3
(𝑧) :=

∑
∞

𝑖=1
∑

𝑖

𝑙=1
∑

𝑙

𝑙
0
=1
((−𝐵)

𝑖

/𝑖!) ( 𝑖

𝑙
) (𝑘

𝑖,𝑙
0
,𝑙
∗ ⋅𝑙0𝑅(⋅)𝑥)(𝑧), 𝑧 ∈ Σ

𝛽
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are analytic, and the set {𝑒−(𝜔
𝛾
+𝜔
𝛾,1

+𝜔
𝛾,2

)R𝑧𝑓
𝑗
(𝑧) : 1 ≤ 𝑗 ≤

3, 𝑧 ∈ Σ
𝛾−3𝜀

} is bounded. An application of [33, Theorem
3.4(ii)] gives that the mapping 𝑧 → 𝑅

𝐵
(𝑧)𝑥, 𝑧 ∈ Σ

𝛽
∪ {0}

is continuous on any closed subsector of Σ
𝛽
∪ {0}, which

completes the proof of theorem.

It would take too long to go into details concerning
stability of certain differential properties ([40, 41]) under
bounded commuting perturbations described inTheorem 5.

Let 𝛼 > 0, let 𝛽 > 0, and let the Mittag-Leffler function
𝐸

𝛼,𝛽
(𝑧) be defined by𝐸

𝛼,𝛽
(𝑧) := ∑

∞

𝑛=0
𝑧𝑛/Γ(𝛼𝑛+𝛽), 𝑧 ∈ C. Set

𝐸
𝛼
(𝑧) := 𝐸

𝛼,1
(𝑧), 𝑧 ∈ C. Then it is well known (cf. [28, 42–

44]) that 𝐸

𝛼
(𝑧) = 𝐸

𝛼,𝛼
(𝑧)/𝛼, 𝑧 ∈ C and that, for every 𝛼 > 1,

there exist 𝑏
𝛼
≥ 1 and 𝑐

𝛼
≥ 1 such that

𝐸
𝛼,𝛼

(𝑡) ≤ 𝑏
𝛼
𝑡
(1−𝛼)/𝛼 exp (𝑡1/𝛼

) , 𝑡 > 0,

𝐸
𝛼
(𝑡) ≤ 𝑐

𝛼
exp (𝑡1/𝛼

) , 𝑡 ≥ 0.

(35)

It is noteworthy that the assumptions of Theorems 5 and 7
hold provided 𝛼 > 1 and 𝑘(𝑡) = 𝑘

1
(𝑡) = 𝑔

𝑟+1
(𝑡), where 𝑟 ≥ 0.

In this case, 𝑐
0
= 1, 𝑘

0
(𝑡) = 0, 𝑐

𝑖
= 0, 𝑖 ≥ 1,

𝑖
𝑘 (𝑡) = (

𝑟 + 1

𝛼
− 1) ⋅ ⋅ ⋅ (

𝑟 + 1

𝛼
− 𝑖) 𝑔

𝛼𝑖
(𝑡) , 𝑡 ≥ 0, 𝑖 ≥ 1

(36)

and, for every 𝑖, 𝑙
0
, 𝑙 ∈ N with 1 ≤ 𝑙 ≤ 𝑖 and 1 ≤ 𝑙

0
≤ 𝑙,

𝑘
𝑖,𝑙
0
,𝑙
(𝑡) = 𝑐

𝑙
0
,𝑙,𝛼
(
𝑟 + 1

𝛼
− 1) ⋅ ⋅ ⋅ (

𝑟 + 1

𝛼
− (𝑖 − 𝑙)) 𝑔

𝛼𝑖−𝑙
0

(𝑡) ,

𝑡 > 0.

(37)

In order to verify (iv)–(vi), notice that there exists a constant
𝑐
𝑟,𝛼

≥ 1 such that |(((𝑟 + 1)/𝛼) − 1) ⋅ ⋅ ⋅ (((𝑟 + 1)/𝛼) − 𝑖)| ≤ 𝑐
𝑟,𝛼
𝑖!

for all 𝑖 ∈ N. Then we obtain from (35) and Lemmas 3–4 that

∞

∑
𝑖=1

|𝐵|
𝑖

⊛

𝑖!


(
𝑟 + 1

𝛼
− 1) ⋅ ⋅ ⋅ (

𝑟 + 1

𝛼
− 𝑖)


∫

𝑡

0

𝑔
𝛼𝑖
(𝑠) 𝑑𝑠

≤ 𝑐
𝑟,𝛼

∞

∑
𝑖=1

(𝑡𝛼|𝐵|
⊛
)
𝑖

Γ (𝛼𝑖 + 1)
= 𝑐

𝑟,𝛼
(𝐸

𝛼
(𝑡

𝛼

|𝐵|
⊛
) − 1)

≤ 𝑐
𝑟,𝛼
𝑐
𝛼
𝑒

𝑡|𝐵|
1/𝛼

⊛ , 𝑡 ≥ 0,

(38)

∞

∑
𝑖=1

𝑖

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!
(
𝑖

𝑙
)∫

𝑡

0

(𝑡 − 𝑠)
𝑙
0


𝑘

𝑖,𝑙
0
,𝑙
(𝑠)

𝑑𝑠

≤

∞

∑
𝑖=1

𝑖

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!
(
𝑖

𝑙
)

𝑐
𝑙
0
,𝑙,𝛼



×

(
𝑟 + 1

𝛼
− 1) ⋅ ⋅ ⋅ (

𝑟 + 1

𝛼
− (𝑖 − 𝑙))


𝑙
0
!𝑔

𝛼𝑖+1
(𝑡)

≤
𝑐
𝑟,𝛼

𝛼

∞

∑
𝑖=1

𝑖
(𝑡𝛼|𝐵|

⊛
)
𝑖

Γ (𝛼𝑖 + 1)
=
𝑐
𝑟,𝛼

𝛼
𝑡
𝛼

|𝐵|
⊛

∞

∑
𝑖=1

𝑖
(𝑡𝛼|𝐵|

⊛
)
𝑖−1

Γ (𝛼𝑖 + 1)

=
𝑐
𝑟,𝛼

𝛼
𝑡
𝛼

|𝐵|
⊛
(

∞

∑
𝑖=1

𝑧𝑖

Γ (𝛼𝑖 + 1)
)



𝑧=𝑡
𝛼
|𝐵|
⊛

=
𝑐
𝑟,𝛼

𝛼2
𝑡
𝛼

|𝐵|
⊛
𝐸

𝛼,𝛼
(𝑡

𝛼

|𝐵|
⊛
)

≤
𝑐
𝑟,𝛼
𝑏
𝛼

𝛼2
𝑡
𝛼

|𝐵|
⊛
(𝑡

𝛼

|𝐵|
⊛
)
(1−𝛼)/𝛼

𝑒
𝑡|𝐵|
1/𝛼

⊛

≤
𝑐
𝑟,𝛼
𝑏
𝛼

𝛼2
𝑡|𝐵|

1/𝛼

⊛
𝑒

𝑡|𝐵|
1/𝛼

⊛ , 𝑡 ≥ 0,

(39)

proving the conditions (iv)-(v) and
∞

∑
𝑖=2

𝑖

∑
𝑙=2

𝑙−1

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!
𝑙 (
𝑖

𝑙
)∫

𝑡

0

(𝑡 − 𝑠)
𝑙
0


𝑘

𝑖−1,𝑙
0
,𝑙−1

(𝑠)

𝑑𝑠

≤ 𝑐
𝑟,𝛼

∞

∑
𝑖=2

𝑖

∑
𝑙=2

𝑙−1

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

(𝑙 − 1)!
𝑙
0
!

𝑐
𝑙
0
,𝑙−1,𝛼


𝑔

𝛼(𝑖−1)+1
(𝑡)

≤
𝑐
𝑟,𝛼

𝛼
|𝐵|

⊛

∞

∑
𝑖=2

(𝑖 − 1)
(𝑡𝛼|𝐵|

⊛
)
𝑖−1

Γ (𝛼 (𝑖 − 1) + 1)

=
𝑐
𝑟,𝛼

𝛼
|𝐵|

⊛

∞

∑
𝑖=1

𝑖
(𝑡𝛼|𝐵|

⊛
)
𝑖

Γ (𝛼𝑖 + 1)

≤
𝑐
𝑟,𝛼
𝑏
𝛼

𝛼2
𝑡|𝐵|

(1+𝛼)/𝛼

⊛
𝑒

𝑡|𝐵|
1/𝛼

⊛ , 𝑡 ≥ 0,

(40)

proving the condition (vi). Assume now, with the notation
used in the formulation of Theorem 7 that 𝛾 ∈ (0, 𝛽), 𝜔

𝛾,1
≥

𝜔
𝛾
, 𝜔

𝛾,1
> 0, (𝜔

𝛾,1
cos 𝛾)𝛼 > |B|

⊛
, 𝜀 = 1/ cos 𝛾, 𝜔

𝛾,2
≥ 𝜔

𝛾
+

𝜀, and (1 + 𝜔
𝛾,2

cos 𝛾)𝛼−1

> |B|
⊛
. Then

∞

∑
𝑖=1

|𝐵|
𝑖

⊛

𝑖!
sup

𝜆∈𝜔
𝛾,1

+Σ
(𝜋/2)+𝛾


̃
𝑖
𝑘 (𝜆)


≤ 𝑐

𝑟,𝛼

∞

∑
𝑖=0

|𝐵|
𝑖

⊛
sup

𝜆∈𝜔
𝛾,1

+Σ
(𝜋/2)+𝛾

1

|𝜆|
𝛼𝑖

≤ 𝑐
𝑟,𝛼

∞

∑
𝑖=0

|𝐵|
𝑖

⊛

(𝜔
𝛾,1

cos 𝛾)
𝛼𝑖
< ∞,

(41)

∞

∑
𝑖=1

𝑖

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!
(
𝑖

𝑙
)

𝑙
0
!

√2𝜋𝑙
0
(𝜀 cos 𝛾)𝑙0

× sup
𝜆∈𝜔
𝛾,2

+Σ
(𝜋/2)+𝛾


L (𝑘

𝑖,𝑙
0
,𝑙
(𝑡)) (𝜆)



≤ 𝑐
𝑟,𝛼

∞

∑
𝑖=1

𝑖

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑙!
𝑙
0
!

𝑐
𝑙
0
,𝑙,𝛼


sup

𝜆∈𝜔
𝛾,2

+Σ
(𝜋/2)+𝛾

1

|𝜆|
𝛼𝑖−𝑙
0

≤
𝑐
𝑟,𝛼

𝛼

∞

∑
𝑖=1

𝑖

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

(1 + 𝜔
𝛾,2

cos 𝛾)
𝛼𝑖−𝑙
0

≤
𝑐
𝑟,𝛼

𝛼

∞

∑
𝑖=1

𝑖2|𝐵|
𝑖

⊛

(1 + 𝜔
𝛾,2

cos 𝛾)
(𝛼−1)𝑖

< ∞,

(42)

proving the conditions (29)-(30).
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Corollary 8. Suppose 𝛼 > 1, 𝜔 ≥ 0, 𝑟 ≥ 0 and 𝐴 is a
subgenerator of a global 𝑟-times integrated (𝑔

𝛼
, 𝐶)-regularized

resolvent family (𝑅(𝑡))
𝑡≥0

satisfying (2) with 𝑎(𝑡) = 𝑔
𝛼
(𝑡)

and 𝑘(𝑡) = 𝑔
𝑟+1
(𝑡). Let the family {𝑒−𝜔𝑡𝑅(𝑡) : 𝑡 ≥ 0} be

equicontinuous and let 𝐵 ∈ 𝐿(𝐸) satisfy the condition (i)
quoted in the formulation of Theorem 5. Then 𝐴 + 𝐵 is a
subgenerator of a global 𝑟-times integrated (𝑔

𝛼
, 𝐶)-regularized

resolvent family (𝑅
𝐵
(𝑡))

𝑡≥0
satisfying (18) with 𝑘

1
(𝑡) = 𝑘(𝑡).

Furthermore, the family {(1 + 𝑡)−1 exp(−(𝜔 + |𝐵|1/𝛼

⊛
)𝑡)𝑅

𝐵
(𝑡) :

𝑡 ≥ 0} is equicontinuous, and (𝑅
𝐵
(𝑡))

𝑡≥0
is an exponentially

equicontinuous, analytic 𝑟-times integrated (𝑔
𝛼
, 𝐶)-regularized

resolvent family of angle 𝛽 ∈ (0, 𝜋/2] provided that (𝑅(𝑡))
𝑡≥0

is.

Remark 9. It is worthwhile tomention (cf. [1,Theorem 2.5.6])
that Corollary 8 remains true, with a different upper bound
for the growth order of (𝑅

𝐵
(𝑡))

𝑡≥0
, in the case 𝛼 = 1. Using

[33, Lemma 3.3] and the proof of cited theorem, it follows that
(𝑅

𝐵
(𝑡))

𝑡≥0
is entire provided that 𝛼 ∈ N and that (𝑅(𝑡))

𝑡≥0
is

entire.

Example 10. Corollary 8 is a proper extension of [45, Lemma
4.7] provided 𝛼 = 2 and 𝐵 = 𝑧𝐼 (𝑧 ∈ C), which can be applied
in the analysis of the problem

𝑢
𝑡𝑡
+ 2𝛽𝑢

𝑡
− Δ𝑢 + 2

𝑛

∑
𝑖=1

𝛼
𝑖
𝑢

𝑥
𝑖

+ 𝜇𝑢 = 0 (43)

in 𝐿𝑝([0, 𝜋]
𝑛

), with Dirichlet boundary conditions; here we
assume 𝑛 ∈ N, 1 ≤ 𝑝 < ∞ and 𝛽, 𝛼i, 𝜇 ∈ C (see
e.g., [46, pages 144-145] and [15, Theorem 4.2]). It is clear
that Corollary 8 can be applied to (𝑟-coercive) differential
operators generating integrated cosine functions ([2, 14, 15,
47–50]) or exponentially equicontinuous (𝑔

𝛼
, 𝐶)-regularized

resolvent families ([23, 24]); in what follows, we will apply
Corollary 8 to abstract differential operators generating 𝐶-
regularized cosine functions. Let 𝐸 be one of the spaces
𝐿

𝑝(R𝑛) (1 ≤ 𝑝 ≤ ∞), 𝐶
0
(R𝑛), 𝐶

𝑏
(R𝑛), BUC(R𝑛), let 0 ≤ 𝑙 ≤ 𝑛

and letF−1 denote the inverse Fourier transform. Put N𝑙

0
:=

{𝛼 ∈ N𝑛

0
: 𝛼

𝑙+1
= ⋅ ⋅ ⋅ = 𝛼

𝑛
= 0} and, for every 𝑙 = 0, 1, . . . , 𝑛,

𝐸
𝑙
:= {𝑓 ∈ 𝐸 : 𝑓(𝛼) ∈ 𝐸 for all 𝛼 ∈ N𝑙

0
}. Then the family

of seminorms (𝑝
𝛼
(𝑓) := ||𝑓

(𝛼)

||
𝐸
, 𝑓 ∈ 𝐸

𝑙
; 𝛼 ∈ N𝑙

0
) induces

a Fréchet topology on 𝐸
𝑙
. Let Tl possess the same meaning

as in [51] and let 𝑚 ∈ N, 𝑎
𝛼
∈ C, 0 ≤ |𝛼| ≤ 𝑚. Consider

the operator 𝑃(𝐷)𝑓 := ∑
|𝛼|≤𝑚

𝑎
𝛼
𝑓(𝛼) with its maximal

distributional domain. Set 𝑃(𝑥) := ∑
|𝛼|≤𝑚

𝑎
𝛼
𝑖|𝛼|𝑥𝛼, 𝑥 ∈

R𝑛, ℎ
𝑡,𝛽
(𝑥) := (1 + |𝑥|2)

−𝛽/2

∑
∞

𝑗=0
(𝑡2𝑗𝑃(𝑥)

𝑗

/(2𝑗)!), 𝑥 ∈ R𝑛, 𝑡 ≥

0, 𝛽 ≥ 0,Ω(𝜔) := {𝜆2 : R𝜆 > 𝜔}, if 𝜔 > 0, and Ω(𝜔) :=
C \ (−∞,𝜔2], if 𝜔 ≤ 0. Assume 𝑟 ∈ [0,𝑚], 𝜔 ∈ R, and the
following condition:

(♭) 𝑃(𝑥) ∉ Ω(𝜔), 𝑥 ∈ R𝑛 and, in the case 𝑟 ∈ (0,𝑚], there
exist 𝜎 > 0 and 𝜎 > 0 such that R𝑃(𝑥) ≤ −𝜎|𝑥|𝑟 +

𝜎, 𝑥 ∈ R𝑛.

Then, for every 𝑙 = 0, 1, . . . , 𝑛, there exists 𝑀 ≥ 1 such
that, for every 𝛽 > (𝑚 − (𝑟/2))(𝑛/4), 𝑃(𝐷) generates an
exponentially equicontinuous Tl(⟨(1 + |𝑥|

2)
−𝛽

⟩)-regularized
cosine function (𝐶

𝛽
(𝑡))

𝑡≥0
in𝐸

𝑙
satisfying𝐶

𝛽
(𝑡)𝑓 = F−1ℎ

𝑡,𝛽
∗

𝑓, 𝑡 ≥ 0, 𝑓 ∈ 𝐸
𝑙
and 𝑝

𝛼
(𝐶

𝛽
(𝑡)𝑓) ≤ 𝑀𝑝

𝛼
(𝑓)𝑔

𝑛/2
(𝑡), 𝑡 ≥ 0, 𝑓 ∈

𝐸
𝑙
, 𝛼 ∈ N𝑙

0
, with 𝑔

𝑛/2
(𝑡) being the function defined on [52,

page 40]; cf. [33, 51, 52] for full details. If 1 < 𝑝 < ∞ and
𝐸 = 𝐿

𝑝

(R𝑛

), then the previous result can be slightly refined
by allowing that 𝛽 takes the value (1/2)(𝑚− 𝑟/2)𝑛|1/𝑝−1/2|.
Given 𝜑 ∈ 𝐿1(R𝑛), define the bounded linear operator 𝐵 on
𝐸

𝑙
by (𝐵𝑓)(𝑥) := ∫

R𝑛
𝜑(𝑥 − 𝑡)𝑓(𝑡)𝑑𝑡, 𝑓 ∈ 𝐸

𝑙
, 𝑥 ∈ R𝑛. Then

𝐵𝑃(𝐷) ⊆ 𝑃(𝐷)𝐵,Tl(⟨(1 + |𝑥|
2)

−𝛽

⟩)𝐵 = 𝐵 Tl(⟨(1 + |𝑥|
2)

−𝛽

⟩)

and 𝑝
𝛼
(𝐵𝑓) ≤ ||𝜑||

𝐿
1
(R𝑛)𝑝𝛼

(𝑓), 𝑓 ∈ 𝐸, 𝛼 ∈ N𝑙

0
. Applying

Corollary 8, we get that 𝑃(𝐷) + 𝐵 generates an exponentially
equicontinuousTl(⟨(1+|𝑥|

2)
−𝛽

⟩)-regularized cosine function
(𝐶

𝛽,𝐵
(𝑡))

𝑡≥0
in 𝐸

𝑙
.

Assume now 𝛼 > 1,  > 0, 𝜎 ∈ (0, 1) and 𝑘(𝑡) =

𝑘
1
(𝑡) = L−1(𝜆−𝛼𝑒−𝜆

𝜎

)(𝑡), 𝑡 ≥ 0. By the consideration given
in [1, Remark 2.5.4(iii)], it follows that, for every 𝑙 ∈ N,
there exist real numbers (𝑝

𝑚,𝑙,𝛼,,𝜎
)
1≤𝑚≤𝑙

such that 𝑝
1,𝑙,𝛼,,𝜎

=

(𝜎/𝛼)((𝜎/𝛼)−1) ⋅ ⋅ ⋅ ((𝜎/𝛼)−(𝑙−1)), 𝑝
𝑙,𝑙,𝛼,,𝜎

= ((𝜎/𝛼))
𝑙, and

that the following holds:

𝑑𝑙

𝑑𝑧𝑙

(
1

𝑧�̃� (𝑧1/𝛼)
) =

𝑑𝑙

𝑑𝑧𝑙

𝑒
𝑧
𝜎/𝛼

= 𝑒
𝑧
𝜎/𝛼

𝑙

∑
𝑚=1

𝑝
𝑚,𝑙,𝛼,,𝜎

𝑧
𝑚(𝜎/𝛼)−𝑙

𝑧 > 0,

𝑝
𝑚,𝑙+1,𝛼,,𝜎

= 
𝜎

𝛼
𝑝

𝑚−1,𝑙,𝛼,,𝜎
+ (𝑚

𝜎

𝛼
− 𝑙) 𝑝

𝑚,𝑙,𝛼,,𝜎
,

2 ≤ 𝑚 ≤ 𝑙.

(44)

This implies 𝑐
0
= 1, 𝑘

0
(𝑡) = 0, 𝑐

𝑖
= 0, 𝑖 ≥ 1,

𝑖
𝑘 (𝑡) =

𝑖

∑
𝑚=1

𝑝
𝑚,𝑖,𝛼,,𝜎

𝑔
𝛼𝑖−𝑚𝜎

(𝑡) , 𝑡 > 0, 𝑖 ≥ 1,

𝑘
𝑖,𝑙
0
,𝑙
(𝑡) = 𝑐

𝑙
0
,𝑙,𝛼

𝑖−𝑙

∑
𝑚=1

𝑝
𝑚,𝑖−𝑙,𝛼,,𝜎

𝑔
𝛼𝑖−𝑙
0
−𝑚𝜎

(𝑡) , 𝑡 > 0,

1 ≤ 𝑙 < 𝑖, 1 ≤ 𝑙
0
≤ 𝑙,

(45)

𝑘
𝑖,𝑙
0
,𝑖
(𝑡) = 𝑐

𝑙
0
,𝑖,𝛼
𝑔

𝛼𝑖−𝑙
0

(𝑡) , 𝑡 > 0, 1 ≤ 𝑙
0
≤ 𝑖. (46)

By means of (44) and the proof of Lemma 3, we obtain the
existence of a constant 𝜁

𝛼,,𝜎
≥ 1 such that

𝑙

∑
𝑚=1

𝑚!

𝑝

𝑚,𝑙,𝛼,,𝜎


≤ 𝜁

𝑙

𝛼,,𝜎
𝑙! ∀𝑙 ∈ N. (47)

In what follows, we assume that 𝜁
𝛼,,𝜎

≥ 1 is minimal with
respect to (47); notice that 𝜁

𝛼,,𝜎
> 𝜎/𝛼 and that it is not clear
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whether Lemma 4 can be reconsidered in the newly arisen
situation. Then

∞

∑
𝑖=1

𝑖

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!
∫

𝑡

0

(𝑡 − 𝑠)
𝑙
0


𝑘

𝑖,𝑙
0
,𝑖
(𝑠)

𝑑𝑠

=

∞

∑
𝑖=1

𝑖

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!


𝑐
𝑙
0
,𝑖,𝛼


𝑙
0
! ∫

𝑡

0

(𝑡 − 𝑠)
𝑙
0

𝑙
0
!

𝑠𝛼𝑖−𝑙
0
−1

Γ (𝛼𝑖 − 𝑙
0
)
𝑑𝑠

≤

∞

∑
𝑖=1

(𝑡𝛼|𝐵|
⊛
)
𝑖

Γ (𝛼𝑖 + 1)
≤ 𝐸

𝛼
(𝑡

𝛼

|𝐵|
⊛
) ≤ 𝑐

𝛼
𝑒

𝑡|𝐵|
1/𝛼

⊛ , 𝑡 ≥ 0.

(48)

Since Γ(⋅) is increasing in (𝜉,∞), where 𝜉 ∼ 1.4616 . . ., we
obtain that

Γ (𝛼𝑖 + 1)

Γ (𝛼𝑖 − 𝑚𝜎 + 1)𝑚!
≤

Γ (𝛼𝑖 + 1)

Γ (𝛼𝑖 − 𝑚 + 1)𝑚!

=
𝛼𝑖 (𝛼𝑖 − 1) ⋅ ⋅ ⋅ (𝛼𝑖 − 𝑚 + 1)

𝑚!
≤ (

⌈𝛼𝑖⌉

𝑚
) ,

(49)

provided 𝑖 ≥ 2 and 1 ≤ 𝑚 ≤ 𝑖 − 1. Combining this with (35),
Lemmas 3 and 4 and (47), we get

∞

∑
𝑖=2

𝑖−1

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!
(
𝑖

𝑙
)∫

𝑡

0

(𝑡 − 𝑠)
𝑙
0


𝑘

𝑖,𝑙
0
,𝑙
(𝑠)

𝑑𝑠

≤

∞

∑
𝑖=2

𝑖−1

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!
(
𝑖

𝑙
) 𝑙

0
!

𝑐
𝑙
0
,𝑙,𝛼



×

𝑖−𝑙

∑
𝑚=1

𝑚!

𝑝

𝑚,𝑖−𝑙,𝛼,,𝜎



𝑡𝛼𝑖−𝑚𝜎

Γ (𝛼𝑖 − 𝑚𝜎 + 1)𝑚!

≤
1

𝛼

∞

∑
𝑖=2

𝑖−1

∑
𝑙=1

|𝐵|
𝑖

⊛

Γ (𝛼𝑖 + 1)
𝜁

𝑖−𝑙

𝛼,,𝜎

𝑖−𝑙

∑
𝑚=1

𝑡𝛼𝑖−𝑚𝜎Γ (𝛼𝑖 + 1)

Γ (𝛼𝑖 − 𝑚𝜎 + 1)𝑚!

≤
1

𝛼

∞

∑
𝑖=2

𝑖−1

∑
𝑙=1

|𝐵|
𝑖

⊛

Γ (𝛼𝑖 + 1)
𝜁

𝑖−𝑙

𝛼,,𝜎

𝑖−𝑙

∑
𝑚=1

𝑡
𝛼𝑖−𝑚𝜎

(
⌈𝛼𝑖⌉

𝑚
)

≤
1

𝛼
(1 + 𝑡

−𝜎

)

∞

∑
𝑖=2

𝑖−1

∑
𝑙=1

|𝐵|
𝑖

⊛

Γ (𝛼𝑖 + 1)
𝜁

𝑖−𝑙

𝛼,,𝜎
(𝑡 + 𝑡

1−𝜎

)
𝛼𝑖

≤
1

𝛼𝜁
𝛼,,𝜎

(1 + 𝑡
−𝜎

)

∞

∑
𝑖=1

𝑖
(|𝐵|

⊛
(𝑡 + 𝑡1−𝜎)

𝛼

𝜁
𝛼,,𝜎

)
𝑖+1

Γ (𝛼𝑖 + 1)

≤
1

𝛼
(1 + 𝑡

−𝜎

) |𝐵|
⊛
(𝑡 + 𝑡

1−𝜎

)
𝛼

× (

∞

∑
𝑖=1

𝑖
𝑧𝑖

Γ (𝛼𝑖 + 1)
)

𝑧=|𝐵|
⊛
(𝑡+𝑡
1−𝜎

)
𝛼

𝜁
𝛼,,𝜎

(50)

≤
𝑏
𝛼

𝛼2
(1 + 𝑡

−𝜎

) |𝐵|
(1+𝛼)/𝛼

⊛

× (𝑡 + 𝑡
1−𝜎

)
1+𝛼

𝜁
1/𝛼

𝛼,,𝜎
𝑒

|𝐵|
1/𝛼

⊛
(𝑡+𝑡
1−𝜎

)𝜁

1/𝛼

𝛼,,𝜎 , 𝑡 ≥ 1.

(51)

Noticing that 𝑡𝛼𝑖−𝑚𝜎 ≤ 1, 𝑡 ∈ [0, 1), 𝑖 ≥ 2, 1 ≤ 𝑚 ≤ 𝑖 − 1, we
obtain from (50) that there exists 𝜉

𝛼,,𝜎
≥ 1 such that

∞

∑
𝑖=2

𝑖−1

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!
(
𝑖

𝑙
)∫

𝑡

0

(𝑡 − 𝑠)
𝑙
0


𝑘

𝑖,𝑙
0
,𝑙
(𝑠)

𝑑𝑠

≤ 𝜉
𝛼,,𝜎

, 𝑡 ∈ [0, 1) .

(52)

By (48)–(52), (v) holds for any 𝜔 > (|𝐵|
⊛
𝜁

𝛼,,𝜎
)
1/𝛼. In almost

the same way, one can prove that (iv) and (vi) hold for
any 𝜔 > (|𝐵|

⊛
𝜁

𝛼,,𝜎
)
1/𝛼. Assume now that (𝑅(𝑡))

𝑡≥0
is an

exponentially equicontinuous, analytic (𝑔
𝛼
, 𝑘)-regularized𝐶-

resolvent family of angle 𝛽 ∈ (0, 𝜋/2], 𝛾 ∈ (0, 𝛽), 𝜔
𝛾,1

≥ 𝜔
𝛾
,

𝜔
𝛾,1

> 0, (𝜔
𝛾,1

cos 𝛾)𝛼−𝜎

> |𝐵|
⊛
𝜁

𝛼,,𝜎
, 𝜀 = 1/ cos 𝛾,𝜔

𝛾,2
≥ 𝜔

𝛾
+𝜀

and (1 + 𝜔
𝛾,2

cos 𝛾)𝛼−1

> |𝐵|
⊛
𝜁

𝛼,,𝜎
. Then

∞

∑
𝑖=0

|𝐵|
𝑖

⊛

𝑖!
sup

𝜆∈𝜔
𝛾,1

+Σ
(𝜋/2)+𝛾

 𝑖
�̃� (𝜆)


≤

∞

∑
𝑖=0

|𝐵|
𝑖

⊛

𝑖!

𝑖

∑
𝑚=1

𝑚!

𝑝

𝑚,𝑖,𝛼,,𝜎



(𝜔
𝛾,1

cos 𝛾)
𝛼𝑖−𝑚𝜎

≤ 𝜇
𝜎,𝛾

∞

∑
𝑖=0

|𝐵|
𝑖

⊛
𝜁𝑖

𝛼,,𝜎

(𝜔
𝛾,1

cos 𝛾)
(𝛼−𝜎)𝑖

< ∞

(53)
for an appropriate constant 𝜇

𝜎,𝛾
≥ 1,

∞

∑
𝑖=1

𝑖

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!

𝑙
0
!

√2𝜋𝑙
0
(𝜀 cos 𝛾)𝑙0

sup
𝜆∈𝜔
𝛾,2

+Σ
(𝜋/2)+𝛾


L (𝑘

𝑖,𝑙
0
,𝑖
(𝑡)) (𝜆)



≤

∞

∑
𝑖=1

𝑖
|𝐵|

𝑖

⊛

(1 + 𝜔
𝛾,2
)

(𝛼−1)𝑖

< ∞,

(54)

and, for every 𝜀 > 0 with (1 + 𝜔
𝛾,2

cos 𝛾)𝛼−1

> |𝐵|
⊛
(𝜁

𝛼,,𝜎
+ 𝜀),

there exists 𝜇
𝜀
> 0 such that

∞

∑
𝑖=2

𝑖−1

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

𝑖!
(
𝑖

𝑙
)

𝑙
0
!

√2𝜋𝑙
0
(𝜀 cos 𝛾)𝑙0

× sup
𝜆∈𝜔
𝛾,2

+Σ
(𝜋/2)+𝛾


L (𝑘

𝑖,𝑙
0
,𝑙
(𝑡)) (𝜆)



≤

∞

∑
𝑖=2

𝑖−1

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

(𝑖 − 𝑙)!𝑙!
𝑙
0
!

𝑐
𝑙
0
,𝑙,𝛼



𝑖−𝑙

∑
𝑚=1


𝑝

𝑚,𝑖−𝑙,𝛼,,𝜎



(1 + 𝜔
𝛾,2

cos 𝛾)
𝛼𝑖−𝑙
0
−𝑚𝜎

≤

∞

∑
𝑖=2

𝑖−1

∑
𝑙=1

𝑙

∑
𝑙
0
=1

|𝐵|
𝑖

⊛

(𝑖 − 𝑙)!𝑙!
𝑙
0
!

𝑐
𝑙
0
,𝑙,𝛼



𝑖−𝑙

∑
𝑚=1


𝑝

𝑚,𝑖−𝑙,𝛼,,𝜎



(1 + 𝜔
𝛾,2

cos 𝛾)
(𝛼−1)𝑖

≤
1

𝛼

∞

∑
𝑖=2

𝑖−1

∑
𝑙=1

|𝐵|
𝑖

⊛
𝜁𝑖−𝑙

𝛼,,𝜎

(1 + 𝜔
𝛾,2

cos 𝛾)
(𝛼−1)𝑖

≤
1

𝛼

∞

∑
𝑖=2

(𝑖 − 1)
|𝐵|

𝑖

⊛
(𝜁

𝛼,,𝜎
+ 𝜀)

𝑖

(1 + 𝜔
𝛾,2

cos 𝛾)
(𝛼−1)𝑖

< ∞,

(55)
proving the conditions (29)-(30).
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Corollary 11. Let 𝛼 > 1, 𝜔 ≥ 0,  > 0, 𝜎 ∈ (0, 1), 𝑘(𝑡) =

L−1(𝜆−𝛼𝑒−𝜆
𝜎

)(𝑡), 𝑡 ≥ 0, and let𝐴 be a subgenerator of a global
(𝑔

𝛼
, 𝑘)-regularized 𝐶-resolvent family (𝑅(𝑡))

𝑡≥0
satisfying (2)

with 𝑎(𝑡) = 𝑔
𝛼
(𝑡). Let 𝐵 ∈ 𝐿(𝐸) satisfy the condition (i)

quoted in the formulation of Theorem 5. Then 𝐴 + 𝐵 is a
subgenerator of a global (𝑔

𝛼
, 𝑘)-regularized 𝐶-resolvent family

(𝑅
𝐵
(𝑡))

𝑡≥0
satisfying (18) with 𝑘

1
(𝑡) = 𝑘(𝑡). Furthermore, for

every 𝜀 > 0, the family {exp(−(𝜔 + (|𝐵|
⊛
𝜁

𝛼,,𝜎
)
1/𝛼

+ 𝜀)𝑡)𝑅
𝐵
(𝑡) :

𝑡 ≥ 0} is equicontinuous, and (𝑅
𝐵
(𝑡))

𝑡≥0
is an exponentially

equicontinuous, analytic (𝑔
𝛼
, 𝑘)-regularized𝐶-resolvent family

of angle 𝛽 ∈ (0, 𝜋/2] provided that (𝑅(𝑡))
𝑡≥0

is.

Example 12. Let 𝑠 > 1,

𝐸 :=
{

{

{

𝑓 ∈ 𝐶
∞

[0, 1] ;
𝑓
 = sup

𝑝≥0


𝑓(𝑝)

∞

𝑝!𝑠
< ∞

}

}

}

, (56)

𝐴 :=
−𝑑

𝑑𝑠
, 𝐷 (𝐴) := {𝑓 ∈ 𝐸 ; 𝑓



∈ 𝐸, 𝑓 (0) = 0} . (57)

Then 𝜌(𝐴) = C, 𝐴 generates a tempered ultradistribution
semigroup of (𝑝!𝑠)-class, and 𝐴 cannot be the generator of
a distribution semigroup since 𝐴 is not stationary dense (see
e.g., [53, Example 1.6] and [41]). If𝑓 ∈ 𝐸, 𝑡 ∈ [0, 1] and 𝜆 ∈ C,
set 𝑓1

𝜆
(𝑡) := ∫

𝑡

0

𝑒−𝜆(𝑡−𝑠)𝑓(𝑠) 𝑑𝑠 and 𝑓2

𝜆
(𝑡) := ∫

𝑡

0

𝑒𝜆(𝑡−𝑠)𝑓(𝑠) 𝑑𝑠.
Then 𝑓1

𝜆
(⋅), 𝑓2

𝜆
(⋅) ∈ 𝐸, 𝜆 ∈ C, and there exist 𝑏 > 0 and

𝑀 ≥ 1, independent of 𝑓(⋅), such that


𝑓

1

𝜆
(⋅)

≤ 𝑀


𝑓

 𝑒

𝑏|𝜆|
1/𝑠

, R𝜆 ≥ 0, 𝑓 ∈ 𝐸. (58)

It is clear that ||𝑓2

𝜆
(⋅)||

𝐿
∞

[0,1]
≤ 𝑒|𝜆|||𝑓||,R𝜆 ≥ 0 and

||(𝑑/𝑑𝑡)𝑓2

𝜆
(⋅)||

𝐿
∞

[0,1]
≤ (|𝜆|𝑒|𝜆| + 1)||𝑓||,R𝜆 ≥ 0. Proceeding

by induction, we obtain that, for every 𝑛 ≥ 2, 𝑡 ∈ [0, 1] and
𝜆 ∈ C withR𝜆 ≥ 0 :

𝑑𝑛

𝑑𝑡𝑛
𝑓

2

𝜆
(𝑡) =

𝑑𝑛−1

𝑑𝑡𝑛−1
𝑓 (𝑡) +

𝑛−1

∑
𝑘=1

𝜆
𝑘
𝑑𝑛−1−𝑘

𝑑𝑡𝑛−1−𝑘

𝑓 (𝑡) + 𝜆
𝑛

𝑓
2

𝜆
(𝑡) .

(59)

On the other hand, [54, Proposition 4.5] implies that there
exists 𝑐 > 0 such that ∑∞

𝑝=0
𝑡𝑝/𝑝!𝑠 = 𝑂(exp(𝑐𝑡1/𝑠)), 𝑡 ≥ 0.

Combined with (59) and the logarithmic convexity, the last
estimate yields

1

𝑛!𝑠



𝑑𝑛

𝑑𝑡𝑛
𝑓

2

𝜆
(⋅)
𝐿
∞

[0,1]

≤

𝑓

 +


𝑓

 𝑒

𝑐|𝜆|
1/𝑠

+
|𝜆|

𝑛

𝑛!𝑠
𝑒

|𝜆| 
𝑓



≤ (1 + 𝑒
𝑐|𝜆|
1/𝑠

+ 𝑒
𝑐|𝜆|
1/𝑠

𝑒
|𝜆|

)

𝑓

 ,

R𝜆 ≥ 0, 𝜆 ̸= 0.

(60)

In view of (60) we get that, for every 𝜂 > 1, there exists
𝑀

𝜂
≥ 1, independent of 𝑓(⋅), such that


𝑓

2

𝜆
(⋅)

≤ 𝑀

𝜂

𝑓
 𝑒

𝜂|𝜆|

, R𝜆 ≥ 0, 𝑓 ∈ 𝐸. (61)

Consider now the complex polynomial 𝑃(𝑧) = ∑𝑛

𝑗=0
𝑎

𝑗
𝑧𝑗, 𝑧 ∈

C, 𝑎
𝑛
̸= 0, 𝑛 ≥ 2. Set, for every 𝜆 ∈ C, 𝑃

𝜆
(⋅) := 𝑃(⋅) − 𝜆 and

consider the operator 𝑃(𝐴) defined by

𝐷 (𝑃 (𝐴)) := 𝐷 (𝐴
𝑛

) ,

𝑃 (𝐴) 𝑓 :=

𝑛

∑
𝑗=0

𝑎
𝑗
𝐴

𝑗

𝑓, 𝑓 ∈ 𝐷 (𝑃 (𝐴)) .
(62)

Clearly, 𝑃(𝐴) is not stationary dense. Let 𝑟 > 0 and 𝑑 >

0 be such that 𝑃(𝑧) ̸= 0, |𝑧| ≥ 𝑟 and 𝑃(𝑧) ̸= 0, |𝑧| ≥ 𝑑.
Let 𝑧

1,𝜆
, . . . , 𝑧

𝑛,𝜆
denote the zeros of the polynomial 𝑧 →

𝑃
𝜆
(𝑧), 𝑧 ∈ C and let 0 < 𝑚 := min

|𝑧|≥𝑑+1
|𝑃(𝑧)|. Then an

old result of Walsh [55] says that |𝑧
𝑗,𝜆
| ≤ 𝑟 + |𝑎

𝑛
|−1/𝑛|𝜆|1/𝑛, 1 ≤

𝑗 ≤ 𝑛, 𝜆 ∈ C. Furthermore, it is checked at once that there
exists a sufficiently large 𝜆

0
> 0 such that 𝑧

𝑗,𝜆
is a simple

zero of 𝑃
𝜆
(𝑧) and that |𝑧

𝑗,𝜆
| ≥ 𝑑 + 1, provided |𝜆| ≥ 𝜆

0
and

1 ≤ 𝑗 ≤ 𝑛. Therefore, for every 𝜆 ∈ C with |𝜆| ≥ 𝜆
0
and for

every 𝑖, 𝑗 ∈ {1, . . . , 𝑛} with 𝑖 ̸= 𝑗, the following holds:

𝑑 + 1 ≤

𝑧

𝑗,𝜆


≤ 𝑟 +

𝑎𝑛


−1/𝑛

|𝜆|
1/𝑛

,


𝑃



(𝑧
𝑗,𝜆
)

≥ 𝑚, 𝑧

𝑖,𝜆
̸= 𝑧

𝑗,𝜆
.

(63)

It is straightforward to verify that

𝜌 (𝑝 (𝐴)) = C ,

𝑅 (𝜆 : 𝑝 (𝐴)) = (−1)
𝑛+1

𝑎
−1

𝑛
𝑅 (𝑧

1,𝜆
: 𝐴) ⋅ ⋅ ⋅ 𝑅 (𝑧

𝑛,𝜆
: 𝐴) ,

𝜆 ∈ C.

(64)

Assume now |𝜆| ≥ 𝜆
0
. Then de L’Hospital’s rule implies

𝑎
𝑛
∏

1≤𝑖≤𝑛

𝑖 ̸= 𝑗

(𝑧
𝑖,𝜆
− 𝑧

𝑗,𝜆
) = (−1)

𝑛+1

𝑃


(𝑧
𝑗,𝜆
) , 1 ≤ 𝑗 ≤ 𝑛.

(65)

Using the resolvent equation, (58), (61)–(63), and (65), one
can rewrite and evaluate the right-hand side of equality
appearing in (64) as follows:


(−1)

𝑛+1

𝑎
−1

𝑛
𝑅 (𝑧

1,𝜆
: 𝐴) ⋅ ⋅ ⋅ 𝑅 (𝑧

𝑛,𝜆
: 𝐴)



=



(−1)
𝑛+1

𝑎
−1

𝑛

𝑛

∑
𝑗=1

𝑅 (𝑧
𝑗,𝜆

: 𝐴)

∏ 1≤𝑖≤𝑛

𝑖 ̸= 𝑗

(𝑧
𝑖,𝜆
− 𝑧

𝑗,𝜆
)



=



𝑛

∑
𝑗=1

𝑅 (𝑧
𝑗,𝜆

: 𝐴)

𝑃 (𝑧
𝑗,𝜆
)



≤
1

𝑚

𝑛

∑
𝑗=1



𝑅 (𝑧
𝑗,𝜆

: 𝐴)



.

(66)

By (64) and (66) we finally get that, for every 𝜂 > 1,

𝑅 (𝜆 : 𝑝 (𝐴))
 = 𝑂 (𝑒

𝑏|𝑎
𝑛
|
−1/𝑛

|𝜆|
1/𝑛𝑠

+ 𝑒
𝜂|𝑎
𝑛
|
−1/𝑛

|𝜆|
1/𝑛

) , 𝜆 ∈ C.

(67)

Since the preceding estimate holds for any 𝜆 ∈ C, it is
quite complicated to inscribe here all of its consequences
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(cf. [1, 16], [32, (2.35)–(2.37)], [56, 57]); for example, 𝑃(𝐴)
generates a tempered ultradistribution sine of (𝑝!𝑠)-class
provided 𝑛 ≥ 2𝑠, and 𝑃(𝐴) generates an exponentially
bounded, L−1(𝑒−𝜆

1/𝑛

)-convoluted group provided  >

|𝑎
𝑛
|−1/𝑛/ cos(𝜋/2𝑛). Let us also mention that the considera-

tion given in example following [41, Corollary 3.8] enables
one to construct important examples of (pseudo-)differential
operators generating ultradistribution sines, and that the
estimate (67) can be derived, with insubstantial technical
modifications, in the case of a general sequence (𝑀

𝑝
) of pos-

itive numbers satisfying𝑀
0
= 1 and𝑀

𝑝+𝑞
≥ 𝑀

𝑝
𝑀

𝑞
(𝑝, 𝑞 ≥

0). In what follows, we will illustrate an application of
Corollary 11. Suppose 𝑛 > 𝛼 ≥ 1, 𝛿 ∈ (0, 𝜋/2], (𝜋/2 +

𝛿)𝛼/𝑛 < 𝜋/2,  ≥ 1/ cos((𝜋/2 + 𝛿)𝛼/𝑛) and 𝑘(𝑡) =

L−1(𝜆−𝛼𝑒−𝜆
𝛼/𝑛

)(𝑡), 𝑡 ≥ 0. By [32, Theorem 2.17] and (67),
𝑃(𝐴) is the integral generator of an exponentially bounded,
analytic (𝑔

𝛼
, 𝑘)-regularized resolvent family of angle 𝛿 (cf.

also [41, Proposition 3.12]). Let 𝜑 ∈ 𝐸 and 𝐵𝑓(𝑡) := (𝜑 ∗

𝑓)(𝑡), 𝑡 ∈ [0, 1], 𝑓 ∈ 𝐸. Then 𝐵 ∈ 𝐿(𝐸), 𝐵𝑃(𝐴) ⊆ 𝑃(𝐴)𝐵

and, by Corollary 11, 𝑃(𝐴) + 𝐵 is the integral generator of an
exponentially bounded, analytic (𝑔

𝛼
, 𝑘)-regularized resolvent

family of angle 𝛿.
The following extension of [9,Theorem 3.1], [32,Theorem

2.12] has been recently established in [33]; cf. also [39,
Theorem 3.15.6], [4, Theorem 1.1].

Theorem 13. Suppose 𝑀 > 0, 𝜔
1
≥ 𝜔 ≥ 0, 𝐴 is a subgen-

erator of an (𝑎, 𝑘)-regularized𝐶-resolvent family (𝑅(𝑡))
𝑡≥0

such
that 𝑝(𝑅(𝑡)𝑥) ≤ 𝑀𝑒𝜔𝑡𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑡 ≥ 0, 𝑝 ∈ ⊛ and 𝑧 ∈ C.
Let 𝐵 : 𝐷(𝐴) → 𝐸 be a linear operator such that 𝐵𝐶𝑥 =

𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝐴) and that, for every 𝑝 ∈ ⊛, there exist 𝑐
𝑝
> 0

and 𝑞 ∈ ⊛ satisfying 𝑝(𝐶−1𝐵𝑥) ≤ 𝑐
𝑝
𝑞(𝑥), 𝑥 ∈ 𝐷(𝐴). Let (P1)

hold for 𝑎(𝑡), 𝑘(𝑡), 𝑏(𝑡) and let 𝑎(𝜆)/�̃�(𝜆) = �̃�(𝜆) + 𝑧, R𝜆 >

𝜔
1
, �̃�(𝜆) ̸= 0. Suppose 𝜇 > 𝜔

1
, 𝛾 ∈ [0, 1) and

𝐷(𝐴) = 𝐸, (68)

∫
∞

0

𝑒
−𝜇𝑡

𝑝(𝐶
−1

𝐵∫
𝑡

0

𝑏 (𝑡−𝑠) 𝑅 (𝑠) 𝑥 𝑑𝑠+𝑧𝐶
−1

𝐵𝑅 (𝑡) 𝑥) 𝑑𝑡

≤ 𝛾𝑝 (𝑥) , 𝑥 ∈ 𝐷 (𝐴) , 𝑝 ∈ ⊛

(69)

or

(𝑅 (𝑡))
𝑡≥0

𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 (2) , 𝐷 (𝐴) ̸= 𝐸 𝑎𝑛𝑑 (69) ℎ𝑜𝑙𝑑𝑠

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 ∈ 𝐸, 𝑝 ∈ ⊛.
(70)

Then the operator 𝐴 + 𝐵 is a subgenerator of an (𝑎, 𝑘)-
regularized 𝐶-resolvent family (𝑅

𝐵
(𝑡))

𝑡≥0
satisfying (18) with

𝑘
1
(𝑡) and 𝑔

𝛼
(𝑡) replaced by 𝑘(𝑡) and 𝑎(𝑡) therein. Furthermore,

𝑝 (𝑅
𝐵
(𝑡) 𝑥) ≤

𝑀

1 − 𝛾
𝑒

𝜇𝑡

𝑝 (𝑥) , 𝑥 ∈ 𝐸, 𝑡 ≥ 0, 𝑝 ∈ ⊛, (71)

𝑅
𝐵
(𝑡) 𝑥 = 𝑅 (𝑡) 𝑥+∫

𝑡

0

𝑅
𝐵
(𝑡−𝑟) (𝐶

−1

𝐵∫
𝑟

0

𝑏 (𝑟−𝑠) 𝑅 (𝑠) 𝑥 𝑑𝑠

+𝑧𝐶
−1

𝐵𝑅 (𝑡) 𝑥) 𝑑𝑟,

𝑡 ≥ 0, 𝑥 ∈ 𝐷 (𝐴) ,

(72)

and (72) holds for any 𝑡 ≥ 0 and 𝑥 ∈ 𝐸 provided (70).

In many cases, we do not have the existence of a function
𝑏(𝑡) and a complex number 𝑧 such that 𝑎(𝜆)/�̃�(𝜆) = �̃�(𝜆) +

𝑧,R𝜆 > 𝜔
1
, �̃�(𝜆) ̸= 0. The following theorem is an attempt to

fill this gap.

Theorem 14. Suppose 𝑀, 𝑀
1
> 0, 𝜔 ≥ 0, 𝑙 ∈ N and 𝐴

is a subgenerator of an (𝑎, 𝑘)-regularized 𝐶-resolvent family
(𝑅(𝑡))

𝑡≥0
such that 𝑝(𝑅(𝑡)𝑥) ≤ 𝑀𝑒𝜔𝑡𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑡 ≥ 0, 𝑝 ∈ ⊛

and that (2) holds. Let 𝑎(𝑡) and 𝑘(𝑡) satisfy (P1) and let the
following conditions hold:

(i) 𝐵𝐶𝑥 = 𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝐴),

𝑝 (𝐶𝐴
𝑗𝐶−1𝐵𝑥) ≤ 𝑀

1
𝑝 (𝑥) ,

𝑥 ∈ 𝐷 (𝐴), 𝑝 ∈ ⊛, 0 ≤ 𝑗 ≤ 𝑙 − 1,

𝑝 (𝐴𝑙𝐶−1𝐵𝑥) ≤ 𝑀
1
𝑝 (𝑥) , 𝑥 ∈ 𝐷 (𝐴), 𝑝 ∈ ⊛.

(73)

(ii) There exist a function 𝑏(𝑡) satisfying (P1) and a complex
number 𝑧 such that

𝑎(𝜆)
𝑙+1

�̃� (𝜆)
= �̃� (𝜆) + 𝑧, R𝜆 > max (𝜔, abs (a) , abs (k)) ,

�̃� (𝜆) ̸= 0.

(74)

(iii) lim
𝜆 → +∞

∫
∞

0

𝑒−𝜆𝑡|𝑎(𝑡)| 𝑑𝑡 = 0 and lim
𝜆 → +∞

∫
∞

0

𝑒−𝜆𝑡

×|𝑏(𝑡)| 𝑑𝑡 = 0.

Then, for every 𝑥 ∈ 𝐸, there exists a unique solution of the
integral equation

𝑅
𝐵
(𝑡) 𝑥 = 𝑅 (𝑡) 𝑥 + (𝑆 ∗ 𝑅

𝐵
) (𝑡) 𝑥, 𝑡 ≥ 0; (75)

furthermore, (𝑅
𝐵
(𝑡))

𝑡≥0
is an (𝑎, 𝑘)-regularized 𝐶-resolvent

family with a subgenerator 𝐴 + 𝐵, there exist 𝜇 ≥

max(𝜔, abs(a), abs(k)) and 𝛾 ∈ [0, 1) such that (71) holds and
that (18) holds with 𝑘

1
(𝑡) and 𝑔

𝛼
(𝑡) replaced by 𝑘(𝑡) and 𝑎(𝑡)

therein.

Proof. It is clear that ∫∞

0

𝑒−𝜆𝑡|𝑎∗,𝑗(𝑡)| 𝑑𝑡 ≤ (∫
∞

0

𝑒−𝜆𝑡|𝑎(𝑡)| 𝑑𝑡)
𝑗,

𝑗 ∈ N, 𝜆 > abs(𝑎). Define, for every 𝑥 ∈ 𝐷(𝐴) and 𝑡 ≥ 0,

𝑆 (𝑡) 𝑥 : =

𝑙−1

∑
𝑗=0

𝑎
∗,𝑗+1

(𝑡) 𝐶𝐴
𝑗

𝐶
−1

𝐵𝑥

+ ∫
𝑡

0

𝑏 (𝑡 − 𝑠) 𝑅 (𝑠) 𝐴
𝑙

𝐶
−1

𝐵𝑥𝑑𝑠 + 𝑧𝑅 (𝑡) 𝐴
𝑙

𝐶
−1

𝐵𝑥.

(76)
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By [58,Theorem 1.7, page 3] it follows that 𝑅(𝑡)𝑥 ∈ 𝐷(𝐴), 𝑡 ≥
0, 𝑥 ∈ 𝐸. Using this fact and (i), we get that 𝑆(𝑡) ∈ 𝐿(𝐷(𝐴)),
𝑡 ≥ 0. Keeping in mind the condition (ii), it is not difficult to
prove that, for every 𝑥 ∈ 𝐷(𝐴),

L (𝑆 (𝑡) 𝑥) (𝜆) = 𝑎 (𝜆) (𝐼 − 𝑎 (𝜆)𝐴)
−1

𝐶𝐶
−1

𝐵𝑥,

𝑥 ∈ 𝐷 (𝐴), R𝜆 > 𝜔
1
, �̃� (𝜆) ̸= 0.

(77)

Using the conditions (i) and (iii), we obtain the existence of
numbers 𝜇 > max(𝜔, abs(𝑎), abs(𝑘)) and 𝛾 ∈ [0, 1) such that

∫
∞

0

𝑒
−𝜇𝑡

𝑝 (𝑆 (𝑡) 𝑥) 𝑑𝑡 ≤ 𝛾𝑝 (𝑥) , 𝑥 ∈ 𝐷 (𝐴), 𝑝 ∈ ⊛ (78)

and that (H1) holds, where

(H1) : For every strongly continuous function 𝑓 : [0,∞)

→ 𝐿(𝐸,𝐷(𝐴)) such that 𝑝(𝑓(𝑡)𝑥) ≤ 𝑀𝑝(𝑥), 𝑥 ∈ 𝐸,
𝑡 ≥ 0, 𝑝 ∈ ⊛, the following inequality holds:

∫
𝑡

0

𝑒
−𝜇(𝑡−𝑠)

𝑝 (𝑆 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑥) 𝑑𝑠 ≤ 𝛾𝑀𝑝 (𝑥) ,

𝑥 ∈ 𝐸, 𝑡 ≥ 0, 𝑝 ∈ ⊛.

(79)

Now one can define inductively, for every 𝑡 ≥ 0, the sequence
(𝑇

𝑛
(𝑡))

𝑛∈N
0

in 𝐿(𝐸,𝐷(𝐴)) by 𝑇
0
(𝑡) := 𝑅(𝑡) and 𝑇

𝑛+1
(𝑡)𝑥 :=

∫
𝑡

0

𝑆(𝑡 − 𝑠)𝑇
𝑛
(𝑠)𝑥 𝑑𝑠, 𝑥 ∈ 𝐸, 𝑛 ∈ N

0
; observe that, for every

𝑛 ∈ N
0
, (𝑇

𝑛
(𝑡))

𝑡≥0
is strongly continuous and that the family

{𝑇
𝑛
(𝑡) : 𝑡 ≥ 0} is locally equicontinuous (with clear meaning).

By (78), (H1), and the proof of [9, Theorem 3.1], it follows
inductively that

𝑝 (𝑇
𝑛
(𝑡) 𝑥) ≤ 𝑀𝛾

𝑛

𝑒
𝜇𝑡

𝑝 (𝑥) , 𝑥 ∈ 𝐸, 𝑡 ≥ 0, 𝑝 ∈ ⊛ (80)

and that, for every 𝑥 ∈ 𝐸 and 𝑡 ≥ 0, the sequence (𝑅𝑛

𝐵
(𝑡)𝑥 :=

∑
𝑛

𝑖=0
𝑇

𝑖
(𝑡)𝑥)

𝑛
is Cauchy in 𝐸 and therefore convergent. Set

𝑅
𝐵
(𝑡)𝑥 := lim

𝑛 → ∞
𝑅𝑛

𝐵
(𝑡)𝑥, 𝑥 ∈ 𝐸, 𝑡 ≥ 0. It is obvious that

the mapping 𝑡 → 𝑅
𝐵
(𝑡)𝑥, 𝑡 ≥ 0 is continuous for every fixed

𝑥 ∈ 𝐸 as well as that (71) and (75) hold. Therefore, it suffices
to show that

�̃� (𝜆) (𝐼 − 𝑎 (𝜆) (𝐴 + 𝐵))
−1

𝐶𝑥 = ∫
∞

0

𝑒
−𝜆𝑡

𝑅
𝐵
(𝑡) 𝑥 𝑑𝑡,

𝑥 ∈ 𝐸, R𝜆 > 𝜇, �̃� (𝜆) ̸= 0.

(81)

Towards this end, notice that (78) and (H1) together imply
that 𝐼 − 𝑆(𝜆) is invertible for R𝜆 > 𝜇 and (𝐼 − 𝑆(𝜆))

−1

=

∑
∞

𝑛=0
[𝑆(𝜆)]

𝑛

,R𝜆 > 𝜇. Now we obtain from (75)

𝑅
𝐵
(𝜆) 𝑥 = (𝐼 − 𝑆 (𝜆))

−1

�̃� (𝜆) (𝐼 − 𝑎 (𝜆)𝐴)
−1

𝐶𝑥,

R𝜆 > 𝜇, 𝑥 ∈ 𝐸,

(82)

which immediately implies with (77) the validity of (81)
in case 𝑎(𝜆) = 0, R𝜆 > 𝜇 and �̃�(𝜆) ̸= 0. Assume now
𝑎(𝜆)�̃�(𝜆) ̸= 0 and R𝜆 > 𝜇. Then a straightforward compu-
tation involving the equality 𝐵𝐶𝑥 = 𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝐴) as well

as (77) and (82) shows that the operator 𝐼 − 𝑎(𝜆)(𝐴 + 𝐵) is
injective and

(𝐼 − 𝑆 (𝜆))
−1

�̃� (𝜆) (𝐼 − 𝑎 (𝜆)𝐴)
−1

𝐶 (𝐼 − 𝑎 (𝜆) (𝐴 + 𝐵)) 𝑥

= �̃� (𝜆) 𝐶𝑥, 𝑥 ∈ 𝐷 (𝐴) .

(83)

The representation (𝐼 − 𝑆(𝜆))
−1

= ∑
∞

𝑛=0
[((1/𝑎(𝜆)) − 𝐴)

−1

×𝐶𝐶−1𝐵]
𝑛 implies

(
1

𝑎 (𝜆)
− (𝐴 + 𝐵)) (𝐼 − 𝑆 (𝜆))

−1

�̃� (𝜆) (
1

𝑎 (𝜆)
− 𝐴)

−1

𝐶𝑥

= �̃� (𝜆) 𝐶𝑥, 𝑥 ∈ 𝐸,

(84)

𝑅(𝐶) ⊆ 𝑅(𝐼 − 𝑎(𝜆)(𝐴 + 𝐵)) and (81), finishing the proof of
theorem.

Remark 15. Now we will explain how one can reformulate
Theorem 13 in case in which 𝐵 is not necessarily bounded
operator from 𝐷(𝐴) into 𝐸 (cf. also [3, 7, 8] and the next
section). Consider the situation of Theorem 13 with 𝐸 being
complete. Assume (69) and, instead of condition 𝐶−1𝐵 ∈

𝐿(𝐸) :

(♮) 𝐶−1𝐵 : 𝐷(𝐴) → 𝐸 and, for every 𝑝 ∈ ⊛, there exist
𝑐
𝑝
> 0 and 𝑞 ∈ ⊛ such that 𝑝(𝐶−1𝐵𝑥) ≤ 𝑐

𝑝
(𝑞(𝑥) +

𝑞(𝐴𝑥)), 𝑥 ∈ 𝐷(𝐴).

Denote, with a little abuse of notation, 𝑇
0
(𝑡) = 𝑅(𝑡), 𝑡 ≥

0, 𝑆(𝑡)𝑥 = 𝐶−1𝐵(∫
𝑡

0

𝑏(𝑡− 𝑠)𝑅(𝑠)𝑥 𝑑𝑠+𝑧𝑅(𝑡)𝑥), 𝑡 ≥ 0, 𝑥 ∈ 𝐷(𝐴)

and 𝑇
1
(𝑡)𝑥 = ∫

𝑡

0

𝑇
0
(𝑡 − 𝑠)𝑆(𝑠)𝑥 𝑑𝑠, 𝑡 ≥ 0, 𝑥 ∈ 𝐷(𝐴). Then (♮)

implies that the mapping 𝑡 → 𝑆(𝑡)𝑥, 𝑡 ≥ 0 is continuous for
every 𝑥 ∈ 𝐷(𝐴) and 𝑝(𝑇

1
(𝑡)𝑥) ≤ 𝛾𝑀𝑝(𝑥), 𝑥 ∈ 𝐷(𝐴), 𝑡 ≥

0, 𝑝 ∈ ⊛. By [59, Lemma 22.19] and the completeness of
𝐸, one can extend the operator 𝑇

1
(𝑡) to the whole space 𝐸

(𝑡 ≥ 0). Proceeding inductively, one can define for each
𝑡 ≥ 0 the sequence (𝑇

𝑛
(𝑡) = ∫

𝑡

0

𝑇
𝑛−1

(𝑡 − 𝑠)𝑆(𝑠) 𝑑𝑠)
𝑛∈N
0

in
𝐿(𝐸) such that 𝑝(𝑇

𝑛
(𝑡)𝑥) ≤ 𝛾𝑛𝑀𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑡 ≥ 0, 𝑝 ∈

⊛. The preceding inequality implies that, for every 𝑥 ∈ 𝐸,
the sequence (𝑅𝑛

𝐵
(𝑡)𝑥 ≡ ∑

𝑛

𝑖=0
𝑇

𝑖
(𝑡)𝑥)

𝑛
is Cauchy in 𝐸 and

therefore convergent. Put 𝑅
𝐵
(𝑡)𝑥 = lim

𝑛 → ∞
𝑅𝑛

𝐵
(𝑡)𝑥, 𝑥 ∈ 𝐸,

𝑡 ≥ 0. As in the proof ofTheorem 14, themapping 𝑡 → 𝑅
𝐵
(𝑡)𝑥,

𝑡 ≥ 0 is continuous for every fixed 𝑥 ∈ 𝐸 and (71)-(72)
hold. Using the closedness of 𝐴 and the condition (♮), we
get ∫∞

0

𝑒−𝜆𝑡𝑆(𝑡)𝑥𝑑𝑡 = 𝐶−1𝐵𝑎(𝜆)(𝐼 − 𝑎(𝜆)𝐴)
−1

𝐶𝑥, 𝑥 ∈ 𝐷(𝐴),
R𝜆 > 𝜇, �̃�(𝜆) ̸= 0 and 𝐶−1𝐵𝑎(𝜆)(𝐼 − 𝑎(𝜆)𝐴)

−1

𝐶 ∈ 𝐿(𝐸),
R𝜆 > max(𝜔

1
, 𝜇), �̃�(𝜆) ̸= 0. In view of (69), 𝑝(𝑆(𝜆)𝑥) ≤

𝛾𝑝(𝑥), 𝑥 ∈ 𝐷(𝐴), R𝜆 > 𝜇, 𝑝 ∈ ⊛; by the denseness of
𝐷(𝐴) in 𝐸, the last estimate holds for all 𝑥 ∈ 𝐸. Hence,
the operator 𝐼 − 𝑆(𝜆) is invertible and (𝐼 − 𝑆(𝜆))

−1

𝑥 =

∑
∞

𝑛=0
[𝐶−1𝐵𝑎(𝜆)(𝐼 − 𝑎(𝜆)𝐴)

−1

𝐶]
𝑛

𝑥, 𝑥 ∈ 𝐸, R𝜆 > 𝜇, �̃�(𝜆) ̸= 0.
Suppose, for the time being, R𝜆 > 𝜇 and 𝑎(𝜆)�̃�(𝜆) ̸= 0. The
closedness of the operator 𝐴 + 𝐵 can be proved as follows.
Let a net (𝑥

𝜏
)
𝜏∈𝑇

in 𝐸 satisfy 𝑥
𝜏
→ 𝑥, 𝜏 → ∞ and (𝐼 −
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𝑎(𝜆)(𝐴 + 𝐵))𝑥
𝜏
→ 𝑦, 𝜏 → ∞. Then a simple computation

shows that (𝐼 − 𝑎(𝜆)(𝐴 + 𝐵))𝑥
𝜏
= (𝐼 − 𝑆(𝜆))(𝐼 − 𝑎(𝜆)𝐴) 𝑥

𝜏
,

which implies (𝐼 − 𝑎(𝜆)𝐴)𝑥
𝜏
= (𝐼 − 𝑆(𝜆))

−1

(𝐼 − 𝑎(𝜆)(𝐴 +

𝐵))𝑥
𝜏
→ (𝐼 − 𝑆(𝜆))

−1

𝑦, 𝜏 → ∞. Since 𝐼 − 𝑎(𝜆)𝐴 is closed,
we infer that 𝑥 ∈ 𝐷(𝐴), (𝐼 − 𝑎(𝜆)𝐴)𝑥 = (𝐼 − 𝑆(𝜆))

−1

𝑦 and
(𝐼 − 𝑎(𝜆)(𝐴 + 𝐵))𝑥 = 𝑦. Therefore, the closedness of 𝐴 + 𝐵

follows from that of 𝐼 − 𝑎(𝜆)(𝐴 + 𝐵). Suppose now R𝜆 > 𝜇

and �̃�(𝜆) ̸= 0. Similarly as in the proof of Theorem 14, we get
�̃�

𝐵
(𝜆)𝑥 = �̃�(𝜆)(𝐼 − 𝑆(𝜆))

−1

𝑥, 𝑥 ∈ 𝐸, the injectiveness of
𝐼−𝑎(𝜆)(𝐴+𝐵), 𝑅(𝐶) ⊆ 𝑅(𝐼−𝑎(𝜆)(𝐴+𝐵)) and �̃�(𝜆)(𝐼−𝑎(𝜆)(𝐴+
𝐵))

−1

𝐶𝑥 = �̃�
𝐵
(𝜆)𝑥, 𝑥 ∈ 𝐸, which implies that the conclusions

of Theorem 13 continue to hold. We left to the interested
reader details concerning the possibilities of the extension of
[8,Theorems 3.1 and 3.2] and results of [3, 7, 11, 12] to abstract
Volterra equations in SCLCSs.

Remark 16. The local Hölder continuity with exponent 𝜎 ∈

(0, 1] is an example of the property which is stable under
perturbations described in Theorems 13–14 and Remark 15,
as indicated below. Consider the situation of Theorem 13 in
which 𝐷(𝐴) is dense in 𝐸. Using the same notation as in
Remark 15, one has 𝑝(𝑆(𝑡)𝑥) ≤ 𝑐

𝑝
𝑀𝑞(𝑥)[∫

𝑡

0

|𝑏(𝑡 − 𝑟)|𝑒𝜔𝑟𝑑𝑟 +

|𝑧|𝑒
𝜔𝑡

], 𝑝 ∈ ⊛, 𝑡 ≥ 0, 𝑥 ∈ 𝐷(𝐴). Suppose now that, for every
𝑇 > 0 and 𝑝 ∈ ⊛, there exist 𝑐

𝑇,𝑝
> 0 and ℎ

𝑇,𝑝
∈ ⊛ such that

𝑝 (𝑅 (𝑡) 𝑥 − 𝑅 (𝑠) 𝑥) ≤ 𝑐
𝑇,𝑝
(𝑡 − 𝑠)

𝜎

ℎ
𝑇,𝑝

(𝑥) ,

𝑥 ∈ 𝐸, 0 ≤ 𝑠 < 𝑡 ≤ 𝑇.
(85)

Let 𝑇 > 0 and 𝑝 ∈ ⊛ be fixed. Then, for every 𝑥 ∈ 𝐷(𝐴) and
0 ≤ 𝑠 < 𝑡 ≤ 𝑇,

𝑝 (𝑆 (𝑡) 𝑥 − 𝑆 (𝑠) 𝑥)

≤ 𝑐
𝑝
𝑞 (∫

𝑠

0

𝑏 (𝑟) (𝑅 (𝑡 − 𝑟) 𝑥 − 𝑅 (𝑠 − 𝑟) 𝑥) 𝑑𝑟

+∫
𝑠

𝑡

𝑏 (𝑟) 𝑅 (𝑡 − 𝑟) 𝑥 𝑑𝑟)

+ 𝑐
𝑝
|𝑧| 𝑞 (𝑅 (𝑡) 𝑥 − 𝑅 (𝑠) 𝑥)

≤ 𝑐
𝑝
[𝑐

𝑇,𝑞
(𝑡 − 𝑠)

𝜎

ℎ
𝑇,𝑞
(𝑥) (∫

𝑇

0

|𝑏 (𝑟)| 𝑑𝑟 + |𝑧|)

+𝑀𝑒
𝜔𝑇

𝑞 (𝑥) ∫
𝑠

𝑡

|𝑏 (𝑟)| 𝑑𝑟] ,

(86)

which implies by (72) that

𝑝 ((𝑅
𝐵
∗ 𝑆) (𝑡) 𝑥 − (𝑅

𝐵
∗ 𝑆) (𝑠) 𝑥)

≤
𝑀𝑒𝜇𝑇

1 − 𝛾
(∫

𝑠

0

𝑝 (𝑆 (𝑡 − 𝑟) 𝑥 − 𝑆 (s − 𝑟) 𝑥) 𝑑𝑟

+∫
𝑡

𝑠

𝑝 (𝑆 (𝑡 − 𝑟) 𝑥) 𝑑𝑟)

≤
𝑐
𝑝
𝑀𝑒𝜇𝑇

1 − 𝛾
(𝑐

𝑇,𝑞
(𝑡 − 𝑠)

𝜎

ℎ
𝑇,𝑞
(𝑥) ∫

𝑠

0

∫
𝑇

0

|𝑏 (𝑣)| 𝑑𝑣 𝑑𝑟

+𝑀𝑒
𝜔𝑇

𝑞 (𝑥) ∫
𝑠

0

∫
𝑡−𝑟

𝑠−𝑟

|𝑏 (𝑣)| 𝑑𝑣 𝑑𝑟

+ |𝑧| 𝑐
𝑇,𝑞
𝑇(𝑡 − 𝑠)

𝜎

ℎ
𝑇,𝑞
(𝑥) )

+
𝑐
𝑝
𝑀2𝑒2𝜇𝑇𝑞 (𝑥)

1 − 𝛾

× (∫
𝑡

𝑠

∫
𝑡−𝑟

0

|𝑏 (𝑡 − 𝑟 − 𝑣)| 𝑑𝑣 𝑑𝑟 + |𝑧| (𝑡 − 𝑠)) .

(87)

One can simply prove that there exists 𝑐
𝑇
> 0 such that, for

0 ≤ 𝑠 < 𝑡 ≤ 𝑇,

∫
𝑠

0

∫
𝑡−𝑟

𝑠−𝑟

|𝑏 (𝑣)| 𝑑𝑣 𝑑𝑟 + ∫
𝑡

𝑠

∫
𝑡−𝑟

0

|𝑏 (𝑡 − 𝑟 − 𝑣)| 𝑑𝑣 𝑑𝑟

≤ 𝑐
𝑇
(𝑡 − 𝑠)

𝜎

,

(88)

which implies with (72), the previous computation and the
denseness of 𝐴 that there exists 𝑏

𝑇,𝑝
> 0 such that, for every

𝑥 ∈ 𝐸 and 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 :

𝑝 (𝑅
𝐵
(𝑡) 𝑥 − 𝑅

𝐵
(𝑠) 𝑥)

≤ 𝑏
𝑇,𝑝
(𝑡 − 𝑠)

𝜎 max (𝑝 (𝑥) , ℎ
𝑇,𝑝

(𝑥) , 𝑞 (𝑥)) .
(89)

The same estimate holds provided (70), while in the case of
Remark 15 we obtain that, for every 𝑥 ∈ 𝐷(𝐴) and 0 ≤ 𝑠 <

𝑡 ≤ 𝑇,

𝑝 (𝑅
𝐵
(𝑡) 𝑥 − 𝑅

𝐵
(𝑠) 𝑥)

(𝑡 − 𝑠)
𝜎

≤ 𝑏
𝑇,𝑝

max (𝑝 (𝑥) + 𝑝 (𝐴𝑥) , ℎ
𝑇,𝑝

(𝑥)

+ℎ
𝑇,𝑝

(𝐴𝑥) , 𝑞 (𝑥) + 𝑞 (𝐴𝑥)) .

(90)

Assuming additionally

sup
0≤𝑠<𝑡≤𝑇

1

(𝑡 − 𝑠)
𝜎

𝑙−1

∑
𝑗=0

(∫
𝑡−𝑠

0


𝑎

∗,𝑗+1

(𝑟)

𝑑𝑟

+∫
𝑠

0


𝑎

∗,𝑗+1

(𝑡−𝑟)−𝑎
∗,𝑗+1

(𝑠−𝑟)

𝑑𝑟)<∞,

(91)

then an estimate of the form (89) holds in the case of
Theorem 14.

The following corollary is an immediate consequence of
Theorems 13–14 and Remark 15.

Corollary 17. Suppose𝑀, 𝑀
1
> 0, 𝜔 ≥ 0, 𝛼 > 0, 𝛽 ≥ 0, 𝐴 is

a subgenerator of a (𝑔
𝛼
, 𝑔

𝛼𝛽+1
)-regularized 𝐶-resolvent family

(𝑅(𝑡))
𝑡≥0

satisfying 𝑝(𝑅(𝑡)𝑥) ≤ 𝑀𝑒𝜔𝑡𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑡 ≥ 0, 𝑝 ∈ ⊛

and (2) with 𝑎(𝑡) = 𝑔
𝛼
(𝑡) and 𝑘(𝑡) = 𝑔

𝛼𝛽+1
(𝑡). Assume exactly

one of the following conditions:
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(i) 𝛼 − 1 − 𝛼𝛽 ≥ 0, 𝐵𝐶𝑥 = 𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝐴), and (a) ∨ (b),
where

(a) 𝑝(𝐶−1𝐵𝑥) ≤ 𝑀
1
𝑝(𝑥), 𝑥 ∈ 𝐷(𝐴), 𝑝 ∈ ⊛.

(b) 𝐸 is complete, (69) and (♮).

(ii) 𝛼 − 1 − 𝛼𝛽 < 0, 𝐵𝐶𝑥 = 𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝐴), 𝑙 = ⌈(𝛼𝛽 + 1 −
𝛼)/𝛼⌉ and (73) holds.

Then there exist 𝜇 > 𝜔 and 𝛾 ∈ [0, 1) such that 𝐴 +

𝐵 is a subgenerator of a (𝑔
𝛼
, 𝑔

𝛼𝛽+1
)-regularized 𝐶-resolvent

family (𝑅
𝐵
(𝑡))

𝑡≥0
satisfying (71), and (18) with 𝑘

1
(𝑡) replaced

by 𝑔
𝛼𝛽+1

(𝑡) therein.

Remark 18. Let 0 < 𝛼 < 2 and let (𝑅(𝑡))
𝑡≥0

be an expo-
nentially equicontinuous, analytic (𝑔

𝛼
, 𝑔

𝛼𝛽+1
)-regularized 𝐶-

resolvent family of angle 𝛿 ∈ (0, 𝜋/2]. Suppose additionally
that, for every 𝜁 ∈ (0, 𝛿), there exist 𝑀

𝜁
≥ 1 and 𝜔

𝜁
≥ 0

such that 𝑝(𝑅(𝑧)𝑥) ≤ 𝑀
𝜁
𝑒𝜔
𝜁
R𝑧𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑧 ∈ Σ

𝜁
, 𝑝 ∈ ⊛.

If (ii) or (i)(a) holds, then we obtain from Corollary 17 and
the proofs of Kato’s analyticity criteria [60, Theorems 4.3 and
4.6] that (𝑅

𝐵
(𝑡))

𝑡≥0
is also an exponentially equicontinuous,

analytic (𝑔
𝛼
, 𝑔

𝛼𝛽+1
)-regularized𝐶-resolvent family of angle 𝛿;

furthermore, for every 𝜁 ∈ (0, 𝛿), there exist 𝑀

𝜁
≥ 1 and

𝜔

𝜁
≥ 0 such that 𝑝(𝑅

𝐵
(𝑧)𝑥) ≤ 𝑀

𝜁
𝑒𝜔


𝜁
R𝑧𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑧 ∈

Σ
𝜁
, 𝑝 ∈ ⊛. If (i)(b) holds, then one has to assume additionally

that there exist 𝜂 > 𝜔 and 𝛾 ∈ [0, 1) such that, for every
𝜁 ∈ (−𝛿, 𝛿), 𝑥 ∈ 𝐷(𝐴) and 𝑝 ∈ ⊛, the following holds:

∫
∞

0

𝑒
−𝜇𝑡

𝑝(𝐶
−1

𝐵∫
𝑡

0

𝑏 (𝑡 − 𝑠) 𝑅 (𝑠𝑒
𝑖𝜁

) 𝑥 𝑑𝑠

+𝑧𝐶
−1

𝐵𝑅 (𝑡𝑒
𝑖𝜁

) 𝑥) 𝑑𝑡 ≤ 𝛾𝑝 (𝑥) .

(92)

The question whether perturbations considered inTheorems
13–14 retain analytical properties requires further analysis
and will not be discussed in the context of this paper.

Example 19 (cf. [28, Example 2.24]). Let 𝐸 := 𝑙
1, 0 < 𝛼 < 1

and 𝑙 := ⌈(1 − 𝛼)/𝛼⌉. Define a closed densely defined linear
operator 𝐴

𝛼
on 𝐸 by 𝐷(𝐴

𝛼
) := {⟨𝑥

𝑛
⟩ ∈ 𝑙1 : ∑

∞

𝑛=1
𝑛|𝑥

𝑛
| < ∞}

and 𝐴
𝛼
⟨𝑥

𝑛
⟩ := ⟨𝑒𝑖𝛼(𝜋/2)𝑛𝑥

𝑛
⟩, ⟨𝑥

𝑛
⟩ ∈ 𝐷(𝐴

𝛼
). Then 𝐴

𝛼
is the

integral generator of a bounded (𝑔
𝛼
, 1)-regularized resolvent

family,𝐴
𝛼
+𝐼 is not the integral generator of an exponentially

bounded (𝑔
𝛼
, 1)-regularized resolvent family, and 𝜎(𝐴

𝛼
) =

{𝑒𝑖𝛼(𝜋/2)𝑛 : 𝑛 ∈ N}. Suppose

𝐵 ∈ 𝐿 (𝐸) , 𝑅 (𝐵)⊆𝐷 (𝐴
𝑙

)={⟨𝑥
𝑛
⟩ ∈ 𝑙

1

:

∞

∑
𝑛=1

𝑛
𝑙 𝑥𝑛

 < ∞} .

(93)
Then it follows from Corollary 17 that 𝐴 + 𝐵 is the integral
generator of an exponentially bounded (𝑔

𝛼
, 1)-regularized

resolvent family.

3. Unbounded Perturbation Theorems

In the subsequent theorems, we transfer the assertions of [19,
Theorems 3.1 and 3.3] and [1,Theorem 2.5.9, Corollary 2.5.10]
to abstract Volterra equations.

Theorem 20. Suppose 𝐸 is a Banach space, 𝑘(𝑡) and 𝑎(𝑡)

satisfy (P1)-(P2) and 𝐴 is the integral generator of an expo-
nentially bounded (𝑎, 𝑘)-regularized resolvent family (𝑅(𝑡))

𝑡≥0

satisfying (2) with 𝐶 = 𝐼. Let𝑀 > 0 and 𝜔 ≥ 0 be such that
‖𝑅(𝑡)‖ ≤ 𝑀𝑒𝜔𝑡, 𝑡 ≥ 0 and let 𝜆

0
> max(𝜔, abs(a), abs(k))

satisfy �̃�(𝜆)𝑎(𝜆) ̸= 0,R𝜆 ≥ 𝜆
0
. Suppose that, for every 𝜀 > 0,

there exists 𝐶
𝜀
> 0 such that

1

�̃� (𝜆)



≤ 𝐶
𝜀
𝑒

𝜀|𝜆|

, R𝜆 ≥ 𝜆
0
,

|𝑎 (𝜆)|
𝑎 (𝜆0

+ 𝑖I𝜆)

≤ 𝐶

𝜀
𝑒

𝜀|𝜆|

, R𝜆 ≥ 𝜆
0
.

(94)

(i) Let 𝐵 be a linear operator, let 𝐷(𝐴) ⊆ 𝐷(𝐵) and let


𝐵𝑅(

1

𝑎 (𝜆)
: 𝐴)


≤ 𝑀


|𝜆|

−

, R𝜆 = 𝜆
0

(95)

for some  > 0 and 𝑀

> 0 (for  = 0 and some

𝑀
0
∈ (0, 1)).Then, for every 𝜁 > 1, 𝐴+𝐵 is the integral

generator of an exponentially bounded, (𝑎, 𝑘∗
0
𝑔

𝜁
)-

regularized resolvent family (𝑅
𝐵
(𝑡))

𝑡≥0
satisfying (18)

with 𝑘
1
(𝑡) = (𝑘∗

0
𝑔

𝜁
)(𝑡), 𝐶 = 𝐼, and 𝑔

𝛼
(𝑡) replaced by

𝑎(𝑡) therein.

(ii) Let 𝐵 be a densely defined linear operator and let


𝑅(

1

𝑎 (𝜆)
: 𝐴)𝐵𝑥


≤ 𝑀


|𝜆|

−

‖𝑥‖ , 𝑥 ∈ 𝐷 (𝐵) , R𝜆 = 𝜆
0

(96)

for some  > 0 and 𝑀

> 0(for  = 0 and some

𝑀
0
∈ (0, 1)). Then there exists a closed extension 𝐷

of the operator 𝐴 + 𝐵 such that, for every 𝜁 > 1, 𝐷
is the integral generator of an exponentially bounded,
(𝑎, 𝑘∗

0
𝑔

𝜁
)-regularized resolvent family (𝑅

𝐵
(𝑡))

𝑡≥0
sat-

isfying (18) with 𝑘
1
(𝑡) = (𝑘∗

0
𝑔

𝜁
)(𝑡), 𝐶 = 𝐼, and 𝑔

𝛼
(𝑡)

replaced by 𝑎(𝑡) therein. Furthermore, if 𝐴 and 𝐴∗

are densely defined, then 𝐷 is the part of the operator
(𝐴∗ + 𝐵∗)

∗ in 𝐸.

Proof. By Lemma 2, {1/𝑎(𝜆) : R𝜆 > 𝜆
0
} ⊆ 𝜌(𝐴) and


𝑅(

1

𝑎 (𝜆)
: 𝐴)


≤

𝑀 |𝑎 (𝜆)|

�̃� (𝜆)


(R𝜆 − 𝜔)

, R𝜆 > 𝜆
0
. (97)



16 Abstract and Applied Analysis

Given 𝑧 ∈ C with R𝑧 > 𝜆
0
, put 𝜆

𝑧
:= 𝜆

0
+ 𝑖I𝑧. Then the

prescribed assumptions combined with (97) imply

𝐵𝑅(

1

𝑎 (𝑧)
: 𝐴)



=


𝐵𝑅(

1

𝑎 (𝜆
𝑧
)
: 𝐴)(𝐼+(

1

𝑎 (𝜆
𝑧
)
−

1

𝑎 (𝑧)
)𝑅(

1

𝑎 (𝑧)
: 𝐴))



≤


𝐵𝑅(

1

𝑎 (𝜆
𝑧
)
: 𝐴)


[1+



1

𝑎 (𝜆
𝑧
)
−

1

𝑎 (𝑧)




𝑅(

1

𝑎 (𝑧)
: 𝐴)


]

≤
𝑀



𝜆


0

[1 +



1

𝑎 (𝜆
𝑧
)
−

1

𝑎 (𝑧)



𝑀 |𝑎 (𝑧)|

�̃� (𝑧)


(R𝑧 − 𝜔)

]

≤
𝑀



𝜆


0

+
𝑀


𝑀

𝜆


0
(𝜆

0
− 𝜔)


�̃� (𝑧)





𝑎 (𝑧)

𝑎 (𝜆
𝑧
)
− 1


.

(98)

Consider now the function ℎ : {𝑧 ∈ C : R𝑧 ≥ 0} →

𝐿(𝐸) defined by ℎ(𝑧) := 𝑧𝐵𝑅((1/𝑎(𝜆
0
+ 𝑧)) : 𝐴),R𝑧 ≥

0, 𝑧 ̸= 0, ℎ(0) := 0 if  > 0, and ℎ(0) := 𝐵𝑅((1/𝑎(𝜆
0
)) : 𝐴) if

 = 0. Then the function 𝑧 → ℎ(𝑧) is continuous forR𝑧 ≥ 0

and analytic for R𝑧 > 0. Furthermore, ‖ℎ(𝑖𝑡)‖ ≤ 𝑀

, 𝑡 ∈ R

and, by (94)–(98), one has that, for every 𝜀 > 0, there exists
𝐶

𝜀
> 0 such that ‖ℎ(𝑧)‖ ≤ 𝐶

𝜀
𝑒𝜀|𝑧| for all 𝑧 ∈ CwithR𝑧 ≥ 0. By

the Phragmén-Lindelöf type theorems (cf. for instance [39,
Theorem 3.9.8]), we get that ‖ℎ(𝑧)‖ ≤ 𝑀


for all 𝑧 ∈ C

with R𝑧 ≥ 0. This, in turn, implies that there exists 𝑎 > 𝜆
0

such that ‖𝐵𝑅(1/𝑎(𝜆) : 𝐴)‖ < 1/2,R𝜆 ≥ 𝑎 if  > 0, and
that ‖𝐵𝑅(1/𝑎(𝜆) : 𝐴)‖ < 𝑀

0
,R𝜆 ≥ 𝑎 if  = 0. Therefore,

1/𝑎(𝜆) ∈ 𝜌(𝐴 + 𝐵),R𝜆 ≥ 𝑎 and there exists 𝑐

> 0 such that,

forR𝜆 ≥ 𝑎 :



1

𝑎 (𝜆)
𝑅(

1

𝑎 (𝜆)
: 𝐴 + 𝐵)



=



1

𝑎 (𝜆)
𝑅(

1

𝑎 (𝜆)
: 𝐴)(𝐼−𝐵𝑅(

1

𝑎 (𝜆)
: 𝐴))

−1
≤

𝑐
𝜌


�̃� (𝜆)



.

(99)

The proof of (i) follows from [32, Theorem 2.7(i), Remark
2.3(v)]. Using [19, Lemma 3.2] and a similar argumentation,
we obtain the validity of (ii).

Recall that a Banach space 𝐸 has Fourier type 𝑝 ∈ [1, 2] if
and only if the Fourier transform extends to a bounded linear
operator from 𝐿

𝑝(R : 𝐸) to 𝐿𝑞(R : 𝐸), where 1/𝑝 + 1/𝑞 = 1.
Each Banach space 𝐸 has Fourier type 1, and 𝐸∗ has the same
Fourier type as 𝐸. A space of the form 𝐿𝑝(Ω, 𝜇) has Fourier
typemin(𝑝, 𝑝/𝑝−1), and there exist examples of nonreflexive
Banach spaces which do have nontrivial Fourier type.

Theorem 21. Let 𝐸 be a Banach space of Fourier type 𝑝 ∈

(1, 2].

(i) Let the assumptions of Theorem 20(i) hold and let 𝜁 >
1/𝑝. Assume that at least one of the following conditions
holds:

(a) 𝐴 and𝐴∗ are densely defined, there exist 𝜆

0
> 𝜆

0

and 𝜂 > 1 such that


�̃� (𝜆)


= 𝑂 (|𝜆|

𝜁−𝜂

) , R𝜆 > 𝜆


0
,

|𝑎 (𝜆)| = 𝑂 (|𝜆|
𝜁−𝜂

) , R𝜆 > 𝜆


0
.

(100)

(b) 𝐴 is densely defined and 𝐸 is reflexive.
(c) 𝐵(𝐷(𝐴2)) ⊆ 𝐷(𝐴) and 𝐵𝐴𝑥 = 𝐴𝐵𝑥, 𝑥 ∈ 𝐷(𝐴2).

Then 𝐴 + 𝐵 is the integral generator of an exponen-
tially bounded, (𝑎, 𝑘∗

0
𝑔

𝜁
)-regularized resolvent family

(𝑅
𝐵
(𝑡))

𝑡≥0
satisfying (18) with 𝑘

1
(𝑡) = (𝑘∗

0
𝑔

𝜁
)(𝑡), 𝐶 =

𝐼, and 𝑔
𝛼
(𝑡) replaced by 𝑎(𝑡) therein.

(ii) Let the assumptions of Theorem 20(ii) hold and let
𝜁 > 1/𝑝. Then there exists a closed extension 𝐷 of the
operator 𝐴 + 𝐵 such that 𝐷 is the integral generator
of an exponentially bounded, (𝑎, 𝑘∗

0
𝑔

𝜁
)-regularized

resolvent family (𝑅
𝐵
(𝑡))

𝑡≥0
satisfying (18) with 𝑘

1
(𝑡) =

(𝑘∗
0
𝑔

𝜁
)(𝑡), 𝐶 = 𝐼, and 𝑔

𝛼
(𝑡) replaced by 𝑎(𝑡) therein.

Furthermore, if 𝐴 and 𝐴∗ are densely defined, then 𝐷
is the part of the operator (𝐴∗ + 𝐵∗)

∗ in 𝐸.

Proof. Assume that (c) holds. According to (100), 𝑅(1/𝑎(𝜆) :
𝐴)(𝐼 − 𝐵𝑅(1/𝑎(𝜆) : 𝐴))

−1

= (𝐼 − 𝐵𝑅(1/𝑎(𝜆) : 𝐴))
−1

𝑅(1/𝑎(𝜆) :

𝐴),R𝜆 ≥ 𝑎 and (1/𝑎(𝜆))𝑅(1/𝑎(𝜆) : 𝐴 + 𝐵) = (1/𝑎(𝜆))(𝐼 −

𝐵𝑅(1/𝑎(𝜆) : 𝐴))
−1

𝑅(1/𝑎(𝜆) : 𝐴),R𝜆 ≥ 𝑎. Define

𝑅
𝐵
(𝑡) 𝑥

:=
1

2𝜋𝑖
∫

𝑎+𝑖∞

𝑎−𝑖∞

𝑒
𝜆𝑡

𝜆
−𝜁

[
�̃� (𝜆)

𝑎 (𝜆)
𝑅(

1

𝑎 (𝜆)
: 𝐴+𝐵)𝑥] 𝑑𝜆,

𝑥 ∈ 𝐸, 𝑡 ≥ 0.

(101)

By the first part of the proof of [19, Theorem 3.3],𝐴+𝐵 is the
integral generator of an exponentially bounded, (𝑎, 𝑘∗

0
𝑔

𝜁
)-

regularized resolvent family (𝑅
𝐵
(𝑡))

𝑡≥0
satisfying (18) with

𝑘
1
(𝑡) = (𝑘∗

0
𝑔

𝜁
)(𝑡), 𝐶 = 𝐼, and 𝑔

𝛼
(𝑡) replaced by 𝑎(𝑡) therein.

The property (18) holds in any particular case considered
below and the assertion (ii) is also an immediate consequence
of the proof of [19, Theorem 3.3]. Assume now that (b) holds.
Then 𝐴

∗ is densely defined and, by [33, Theorem 2.14(ii)],
(𝑅∗(𝑡))

𝑡≥0
is an exponentially bounded, (𝑎, 𝑘)-regularized

resolvent family with the integral generator𝐴∗. Let 𝑞 be such
that 1/𝑝 + 1/𝑞 = 1 and let 𝐽 : 𝐸 → 𝐸

∗∗ denote the canonical
embedding of 𝐸 in its bidual 𝐸∗∗. Since 𝐸∗ has Fourier type 𝑝
and (1/𝑎(𝜆))𝑅(1/𝑎(𝜆) : 𝐴+𝐵)∗ = (1/𝑎(𝜆))((𝐼−𝐵𝑅((1/𝑎(𝜆)) :
𝐴))

−1

)
∗

𝑅((1/𝑎(𝜆)) : 𝐴)
∗

,R𝜆 ≥ 𝑎, it follows that there exists
𝑐
1
> 0 such that, for every 𝑥∗ ∈ 𝐸∗ and 𝑟 ≥ 𝑎,

∫
∞

−∞



�̃� (𝑟 + 𝑖𝑠)

𝑎 (𝑟 + 𝑖𝑠)
𝑅(

1

𝑎 (𝑟 + 𝑖𝑠)
: 𝐴 + 𝐵)

∗

𝑥
∗



𝑞

𝑑𝑠 ≤ 𝑐
1

𝑥
∗

𝑞

.

(102)
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Set, for every 𝑥∗ ∈ 𝐸∗ and 𝑡 ≥ 0 :

𝑅
𝐵,∗

(𝑡) 𝑥
∗

:=
1

2𝜋𝑖
∫

𝑎+𝑖∞

𝑎−𝑖∞

𝑒
𝜆𝑡

𝜆
−𝜁

[
�̃� (𝜆)

𝑎 (𝜆)
𝑅(

1

𝑎 (𝜆)
: 𝐴 + 𝐵)

∗

𝑥
∗

] 𝑑𝜆.

(103)

Then (𝑅
𝐵,∗
(𝑡))

𝑡≥0
⊆ 𝐿(𝐸∗) is strongly continuous, exponen-

tially bounded and

�̃� (𝜆)

𝑎 (𝜆)
𝑅(

1

𝑎 (𝜆)
: 𝐴 + 𝐵)

∗

𝑥
∗

= 𝜆
𝜁

∫
∞

0

𝑒
−𝜆𝑡

𝑅
𝐵,∗

(𝑡) 𝑥
∗

𝑑𝑡,

R𝜆 > 𝑎, 𝑥
∗

∈ 𝐸
∗

.

(104)

By Lemma 2, (𝑅
𝐵,∗
(𝑡))

𝑡≥0
is an (𝑎, 𝑘∗

0
𝑔

𝜁
)-regularized

resolvent family with the integral generator (𝐴 + 𝐵)
∗. By [33,

Theorem 2.14(iii)], it follows that (𝑅
𝐵
(𝑡) ≡ 𝐽−1𝑅

𝐵,∗
(𝑡)

∗

𝐽)
𝑡≥0

is an (𝑎, 𝑘∗
0
𝑔

𝜁
)-regularized resolvent family with the integral

generator 𝐴 + 𝐵 = 𝐽−1((𝐴 + 𝐵)
∗

)
∗

𝐽. We continue the proof
by assuming that (a) holds. Using (99)-(100), we easily infer
that the improper integral in (101) converges absolutely for
𝑥 ∈ 𝐷(𝐴) and that

�̃� (𝜆)

𝑎 (𝜆)
𝑅(

1

𝑎 (𝜆)
: 𝐴 + 𝐵)𝑥 = 𝜆

𝜁

∫
∞

0

𝑒
−𝜆𝑡

𝑅
𝐵
(𝑡) 𝑥 𝑑𝑡,

R𝜆 > 𝑎, 𝑥 ∈ 𝐷 (𝐴) .

(105)

By (104)-(105) and the uniqueness theorem for Laplace
transform, we get

⟨𝑅
𝐵,∗

(𝑡) 𝑥
∗

, 𝑥⟩ = ⟨𝑥
∗

, 𝑅
𝐵
(𝑡) 𝑥⟩ ,

𝑡 ≥ 0, 𝑥
∗

∈ 𝐸
∗

, 𝑥 ∈ 𝐷 (𝐴)
(106)

and 𝑅
𝐵,∗
(𝑡)

∗

𝐽
𝑥

= 𝐽
𝑅
𝐵
(𝑡)𝑥

, 𝑡 ≥ 0, 𝑥 ∈ 𝐷(𝐴). Now one
can simply prove that ((𝑅

𝐵,∗
(𝑡)

∗

)
|𝐸
)
𝑡≥0

is an exponentially
bounded, (𝑎, 𝑘∗

0
𝑔

𝜁
)-regularized resolvent family with the

integral generator 𝐴 + 𝐵.

Remark 22. (i) It is noteworthy that Kaiser andWeis analyzed
in [61, Theorem 3.1] an analogue of Theorem 21 for operator
semigroups in Hilbert spaces. The question whether the
perturbed semigroup (𝑅

𝐵
(𝑡))

𝑡≥0
is strongly continuous at 𝑡 =

0 was answered in the affirmative by Batty [62]; here we
would like to note that it is not clear in which way one can
transfer the assertion of [62, Theorem 1] to abstract Volterra
equations.

(ii) To the author’s knowledge, the denseness of 𝐷(𝐴∗)

in 𝐸∗ cannot be so simply dropped from the formulation of
(a). The main problem is that we do not know whether the
mapping 𝑡 → 𝑅(𝑡)

∗

𝑥∗, 𝑡 ≥ 0 is measurable provided 𝑥∗ ∈

𝐸∗ \ 𝐷(𝐴∗) (cf. [19, (5)-(6), page 221; l. 7-8, page 222] and
[63, Section 3]). Notice also that the assertion (c), although
practically irrelevant, may help one to better understand the
proof of [19, Theorem 3.3].

(iii) Let 𝛼 > 0 and 𝑎(𝑡) = 𝑔
𝛼
(𝑡). Then the assumptions of

Theorems 20 and 21[(i)(b)-(c), (ii)] hold while the assump-
tions of Theorem 21(i)(a) hold provided 𝜁 + 𝛼 > 1.

In the following nontrivial example, we will transfer the
assertion of [19, Proposition 8.1] to abstract time-fractional
equations.

Example 23. Let 1 < 𝑝 < ∞, 1/𝑝 + 1/𝑞 = 1, 𝑘 ∈ N
0
, 0 < 𝛽 ≤

2 and𝐸 := 𝐿
𝑝

(R). Define a closed linear operator𝐴
𝛽,𝑘

on𝐸 by
𝐷(𝐴

𝛽,𝑘
) := 𝑊4𝑘+2,𝑝(R) and 𝐴

𝛽,𝑘
𝑓 := 𝑒𝑖(2−𝛽)(𝜋/2)𝑓(4𝑘+2), 𝑓 ∈

𝐷(𝐴
𝛽,𝑘
). Put 𝐵𝑓(𝑥) := 𝑉(𝑥)𝑓(𝑙)(𝑥), 𝑥 ∈ R with maximal

domain𝐷(𝐵) := {𝑓 ∈ 𝐸 : 𝑉⋅𝑓(𝑙) ∈ 𝐸}; here𝑉(𝑥) is a potential
and 𝑙 ∈ N

0
. Assume first that

𝑉 ∈ 𝐿
𝑝

(R) , 𝑙≤
1

𝑝
((4𝑘+2) 𝑝−1 −

(4𝑘 + 2) (𝑝 − 1)

𝛽
) .

(107)

GivenR𝜆 > 0, denote by 𝜇
𝑗,𝜆
(1 ≤ 𝑗 ≤ 2𝑘+1)(2𝑘+1) solutions

of the equation 𝜇4𝑘+2

𝑗,𝜆
= 𝜆𝛽𝑒𝑖(𝛽(𝜋/2)−𝜋) with R𝜇

𝑗,𝜆
> 0. Then

𝐷(𝐴) ⊆ 𝐷(𝐵),

(𝑅 (𝜆
𝛽

: 𝐴
𝛽,𝑘
) 𝑓) (𝑥)

=
𝑒

𝑖𝛽(𝜋/2)

4𝑘 + 2
∫

∞

−∞

2𝑘+1

∑
𝑗=1

𝑒−𝜇
𝑗,𝜆

|𝑥−𝑠|

(−𝜇
𝑗,𝜆
)

4𝑘+1

𝑓 (𝑠) 𝑑𝑠,
(108)

provided 𝑓 ∈ 𝐸, 𝑥 ∈ R,R𝜆 > 0,

(𝐵𝑅 (𝜆
𝛽

: 𝐴
𝛽,𝑘
) 𝑓) (𝑥)

=
𝑒

𝑖𝛽(𝜋/2)

4𝑘 + 2
𝑉 (𝑥)

×

2𝑘+1

∑
𝑗=1

∫
𝑥

−∞

(
𝑒−𝜇
𝑗,𝜆

(𝑥−𝑠)

(−𝜇
𝑗,𝜆
)

4𝑘−𝑙+1

𝑓 (𝑠) 𝑑𝑠

−∫
∞

𝑥

𝑒𝜇
𝑗,𝜆

(𝑥−𝑠)

𝜇4𝑘−𝑙+1

𝑗,𝜆

𝑓 (𝑠) 𝑑𝑠) ,

𝑓 ∈ 𝐸, 𝑥 ∈ R, R𝜆 > 0,


𝑅 (𝜆

𝛽

: 𝐴
𝛽,𝑘
)


≤ (|𝜆|
𝛽(1−(1/(4𝑘+2))) min (R𝜇

1,𝜆
, . . . ,R𝜇

2𝑘+1,𝜆
))

−1

,

R𝜆 > 0,


𝐵𝑅 (𝜆

𝛽

: 𝐴
𝛽,𝑘
)


≤ ‖𝑉‖
𝑝
(|𝜆|

𝛽(1−((𝑙+1)/(4𝑘+2)))

×min ((R𝜇
1,𝜆
)
1/𝑞

, . . . , (R𝜇
2𝑘+1,𝜆

)
1/𝑞

))
−1

,

(109)
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provided R𝜆 > 0. Furthermore, R𝜇
𝑗,𝜆

= |𝜆|𝛽/(4𝑘+2) cos(arg
(𝜇

𝑗,𝜆
)), R𝜆 > 0, 1 ≤ 𝑗 ≤ 2𝑘 + 1, and

min {R𝜇
𝑗,𝜆

: 1 ≤ 𝑗 ≤ 2𝑘 + 1}

= |𝜆|
𝛽/(4𝑘+2)

×min(cos(
arg (𝜆) 𝛽+(𝛽𝜋) / (2)

4𝑘+2
+
(2𝑘 − 1) 𝜋

4𝑘 + 2
) ,

− cos(
arg (𝜆) 𝛽 + (𝛽𝜋) /2

4𝑘 + 2
+
𝜋

2
)) ,

(110)

provided R𝜆 > 0. The above implies that there exists a
constant 𝑐

𝛽,𝑘
> 0 such that

|𝜆|
𝛽/(4𝑘+2) cos (arg (𝜆)) /min (R𝜇

1,𝜆
, . . . ,R𝜇

2𝑘+1,𝜆
) ≤ 𝑐

𝛽,𝑘
,

R𝜆 > 0.

(111)

Keeping in mind (107)-(111), we obtain that

𝑅 (𝜆

𝛽

: 𝐴
𝛽,𝑘
)

= 𝑂 (|𝜆|

1−𝛽

(R𝜆)
−1

) , R𝜆 > 0 (112)

𝐵𝑅 (𝜆

𝛽

: 𝐴
𝛽,𝑘
)


= 𝑂 (‖𝑉‖
𝑝
(R𝜆)

−𝛽(1−((𝑙+1)/(4𝑘+2))+(1/(4𝑘+2)𝑞))

)

= 𝑂 (‖𝑉‖
𝑝
(R𝜆)

(−1)/𝑞

) ,

(113)

provided R𝜆 > 0. Denote by 𝛽
𝑘
the infimum of all

nonnegative real numbers 𝑟 ≥ 0 such that the operator 𝐴
𝛽,𝑘

generates an exponentially bounded (𝑔
𝛽
, 𝑔

𝑟+1
)-regularized

resolvent family. The precise computation of integration rate
𝛽

𝑘
falls out from the framework of this paper (cf. also the

representation formula [28, Example 3.7, (3.15)] and notice
that it is not clear whether Theorem 13 or Remark 15 can be
applied in case 𝛽 ∈ (1, 2]). Clearly, (112) yields the imprecise
estimate 𝛽

𝑘
≤ 1; furthermore, 𝛽

𝑘
= 0 provided 𝑝 = 2 ([24]),

and 𝛽
𝑘
≤ |(1/2) − (1/𝑝)| provided 𝛽 ∈ {1, 2} [14, 50]. Set

𝜅
𝑝
:= min(1/𝑝, (𝑝−1)/𝑝). ByTheorem 21,𝐴

𝛽,𝑘
+𝐵 generates

an exponentially bounded (𝑔
𝛽
, 𝑔

𝜎
𝛽,𝑘,𝑝

+1
)-regularized resolvent

family for any 𝜎
𝛽,𝑘,𝑝

> 𝛽
𝑘
+ 𝜅

𝑝
. By (112)-(113) and the proof

of [19, Proposition 8.1], the above remains true provided
(4𝑘 + 2)𝑝 − 1 − ((4𝑘 + 2)(𝑝 − 1)/𝛽) ≥ 0, 𝑙 = 0 and 𝑉 ∈

𝐿
𝑝(R) + 𝐿∞(R); similarly, one can consider the operators
𝐴1

𝛽,𝑘
(𝑘 ∈ N, 0 < 𝛽 ≤ 2) and 𝐴2

𝛽,𝑘
(𝑘 ∈ N, 0 < 𝛽 ≤ 1)

given by 𝐴1

𝛽,𝑘
𝑓 := 𝑒−𝑖𝛽(𝜋/2)𝑓(4𝑘), 𝑓 ∈ 𝑊4𝑘,𝑝(R) := 𝐷(𝐴1

𝛽,𝑘
)

and 𝐴2

𝛽,𝑘
𝑓 := 𝑒±𝑖(𝜋/2)(1−𝛽)𝑓(2𝑘+1), 𝑓 ∈ 𝑊2𝑘+1,𝑝(R) := 𝐷(𝐴2

𝛽,𝑘
).

Notice that Lizama and Prado have recently analyzed
in [21] the qualitative properties of the abstract relaxation
equation:

𝑢


(𝑡) − 𝐴D𝛼

𝑡
𝑢 (𝑡) + 𝑢 (𝑡) = 𝑓 (𝑡) ,

𝛼 ∈ (0, 1) , 𝑡 ≥ 0, 𝑢 (0) = 0,
(114)

where 𝐸 is a Banach space and 𝑓 ∈ 𝐿
1

loc([0,∞) : 𝐸).
By a (strong) solution of (114) we mean any function 𝑢 ∈

𝐶1([0,∞) : 𝐸) such that (114) holds for a.e. 𝑡 ≥ 0. The
following extension of [28, Theorem 2.25] (cf. also [10, page
65]) will be helpful in the study of perturbation properties of
(114).

Theorem 24. Let 𝑘(𝑡) and 𝑎(𝑡) satisfy (P1). Suppose 𝛿 ∈

(0, 𝜋/2], 𝜔 ≥ max (0, abs(a), abs(k)), there exist analytic
functions �̂� : 𝜔 + Σ

(𝜋/2)+𝛿
→ C and 𝑎 : 𝜔 + Σ

(𝜋/2)+𝛿
→ C

such that �̂�(𝜆) = �̃�(𝜆),R𝜆 > 𝜔, 𝑎(𝜆) = 𝑎(𝜆),R𝜆 > 𝜔 and
�̂�(𝜆)𝑎(𝜆) ̸= 0, 𝜆 ∈ 𝜔 + Σ

(𝜋/2)+𝛿
. Let 𝐴 be a subgenerator of an

analytic (𝑎, 𝑘)-regularized𝐶-resolvent family (𝑅(𝑡))
𝑡≥0

of angle
𝛿 and let (2) hold. Suppose that, for every 𝜂 ∈ (0, 𝛿), there exists
𝑐
𝜂
> 0 such that

𝑝 (𝑒
−𝜔R𝑧

𝑅 (𝑧) 𝑥) ≤ 𝑐
𝜂
𝑝 (𝑥) , 𝑥 ∈ 𝐸, 𝑝 ∈ ⊛, 𝑧 ∈ Σ

𝜂
(115)

as well as 𝑏, 𝑐 ≥ 0, 𝐵 is a linear operator satisfying
𝐷(𝐶−1𝐴𝐶) ⊆ 𝐷(𝐵), 𝐵𝐶𝑥 = 𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝐶−1𝐴𝐶) and

𝑝 (𝐶
−1

𝐵𝑥) ≤ 𝑏𝑝 (𝐶
−1

𝐴𝐶𝑥) + 𝑐𝑝 (𝑥) ,

𝑥 ∈ 𝐷 (𝐶
−1

𝐴𝐶) , 𝑝 ∈ ⊛.

(116)

Assume that at least one of the following conditions holds:

(i) 𝐴 is densely defined, the numbers 𝑏 and 𝑐 are suffi-
ciently small, there exists |𝐶|

⊛
> 0 such that 𝑝(𝐶𝑥) ≤

|𝐶|
⊛
𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑝 ∈ ⊛ and, for every 𝜂 ∈ (0, 𝛿), there

exists 𝜔
𝜂
≥ 𝜔 such that |�̂�(𝜆)−1

| = 𝑂(|𝜆|), 𝜆 ∈ 𝜔
𝜂
+

Σ
(𝜋/2)+𝜂

and |𝑎(𝜆)/�̂�(𝜆)| = 𝑂(|𝜆|), 𝜆 ∈ 𝜔
𝜂
+ Σ

(𝜋/2)+𝜂
.

(ii) 𝐴 is densely defined, the number 𝑏 is sufficiently small,
there exists |𝐶|

⊛
> 0 such that 𝑝(𝐶𝑥) ≤ |𝐶|

⊛
𝑝(𝑥), 𝑥 ∈

𝐸, 𝑝 ∈ ⊛ and, for every 𝜂 ∈ (0, 𝛿), there exists 𝜔
𝜂
≥

𝜔 such that |�̂�(𝜆)−1

| = 𝑂(|𝜆|), 𝜆 ∈ 𝜔
𝜂
+ Σ

(𝜋/2)+𝜂
and

𝑎(𝜆)/(𝜆�̂�(𝜆)) → 0, |𝜆| → ∞, 𝜆 ∈ 𝜔
𝜂
+ Σ

(𝜋/2)+𝜂
.

(iii) 𝐴 is densely defined, the number 𝑐 is sufficiently small,
𝑏 = 0 and, for every 𝜂 ∈ (0, 𝛿), there exists 𝜔

𝜂
≥ 𝜔 such

that |𝑎(𝜆)/�̂�(𝜆)| = 𝑂(|𝜆|), 𝜆 ∈ 𝜔
𝜂
+ Σ

(𝜋/2)+𝜂
.

(iv) 𝑏 = 0 and, for every 𝜂 ∈ (0, 𝛿), there exists 𝜔
𝜂
≥ 𝜔 such

that 𝑎(𝜆)/(𝜆�̂�(𝜆)) → 0, |𝜆| → ∞, 𝜆 ∈ 𝜔
𝜂
+ Σ

(𝜋/2)+𝜂
.

Then 𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶 is a subgenerator of an exponentially
equicontinuous, analytic (𝑎, 𝑘)-regularized 𝐶-resolvent family
(𝑅

𝐵
(𝑡))

𝑡≥0
of angle 𝛿, which satisfies 𝑅

𝐵
(𝑧)[𝐶−1(𝐶−1𝐴𝐶 +

𝐵)𝐶] ⊆ [𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶]𝑅
𝐵
(𝑧), 𝑧 ∈ Σ

𝛿
and the following

condition:

∀𝜂 ∈ (0, 𝛿) ∃𝜔


𝜂
> 0 ∃𝑀

𝜂
> 0 ∀𝑝 ∈ ⊛ : 𝑝 (𝑅

𝐵
(𝑧) 𝑥)

≤ 𝑀
𝜂
𝑒

𝜔


𝜂
R𝑧

𝑝 (𝑥) , 𝑥 ∈ 𝐸, 𝑧 ∈ Σ
𝜂
.

(117)

Furthermore, in cases (iii) and (iv), the above remains truewith
the operator 𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶 replaced by 𝐶−1𝐴𝐶 + 𝐵.
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Proof. First of all, notice that the closedness of the operator
𝐶−1𝐴𝐶+𝐵 in cases (iii) or (iv) trivially follows and that it is not
clear how one can prove that the operator𝐶−1𝐴𝐶+𝐵 is closed
in cases (i) or (ii). We will only prove the assertion provided
that (i) holds and remark theminormodifications in case that
(iv) holds. Let 𝜂 ∈ (0, 𝛿) and 𝜎 ∈ (0, 1). Clearly, 𝐴 ⊆ 𝐶

−1

𝐴𝐶,
𝐶[𝐶−1𝐴𝐶] ⊆ [𝐶−1𝐴𝐶]𝐶, 𝐶[𝐶−1𝐴𝐶 + 𝐵] ⊆ [𝐶−1𝐴𝐶 + 𝐵]𝐶,
𝐶[𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶] ⊆ [𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶]𝐶 and 𝐶−1𝐴𝐶 +

𝐵 ⊆ 𝐶−1(𝐶−1𝐴𝐶+𝐵)𝐶. Invoking (115), [33,Theorem 3.6] and
the proof of [39, Theorem 2.6.1], we obtain that

lim
𝜆 → +∞

𝜆
�̂� (𝜆)

𝑎 (𝜆)
(

1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

𝐶𝑥 = 𝑘 (0) 𝐶𝑥, 𝑥 ∈ 𝐸

(118)

and that there exists 𝑁
𝜂
> 0 such that {(1/𝑎(𝜆)) : 𝜆 ∈ 𝜔 +

Σ
(𝜋/2)+𝜂

} ⊆ 𝜌
𝐶
(𝐶

−1

𝐴𝐶) and

sup
𝜆∈𝜔+Σ

(𝜋/2)+𝜂

𝑝((𝜆 − 𝜔)
�̂� (𝜆)

𝑎 (𝜆)
(

1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

𝐶𝑥)

≤ 𝑁
𝜂
𝑝 (𝑥) , 𝑥 ∈ 𝐸.

(119)

By (116) and (119), we infer that, for every𝜆 ∈ 𝜔
𝜂
+Σ

(𝜋/2)+𝜂
, 𝑥 ∈

𝐸 and 𝑝 ∈ ⊛ :

𝑝(𝐶
−1

𝐵(
1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

𝐶𝑥)

≤ 𝑏|𝐶|
⊛
𝑝 (𝑥) + 𝑏

𝑁
𝜂
𝑐
𝜂
𝑝 (𝑥)

|𝜆 − 𝜔|

�̃� (𝜆)



+ 𝑐𝑐
𝜂

𝑁
𝜂
𝑝 (𝑥)

|𝜆 − 𝜔|

|𝑎 (𝜆)|

�̂� (𝜆)



,

(120)

which implies by the given assumption the existence of a
number𝜔

𝜂
> 𝜔

𝜂
such that𝑝(𝐶−1𝐵((1/𝑎(𝜆))−𝐶−1𝐴𝐶)

−1

𝐶𝑥) ≤

𝜎𝑝(𝑥), 𝑥 ∈ 𝐸, 𝜆 ∈ 𝜔

𝜂
+ Σ

(𝜋/2)+𝜂
, 𝑝 ∈ ⊛, provided that the

numbers 𝑏 and 𝑐 are sufficiently small; if (iv) holds, then

lim
𝜆 → +∞

𝐶
−1

𝐵(
1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

𝐶𝑥 = 0, 𝑥 ∈ 𝐸. (121)

Using the same argument as in the proof of Theorem 14, it
follows that, for every 𝜆 ∈ 𝜔

𝜂
+ Σ

(𝜋/2)+𝜂
, 𝑅(𝐶) ⊆ 𝑅((1/𝑎(𝜆)) −

(𝐶−1𝐴𝐶 + 𝐵)) ⊆ 𝑅((1/𝑎(𝜆)) − 𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶) as well as
that the operators (1/𝑎(𝜆)) − (𝐶−1𝐴𝐶 + 𝐵) and (1/𝑎(𝜆)) −

𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶 are injective. Moreover, for any 𝜆 ∈ 𝜔

𝜂
+

Σ
(𝜋/2)+𝜂

:

(
1

𝑎 (𝜆)
− (𝐶

−1

𝐴𝐶 + 𝐵))

−1

𝐶

= (
1

𝑎 (𝜆)
− 𝐶

−1

(𝐶
−1

𝐴𝐶 + 𝐵)𝐶)

−1

𝐶

= (
1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

× 𝐶(𝐼 − 𝐶
−1

𝐵(
1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

𝐶)

−1

.

(122)

Now we will prove that the operator 𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶

is closed. Let (𝑥
𝜏
)
𝜏∈𝑇

be a net in 𝐸 satisfying 𝑥
𝜏

→ 𝑥,
𝜏 → ∞ and 𝐶

−1

(𝐶
−1

𝐴𝐶 + 𝐵)𝐶𝑥
𝜏

→ 𝑦, 𝜏 → ∞.
Then ((1/𝑎(𝜆)) − (𝐶−1𝐴𝐶 + 𝐵))

−1

𝐶𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶𝑥
𝜏
→

((1/𝑎(𝜆)) − (𝐶−1𝐴𝐶 + 𝐵))
−1

𝐶𝑦, 𝜏 → ∞, that is, −𝐶𝑥
𝜏
+

(1/𝑎(𝜆))((1/𝑎(𝜆)) − (𝐶−1𝐴𝐶 + 𝐵))
−1

𝐶𝑥
𝜏

→ ((1/𝑎(𝜆)) −

(𝐶−1𝐴𝐶 + 𝐵))
−1

𝐶𝑦, 𝜏 → ∞, which simply implies 𝐶𝑥 ∈

𝐷(𝐶−1𝐴𝐶 + 𝐵) and (𝐶−1𝐴𝐶 + 𝐵)𝐶𝑥 = 𝐶𝑦. Therefore,
𝑥 ∈ 𝐷(𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶), 𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶𝑥 = 𝑦 and
𝐶−1(𝐶−1𝐴𝐶+𝐵)𝐶 is closed, as required. Notice that, for every
𝑥 ∈ 𝐸, the analyticity of mapping

𝜆 → (
1

𝑎 (𝜆)
− 𝐶

−1

(𝐶
−1

𝐴𝐶 + 𝐵)𝐶)

−1

𝐶𝑥

= (
1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

𝐶

×

∞

∑
𝑛=0

[𝐶
−1

𝐵(
1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

𝐶]

𝑛

𝑥,

𝜆 ∈ 𝜔


𝜂
+ Σ

(𝜋/2)+𝜂

(123)

follows from [33, Lemma 3.3] and the fact that an 𝐸-valued
mapping is analytic if and only if it is weakly analytic. By
[33, Theorem 3.7], 𝐶−1

(𝐶
−1

𝐴𝐶 + 𝐵)𝐶 is a subgenerator of
an exponentially equicontinuous, analytic (𝑎, 𝑘)-regularized
𝐶-resolvent family (𝑅

𝐵
(𝑡))

𝑡≥0
of angle 𝜂 and (117) holds;

assuming (iv), we get from (119)

𝑝((𝜆 − 𝜔


𝜂
)
�̂� (𝜆)

𝑎 (𝜆)
(

1

𝑎 (𝜆)
− (𝐶

−1

𝐴𝐶 + 𝐵))

−1

𝐶𝑥)

= 𝑝(
(𝜆 − 𝜔

𝜂
)

(𝜆 − 𝜔)
(𝜆 − 𝜔)

�̂� (𝜆)

𝑎 (𝜆)
(

1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

𝐶

×(𝐼 − 𝐶
−1

𝐵(
1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

𝐶)

−1

𝑥)

≤ (1 +
1

cos 𝜂
)

𝑁
𝜂

1 − 𝜎
𝑝 (𝑥) , 𝑥 ∈ 𝐸, 𝜆 ∈ 𝜔



𝜂
+ Σ

(𝜋/2)+𝜂
.

(124)

In combination with (118) and (121), the above implies

lim
𝜆 → +∞

𝜆
�̂� (𝜆)

𝑎 (𝜆)
(

1

𝑎 (𝜆)
− (𝐶

−1

𝐴𝐶 + 𝐵))

−1

𝐶𝑥

= lim
𝜆 → +∞

𝜆
�̂� (𝜆)

𝑎 (𝜆)
(

1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

𝐶𝑥

+ lim
𝜆 → +∞

𝜆
�̂� (𝜆)

𝑎 (𝜆)
(

1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

𝐶

× 𝐶
−1

𝐵(
1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

× 𝐶(𝐼 − 𝐶
−1

𝐵(
1

𝑎 (𝜆)
− 𝐶

−1

𝐴𝐶)

−1

𝐶)

−1

𝑥

= 𝑘 (0) 𝐶𝑥 + 0 = 𝑘 (0) 𝐶𝑥, 𝑥 ∈ 𝐸,

(125)

and the proof follows again from an application of [33,
Theorem 3.7].
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Remark 25. Using the proof of [33, Theorem 3.7], we get that
there exists 𝜔

0
> 0 such that, for every 𝑥 ∈ 𝐸 and for every

𝜆 ∈ C withR𝜆 > 𝜔
0
:

�̂� (𝜆) (𝐼 − 𝑎 (𝜆) (𝐶
−1

𝐴𝐶 + 𝐵))
−1

𝐶𝑥

= �̂� (𝜆) (𝐼 − 𝑎 (𝜆) 𝐶
−1

(𝐶
−1

𝐴𝐶 + 𝐵)𝐶)
−1

𝐶𝑥

= ∫
∞

0

𝑒
−𝜆𝑡

𝑅
𝐵
(𝑡) 𝑥 𝑑𝑡.

(126)

By Lemma 2, we obtain that (18) holds with 𝐴+ 𝐵, 𝑘
1
(𝑡) and

𝑔
𝛼
(𝑡) replaced, respectively, by 𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶, 𝑘(𝑡) and

𝑎(𝑡) therein; clearly, the above assertion remains true with the
operator 𝐶−1

(𝐶
−1

𝐴𝐶+𝐵)𝐶 replaced by 𝐶−1

𝐴𝐶+𝐵, provided
that (iii) or (iv) holds. Taking the Laplace transform, (126)
simply implies that 𝐶−1(𝐶−1𝐴𝐶 + 𝐵)𝐶 is, in fact, the integral
generator of (𝑅

𝐵
(𝑡))

𝑡≥0
.

Example 26. Let 𝑢(𝑡) be a solution of (114). Set 𝑎
𝛼
(𝑡) :=

L−1(𝜆𝛼/(𝜆 + 1))(𝑡), 𝑡 ≥ 0, 𝑘
𝛼
(𝑡) := 𝑒−𝑡, 𝑡 ≥ 0, and 𝑣(𝑡) =

𝑢(𝑡) + (1 ∗ 𝑢)(𝑡), 𝑡 ≥ 0. Then 𝑢(𝑡) = 𝑣(𝑡) − (𝑒−𝑡 ∗ 𝑣)(𝑡),
𝑡 ≥ 0 and 𝑣(𝑡) = 𝐴(𝑎

𝛼
∗ 𝑣)(𝑡) + (1 ∗ 𝑓)(𝑡), 𝑡 ≥ 0, which

implies that the notion of an (𝑎
𝛼
, 𝑘)-regularized 𝐶-resolvent

family is important in the study of (114). In [21], the authors
mainly use the following conditions: 𝑘(𝑡) = 𝑘

𝛼
(𝑡), 𝐶 = 𝐼 and

𝐴 is the generator of a bounded analytic 𝐶
0
-semigroup. Set

𝛿 := min(𝜋/2, 𝜋𝛼/(2(1 − 𝛼))) and assume, more generally,
that for every 𝜂 ∈ (0, ((𝜋/2) + 𝛿)(1 − 𝛼)), there exists 𝜔

𝜂
> 0

such that the family

{(1 + |𝜆|)
1−𝑟

(𝜆 − 𝐴)
−1

𝐶 : 𝜆 ∈ 𝜔
𝜂
+ Σ

𝜂
} (127)

is equicontinuous (𝑟 ≥ 0) and that the mapping

𝜆 → (𝜆 − 𝐴)
−1

𝐶𝑥, 𝜆 ∈ 𝜔
𝜂
+ Σ

𝜂

is continuous for every fixed 𝑥 ∈ 𝐸.
(128)

Notice that (127)-(128) hold provided that𝐴 is a subgenerator
of an exponentially equicontinuous 𝑟-times integrated 𝐶-
semigroup (𝑅

𝑟
(𝑡))

𝑡≥0
; furthermore, if

∃𝑀 ≥ 1 ∃𝜔 ≥ 0 : 𝑝 (𝑅
𝑟
(𝑡) 𝑥) ≤ 𝑀𝑒

𝜔𝑡

𝑝 (𝑥) ,

𝑥 ∈ 𝐸, 𝑝 ∈ ⊛,
(129)

then, for every 𝜂 ∈ (0, 𝜋/2) and 𝜔
𝜂
> 𝜔, there exists𝑀

𝜂
> 0

such that

𝑝 ((𝜆 − 𝐴)
−1

𝐶𝑥) ≤ 𝑀
𝜂
(1 + |𝜆|)

𝑟−1

𝑝 (𝑥) ,

𝑥 ∈ 𝐸, 𝜆 ∈ 𝜔
𝜂
+ Σ

𝜂
, 𝑝 ∈ ⊛.

(130)

We refer the reader to [58, Chapter 1] for examples of dif-
ferential operators generating exponentially equicontinuous,
𝑟-times integrated 𝐶-semigroups satisfying (129). Assume,
further, that there exist 𝜔 > max(0, abs (𝑘)) and an analytic
function �̂� : 𝜔 + Σ

(𝜋/2)+𝛿
→ C such that �̂�(𝜆) = �̃�(𝜆),

R𝜆 > 𝜔, �̂�(𝜆) ̸= 0, 𝜆 ∈ 𝜔 + Σ
(𝜋/2)+𝛿

and |�̂�(𝜆)| = 𝑂(|𝜆|−1),

𝜆 ∈ 𝜔 + Σ
(𝜋/2)+𝛿

. Let 𝛾 ∈ (0, 𝛿) and let ((𝜋/2) + 𝛾)(1 −

𝛼) < 𝜂 < 𝜋/2. Then there exists a sufficiently large
𝜔



𝛾
> 𝜔 such that (𝜆 + 1)/𝜆𝛼 = 𝜆1−𝛼 + 𝜆−𝛼 ∈ 𝜔

𝜂
+

Σ
𝜂
for all 𝜆 ∈ 𝜔

𝛾
+ Σ

(𝜋/2)+𝛾
, which implies with (127)-

(128) and [33, Proposition 2.16(iii)] that the mapping 𝜆 →

(�̂�(𝜆)/𝑎(𝜆))((1/𝑎(𝜆)) − 𝐴)
−1

𝐶𝑥, 𝜆 ∈ 𝜔

𝛾
+ Σ

(𝜋/2)+𝛾
is analytic

(𝑥 ∈ 𝐸) and that, for every 𝜎 ≥ 𝑟(1 − 𝛼), the family {(𝜆 −
𝜔

𝛾
)(�̂�(𝜆)/|𝜆|𝜎)(1/𝑎(𝜆))((1/𝑎(𝜆)) − 𝐴)

−1

𝐶 : 𝜆 ∈ 𝜔

𝛾
+ Σ

(𝜋/2)+𝛾
}

is equicontinuous (if (129) holds, then there exists 𝑁
𝛾
> 0

such that𝑝((𝜆−𝜔

𝛾
)(�̂�(𝜆)/|𝜆|𝜎)(1/𝑎(𝜆))((1/𝑎(𝜆))−𝐴)

−1

𝐶𝑥) ≤

𝑁
𝛾
𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑝 ∈ ⊛, 𝜆 ∈ Σ

𝜂
). Using [33, Theorem 3.7]

and the arbitrariness of 𝜂, we get that 𝐴 is a subgenerator
of an exponentially equicontinuous, analytic (𝑎

𝛼
, 𝑘 ∗ 𝑔

𝜁
)-

regularized 𝐶-resolvent family (𝑅(𝑡))
𝑡≥0

of angle 𝛿, where

𝜁 = {
𝑟 (1 − 𝛼) , if 𝐷 (𝐴) = 𝐸

> 𝑟 (1 − 𝛼) , if 𝐷 (𝐴) ̸= 𝐸
(131)

and 𝑔
0
(𝑡) stands for the Dirac distribution (if (129) holds,

then for every 𝜂 ∈ (0, 𝛿) there exist 𝜔
𝜂
> 0 and 𝐿

𝜂
> 0

such that 𝑝(𝑅(𝑧)𝑥) ≤ 𝐿
𝜂
𝑒𝜔
𝜂
R𝑧𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑝 ∈ ⊛). This

is a significant improvement of [21, Theorem 3.1]. In what
follows, we will provide the basic information on the 𝐶-well-
posedness of (114). Given 𝛽 ∈ (0, 1) and 𝑇 > 0, set

𝐶
0

𝛽
([0, 𝑇] : 𝐸)

:= {𝑓 ∈ 𝐶 ([0, 𝑇] : 𝐸) : 𝑓 (0) = 0,
𝑓
𝛽,𝑇,𝑝

< ∞, ∀𝑝 ∈ ⊛} ,

(132)

where

𝑓
𝛽,𝑇,𝑝

:= sup
0≤𝑠<𝑡≤𝑇

𝑝 (𝑓 (𝑡) − 𝑓 (𝑠))

(𝑡 − 𝑠)
𝛽

. (133)

Let 𝐴 be densely defined, let 𝑟 = 0 and let 𝛽 ∈ (0, 1) be such
that 𝐶−1(1 ∗ 𝑓

|[0,𝑇]
) ∈ 𝐶0

𝛽
([0, 𝑇] : 𝐸) for all 𝑇 > 0. Then

𝜁 = 0, and the proof of [10, Theorem 2.4] combined with
the Cauchy integral formula (cf. also [33, Section 1, Theorem
3.4(i)]) indicates that the function

𝑣 (𝑡) = 𝑅 (𝑡) 𝐶
−1

(1 ∗ 𝑓) (𝑡)

+∫
𝑡

0

𝑅


(𝑡−𝑠) (𝐶
−1

(1 ∗ 𝑓) (𝑠)−𝐶
−1

(1 ∗ 𝑓) (𝑡)) 𝑑𝑠,

𝑡 ≥ 0

(134)

satisfies𝐴(𝑎
𝛼
∗𝑣)(𝑡) = 𝑣(𝑡)−(1∗𝑓)(𝑡), 𝑡 ≥ 0 and that, for every

𝑇 > 0, one has 𝑣
|[0,𝑇]

∈ 𝐶
0

𝛽
([0, 𝑇] : 𝐸); in the above formula,

we assume that (𝑅(𝑡))
𝑡≥0

is the exponentially equicontinuous,
analytic (𝑎

𝛼
, 𝐶)-regularized resolvent family of angle 𝛿. It is

obvious that the function 𝑡 → 𝑢(𝑡) = 𝑣(𝑡) − (𝑒−𝑡 ∗ 𝑣)(𝑡), 𝑡 ≥ 0

is a unique function satisfying (114) in integrated form

𝑢 (𝑡) − 𝐴 (𝑔
1−𝛼

∗ 𝑢) (𝑡) + (1 ∗ 𝑢) (𝑡) = (1 ∗ 𝑓) (𝑡) ,

𝑡 ≥ 0, 𝑢 (0) = 0
(135)
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and that 𝑢
|[0,𝑇]

∈ 𝐶0

𝛽
([0, 𝑇] : 𝐸) for all 𝑇 > 0. If 𝑥 ∈ 𝐸, 𝑥 ̸= 0

and𝐶−1(1∗(𝑓(⋅)−𝑥)
|[0,𝑇]

) ∈ 𝐶0

𝛽
([0, 𝑇] : 𝐸) for all𝑇 > 0, then

we obtain similarly the unique solution 𝑢(𝑡) of the problem

𝑢 (𝑡) − 𝑥 − 𝐴 (𝑔
1−𝛼

∗ (𝑢 (⋅) − 𝑥)) (𝑡) + (1 ∗ 𝑢) (𝑡)

= (1 ∗ 𝑓) (𝑡) , 𝑡 ≥ 0, 𝑢 (0) = 𝑥;
(136)

furthermore, 𝑢
|[0,𝑇]

∈ 𝐶0

𝛽
([0, 𝑇] : 𝐸) for all 𝑇 > 0. Since

𝑎
𝛼
∉ 𝐵𝑉loc([0,∞)), the above-described method does not

work in the case 𝑟 > 0 (cf. [35, Corollary 2.11] and [33,
Theorem 2.6(i)]).

We are turning back to the case in which 𝐴 is not
necessarily densely defined. Let 𝐶−1𝑓,𝐴𝐶−1𝑓 ∈ 𝐿1

loc([0,∞) :

𝐸) and let (𝑅
𝛼
(𝑡))

𝑡≥0
denote the (𝑎

𝛼
, 𝑘

𝛼
∗ 𝑔

𝜁
)-regularized 𝐶-

resolvent family with a subgenerator 𝐴. By the proofs of [21,
Theorem 3.5, Corollary 3.6], it follows that, for every 𝑥 ∈

𝑅(𝐶), there exists a unique solution of the problem

𝑢 (𝑡) − 𝐴 (𝑔
(1−𝛼)

∗ 𝑢) (𝑡) + (1 ∗ 𝑢) (𝑡)

= (1 ∗ 𝑓 ∗ 𝑔
𝜁
) (𝑡) + 𝑔

𝜁+1
(𝑡) 𝑥, 𝑡 ≥ 0,

(137)

given by 𝑡 → 𝑢(𝑡) = 𝑅
𝛼
(𝑡)𝐶−1𝑥 + ∫

𝑡

0

𝑅
𝛼
(𝑡 − 𝑠)𝐶−1𝑓(𝑠) 𝑑𝑠, 𝑡 ≥

0. Only after assuming some additional conditions, one can
differentiate the formulae (135)–(137), obtaining in such away
(114) or its slight modification. Now we are interested in the
perturbation properties of (114). Assume 𝑟 ∈ [0, 1] and 𝐴 is
a subgenerator of an exponentially equicontinuous, 𝑟-times
integrated 𝐶-semigroup satisfying (129). Let 𝐵 be a linear
operator such that 𝐷(𝐴) ⊆ 𝐷(𝐵), 𝐵𝐶𝑥 = 𝐶𝐵𝑥, 𝑥 ∈ 𝐷(𝐴)

and let 𝑏, 𝑐 ≥ 0 satisfy 𝑝(𝐶−1𝐵𝑥) ≤ 𝑏𝑝(𝐴𝑥) + 𝑐𝑝(𝑥), 𝑥 ∈

𝐷(𝐴), 𝑝 ∈ ⊛. By Remark 25 and the proof of Theorem 24, we
have the following

(i) If 𝑟 = 𝜁 = 0, 𝑏 is sufficiently small and |𝐶|
⊛
> 0

satisfies 𝑝(𝐶𝑥) ≤ |𝐶|
⊛
𝑝(𝑥), 𝑥 ∈ 𝐸, 𝑝 ∈ ⊛, then

𝐶−1(𝐴 + 𝐵)𝐶 is the integral generator of an exponen-
tially equicontinuous, analytic (𝑎

𝛼
, 𝑘)-regularized 𝐶-

resolvent family (𝑅
𝐵
(𝑡))

𝑡≥0
of angle 𝛿 (cf. [64, Chapter

III] and [65, Chapter 7] for corresponding examples).
(ii) If 𝑏 = 0, 𝑐 is sufficiently small, 𝑟 = 1, and 𝜁 = 1 − 𝛼,

then𝐴+𝐵, respectively,𝐶−1(𝐴+𝐵)𝐶, is a subgenerator,
respectively the integral generator, of an exponentially
equicontinuous, analytic (𝑎

𝛼
, 𝑘 ∗ 𝑔

𝜁
)-regularized 𝐶-

resolvent family (𝑅
𝐵
(𝑡))

𝑡≥0
of angle 𝛿.

(iii) If 𝑏 = 0, 0 ≤ 𝑟 < 1, and 𝜁 ≥ 𝑟(1 − 𝛼), then
𝐴 + 𝐵, respectively 𝐶−1(𝐴 + 𝐵)𝐶, is a subgenerator,
respectively the integral generator, of an exponentially
equicontinuous, analytic (𝑎

𝛼
, 𝑘 ∗ 𝑔

𝜁
)-regularized 𝐶-

resolvent family (𝑅
𝐵
(𝑡))

𝑡≥0
of angle 𝛿.

We continue this example by observing that Karczewska
and Lizama [20] have recently analyzed the following
stochastic fractional oscillation equation:

𝑢 (𝑡) + ∫
𝑡

0

(𝑡 − 𝑠) [𝐴D𝛼

𝑠
𝑢 (𝑠) + 𝑢 (𝑠)] 𝑑𝑠 = 𝑊 (𝑡) , 𝑡 > 0,

(138)

where 1 < 𝛼 < 2, 𝐴 is the generator of a bounded analytic
𝐶

0
-semigroup on a Hilbert space 𝐻 and 𝑊(𝑡) denotes

an 𝐻-valued Wiener process defined on a stochastic basis
(Ω,F, 𝑃). The theory of (𝑎, 𝑘)-regularized resolvent families
(cf. [20, Theorems 3.1 and 3.2]) is essentially applied in the
study of deterministic counterpart of (138) in integrated form

𝑢 (𝑡) + ∫
𝑡

0

𝑔
2−𝛼

(𝑡 − 𝑠) 𝐴𝑢 (𝑠) 𝑑𝑠 + ∫
𝑡

0

(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠

= ∫
𝑡

0

(𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0,

(139)

where 𝑓 ∈ 𝐿
1

loc([0,∞) : 𝐸). Equation (139) models an
oscillation process with fractional damping term and after
differentiation becomes, in some sense,

𝑢


(𝑡) + 𝐴D𝛼

𝑡
𝑢 (𝑡) + 𝑢 (𝑡) = 𝑓 (𝑡) , 𝑡 ≥ 0. (140)

Without any essential changes, one can consider the 𝐶-well-
posedness and perturbation properties of (139).

Example 27. (See [22, 66, 67]). Let 𝛼 ∈ (0, 1), 𝑚 ∈ N, let Ω
be a bounded domain inR𝑛 with boundary of class 𝐶4𝑚, and
let 𝐸 := 𝐶

𝛼

(Ω). Consider the operator 𝐴 : 𝐷(𝐴) ⊆ 𝐶
𝛼

(Ω) →

𝐶𝛼(Ω) given by

𝐴𝑢 (𝑥) := ∑

|𝛽|≤2𝑚

𝑎
𝛽
(𝑥)𝐷

𝛽

𝑢 (𝑥) ∀𝑥 ∈ Ω (141)

with domain 𝐷(𝐴) := {𝑢 ∈ 𝐶
2𝑚+𝛼(Ω) : 𝐷𝛽𝑢

|𝜕Ω
= 0

for all |𝛽| ≤ 𝑚 − 1}. Here 𝛽 ∈ N𝑛

0
, |𝛽| = ∑

𝑛

𝑖=1
𝛽

𝑗
, 𝐷𝛽 =

∏
𝑛

𝑖=1
((1/𝑖)(𝜕/𝜕𝑥

𝑖
))

𝛽
𝑖 , and 𝑎

𝛽
: Ω → C satisfy the following

conditions:

(i) 𝑎
𝛽
(𝑥) ∈ R for all 𝑥 ∈ Ω and |𝛽| = 2𝑚,

(ii) 𝑎
𝛽
∈ 𝐶

𝛼

(Ω) for all |𝛽| ≤ 2𝑚, and
(iii) there exists𝑀 > 0 such that

𝑀
−1𝜉


2𝑚

≤ ∑

|𝛽|=2𝑚

𝑎
𝛽
(𝑥) 𝜉

𝛽

≤ 𝑀
𝜉

2𝑚

∀𝜉 ∈ R
𝑛

, 𝑥 ∈ Ω.

(142)

Then there exists a sufficiently large 𝜎 > 0 such that the
operator −𝐴

𝜎
≡ −(𝐴 + 𝜎) satisfies Σ

𝜔
∪ {0} ⊆ 𝜌(−𝐴

𝜎
)

with some 𝜔 ∈ ((𝜋/2), 𝜋) and
𝑅 (𝜆 : −𝐴𝜎

)
 = 𝑂 (|𝜆|

(𝛼/2𝑚)−1

) , 𝜆 ∈ Σ
𝜔
. (143)

Notice that 𝐴 is not densely defined since 𝐷(𝐴) ⊆ {𝑢 ∈

𝐶
𝛼

(Ω) : 𝑢
|𝜕Ω

= 0}. Let 𝜍 ∈ [1, (2𝜔/𝜋)) and 𝜏 ∈ ((𝛼/2𝑚), 1). By
(143) and [32, Theorem 2.17], we get that −𝐴

𝜎
is the integral

generator of an exponentially bounded, analytic (𝑔
𝜍
, 𝑔

𝜍𝜏+1
)-

regularized resolvent family of angle 𝛿 = (𝜔/𝜍) − (𝜋/2) ∈

(0, (𝜋/2)). Assume now that 𝐵 : 𝐷(𝐵) ⊆ 𝐶𝛼(Ω) → 𝐶𝛼(Ω)

is a linear operator satisfying 𝐷(𝐴) ⊆ 𝐷(𝐵) and ||𝐵𝑢|| ≤

𝑐||𝑢||, 𝑢 ∈ 𝐷(𝐴) for some 𝑐 > 0. Applying Theorem 24(iv),
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we obtain that the operator −(𝐴+𝐵) is the integral generator
of an exponentially bounded, analytic (𝑔

𝜍
, 𝑔

𝜍𝜏+1
)-regularized

resolvent family of angle 𝛿. Suppose, for example, 𝑚 = 𝑛 = 1

and Ω = (0, 1). Let 𝜑, 𝜓 ∈ 𝐿1[0, 1] and let the operator
𝐵 : 𝐶𝛼[0, 1] → 𝐶𝛼[0, 1] be defined by

𝐵𝑢 (𝑥) := ∫
𝑥

0

(𝑢 (𝑥 − 𝑠) − 𝑢 (0)) 𝜑 (𝑠) 𝑑𝑠

+ ∫
𝑥

0

(𝑢 (1 − 𝑥 + 𝑠) − 𝑢 (1)) 𝜓 (𝑠) 𝑑𝑠, 𝑥 ∈ [0, 1] .

(144)

Then 𝐵 satisfies the conditions stated above since 𝐵 ∈

𝐿(𝐶𝛼[0, 1]) and ||𝐵𝑢|| ≤ (||𝜑||
𝐿
1
[0,1]

+ ||𝜓||
𝐿
1
[0,1]

)||𝑢||, 𝑢 ∈

𝐶𝛼[0, 1]. Finally, it could be interesting to construct an
example in which there does not exist 𝐵 ∈ 𝐿(𝐶

𝛼

[0, 1]) such
that 𝐵𝑥 = 𝐵𝑥 for all 𝑥 ∈ 𝐷(𝐴).

In the remaining part, which is mainly motivated by
reading of the paper [25] by Arendt and Batty, we assume
that 𝐸 is a Banach space. We consider rank-1 perturbations
of ultradistribution semigroups and sines whose generators
possess polynomially bounded resolvent; our intention is
also to prove generalizations of [25, Theorem 4.3] and [26,
Theorem 1.3] for abstract time-fractional equations.

Given 𝑎 ∈ 𝐸, 𝑏∗ ∈ 𝐸∗ and 𝐶 ∈ 𝐿([𝐷(𝐴)], 𝐸), we consider
the rank-1 perturbation 𝐵 ∈ 𝐿([𝐷(𝐴)], 𝐸) of 𝐴 given by

𝐵𝑥 := 𝑏
∗

(𝐶𝑥) 𝑎, 𝑥 ∈ 𝐷 (𝐴) . (145)

We also denote this operator 𝐵 by 𝑎𝑏∗𝐶. Denote 𝐵
𝛿
(𝑎, 𝑏∗) :=

{(𝑥, 𝑦∗) ∈ 𝐸 × 𝐸∗ : ||𝑥 − 𝑎|| ≤ 𝛿, ||𝑥∗ − 𝑏∗|| ≤ 𝛿}(𝑎 ∈ 𝐸, 𝑏∗ ∈

𝐸∗, 𝛿 > 0).
For the sake of convenience to the reader, we will repeat

the assertion of [25, Theorem 1.3].

Lemma 28. Let 𝐴 be a closed linear operator on 𝐸, let 𝐶 ∈

𝐿([𝐷(𝐴)], 𝐸) and let 𝜀 > 0. Assume that Ω
𝑛
⊆ 𝜌(𝐴) and

sup
𝜆∈Ω
𝑛

||𝐶𝑅(𝜆 : 𝐴)𝑥|| < ∞ for all 𝑥 in a dense subset 𝐸
𝑛

of 𝐸 and all 𝑛 ∈ N. Let 𝑔
𝑛
: Ω

𝑛
→ (0,∞) (𝑛 ∈ N). Assume

that for each (𝑎, 𝑏∗

) ∈ 𝐵
𝜀
(0, 0) there exists 𝑛 ∈ N such that

Ω
𝑛
⊆ 𝜌(𝐴 + 𝑎𝑏∗𝐶) and ||𝑅(𝜆 : 𝐴 + 𝑎𝑏∗𝐶)|| ≤ 𝑔

𝑛
(𝜆), 𝜆 ∈ Ω

𝑛
.

Then there exists𝑚 ∈ N such that sup
𝜆∈Ω
𝑚

||𝐶𝑅(𝜆 : 𝐴)|| < ∞.

Henceforth, we assume that (𝑀
𝑝
) is a sequence of positive

real numbers such that 𝑀
0

= 1 and that the following
conditions are fulfilled:

𝑀
2

𝑝
≤ 𝑀

𝑝+1
𝑀

𝑝−1
, 𝑝 ∈ N, (M.1)

𝑀
𝑝
≤ 𝐴𝐻

𝑝 sup
0≤𝑖≤𝑝

𝑀
𝑖
𝑀

𝑝−𝑖
,

𝑝 ∈ N, for some 𝐴, 𝐻 > 1,

(M.2)

∞

∑
𝑝=1

𝑀
𝑝−1

𝑀
𝑝

< ∞. (M.3)

Let 𝑠 > 1. Then the Gevrey sequences (𝑝!𝑠), (𝑝𝑝𝑠) and (Γ(1 +
𝑝𝑠)) satisfy the above conditions. The associated function of

(𝑀
𝑝
) is defined by 𝑀(𝑡) := sup

𝑝∈N ln(𝑡
𝑝/𝑀

𝑝
), 𝑡 > 0 and

𝑀(0) := 0. Recall [54], the function 𝑡 → 𝑀(𝑡), 𝑡 ≥ 0 is
increasing, lim

𝑡 → ∞
𝑀(𝑡) = ∞ and lim

𝑡 → ∞
(𝑀(𝑡)/𝑡) = 0.

Following [1, 16], a closed linear operator 𝐴 is said to
be the generator of an ultradistribution sine of (𝑀

𝑝
)-class

if and only if the operator A := ( 0 𝐼

𝐴 0
) generates an

ultradistribution semigroup of (𝑀
𝑝
)-class (cf. [16, 18, 68, 69]

for the notion). The following well-known lemma (cf. [69,
Theorem 1.5], [16, Theorem 9] and [1, Chapter 3]) will be
helpful in our further work.

Lemma29. (i) Let𝐴 be a closed densely defined operator on𝐸.
Then𝐴 generates an ultradistribution semigroup of (𝑀

𝑝
)-class

if and only if there exist 𝑙 ≥ 1, 𝛼 > 0 and 𝛽 ∈ R such that

Λ
𝑙,𝛼,𝛽

:= {𝜆 ∈ C : R𝜆 ≥ 𝛼𝑀(𝑙 |I𝜆|) + 𝛽} ⊆ 𝜌 (𝐴) ,

(146)

‖𝑅 (𝜆 : 𝐴)‖ = 𝑂 (exp (𝑀 (𝑙 |𝜆|))) , 𝜆 ∈ Λ
𝑙,𝛼,𝛽

. (147)

(ii) Let 𝐴 be a closed densely defined operator on 𝐸. Then
𝐴 generates an ultradistribution sine of (𝑀

𝑝
)-class if and only

if there exist 𝑙 ≥ 1, 𝛼 > 0 and 𝛽 ∈ R such that

{𝜆
2

: 𝜆 ∈ Λ
𝑙,𝛼,𝛽

} ⊆ 𝜌 (𝐴) , (148)

𝑅 (𝜆

2

: 𝐴)

= 𝑂 (exp (𝑀 (𝑙 |𝜆|))) , 𝜆 ∈ Λ

𝑙,𝛼,𝛽
. (149)

Theorem 30. Let 𝑙 ≥ 1, 𝛼 > 0, 𝛽 ∈ R, 𝑘 ∈ N and 𝐶 > 0. Let 𝐴
be a closed densely defined operator on 𝐸.

(i) Assume (148) and

𝑅 (𝜆

2

: 𝐴)

≤ 𝐶(1 + |𝜆|)

𝑘

, 𝜆 ∈ Λ
𝑙,𝛼,𝛽

. (150)

Let 𝜀 > 0 and 𝑧 ∈ C be such that for each (𝑎, 𝑏∗) ∈

𝐵
𝜀
(0, 0) the operator 𝐴 + 𝑎𝑏∗(𝑧 − 𝐴) generates an

ultradistribution sine of (𝑀
𝑝
)-class. Then 𝐴 must be

bounded.
(ii) Assume (146) and

‖𝑅 (𝜆 : 𝐴)‖ ≤ 𝐶(1 + |𝜆|)
𝑘

, 𝜆 ∈ Λ
𝑙,𝛼,𝛽

. (151)

Let 𝜀 > 0 and 𝑧 ∈ C be such that for each (𝑎, 𝑏∗)

∈ 𝐵
𝜀
(0, 0) the operator 𝐴 + 𝑎𝑏∗(𝑧 − 𝐴) generates

an ultradistribution semigroup of (𝑀
𝑝
)-class. Then 𝐴

generates an analytic 𝐶
0
-semigroup.

Proof. We will only prove the first part of the theorem. Put
Ω

𝑛
:= {𝜆 ∈ C : R𝜆 ≥ 𝑛𝑀(𝑛|I𝜆|) + 𝑛}. Then Ω

𝑛
⊆ Λ

𝑙,𝛼,𝛽
for

all 𝑛 ≥ max(𝑙, 𝛼, |𝛽|). By the generalized resolvent equation, it
follows that for each 𝑥 ∈ 𝑌

𝑛
≡ 𝐷(𝐴⌈𝑘/2⌉+2), the set {||𝑅(𝜆 :

𝐴)𝑥|| : 𝜆 ∈ Ω
𝑛
} is bounded. The prescribed assumption

combined with Lemma 29(ii) implies that for each (𝑎, 𝑏∗

) ∈

𝐵
𝜀
(0, 0) there exist 𝑛 ∈ N and a function 𝑔

𝑛
: Ω

𝑛
→ (0,∞)

such that Ω2

𝑛
:= {𝜆2 : 𝜆 ∈ Ω

𝑛
} ⊆ 𝜌(𝐴 + 𝑎𝑏∗(𝑧 − 𝐴)) and

||𝑅(𝜆2 : 𝐴 + 𝑎𝑏∗(𝑧 − 𝐴))|| ≤ 𝑔
𝑛
(𝜆), 𝜆 ∈ Ω

𝑛
. By Lemma 28,

we obtain 𝑚 ∈ N such that sup
𝜆∈Ω
2

𝑚

||𝜆𝑅(𝜆 : 𝐴)|| < ∞. Let



Abstract and Applied Analysis 23

𝜉 + 𝑖𝜂 = 𝜆 ∈ 𝜕(Ω2

𝑚
). Assume |𝜂

1
| ≤ |𝜂| and 𝜇 = 𝜉 + 𝜂

1
. Then

𝜉 = (𝑚𝑀(𝑚|𝑡|) + 𝑚)
2

− 𝑡2 and 𝜂 = 2𝑡(𝑚𝑀(𝑚|𝑡|) + 𝑚) for
some 𝑡 ∈ R. Since lim

𝑡 → ∞
(𝑀(𝑡)/𝑡) = 0, we easily infer that

there exist 𝑡
0
> 0 and 𝐿 ≥ 1 such that, for any |𝑡| ≥ 𝑡

0
:


(𝜆 − 𝜇) 𝑅 (𝜆 : 𝐴)




≤ 2
𝜂
 ||𝑅 (𝜆 : 𝐴)|| ≤

2𝐿
𝜂


|𝜆|

≤
4𝐿 |𝑡| (𝑚𝑀(𝑚 |𝑡|)+𝑚)

(((𝑚𝑀(𝑚 |𝑡|)+𝑚)
2

−𝑡2)
2

+4𝑡2(𝑚𝑀(𝑚 |𝑡|)+𝑚)
2

)
1/2

≤
1

2
,

(152)

which implies that 𝑅(𝜇 : 𝐴) exists and ||𝑅(𝜇 : 𝐴)|| ≤ 2||𝑅(𝜆 :

𝐴)|| ≤ 2𝐿/|𝜆| ≤ 2𝐿. Therefore, there exists 𝜔
0
> 0 such that

||𝑅(⋅ : 𝐴)|| is polynomially bounded on {𝜆 ∈ C : R𝜆 ≤ −𝜔
0
} \

{𝜆2 : 𝜆 ∈ Λ
𝑙,𝛼,𝛽

}. The set {𝜆 ∈ C : R𝜆 ≥ −𝜔
0
} \ {𝜆2 : 𝜆 ∈

Λ
𝑙,𝛼,𝛽

} is compact, which completes the proof by [25, Lemma
2.3].

Remark 31. (i) It is worth noting that Theorem 30(ii) is an
extension of [25, Theorem3.1], and that Theorem 30(i) is
an extension of [25, Theorem 2.2] provided 𝑘 > 0 in the
formulation of this result. Consider now the situation of [25,
Theorem 2.2] with 𝐴 being the generator of an exponentially
bounded 𝛼-times integrated cosine function (𝛼 ≥ 0). Then
there exists 𝜔

𝐴
> 0 such that sup

𝜆>𝜔
𝐴

||𝜆(2−𝛼)/2𝑅(𝜆 : 𝐴)|| <

∞. Let 𝜔 > 𝜔
𝐴
. Then, for every 𝛾 ∈ R, one can define

the fractional power 𝐴
𝛾
:= (𝜔 − 𝐴)

𝛾 (cf. [1, Section 1.4]).
Assuming 0 ≤ 𝛼 < 2 and 0 < 𝛾 ≤ (2 − 𝛼)/2, we obtain
from [1, Theorem 1.4.10(iii), (x)] that 𝐷(𝐴) ⊆ 𝐷(𝐴

𝛾
) and

𝐴
𝛾
∈ 𝐿([𝐷(𝐴)], 𝐸), which implies that one can define the

rank-1 perturbation𝐵
𝛾
:= 𝐴+𝑎𝑏

∗

𝐴
𝛾
of𝐴; notice that the case

𝛾 = 1 has been already considered inTheorem 30. Obviously,
𝐴

𝛾
𝑅(𝜆 : 𝐴)𝑥 = 𝐴

𝛾−1
𝑅(𝜆 : 𝐴)(𝜔 − 𝐴)𝑥 for all 𝑥 ∈ 𝐷(𝐴)

and 𝜆 ∈ 𝜌(𝐴). By the proof of [25, Theorem 2.2], one gets
that there exists 𝑛 ∈ N such that {𝜆2 : R𝜆 ≥ 𝑛} ⊆ 𝜌(𝐴) and
supR𝜆≥𝑛

||𝐴
𝛾
𝑅(𝜆2 : 𝐴)|| < ∞. Unfortunately, it is not clear

whether the above conclusions together with [25, Lemma
2.4] (cf. also [70, Lemma 2.3]) imply that supR𝜆≥𝑛

||𝜆2𝛾𝑅(𝜆2 :

𝐴)|| < ∞, unless 𝛼 = 0. Notice also that the assumption 𝛾 = 1
must be imposed in the case 𝛼 ≥ 2.

(ii) In the formulation of Theorem 30(ii) and
Theorem 30(i), respectively, we do not assume that the
operator𝐴+𝑎𝑏∗(𝑧 −𝐴) has polynomially bounded resolvent
on the square of Λ

𝑙,𝛼,𝛽
, respectively, on Λ

𝑙,𝛼,𝛽
. Furthermore,

we may assume that the operator𝐴+𝑎𝑏∗

(𝑧−𝐴) has a slightly
different spectral properties (cf. [25, Remark 2.5] and the
formulation of Theorem 32 below).

(iii) Given 𝜀 ∈ (0, 1) and 𝐶
𝜀
> 0, set

Ω
𝜀
:= {𝜆 ∈ C : R𝜆 ≥ 𝜀 |𝜆| + 𝐶

𝜀
} . (153)

The proof of Theorem 30(i) and Theorem 30(ii) respectively,
does notwork any longer if, for every 𝜀 > 0, the estimate (150),

respectively (151), holds withΛ
𝑙,𝛼,𝛽

replaced byΩ
𝜀
.Therefore,

it is not clear whether Theorem 3.11 can be reformulated in
case of certain classes of hyperfunction semigroups and sines
[1, 71].

Recall [32], a (local) (𝑎, 𝑘)-regularized𝐶-resolvent family
(𝑅(𝑡))

𝑡∈[0,𝜏)
having 𝐴 as a subgenerator is of class 𝐶𝐿 if and

only if the following holds

(i) the mapping 𝑡 → 𝑅(𝑡), 𝑡 ∈ (0, 𝜏) is infinitely
differentiable (in the uniform operator topology), and

(ii) for every compact set 𝐾 ⊆ (0, 𝜏) there exists ℎ
𝐾
> 0

such that

sup
𝑡∈𝐾,𝑝∈N

0



ℎ
𝑝

𝐾
(𝑑𝑝/𝑑𝑡𝑝) 𝑅 (𝑡)

𝑀
𝑝


< ∞; (154)

(𝑅(𝑡))
𝑡∈[0,𝜏)

is said to be 𝜌-hypoanalytic, 1 ≤ 𝜌 < ∞, if
(𝑅(𝑡))

𝑡∈[0,𝜏)
is of class 𝐶𝐿 with𝑀

𝑝
= 𝑝!𝜌.

By [72, Theorem 5.5] and [32, Theorem 2.23], a 𝐶
0
-

semigroup (𝑇(𝑡))
𝑡≥0

is 𝜌-hypoanalytic for some 𝜌 ≥ 1 if
(𝑇(𝑡))

𝑡≥0
is in the Crandall-Pazy class of semigroups. Recall

that (𝑇(𝑡))
𝑡≥0

is in the Crandall-Pazy class [72] if and only if
there exist 𝛾 ∈ (0, 1], 𝑏 > 0, 𝑘 > 0 and 𝑐 ∈ R such that

𝐸
𝛾,𝑏,𝑐

:= {𝜆 ∈ C : R𝜆 ≥ 𝑐 − 𝑏|I𝜆|
𝛾

} ⊆ 𝜌 (𝐴) ,

||𝑅 (𝜆 : 𝐴)|| ≤ 𝑐, 𝜆 ∈ 𝐸
𝛾,𝑏,𝑐

.
(155)

Keeping inmind (155), the subsequent theoremcan be viewed
as a generalization of [25, Theorem 4.3]. Observe that the
operator (𝜔 − 𝐴)

𝛾

(𝛾 ∈ R) is defined for a sufficiently large
𝜔 > 0, provided that 𝐴 generates an exponentially bounded
(𝑔

𝛼
, 𝑔

𝛽
)-regularized resolvent family.

Theorem 32. Suppose 0 < 𝛼 < 2, (𝛼 − 1)/𝛼 < 𝛾 <

1, 𝑧 ∈ C, 𝛽 ≥ 0 and a densely defined operator 𝐴 generates
an exponentially bounded (𝑔

𝛼
, 𝑔

𝛽
)-regularized resolvent family

(𝑅(𝑡))
𝑡≥0

.

(i) Assume that 𝑏 = 0 and for each (𝑎, 𝑏) ∈ 𝐵
𝜀
(0, 0) there

exists a kernel 𝑘
𝑎,𝑏
∗(𝑡) satisfying (P1)-(P2) so that the

operator 𝐴 + 𝑎𝑏∗(𝜔 − 𝐴)
𝛾 generates an exponentially

bounded (𝑔
𝛼
, 𝑘

𝑎,𝑏
∗)-regularized resolvent family. Then

(𝑅(𝑡))
𝑡≥0

is (1/(𝛼𝛾 + 1 − 𝛼))-hypoanalytic.
(ii) Assume that 𝑏 > 0 and for each (𝑎, 𝑏) ∈ 𝐵

𝜀
(0, 0) there

exists a kernel 𝑘
𝑎,𝑏
∗(𝑡) satisfying (P1)-(P2) so that the

operator 𝐴 + 𝑎𝑏∗(𝑧 − 𝐴) generates an exponentially
bounded (𝑔

𝛼
, 𝑘

𝑎,𝑏
∗)-regularized resolvent family. Then

𝐴 generates an exponentially bounded, analytic (𝑔
𝛼
, 1)-

regularized resolvent family.

Proof. Given 𝜔 ≥ 0, set Φ
𝛼,𝜔

:= {𝜆𝛼 : R𝜆 ≥ 𝜔}. Making use
of [25, Lemma 2.4], [32,Theorem 2.7], and Lemma 28, we get
that there exist 𝑛 ∈ N and 𝑚 > 0 such that Ψ

𝑛,𝛼
:= Φ

𝛼,𝑛
∩

{𝑧 ∈ C : |𝑧 − 𝜆| ≤ 𝑚|𝜆|𝛾 for some 𝜆 ∈ 𝜕(Φ
𝛼,𝑛
)} ⊆ 𝜌(𝐴)

and that ||𝑅(𝜆 : 𝐴)|| = 𝑂(|𝜆|−𝛾), 𝜆 ∈ Ψ
𝑛,𝛼
. Let 𝜀 ∈ (0, 1) and

let 𝐾
𝜀
> 0 be such that

𝛼𝐾
𝜀
(1 + 𝐾

𝜀
)
𝛼−1

≤ 𝑚. (156)
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Put 𝜌 := 1/(𝛼𝛾 + 1 − 𝛼). Notice that 𝜌 ≥ 1 since 𝛼 > 0 and
(𝛼 − 1)/𝛼 < 𝛾 < 1. With the help of (156) and the Darboux
inequality, we obtain that for each 𝜂 ∈ R :


(𝑛 − 𝐾

𝜀

𝜂

1/𝜌

+ 𝑖𝜂)
𝛼

− (𝑛 + 𝑖𝜂)
𝛼


≤ 𝛼𝐾
𝜀

𝜂

1/𝜌 sup

𝜈∈[𝑛+𝑖𝜂,𝑛+𝑖𝜂−𝐾
𝜀|𝜂|
1/𝜌

]

|𝜈|
𝛼−1

≤ 𝛼𝐾
𝜀

𝜂

1/𝜌

(
𝑛 + 𝑖𝜂

 + 𝐾𝜀

𝜂

1/𝜌

)
𝛼−1

≤ 𝛼𝐾
𝜀
(1 + 𝐾

𝜀
)
𝛼−1𝜂


1/𝜌𝑛 + 𝑖𝜂


𝛼−1

≤ 𝛼𝐾
𝜀
(1 + 𝐾

𝜀
)
𝛼−1𝑛 + 𝑖𝜂


𝛼−1+(1/𝜌)

≤ 𝑚
𝑛 + 𝑖𝜂


𝛼𝛾

,

(157)

which implies that {𝜆 ∈ C : R𝜆 ≥ −𝐾
𝜀
|I𝜆|1/𝜌+𝑛} ⊆ Ψ

𝑛,𝛼
.The

proof of (i) is completed by an application of [32, Theorem
2.23]. Suppose now that the assumptions of (ii) hold. Then
𝜔−𝐴 need not be sectorial, in general.We obtain similarly the
existence of an integer 𝑛 ∈ N and a number 𝑐 ∈ (0, 1) such that
Υ

𝑛,𝛼
:= Φ

𝛼,𝑛
∩ {𝑧 ∈ C : |𝑧 − 𝜆| ≤ 𝑚|𝜆| for some 𝜆 ∈

𝜕(Φ
𝛼,𝑛
)} ⊆ 𝜌(𝐴) and that ||𝑅(𝜆 : 𝐴)|| ≤ 𝑐|𝜆|−1, 𝜆 ∈ Υ

𝑛,𝛼
. Then

it readily follows from [32,Theorem 2.17] that𝐴 generates an
exponentially bounded, analytic (𝑔

𝛼
, 1)-regularized resolvent

family of angle (arcsin 𝑐)/𝛼.

Now we will transfer the assertion of [26,Theorem 1.3] to
abstract time-fractional equations. For 𝑎 ∈ 𝐸 and 𝑏∗ ∈ 𝐸∗,
define 𝐴

𝑎,𝑏
∗ by 𝐷(𝐴

𝑎,𝑏
∗) := {𝑥 ∈ 𝐸 : 𝑥 + ⟨𝑏∗, 𝑥⟩𝑎 ∈ 𝐷(𝐴)}

and 𝐴
𝑎,𝑏
∗𝑥 := 𝐴(𝑥 + ⟨𝑏∗, 𝑥⟩𝑎), 𝑥 ∈ 𝐷(𝐴

𝑎,𝑏
∗).

We need the following auxiliary lemma (cf. the proofs and
formulations of [26, Lemmas 2.1 and 2.2]).

Lemma 33. Let 𝜔 ≥ 0, 𝛼 ∈ (0, 2), 𝑎 ∈ 𝐸, 𝑏
∗ ∈ 𝐸∗ and 𝑧 ∈ C

𝜔
,

where C
𝜔
:= {𝑧 ∈ C : R𝑧 > 𝜔}.

(i) Then 𝑧𝛼 is an eigenvalue of both, 𝐴
𝑎,𝑏
∗ and 𝐴 + 𝑎𝑏∗𝐴,

with 𝐴
𝑎,𝑏
∗(𝐴𝑅(𝑧𝛼 : 𝐴)𝑎) = 𝑧𝛼𝐴𝑅(𝑧𝛼 : 𝐴)𝑎 and (𝐴 +

𝑎𝑏∗𝐴)(𝑅(𝑧𝛼 : 𝐴)𝑎) = 𝑧𝛼𝑅(𝑧𝛼 : 𝐴)𝑎.
(ii) Let ⟨𝑏∗, 𝐴𝑅(𝑧𝛼 : 𝐴)𝑎⟩ = 1 and ⟨𝑏∗, 𝐴𝑅(𝑧𝛼 : 𝐴)𝑎⟩ ̸= 0.

Then for each 𝜀 > 0 there exists 𝛿 > 0 such that for
all (𝑎

1
, 𝑏∗

1
) ∈ 𝐵

𝛿
(𝑎, 𝑏∗) there exists some 𝑧

1
∈ 𝐵(𝑧, 𝜀)

such that ⟨𝑏∗

1
, 𝐴𝑅(𝑧𝛼

1
: 𝐴)𝑎

1
⟩ = 1 and ⟨𝑏∗

1
, 𝐴𝑅(𝑧𝛼

1
:

𝐴)𝑎
1
⟩ ̸= 0.

The following fractional analogue of [26, Lemma 2.3] will
be essentially utilized in the proof ofTheorem 35 stated below.

Lemma 34. Suppose 𝛼 ∈ (0, 2), 𝑛 ∈ N, 𝜔 ≥ 0, 𝜀 > 0 and 𝐴 is
the generator of an exponentially bounded, nonanalytic (𝑔

𝛼
, 1)-

regularized resolvent family (𝑆
𝛼
(𝑡))

𝑡≥0
satisfying ||𝑆

𝛼
(𝑡)|| ≤

𝑀𝑒𝜔𝑡, 𝑡 ≥ 0 for some 𝑀 ≥ 1. Let 𝑟 > 𝜔, 𝑘 = ⌈1/𝛼⌉, 𝑎 ∈

𝐷(𝐴𝑘), 𝑏∗ ∈ 𝐷((𝐴∗)
𝑘

) and 𝑧
𝑗
∈ C

𝜔
be such that ⟨𝑏∗, 𝐴𝑅(𝑧𝛼

𝑗
:

𝐴)𝑎⟩ = 1 and ⟨𝑏
∗

, 𝐴𝑅(𝑧
𝛼

𝑗
: 𝐴)𝑎⟩ ̸= 0 (1 ≤ 𝑗 ≤ 𝑛). Then

there exist (𝑎
1
, 𝑏∗

1
) ∈ 𝐵

𝜀
(𝑎, 𝑏∗) ∩ (𝐷(𝐴𝑘) × 𝐷((𝐴∗)

𝑘

)) and
1
𝑧, . . . ,

𝑛+1
𝑧 ∈ C

𝜔
such thatR

𝑛+1
𝑧 = 𝑟, |

𝑗
𝑧 − 𝑧

𝑗
| < 𝜀 (1 ≤ 𝑗 ≤

𝑛), ⟨𝑏∗

1
, 𝐴𝑅(

𝑛+1
𝑧𝛼 : 𝐴)𝑎

1
⟩ = 1 and ⟨𝑏∗

1
, 𝐴𝑅(

𝑛+1
𝑧𝛼 : 𝐴)𝑎

1
⟩ ̸= 0.

Proof. We will only outline the main details of the proof.
First of all, notice that ||𝑅(𝑧𝛼 : 𝐴∗)|| = ||𝑅(𝑧𝛼 : 𝐴)|| ≤

𝑀/((R𝑧 − 𝜔)|𝑧|𝛼−1),R𝑧 > 𝜔. By [1, Lemma 1.4.10], we get
that 𝐴∗ is stationary dense with 𝑛(𝐴∗) ≤ 1, which implies
that 𝐷((𝐴∗)

𝑘

) = 𝐷(𝐴∗) in the strong topology of 𝐸∗. Let
the numbers 𝛿

1
> 0, . . . , 𝛿

𝑛
> 0 be given by Lemma 33(i)

and let 𝛿 := min(1, 𝜀, 𝛿
1
, . . . , 𝛿

𝑛
). By the generalized resolvent

equation (see e.g., the proof of [25,Theorem 2.2]) and the fact
that ∗ : 𝐿(𝐸) → 𝐿(𝐸∗) is an isometrically isomorphism, we
obtain that for each (𝑎, 𝑏∗) ∈ 𝐷(𝐴𝑘)×𝐷((𝐴∗)

𝑘

), the following
supremum

sup
R𝑧=𝑟

max (1, 
𝐴

∗

𝑅 (𝑧
𝛼

: 𝐴
∗

) 𝑏
∗
 ,

𝐴𝑅 (𝑧

𝛼

: 𝐴) 𝑎

 ,

⟨𝑏
∗

, 𝐴𝑅 (𝑧
𝛼

: 𝐴) 𝑎⟩
) := 𝐾
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is finite. The nonanalyticity of (𝑆
𝛼
(𝑡))

𝑡≥0
yields that

supR𝑧=𝑟
||𝐴𝑅(𝑧

𝛼

: 𝐴)|| = ∞. By the denseness of 𝐷(𝐴𝑘

)

in 𝐸, we get the existence of an element 𝑢 ∈ 𝐷(𝐴𝑘)

and a complex number
𝑛+1

𝑧 := 𝑧 such that R𝑧 = 𝑟,
||𝐴𝑅(𝑧𝛼 : 𝐴)𝑢|| > (10𝐾/𝛿2), 𝐴𝑅(𝑧𝛼 : 𝐴)

2

𝑢 ̸= 0 and
||𝑢|| < 1. Now one can proceed as in the proof of
[26, Lemma 2.3] so as to obtain 𝑣

∗ ∈ 𝐷(𝐴∗) such
that |⟨𝑣∗, 𝐴𝑅(𝑧𝛼 : 𝐴)𝑢⟩| > (10𝐾/𝛿2), ||𝑣∗|| < 1 and
⟨𝑏∗ + (𝛿/2)𝑣∗, 𝐴𝑅(𝑧𝛼 : 𝐴)

2

𝑢⟩ ̸= 0. Since 𝐷((𝐴∗)
𝑘

) is
dense in 𝐷(𝐴∗) with respect to the strong topology of
𝐸∗, we may assume that 𝑣∗ ∈ 𝐷((𝐴∗)

𝑘

). Copying the
final part of the proof of the aforementioned lemma, with
𝐴𝑅(𝑧 : 𝐴) and 𝐴𝑅(𝑧 : 𝐴)

2 replaced by 𝐴𝑅(𝑧𝛼 : 𝐴)

and 𝐴𝑅(𝑧𝛼 : 𝐴)
2 there, we obtain that there exists

(𝑎
1
, 𝑏

∗

1
) ∈ 𝐵

𝜀
(𝑎, 𝑏

∗

) ∩ (𝐷(𝐴
𝑘

) × 𝐷(𝐴
∗

)
𝑘

) with required
properties (cf. [26, page 474, 𝑙.1 − 4]).

If 𝛼 ∈ (0, 2) and 𝐴 is the generator of an exponentially
bounded (𝑔

𝛼
, 1)-regularized resolvent family (𝑆

𝛼
(𝑡))

𝑡≥0
satis-

fying the properties stated above, then one can simply prove
that for each 𝑟 > 𝜔 there exist 𝑧 ∈ C

𝜔
with R𝑧 = 𝑟 and

(𝑎, 𝑏∗) ∈ 𝐷(𝐴𝑘) × 𝐷((𝐴∗)
𝑘

) such that ⟨𝑏∗, 𝐴𝑅(𝑧𝛼 : 𝐴)𝑎⟩ =

1 and ⟨𝑏∗, 𝐴𝑅(𝑧𝛼 : 𝐴)
2

𝑎⟩ ̸= 0. Using induction, Lemma 34
and the proof of [26, Theorem 1.3], we obtain the following
theorem.

Theorem 35. Suppose 𝛼 ∈ (0, 2), 𝑛 ∈ N, 𝜔 ≥ 0, 𝜀 > 0 and 𝐴 is
the generator of an exponentially bounded, nonanalytic (𝑔

𝛼
, 1)-

regularized resolvent family (𝑆
𝛼
(𝑡))

𝑡≥0
satisfying ||𝑆

𝛼
(𝑡)|| ≤

𝑀𝑒𝜔𝑡, 𝑡 ≥ 0 for some 𝑀 ≥ 1. Let 𝐼
𝑗
⊆ (𝜔𝛼,∞) be an open

interval (1 ≤ 𝑗 < ∞). Then there exist 𝑎 ∈ 𝐸 and 𝑏∗ ∈ 𝐸∗

such that the operators 𝐴
𝑎,𝑏
∗ and 𝐴+ 𝑎𝑏∗𝐴 have a sequence of

eigenvalues 𝑧
𝑗
withR𝑧

𝑗
∈ 𝐼

𝑗
for all 𝑗 = 1, 2, . . ..

We close the paper with the observation that pertur-
bation theorems for q-exponentially equicontinuous (𝑎, 𝑘)-
regularized 𝐶-resolvent families have been recently analyzed
in [73].
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