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We study boundary value problems for the following nonlinear fractional Sturm-Liouville functional differential equations
involving the Caputo fractional derivative: CDlg(p(t)CD”‘u(t)) + f(t,u(t —1),u(t +0)) = 0,t € (0,1), CD*u(0)="Du(1) =
(CD*u(0))" = 0, au(t) - bu'(t) = 5(t), t € [-1,0], cu(t) + du'(t) = E@t), t € [1,1 + 6], where °D% CDF denote the Caputo
fractional derivatives, f is a nonnegative continuous functional defined on C([-7,1+0],R),1 <a <2,2< <3,0< 7,0 < 1/4
are suitably small, a,b,¢,d > 0,and 7 € C([-7, 0], [0, 00)), & € C([1,1 + 6], [0, 00)). By means of the Guo-Krasnoselskii fixed point
theorem and the fixed point index theorem, some positive solutions are obtained, respectively. As an application, an example is

presented to illustrate our main results.

1. Introduction

Fractional calculus is a branch of mathematics, it is an emerg-
ing field in the area of the applied mathematics that deals with
derivatives and integrals of arbitrary orders as well as with
their applications. The origins can be traced back to the end
of the seventeenth century. During the history of fractional
calculus, it was reported that the pure mathematical formu-
lations of the investigated problems started to be addressed
with more applications in various fields. With the help of
fractional calculus, we can describe natural phenomena and
mathematical models more accurately. Therefore, fractional
differential equations have received much attention, and the
theory and its applications have been greatly developed; see
[1-6].

Recently, there have been many papers focused on bound-
ary value problems of fractional ordinary differential equa-
tions [7-19] and initial value problems of fractional func-
tional differential equations [10, 20-27]. But the results deal-
ing with the boundary value problems of fractional functional
differential equations with delay are relatively scarce [28-32].
It is well known that in practical problems, the behavior of

systems not only depends on the status just at the present
but also on the status in the past [33]. Thus, in many cases,
we must consider fractional functional differential equations
with delay in order to solve practical problems. Consequently,
our aim in this paper is to study the existence of solutions for
boundary value problems of fractional functional differential
equations.

In 2005, by means of the fixed point index theorem,
Bai and Ma [34] established some criteria for the existence
of solutions for the boundary value problem expressed by
second order differential equations with delay:

~(p®)y' ®) +q® y @)

=f(ty(t-1),y(t+a)), te(01), "
ay (t) —ﬁy' t)=n), tel-1,0],
Yy () +8y' (1) =E@), tell1+g],

where 0 < 7, ¢ < 1/4 are suitably small and p € c'([o, 1],
(0,00)), g € C([0,1],]0,00)),q < 0.



In 2011, Li et al. [21] investigated the existence of positive
solutions for the nonlinear Caputo fractional functional
differential equation:

Dyu()+a(®) f(u)=0, 0<t<l l<a<2, (2

where D, is the Caputo fractional order derivative, subject
to the following boundary conditions:
—au(t)+bu' (1) =E@), te[-1,0],
(3)
cu(®)+du' 1) =n@t), te[l,1+p].
They obtained the existence results of positive solutions by
using some fixed point theorems.
In 2012, Zhao et al. [22] studied the existence of positive
solutions for the nonlinear Caputo fractional functional
differential equation:

DLy@®+r@®) f(y)=0,

y¥0) =0,

Vte(0,1), g€ (n-1,n],
0<i<n-3,
ay" () - By (1) =5 (1),

w(n-z) ) +8y("_1) ) =E@®), te[l,1+a].

t €[-1,0],

(4)

By constructing a special cone and using the Guo-Krasno-
selskii fixed point theorem, they obtained the existing results.
Motivated by the works above, in this paper, we study the
existence of positive solutions of boundary value problems for
nonlinear fractional functional differential equation:

“DF (p()°Du(t))

+Fbut—-1),ut+6)=0, te(01),

°D*u(0) = °Du() = (Du (@) =0, ()

au(t)-bu' (t) =n(t), te[-T,0],

cu(t)+du' () =E@1), te[l,1+6],
where D%, €DF denote the Caputo fractional derivatives, f
is a nonnegative continuous functional defined on C([-7, 1 +
0,R),1 < <2,2<f<3,0<Tt,0 < 1/4are suitably
small, a,b,¢,d > 0 with p := ac+ad +bc > 0Oandy €
C([-7,0],10,00)),& € C([1,1+0], [0, 00)) with (0) = &(1) =
0, and p is a positive measurable continuous function defined
on [0, 1] and satisfies the following condition:

G(s,s) LG(s,s)
0< L s < L s < oo ©6)

where E = {t € [0,1] |0 <t+a<1l,-T <a <0} p0) =
p(1) =1, and I is a constant.

When « = § = 1, problem (5) is reduced to the pro-
blem of second order differential equations with delay and
has been studied by Bai and Ma [34]. To the best of our
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knowledge, no one has studied the existence of positive
solutions for boundary value problem (5). Key tools in finding
our main results are fixed point index theorem and the Guo-
Krasnoselskii fixed point theorem, and our main results of
this paper are to extend and supplement some results in
(21, 22, 34].

The paper is organized as follows. In Section 2, we
will introduce some definitions and lemmas to prove our
main results. In Section 3, we investigate the existence of
positive solution for boundary value problems (5) by the
Guo-Krasnoselskii fixed point theorem and the fixed point
index theorem. As an application, an example is presented to
illustrate our main results.

2. Preliminaries

In the following section, we introduce the definitions and
lemmas which are used throughout the paper.

Definition 1 (see [4]). The fractional integral of order « (& >
0) of a function f: (t,, +00) — R is given by

/) ds,

N O
r's (t)_F((x) Jto (t—s)'™™

t >t (7)

where I'(-) is the gamma function, provided that the right side
is pointwise defined on (t,, +00).

Definition 2 (see [4]). The Caputo fractional derivative of
order « (n— 1 < « < n) of a function f : (f;,+00) — R
is given by

1 Jt f(n) (s)
ds,

Cro _
D= I'(n-a) )i, (t—s)*'™

t>t, (8)

where I'(-) is the gamma function, provided that the right side
is pointwise defined on (¢, +00).

Obviously, the Caputo derivative for every constant func-
tion is equal to zero.

From the definition of the Caputo derivative, we can
acquire the following statements.

Lemma 3 (see [5]). Let f(t) € L! [ty, 00). Then,

D (I*f 1) = f(®),
Lemma 4 (see [5]). Let « > 0. Then,

t>t;, 0<a<l. 9)

D f(t)=f(t)—¢c -t —-- =ty (10)

for some ¢; € R, i = 1,2,...,n, where n is the smallest integer
greater than or equal to «.

Assume that x, is the solution of (5) with f = 0; then it
can be expressed as

Xy (-15t) te[-1,0]
X, (t) =140 t €10,1] (11)
xo(0;t)  te[l,1+0],



Abstract and Applied Analysis

where

0
X (~15t) = %eat/b J; e—as/b’7 (s)ds,
(12)

t
x, (6;) = =~ J- e“/E (s) ds.
d 1
Next, we introduce the Green function of boundary value
problems for fractional functional differential equations.

Lemma5. Letl < a < 2and f: [0,1]x(0,00)x(0,00) — R
be continuous. Then, the boundary value problem for fractional
functional differential equation

CDu(t) + f (tu(t -

), u(t+0)=0, te(0,1), (13)

au(t)-bu' (t) =n(t), te[-T,0],
(14)
cu)+du (1) =&@), te[l,1+6]
has a unique solution:
u(-13t) te[-71,0]
1
u(t) = J G(t,s) f(s,u(s—1),u(s+0))ds te€][0,1]
0
u (6;t) te[1,1+6],
(15)
where
v (1 (° —am)s
u(-n;t)=e (5,[ e n(s)ds+u(0)>,
i (16)
u(;t) = e M (c_li L IDSE (5)ds + u (1)> ,
g, (ts) 0<s<t<l1
Gts) = F(oc) {gz(t s) 0<t<s<l, 17
e a—1 b+at
g1 (t:5) = =(t=9) bc + ac + ad
x(c(1-9)"" +d(@-1)(1-97),
b+ at e o
g, (t,s) = m(c(l—s) Yd(a-1)(1-5)7).

(18)

Proof. 1t is easy to know that u(t) = u(-7;t) fort € [-7,0]
and u(t) = u(6;t) fort € [1,1 + 0]. From (13), we know that

I““Du(t) = -If (tu(t — 1), u(t+0), 1<a<2.

19)
From Lemma 4, we have
ut)= - r(l )J t—9) " f(su(s—1),u(s+0))ds

+c + ot
(20)

Then, we get that

u (t) = -

F(ocl— ) L (t=9""f (su(s=7),uls+0)ds

+ 6.
(21)

According to (14) and conditions #(0)
that

= &(1) = 0, we imply

au (0) - bu' (0) = cu(l)+du’ (1) =0. (22)

Then, we obtain

~ a
cz_(/1c+bc+ad
X(LJl(l—5)“"1f(5,u(s—T),u(s+6))ds
() Jo
L d
T'(a-1)
xj (1= 2f (ssu(s—7 ),u(s+0))ds>,
3 b
Cl_ac+bc+ad
><< ¢ Jl(l—s)“_lf(s,u(s—T),u(s+9))ds
['(a) Jo
,_d
T'(a-1)
1
XJ (1—s)“izf(s,u(s—‘r),u(s+6))ds>.
0
(23)
Therefore,

u(t)=— r(l )J t—s) " f(su(s—1),u(s+8))ds

at+b
ac +bc +ad

(r(c ) J (1= " f(ssu(s—1),u(s+8))ds

d
+
I'(x—1)

1
xj (1—s)“izf(s,u(s—T),u(s+0))ds)
0

= JIG(t,s)f(s,u(s—T),u(s+9))ds,
° (24)

where G(t, s) is defined by (17). The proof is completed. [



Lemma 6. Let 1 < o < 2,2 < B < 3and f: [0,1] x
(0,00)x(0,00) — R be continuous. Then, the boundary value
problem for fractional functional differential equation

“DF (p()°Du(t))

= f(tu(t-1),ut+0), te(0,1),

°D*u(0) = °Du (1) = (°Du () =0,  (25)

au(t) —bu' (t) =n(t),

=&(1),

te[-1,0],
cu(t) +du' (¢) te[l,1+86]

has a unique solution:

(1 (-151)

LI)G (t,s)

1 1
<p( )j H (s,v)
xf(vulv-r1),

u(v+0)) dv) ds

te[0,1]

t € [-1,0]

u(t) = - (26)

u@®t) tell,1+0],

where G(t, s) is defined by (17), and

1 s(l—v)lH—(s—v
T'(B) |s(1-v)F?

¥l o<v<s<l
0<s<v<l.

(27)

H(s,v) =

Proof. From (25), we know that

D" (p (&) °D"u(®) = I*f (bt = 1), u(t +6)). (28)

From Lemma 4, we have

Cpe -
“O=THT R

X J-t(t—v)ﬁflf(v,u(v—T),u(v+9))dv
0

q+ot+ c3z‘2

p ()
(29)
According to the conditions “D*u(0) = ©“Du(1) =
(CD"‘u(O))" = 0and p(0) = p(1) = I, we derive that
¢ =0, G =0,
. (30)

1
RST) | a0 f =m0y
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Therefore,
P D (t)
! _yp 0))d
F(ﬁ)J( W f(uv—-1),u(v+0))dv
d _ B! 0))d
F(ﬁ)J I-v""frul-1),u(v+0))dv
:mj (t—v)ﬁ 1f(v,u(v ), u(v+0)dv (1)
d p1 0))d
F(ﬂ)_[ (I-v" fru-1),u(v+0))dv
t ! p-1
—mjt I-v""frul-1),u(v+0))dv

= —JlH(t,v)f(v,u(v—T),u(v+6))dv.
0
Thus,
p()° Du(t) + JlH(t,v)f(v,u(v—r),u(v+6))dv: 0.
0

(32)

Then boundary value problem (25) is equivalent to the
following problem:

D u(t)+ﬁ

X J H(v)f (vu(v—1),u(v+0))dv=0, te][0,1],
0

au (t) —bu' (t) =n(t),
=&(),

t € [-1,0],

cu (t) + du’ (t) €[1,1+0].

(33)

Lemma 5 implies that boundary value problem (33) has a
unique solution:

(1 (~7;1) t € [~1,0]
1
J G(t,s)
0 L
u(e) = (poJH“”
xf(v,u(v- u(v+9))dv>ds
te0,1]
\u(6;t) tell,1+0],
(34)

where G(t,s) and H(s,v) are defined as (17) and (27),
respectively. The proof is completed. O

The following properties of the Green function play
important roles in this paper.
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Lemma 7 (see [21]). The function G(t,s) defined by (17)
satisfies the following conditions:

(1) G(t,s) is continuous on [0, 1] x [0, 1];

(2) forb > (2 - «)/(a — 1))a, we have G(t,s) > 0 for
t,s € (0,1);

(3) G(t,s) <G(s,s) fort,s € (0,1);

(4) there exist positive numbers z,z" such that
zZY (s) <G (t,s) < Z2°Y (s), (35)
where Y(s) = (b + as)((c/T(a0))(1 = $)* " + (d/T(ex —
D)(1=9)*?).

Remark 8. From the definition of G(¢, s) and Y(s), we know
that G(s, s) = Y(s)/(ac + ad + bc). Furthermore, its easy to get
from the proof of Lemma 3.3 in [21] that there exists a positive
number y; < 1 such that

G(t,s) 2y,G(s,s) Vtse(0,1), (36)

where y, = z(ac + ad + bc).

Lemma 9 (see [18]). The function H(s,v) defined by (27)
satisfies the following conditions:

(1) H(s,v) > 0 fors,v € (0, 1);

(2) there exists a positive function y,(v) € C(0,1) forv €
(0, 1) such that

min H(s,v) >y, V) M (v),

1/4<s<3/4
(37)
maxH (s,v) < M (v),
0<s<1
where
M (v)
= H (sp,v)

(B-2) (B-1)"P -y VIED 41 -y
I (B) ’

Sp = (/3 _ 1)—1/(/3—2)(1 _ V)(ﬁ—l)/(ﬁ_z) ,

sp € [v,1].
(38)

The following lemmas are fundamental in proof of our
main results.

Lemma 10 (see [35]). Let E be a Banach space, and let K C E
be a cone. Assume that Q,, Q, are open and bounded subsets

of Ewith0 € Q, Q, ¢ Oy, andletT: Kn(Q,\ Q) — K
be a completely continuous operator such that

@) ITull < llul, v € KN oQ,, and |Tull > |ull, u €
KnoQ,;

(i) [Tull = llul, v € K noQy, and |[Tull < |ul, u €
K N 09,

Then, T has a fixed point in K N (Q, \ Q).

Lemma 11 (see [36]). Assume that X is a Banach space and
K ¢ X isacone. Let K, = {u € K;|lul| < r}. Furthermore,
assume that T : K — K is compact and Tu + u for u € 0K, =
{u € K; |lull = r}. Thus, one has the following conclusions:

(i) if llull < ITull for u € oK,, then i(T,K,,K) = 0;

(ii) if lull = | Tull for u € oK,, then i(T,K,,K) = 1.

3. Main Results

In this section, we discuss the existence of positive solutions
for boundary value problem (5).

Let X = C[-7, 1+0] be a Banach space with the maximum
norm [, 1.9 = Max_, .y glu(t)] for u € X. Let K be a
cone in X defined by

K= {ueXu(t)>0fort€[-1,1+0];
(39)
u(t) >y, |ul foreacht € [0,1]}.

Let x(t) = u(t) — x,(¢). Noting that x(t) = u(t) for t €
[0, 1], we have

(“Px(0)  te[-1,0]

J;G (t,s)

1 1
X <mJ‘OH (S, V)

x(£) = 4 xf (v, (x+x0) (v—1),
(x+x,) (v+0)) dv) ds
te[0,1]
[ x (1) te[l,1+6],
(40)
where
(x+x)(v—1):=x(v-1)+x,(v—-1),
(41)

(x+x)(v+0):=x(v+0)+x5(v+6).



Define an operator T on K as follows:

' 1
e“t/hJ- G(0,s)
0

< 1
| -
P)
xj H (s,v)
0
<f (v (x+x0) (v=1),
(x+ x,)
X (v +0)) dv) ds
t € [-1,0]

1

JOG (t,s)

< 1
s ——
p(s)
1
H (s,
(1) (1) = | e
xf (v, (x+x) (v—1),
(x + x,)
x (v +0)) dv) ds
te[0,1]
1
—ct/d
e JOG(I,S)

(5
XJOH (s,v)

xf (v, (x+x) (v=1),

(x + x,)

x (v +0)) dv) ds

te[l,1+0].
(42)

Lemma 12. The operator T : K — K is completely continu-
ous.

Proof. For x € K, we have (Tx)(t) > 0,t € [-7,1 + 0] from
properties of G(t, s) and H(s, v). It follows from (55) that we
have for t € [-7,0],

(Tx) (1) < (Tx) (0), (43)
and for t € [1,1+6],

(Tx) (t) < (Tx) (1). (44)
Hence, we get that

||TX||[_T,1+9] = ||Tx||[0)1]. (45)
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By Lemma 7 and Remark 8, we have

I(Tx) 0,1
1
< L G(s,$)
1!
X (m JO H(S, V) (46)
x f(v(x+x0) (v—1),
(x+x,) (v+0)) dv> ds,
and

1

(Tx) (t) = J G (s, 8)

0
1 1
X <ITS) L H (s,v)

X f(v,(x+x) (v-1),

(x+x) (v+0)) dV) ds
>y 1(Tx) (D)o,
=y, I(Tx) @) .
(47)
Thus, T(K) < K.

Let Q) be a bounded subset in K, that is, there exists a
positive constant { > 0 such that [|x|| < , for all x € Q. Let

sv=1l,UsXx<

Then, for x € Q, in view of Lemma 9, we have

1

(Tx) (t) = J G(t,s)

0
X (ﬁ Ll H (s, v)

xf(v,u(v—‘r),u(v+0))dv>ds

1 1 1
< QL G(ss) (m JO M(v)dv> ds.
(48)

Hence, T(Q) is bounded in K.
Now, we divide three cases to prove that T'(Q) is equicon-
tinuous.
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Case . fueQ,0<t<1.

Then,
, Q
@ 0] < |72
1 - 0c—2< 1 1 )
X JO (t-ys) _P ® L M (v)dv |ds

+ aQ
I' («) (bc + ac + ad)

% JOI (c-9)"+d@-1)(1-57)

v (% Ll M) dv) ds

=Q.
(49)
Case 2.Ifue Q,-t<t<0.
Then,
|(Tx)' (¢)]

1
= geut/bj G(0,s)

0

1 1
X <% L H (s,v)

xf(v,u(v—‘r),(v+6))dv>ds

Q[ (-1 [ morar)
< b LG(S,S) ) LM(V)dV ds

(50)

Case 3.IfueQ,1<t<1+86.
Then,

|(Tx)' (2)]

_|_ Ee—ct/d
d

XJIG(LS)

0
X (ﬁ LIH(S,V)

X f(v,u,(v—'r),u(v+9))dv)ds

9 Ll Gs.9) (ﬁ Ll M) dv) ds = Q.

IN

(51)

Let §, = €,/ max{Q;,Q,,Q;}. Then, for t,,t, € [-71,1 + 0],
[t, —t;] < &,, we obtain

tZ
|(Tx) (t,) - (Tx) (t,)| < j- |(Tx)' (t)| dt
t
<max{Q;,Q, Qs}|t, —t;| < .
(52)
Thus, T(Q) is equicontinuous.
Next, we show that T : K — K is continuous. For any

X, x € K,n=1,2...with ||x, _x”[—r,1+9] — 0asn — 00.
Then, for t € [0, 1], we have

|(Tx,,) (1) = (Tx) (¢)]

< sup |f (v (x, +x0) (v=1),(x, +x0) (v +6))

ve[0,1]

53
—f(n(x+x)) (v=1),(x+xy) (v+0))| (53)

X Jol G(s,s) (ﬁ J: M (v) dv) ds.

This implies that | T'x,, — Tx||[_T)l+9] — 0asn — 00. Hence,
T is continuous. According to the Ascoli-Arzela Theorem, T
is completely continuous. The proof is completed. O

For convenience, we give some conditions, which will
play roles in this paper for f(t, y, v) as follows
(H,) liminf,,, _ ormingeo ) f (¢ g, v)/ (e + ) = 00.
(H,) liminf ,,, _, ,comingpo,y) (f (¢, 4 v))/(p +v) = 0.
(H;) lim supywﬁwomintg[o’l](f(t, W)/ (u+v) =0.

Lemma 13. Let (H,) and (H,) hold. Then, there exist positive
numbers 0 < ry < R, < 00 such that

i(T,K,,K)=0 for0<r<r,

(54)
i(T,Kz,K) =0 for Ry <R.

Proof. Choose L > 0 such that

3/4 1 1 3/4 |
Y1LL/4 G<5,5> (W L/4 () M) dV) ds > >

(55)

By (H,), there is an r;, > 0 such that 0 < r < r,, implies that

fmuwy)=L(p+v),

(56)
wr=20, u+v<2r, velol].
Thus, for x € 0K, we have
1
r=ldlzxv-n 2yl ey ve[5],
(57)

r=llxl2x(v+¢) =y lxll=yr, ve

>

4

Al W
[



In view of (55) and (56), we get that

™(3)

1 3
X (m Jl/4 H(S, V)
x f(v,(x+x) (v-1),

(x+xy) (v+0)) dv) ds

1 (34
X (m J1/4 Y, (v) M (v)

xf(v,x(v—r),x(v+0))dv)ds

1 3/4
X (m J1/4 Y, (v) M (v)

x(x(v—r)+x(v+0))dv>ds

3/4 1 1 3/4
> 2y,rL J1/4 G (E,s) (m L/4 y, (v) M (v) dv) ds

>r=|x].
(58)

Hence, [|Tx|| > [x|. It is obvious that Tx # x for x € OK,.
Therefore, by Lemma 11, we conclude that i(T, K,, K) = 0.

In the same way, for the same L > 0 satistying (55), (H,)
implies that there is R, > 0 such that

frpv)=L(p+v),
(59)
v e [0,1].

wv20, u+v=R,,

Choose

R
R, > max {r, —1} . (60)
N
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Thus, for x € 0Ky, R > R;, we have

R=|x[[zx(v-1) 2y x| =yR

€l—= 1>
4 4

R=|x|2x(v+0) >y x|l =yR

R
>R, > ?1,
(61)

R 13
2y1R0>71, ve[—,—].

In view of (55) and (59), we get that

()

3/4 1
> J G<_;S)
1/4 2

x f(v,(x+x)(v-1),

(x+x0) (v+0)) dv) ds

1 3/4
X (ZTS) J1/4 Y, (V) M (v)

X f(v,x(v—‘r),x(v+9))dv>ds

1 3/4
x (m J1/4 Y, (v) M (v)

X (x(v—r)+x(v+6))dv>ds

3/4 1
22y1LRJ G(—,s)
1/4 2

1 (34
X (W L/4 Y, (V) M (v) dv) ds

>R =|x].
(62)

Therefore, |Tx|| > [x|. By Lemma 11, we conclude that i(T,
Ky, K) = 0. The proof is completed. O

Lemma 14. Let (H;) hold. Then, there exists a0 < R, < 00
such that

i(T,Kg,K) =1 for Ry <R. (63)
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Proof. By (Hs), for any

-1

0<e < ;(JIG(5,5)<I%JOIM(v)dv>ds>, (64)

there exists R > 0 such that

fwv)<e(p+),
(65)
U720, y+v2R', ve[0,1].

Setting

C = s - 1;
max L max |f (vopv) =€, (u+v)| + (66)

we get that
frwv)<e(u+v)+C, wv=0,vel[0,1]. (67)

Choose

(C + 26, ||x]) IIG(5,5)<(1/p(s) IIM(V)dV)dS
(1 - 2¢, Io G(s,s) ((l/p Jo dv) ds)

0=

(68)
By (67), for x € 0Ky, R > R, we have

(Tx) (£)

= Ll G(t,s)

X <I% JOIH(S,V)

x f(v,(x+x)(v-1),

(x+x,)(v+0)) dv> ds

< Ll G(s,s)

X <$ JOIM(V)

X f(v,(x+x) (v-1),

(x+xy)(v+0)) dv) ds

< Ll G (s,s)

<p1)[ M)

x (& ((x +x0) (v = 7)

+(x+x5) (v+6))+C) dv) ds
1
< L G(s,s)
< © J M (v) (2, (Ixll + | x,]]) + C) dv) ds

SZ(—:ZRJ G (s, s)( J M(v)dv)ds

(s)
+(C+ 26, |x,|)

J G (s, s)< ()JIM(v)dv>ds

<R =|lx].
(69)

Hence, ||Tx| < [Ix]l. By Lemma 11, i(T, Ky, K) = 1. The proof
is completed. O

Now, we prove the existence of solutions for boundary
value problem (5) by using the Guo-Krasnoselskii fixed point
theorem.

Theorem 15. Let b > (2 — «)/(ex — 1), and let (H,) and (Hs)
hold. Then, boundary value problem (5) has at least a positive
solution.

Proof. By (H,), there exists a Z; > 0 such that

fhwr)<e(p+),
wr=>0, pu+v=2, velo1],

(70)

where

-1
0<g < %(Jol G (s,s) <I% Jol M (v) dv) ds> . (7
Taking

= s U - 1,
Ci= max max If (vuy) =& (u+9)|+1 (72

we get that

fmuwy)<gu+v)+C, wv=20,vel0,1]. (73)
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Assume that
R (C+2¢ ||x]) Iol G (s,5) ((l/p (s) Jol M (v) dv) ds
- (1 - 2¢ _[01 G(s,s) ((1/p (s) _[01 M (v) dv) ds)
(74)
Z,and t € [0,1], we

By (73), for any x € K satisfied |lx| =

have
|(Tx) (8)]
= JIG(t,s)
0
1 (!
X (m J;) H(S, ‘V)
xfn(x+x)(v-1),
(x+x9) (v+0)) dv> ds
1
< L G (s, )
1 (!
X (% J;) M('V)
x f(v,(x+x)(v—1),
(x + x,) (v+0))dv> ds
< JIG(S, s) (75)
0
1
(p( ) J M)
x (& ((x +x0) (v = 1)
+(x + xp) (v+0))+C)dv>ds
1
< L G (s,s)

<p< ) J M () (2, (el + o)) + €) m)d

SZleIJ G(s,s)( J M(v)dv)ds

e
+(C + 2¢, ||xo||) J G(s,s)( ()J M(v)dv)

< Z,

= x|l
Now, if we let
Q, = {x € X:|x| < Z1}> (76)

Abstract and Applied Analysis

then (76) shows that
for x € KN 0Q,. (77)

1Tl —z1407 < 1%l =100

On the other hand, by (H,), there is an r, > 0 such that
0 < Z, <, implies

fmuwv)=L(p+v),

(78)
wr=20, u+v<2Z,, velol],
where L > 0 satisfies
3/4 1 1 3/4 d d 1
LJ G(—,)(—J V)M (v v) s> —.
n 1/4 2’ p(s) 1/4V2() ™ 2
(79)
Thus for x € K and ||x|| = Z,, t € [0, 1], we have
13
Zy=ldzxv-n2plsl2nZy ve |42,
3 (80)
Zy=lxl 2 x (v @)=y Il 21 Zy Ve |- Z]
In view of (78) and (79), we get that
1
()
(3
3/4
[o(L
1/4 2
1 3/4
X (— J H (s,v)
P (s) Jia
X f(v,(x+x) (v-1),
(x+x9) (v+0)) dv) ds

3/4
« (1% j v, () M ()

X f(v,x(v—r),x(v+9))dv)ds
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3/4 1
>L J G <—, s)
1/4 2

1 3/4
X(mh L OME)

X (x(v—'r)+x(v+9))dv>ds

>2y,Z,L

3/4 1 1 (34
X Jl/4 G (E’S> (% «[1/4 Y, (V) M (v) dv) ds
> Z, = |x|.
(81)

Now, if we let
Q, ={xeX:|x| <2z}, (82)
then (81) shows that

ITxll 71460 = Ixll(—r140) forx € KNOQ,.  (83)

Thus, by the first part of Lemma 10, T has a fixed point
x € Kn(Q,\Q,)with Z, < lxll(—¢,1+0) < Z,,and accordingly,

x is a positive solution of problem (5). The proof is completed.
O

Theorem 16. Letb > (2 — )/(a — 1), and let (H,) and (H;)
hold. Then, boundary value problem (5) has at least a positive
solution.

Proof. By (H,) for any L > 0 satistying (126), thereisa R, > 0
such that

frpv)=L(p+v),
ve[0,1].

(84)

wv20, u+v=R,

Choose

R
Z, > max {Zl, 2—0} . (85)

"1

Thus for x € K, ||x|| = Z; and t € [0, 1], we have

R 13

Z = > - > > Z >_07 € |:_>_])
s=lxl2x(v-1) 2y x| 2 y,Z; 2 VYelaa
R 13

Z. = > +0) > >y 2, > =2, e[—,—].
s=lxl 2 x(v+60) >y lxll 2 y,Z; 2 Velra

(86)

11
In view of (55) and (59), we get that

@ (3)]

3/4 1
= L,4 6(3)

1 3
X (m L/4 H(s,v)
x f(v,(x+x) (v-1),
(x+x0) (v+0)) dv) ds

3/4 1

> L/4 6(3)
1 (34
X (m L/4 y, (V) M (v)
x f(v,x(v-1),
x(v+0)) dv) ds
3/4 1
>L L/4 G<5,5>
1 (34
X (m J1/4 y, (V) M (v)
X(x(v-1) +x(v+9))dv) ds
3/4 1
e [o(3)
1 (34
X <m LM Y, (V) M (v) dv) ds
>Z;5=|x|.
(87)

Now, if we let
Q= {x e X:|xll < Zs}, (88)
then (144) shows that
1Tl 1407 2 1% [r140) forx € KNoQ,. — (89)

On the other hand, from Theorem 15, by (H;), there exists
a Z, > 0 such that

fhuwy)<e(p+),
ve|[0,1],

(90)

wr=0, pu+v=>2,

where

0<eg < %(J: G(s,s) (ﬁ Ll M (v) dv) ds)l. ()
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Now, if we let
O, ={xeX:|x| <2z}, (92)
then (119) shows that

ITx N~z 1407 < 1x[_7140) for x € KN OQ,. (93)

Thus, by the second part of Lemma 10, T has a fixed point

X € Kﬂ(ﬁ2 \ Q) with Z5 < |Ix[|[_;1+0) < Z;,and accordingly,
x is a positive solution of problem (5). The proof is completed.
O

Next, we study the existence of solutions for boundary
value problem (5) by the fixed point index theorem. For this
purpose, we first give the following lemma.

Lemmal7. LetL, := (A _[01 G(s,s)(1/p(s) Iol M®©W)dv)ds)™
Assume that

lim max =Le[0,Ly). (94)

fltuw -
u—0oelol] U
If there exists a function g : [0,1] — R such that
1
Ftbu)ysg(t) forte [ZZ (95)

Then boundary value problem for the following fractional
functional differential equation:

DF (p(t) “Du(t)) + Af (t,u) =0, te(0,1),

CDotu (0) — CDau(l) — (CDau (0))Il ~ 0,
(96)
au(t) —bu' (t) =n(t), te[-1,0],
cu()+du’ () =&(), te[l,1+80]

has at least a positive solution for A > 0.

Proof. Let A > 0. We define the operator T) on K by

(Thu) (t) = J. G(t, s)( t ) J H(s,v) f (v, u)dv)ds
(97)

In view of Lemma 12, it can be verified that T is completely
continuous. Then, we prove that T} has a fixed point in K.

Sete, = Ly—L. From the assumption, for any given e, > 0,
there exists 1, > 0 such that

f(t,u)s(f+eo)u Vt € [0,1], u > u,. (98)

For u € K and |u| = r; := max{A, yl_luo}, we have

(Tyu) (¢) < AJ G(s.s) ( Jl M) f ) dv) ds

(s)

< ALyr, LIG( )(%j M(v)dv)ds

<r = ul.
(99)
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Now, if we let Q; = {u € K : |u|l < r,}, then it shows that

[(Thu) @] < llull, for u € KN oQ,. (100)

Denote

3/4 1 (3
M, = L/ G(ss) (p( ) I 1, () M (v) g () dv) ds.
(101)

For u € K and |ul| = Ay, M, we have

3/4
(Thu) () = A L/4 G (s, 8)

1 3/4
: (m J1/4 MM gO) dv) ds

> Ay My = |ull.

(102)

Now, if welet Q, = {u € K :
that

lul < Ay, M}, then it shows

[(Thw) @) = llull,  for u € K NoQ,. (103)
Thus, by Lemma 10, T has a fixed point i € KN (Q,\Q,)

between r, and Ay, M,. Accordingly, i is a positive solution

to (96). The proof is completed. O
From Lemma 17, we assume that A; > 0 is an eigenvalue
of
“DF (p(t)°D*u) = Au (104)
subject to the following conditions:
au (0) - bu' (0) = cu(l)+du' (1) = (105)

and the corresponding eigenfunction ¢, (t) > 0 for t € (0, 1)
such that

max |, ()| = 1.

loillo = te[0,1]

(106)

For convenience, we give some conditions as follows.

(Hy) liminf,,, _, g-minepo ) f (& s v)/(utv) > (1/2)A,(1+
M,), where

(T+9)(1—T—9)"(pi +2(t+0)

o

1~ 170 . . (107)
jo N (E+7)dt + L+e nig (t-0)dt
(Hs) liminf, ., minqo f(Ewn)/(w + ) >
(1/2)A,(1 + M,), where
(100400l v+
2= : (108)

1-1 1 .
[y e+ de+ [y (- 0)adr
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(H) B sup,., . yoomapcioy fE )/ + ) >
(1/2)A{(1 — m), where

= (=000 o], 7+
1 6
- I Y19 () dt—j Y9, () dt)
1-7 0
-1 (109)
x (J Y19y (E+7)dt
0

!

1
+J y1¢1(t—0)dt+1+9) <L
0

(H;) There isa h; > O such that 0 < p < hy + lIxoll_ op>
0<v<h + ||xo||[1,1+9]) and t € [0, 1] imply that

f(tuv) <khy, (110)

where k = ([} G(s,5)(1/p(s)) [, M(v)dv)ds)™!

(Hg) Thereis a h, > 0 such that y,h, <
h,,and t € [0, 1] imply that

f(t.uv) > Oy, a11)

U< hy,yhy <v<

where 9 =
Mv)dv)ds)™

([, G2, 9 /ps) [ 1)

Lemma 18. Let (H;) hold. Then, i(T, K, ,K) = 1.
Proof. Let x € 0Kj, . Then,
0<(x+xy)(v—1)<|x| + ||x0||[7T’17T]

=hy +|xof_rop v EIO,1],

(112)
0<(x+xy)(v+0) < x| + ||x0||[9’1+0]
=h; + ||x0||[1’1+9], veo,1].
Thus, for v € [0, 1], we have by (H,) that
(Tx) (£)
1
< J G(s,s)
0
1 Jl
X|—— | M(v
(P (s) Jo )
X f (v, (x + x0) (v=1), (113)
(x+xy)(v+0)) dv) ds
1
< kh, J G(ss) (— j M(v)dv) ds
0 (s)
=h; =|x].
Hence, | Tx|| < ||x. By Lemma 11, we geti(T, K}, , K) = 1. The
proof is complete. O

13
Lemma 19. Let (Hyg) hold. Then, i(T, Kh2>K) =0
Proof. Let x € 0K}, . Then,
13
hy=lxl2x (-1 5y lxl = phy ve [-, 21,
(114)
hy =|x[| 2x(v+0) 2y x| = y,h,, ve 71l
Thus, for v € [0, 1], we have by (Hjy) that
3/4 1
(Tx) () J G(-,s)
1/4 2
1 3/4
x| — H(s,v)
(P (s) J1/4
x f(v,(x+x) (v-1),
(x+x,) (v+0)) dv) ds

/
=] 6(3)
v (I% f//: by () M ()

X f(v,x(v—r),x(v+0))dv)ds

3/4 1 1 3/4
> 9h, Jl/4 G (E’S> <m LM y, (V) M (v) dv) ds

=h, = |Ix].
(115)
Hence, [ Tx|| > ||x|l. By Lemma 11, we get i(T, K}, , K) = 0. The
proof is complete. O

Theorem 20. Let (H,), (Hs), and (H,) hold. Then, boundary
value problem (5) has at least two positive solutions u, and u,
such that

0< "”1"[0,1] <h < ””2”[0,1]' (116)

Proof. According to Lemma 18, we get that i(T, Khl, K) = 1.
Let0 <m < 1 <nand fi(v,u,v) = (u+ )" + (u+ )", for
u,v = 0. Then, f,(v, p,v) satisfy (H,) and (H,).
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Define T, : K — Kby

eut/b
1
XJOG (0, s)
< 1
X [
PQ)
XIOH (s,v)

Xfi (v, (x+x0) (v—1),
(x +xp)

x (v+0)) dv)ds,
t €[-1,0],
1
J G(t,s)
0
< 1
>< [
P (s)1
xj H(s,v)

0
xfi (v (x +x0) (v = 1),

(x+x,)

X (v+0)) dv) ds,

(Tyx) (t) = 1

telo,1],
_ct/dJlG(l S)
e . ,
< 1
>< [
p(s)1
XJOH(s,v)

X fi (v, (% + x0) (v=1),
(x + xp)

X (v+0)) dv) ds,

te[l,1+0].
117)

It is easy to know that T is a completely continuous operator.
Also, according to Lemma 13, we have that there exist 0 <

7y < Ry < 00, such that
i(T;,K,,K)=0, 0<r<r, (118)
i(T;,Kg,K)=0, R=R,. (119)

Define A : [0,1] x K — Kby A(s,x) = (1 —s)Tx + sT x.
Foranys,,s, € [0,1], w > 0, we have

|A (s1%) = A (s, %)
<|(1=s)Tx +s,Tyx - (1-5,) Tx —s,Tyx|  (120)
< sy = | (| Ty || + 1T -

Note that |T,x|| + [|Tx| is uniformly bounded in K. Thus,
A(s, x) is continuous on x € K, uniformly for s € [0,1].
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Then, we conclude that A is a completely continuous operator
on [0,1] x K.

By (H,) and definition of f;, there exists a e; > 0 and
0 < r; <1, such that

Flmn) =5 (0 1+ M) +e) (u+9),

M,VZO,‘M""VSZT"I) tE[O,l],

(121)
film) = 3 0 (14 M) +6) (54 9),

wv=>0, u+v<2r, tel0,1].

Next, we prove that A(s,x) #x for all s € [0,1] and x €
oK, .

In fact, if there exist s; € [0,1] and x; € 0K, such that
A(sy, x;) = x;, then x, (¢) satisfies the following:

~“DF (p(t)°Dx, (1))
=(1=s)) f(t(x;+x0) t=7),(x; +x0) (t+0))

+ 511 (8 (%) +x0) (¢ = 7), (x; + %) (£ +6))

(122)
and the following boundary conditions:
ax, () - bx| (t) =0, te[-1,0],
(123)
cx, () +dx) (1) =0, te[l,1+0].

Multiplying both sides of (122) by ¢, (¢), then integrating from
0 to 1 and using Green’s formula, we obtain

1
A L x, (B) @, (1) dt

1
- | (50 (b D%, ) s
= (1 - 51)

1
X JO F(t (3 +x0) (t—7), (% +x0) (E+60)) gy (£) dt

1
+5 L fi (6 (3 +x0) (= 1), () + x0) (£ +60)) @, () dt.
(124)
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Thus, we know that

1
MLﬁm%mm

2(1-5)

T

x @, (t)dt

1-6
+51] S (@t ey +x0) (F=7) 5 (%1 + x0) (£ +6))

x @, (t)dt

1-6

= (l—sl)L ftx, t-71),x,(t+0)) g, (t)dt

1-0
s [ fn -0 e+ 0) g 0

\%
N | =

(1-5) (A (1+ M) +e5)

T

+=5; (A (1+ M) +e)

T

(A (1+M,) +e)

N | —

1-6
X (J x; (t—1) ¢, () dt

1-6
+ J x, (t+0) e, (1) dt)

T

(A (1+M,) +¢)

N —

-0-1
X(Jl x (B t+1)dt
0

1
+J x (t) @ (t—@)dt).
T+6

Then, we have

(MM, +e5)

-0-1
x <Jl X, (1)@, (£ + 1) dt
0

1
+J x, (), (t-0) dt)
0

T+

1-6
xj £t (e, +x0) (E= 1), (3, + x0) (£ +6))

1-6
XJ (x, t=71)+x, (t+0)) e, (t)dt
1
2

1-6
X J (x,t=71)+x, (t+0)) e, (t)dt

(125)

15

1

<24 Jo xy () ¢y (£) dt
1-6-71
—)L1<J0 x, () (t+71)dt
1
+ J x, () (t-0) dt)
7+6

1-6-1
-1 j X1 (0) (@ (8) — @y (¢ + 1)) dt

0

1
.y L x 09 0

1
0 [ x 0 0= ¢-0)dr

T+

+0
.y JO X (B @) dt

<hT(1-0-7) |9 ||[0’1] (B

+ 200 +7) o1 0.1 [l

+,001-0-2 i), Il

A0 O+ oo, 1
=1, (@+ 0 -0-Dgl],, +20+D) ]

(126)
By the definition of K, we have
!

1-6-1
J x; (1) ¢y (t+T)dt+J x, () g (t-0)dt
0 0

T+

1-0-1 1
>y ||x1”(L 1 (t+T)dt+Je+T(Pl (t—6)dt>.
(127)

Combining with (126), we get that

1

1-6-1
(LM, +6)p, (j o1 (t+7)dt + L 01 (t—0) dt)

0

<A (O+Da-0-0) i), +20+D),

o
(128)

which is a contradiction for definition of M, in (H,). Thus,

A(s,x) #x for x € 0K, and s € [0, 1]. In view of (118) and
homotopy invariance of the fixed point index, we obtain

i(T.K,,K)=i(H(0,),K,,K)

i(H(1,),K,,K)=i(T,K,,K) =0.
(129)
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On the other hand, by (H;) and definition of f,, there are
€, > 0and R, > h, such that

fltwr) =

v 2

200+ M) ) (),
0,

p+v>R, telo1],

(130)
(A (1 + M) +ey) (u+),
tel0,1].

fibwv) =

1
2
u,v 20,

y+v>Rﬁ
Setting

C:= max max
te[0,1]0<p,v,u+v<R'

If () = (A (1 + M) +e) (u+ ”)l

+ max max
t€[0,1]0<p,v,u+v<R’

lfl (f’ # ”)
- (1+ M) +¢) (u+ V)l +1,
(131)
and it follows that

Few)> 3 O (14 M) +¢) (1 +9) +C,

uw,v=>0, telo,1],

(132)
Silm) 2 5 0 (L4 M) +e) (u+9) +C,

wv=0, tel0,1].

Then, we prove that there existsa R, > R’ such that A(s, x) # x
forall s € [0,1] and x € K, |x|| = R;. In fact, if there exist
s; € [0,1] and x; € K such that A(s;, x;) = x;, we get that

1
A L x, (t) @, (t)dt

=

(1-5) (A (1+M,) +¢)

N | =

1
xj (e, + x0) (£ = 1) + (3, + x0) (t + )

0

1
x @, (t)dt - (1 —SI)CL @, () dt

s (L (14 M) +¢,)

1
X L () +x0) (t = 7) + (x; + x,) (t +60))

1

x @, (t)dt - SICJ @, () dt
0

2= (A (1+MM) +ey)

0| =

1
X L (, t—1)+x, (+0)) @, (t)dt

1

—CL¢Aﬂm
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>~ (A (1+M,) +¢)

N | —

1 1-6
X <J' x, (t-1) ¢, (t)dt+J x, (t+0)¢p, (t)dt)

T 0

1

+CL¢Aﬂm

1
=S OL (14 M) +ey)
1-7 1
x(J xl(t)(pl(t+r)dt+J xl(t)(pl(t—G)dt)
0 %]

1
+C L @, () dt.
(133)

Then, we have
(MM, +ey)

1-7 1
x(J xl(t)cpl(t+‘r)dt+J xl(t)cpl(t—G)dt>
0 0

1-1
<A J x; (8) (@) () — @, (t+ 7)) dt

0

1
A ECracr”
1
4, [ 5 00 0 - ¢ -0)ar

6 1
+ XA L x; (t) @, (t)dt +2C L @, (t)dt

<t (=0 ei] o, Il + 2ol Il
+0,01-0) i, I
+ 0l o 1]l + 2C Tl 0,

=M (T(l ~7)+0(1-0) “501"[0,1] +9+T>

X ||x,]| +2C.
(134)
By the definition of K, we get that
1-7 1
[ xoaernd [ x50 -0
0 0
1-7 1
>y, [y (L @ (t+1)dt + L @, (t —0)dt>.
(135)
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Combining with (134), we conclude that

1-7 1
(MM, +e,)y, ||x1|l<J o (t+1)dt + J (%1 (t—@)dt)
0 0

<A (@ -0 +001-6) 1], +6+7) Il +2C,

(136)
that is,
2C —
[l < = i =R
€N (_[O @, (t+71)dt + .[e @, (t-0) dt)
(137)

LetR, =1+ max{R’, R}. Then, we obtain A(s, x) # x for x €
0K, and s € [0, 1]. In view of (118) and homotopy invariance
of the fixed point index, we obtain

i (T, K, K) =i(A(0,),Kp,K) =i(A(1,),Kg,,K)

=i (T}, Ky, K) = 0. -
138

By using additivity, we get that

i(T,Kp \Ky,K)=-1,  i(T.K, \K,,K)=1. (139)

Since
lillo,y = I + %oll o,
= ||x,|| 01 = "Txi"[o,u (140)
=[xl = =il
it follows that u, () and u,(t) satisfy
T T o A T T T
The proof is completed. O

Theorem 21. Let (Hy), (H;), and (Hyg) hold. Assume that 0 <
h, < hy; then boundary value problem (5) has at least two
positive solutions u, and u, such that

Py < il < ha < [allio- (142)

Proof. According to Lemmas 18 and 19, we obtain
i(T,K,,K) =1, (143)
i(T.K,,K) =0. (144)

By (Hg) and definition of f;, there are e; > 0 and R, > h,
such that

1
ftuv) < E(Al (1-M;)—e) (u+),
(145)
u+v> R,

fhyv = 0, telo,1].
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Let

C:= max max
te[0,1] 0<p,v,u+v<R’

|f (t..7)

(A (1= M;) —€5) (u+v)[+1,
(146)

and it follows that

flomn) <300 (1-My)-e) (u+9) +C,
(147)

u,v=0, tel0,1].

Define A : [0,1] x K — K by A(s,x) = sTx. For any
$1>8, € [0,1], w > 0, we have

|A (s, x) = A(sy, x)| < |5y = 85| ITx]] . (148)

Thus, A(s, x) is continuous on x € K, uniformly fors € [0, 1].
Then, we conclude that A is also a completely continuous
operator on [0, 1] x K,,.
Next, we prove that there exists a R, > R’ such that
A(s,x)#x forall s € [0,1] and x € K, ||x[| > R;.
In fact, if there exist s, € [0,1] and x, € K such that
A(s,, x,) = x,, then x,(t) satisfies the following:
~“DF (p(t)°D"x, (1))
=5, f1 (£, (%, + x0) (t - 7), (149)

(%, +x0)(t+0)), te(0,1).

Multiplying both sides of (149) by ¢, (t) then integrating from
0 to 1 and using Green’s formula, we get that

1
A Jo x, (£) @y (t) dt
1
_ L (=°DF (p®)°D%x, (1)) g, (1) dt

1
=s, JO fi (8 (xy + x0) = 7), (x5 + xp) (E+0)) @, (2) dt.
(150)

Thus, we get that
1
A L x, ()@, () dt

1
L £t (3 +x0) (- 17),

(%) +x0) (t+0)) @, (1) dt
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1 —
<3 (A (1= M;) - &) X <(T +0) (||| + [ xo]]) + L x, ()@ (t+7)dt
1 1
x L (%) +x0) (t—7) + L x; () @y (t—0)dt + ||(p1||[0)1]> +C.
+(x; +x) (£+0)) @, () dt (151)
1
C L @, (t)dt Then, we have
1
= E(AI(I_M3)_€5) (A M; +€5)
T 1-7
x(J (x, +x,) (t = 7) @, (t) dt X(I x (D)@ (E+T1)dt
0 0
1
+ Jl (% + x0) (t—T) gy (t) dt + L x, () @y (t = 0)dt + (7 +0) (|x, || + “’%"))
1-6 1-T
+ J (%) +x0) (£ +0) @, () dt <A J x (1) (1 (t+ 1) — oy (1)) dt
0
+J1 (52 452) 64 B () dt) Y J X, (1) (9, (- 0) - g, (1) dt
-0
! A0 +7) ([l | + o))
¢l oo 1 :
0
Y J X (O (O dt- A, J x (g, (B)dt+2C
1 _
=3 (A (1-M;) —¢)

T <hr(-7) “ng "[01] ||x1|| +4,0(1 "(Pl“[m] ||x1||
(%, +x0) (t = 7) @, () dt

X
—/
D

1
-An Li @, (t)dt ||x1||

1-7
t], moa@na 2@+ ) (ol + el
. 0
+ J x, () (t—-0)dt - Jo ¢y (1) dt ||x1|| +2C.
0 (152)
1
+ I (%, +x,) (t+0) @, (1) dt)
- By the definition of K, we get that
1
+C J @, (t)dt
0 1-T 1
. [ xoeernd [ x50 -0
< E(Al(l_Ma)_es) 0 o (153)

1-t 1
>y IIxIII(J ¢ (t+r)dt+] P (t—e)dt>.
(el + 5ol : @

1-7 . . . .
+ J X, () ¢y (¢ +7) dt This combined with (126) gives,
0

1 A M, +e€
+L x; () @y (E—0)dt +0x, +x, ||q)1||[0)1]) (A M; + €5)

1-1
X (t+71)dt
+ C“% " [0,1] h (Jo 1

<

1
(A, (1= M) - e5) [ o (t—6)dt+r+6> ™

N | —
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<t (s -0ty +00 -0 o+ 07
1
- nwa

-7

0
_ L ¢, (1) dt) ] + 2,

(154)
that is,
B
- 2C+ Ay (0 + 1) ||x
Cen (f, o nde [ g (- 0)dt 7 +0)
=R.
(155)

Let R, = 1 + max{R’,R}. Then, we obtain A(s, x)# x for
x € 0K, and s € [0, 1]. In view of (143), (144), and homotopy
invariance of the fixed point index, we obtain

i(T,Kg.K)=i(A(1,"),Kg,K) =i (A(0,),Kp,,K)

=i (T}, Kg,K) = 1. s
156

By using additivity, we get that

i(T,Kp \K,,,K) = 1, i(T,K, \K,,,K) =-1.

(157)

Thus T has fixed points x, and x, in Kz \ K, and K, \ K, ,
which means that u, (t) = x;(t) + x,(t) and u,(t) = x,(t) +
x,(t) are positive solutions of boundary value problem (5)
and

< il = Il < by < e = ol (58)

The proof is completed. 0

Corollary 22. Let (H,), (H;), and (Hg) hold. Assume that 0 <
h, < h,. Then, boundary value problem (5) has at least two
positive solutions u, and u, such that

0< “”1"[0,1] <h < “”2"[0,1]' (159)

Corollary 23. Let (H;), (H,) and (Hg) hold. Assume0 < h, <
h,. Then boundary value problem (5) has at least two positive
solutions uy and u, such that

h, < ””1"[0,1] <h < ””2"[0,1]‘ (160)

4. Example

In this section, we will present an example to illustrate our
main results.
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Consider the following fractional functional differential
equations with delay:

C
Cp? ((t - %)2 D*?u (t)> +(t+ 1)

+ {u(t— é) +u<t+ é)}m =0,
CD¥2u(0) = °D*u(1) = (°DPu(0)) =0, (16D
ey

te [1,%].

By a simple computation, we can get thatb > (2—«)/(a—
1))a and

telo0,1],

u(t) —2u' (t) = sint,

3u(t) + 5u' (t) = cost,

ft,uv) G+ D)+ )P
n—— = min
te(0,1] ‘u +v te[0,1] u+v
1 1 (162)
= —_— — 00,
utv  (u+v)??

asu+v — 0°.

Similarly, we can obtain min,¢ (o) f(t, ¢4, v)/(u +v) — 0
asu+v — +00.

Then, conditions (H,) and (H;) are satisfied. Then, by
Theorem 15, boundary value problem (161) has at least a
positive solution.
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