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We deduce formulas for the Fréchet derivatives of cost functionals of several inverse problems for a parabolic integrodifferential
equation in a weak formulation. The method consists in the application of an integrated convolutional form of the weak problem
and all computations are implemented in regular Sobolev spaces.

1. Introduction

Manymethods to solve inverse problems (e.g., the Landweber
iteration, conjugate gradient method) use the Fréchet deriva-
tives of the cost functionals of these problems [1].The explicit
formula for the Fréchet derivative in terms of the variation of
the unknowns of the inverse problem contains the solution of
an adjoint problem.

The derivation of the explicit formula for such a Fréchet
derivative includes testing the direct problem with the solu-
tion of the adjoint problem and vice versa: testing the adjoint
problem with the solution of the direct problem. In the
case of the parabolic weak problem, such a procedure is
cumbersome, because of the asymmetry of the properties of
the solution and the test function. In the classical formulation
of the parabolic weak problem (see, e.g., [2] and also (19)
below), the test function must have higher time regularity
than the weak solution.Thismeans that in case of nonsmooth
coefficients neither the solution of the direct problem nor the
solution of the adjoint problem can be used as a test function.
Another formulation of the weak parabolic problem consists
in reducing the problem to an abstract Cauchy problem over
the time variable (see, e.g., [3]). In such a case, a partial
integration over the time has to be implemented within
singular distributions in the derivation procedure.

In this paper, we present a new method that enables
the deduction of the formulas for the Fréchet derivatives

for cost functionals of inverse problems related to weak
solutions of parabolic problems. The method is based on an
integrated convolutional form of the weak direct problem.
The requirements to the test function are weaker than in the
classical case and coincide with the properties of the solution
of the direct problem. All computations in the deduction
procedure can be implemented within usual regular Sobolev
spaces.

More precisely, we will consider inverse problems related
to a parabolic integrodifferential equation that occur in heat
flow with memory [4–6]. This equation contains a time
convolution. Therefore, the convolutional form of the weak
problem is especially suitable. Supposedly, the proposed
method can be generalised to parabolic systems, as well.

2. Formal Direct Problem: Notation

Let Ω be an 𝑛-dimensional domain, where 𝑛 ≥ 1, and Γ be
the boundary of Ω. Let Γ = Γ

1
∪ Γ

2
where either Γ

1
or Γ

2
is

allowed to be an empty set. In case 𝑛 ≥ 2, we assume that Γ is
sufficiently smooth, meas Γ

1
∩ Γ

2
= 0, and for any 𝑗 ∈ {1; 2}

it holds either Γ
𝑗
= 0 or meas Γ

𝑗
> 0. Denote

Ω
𝑡
= Ω × (0, 𝑡) , Γ

1,𝑡
= Γ

1
× (0, 𝑡) , Γ

2,𝑡
= Γ

2
× (0, 𝑡) ,

(1)
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for 𝑡 ≥ 0. Consider the problem (direct problem) to find
𝑢(𝑥, 𝑡) : Ω

𝑇
→ R such that

𝑢
𝑡
= 𝐴𝑢 − 𝑚 ∗ 𝐴𝑢 + 𝑓 + ∇ ⋅ 𝜙 in Ω

𝑇
, (2)

𝑢 = 𝑢
0

in Ω × {0} , (3)

𝑢 = 𝑔 in Γ
1,𝑇
, (4)

−𝜈
𝐴
⋅ ∇𝑢 + 𝑚 ∗ 𝜈

𝐴
⋅ ∇𝑢 = 𝜗𝑢 + ℎ + 𝜈 ⋅ 𝜙 in Γ

2,𝑇
, (5)

where 𝑇 > 0 is a fixed number,

𝐴𝑣 =

𝑛

∑

𝑖,𝑗=1

(𝑎
𝑖𝑗
𝑣
𝑥𝑗
)
𝑥𝑖

+ 𝑎𝑣,

𝜈
𝐴
= (

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝜈
𝑗
|
𝑖=1,...,𝑛

) ,

𝜈 = (𝜈
1
, . . . , 𝜈

𝑛
) − outer normal of Γ

2
,

(6)

𝑎
𝑖𝑗
, 𝑎, 𝑢

0
: Ω → R, 𝑓 : Ω

𝑇
→ R, 𝜙 : Ω

𝑇
→ R𝑛, 𝑔 :

Γ
1,𝑇

→ R, 𝜗 : Γ
2
→ R, ℎ : Γ

2,𝑇
→ R, 𝑚 : (0, 𝑇) → R

are given functions, the subscripts 𝑡, 𝑥
𝑗
, 𝑥

𝑖
denote the partial

derivatives and

𝑚 ∗ 𝑤 (𝑡) = ∫

𝑡

0

𝑚(𝑡 − 𝜏)𝑤 (𝜏) 𝑑𝜏 (7)

denotes the time convolution. In case Γ
1
= 0 (Γ

2
= 0), the

boundary condition (4) and (5) is dropped.
The problem (2)–(5) describes the heat flow in the

body Ω with the thermal memory. Concerning the physical
background, we refer the reader to [4, 6, 7]. The solution 𝑢 is
the temperature of the body and𝑚 is the heat flux relaxation
(or memory) kernel. The boundary condition (5) is of the
third kind where the term −𝜈

𝐴
⋅ ∇𝑢 + 𝑚 ∗ 𝜈

𝐴
⋅ ∇𝑢 equals the

heat flux in the direction of the conormal vector.
Let us introduce some additional notations. Let 𝑡 > 0. We

use the Sobolev spaces

𝑊
𝑙

2
(Ω) =

{

{

{

𝑣 : Ω → R : ‖𝑣‖
𝑊
𝑙
2(Ω)

:= [∑

|𝛼|≤𝑙

𝐷
𝛼

𝑥
𝑣


2

𝐿
2
(Ω)
]

1/2

< ∞
}

}

}

.

(8)

Here, 𝑙 = 0, 1, 2, . . ., 𝛼 = (𝛼
1
, . . . , 𝛼

𝑛
) is the multiindex, |𝛼| =

𝛼
1
+ ⋅ ⋅ ⋅ +𝛼

𝑛
and𝐷𝛼

𝑥
𝑣 = 𝜕

|𝛼|
𝑣/𝜕𝑥

𝛼1

1
⋅ ⋅ ⋅ 𝜕𝑥

𝛼𝑛

𝑛
. Further, let𝑋 be a

Banach space. We denote by 𝐶([0, 𝑡]; 𝑋) the space of abstract

continuous functions from [0, 𝑡] to𝑋 endowedwith the usual
maximumnorm ‖𝑣‖

𝐶([0,𝑡];𝑋)
:= max

𝑠∈[0,𝑡]
‖𝑣(𝑠)‖. Moreover, let

𝐿
𝑝
((0, 𝑡) ; 𝑋) :=

{

{

{

𝑣 : (0, 𝑡) → 𝑋 : ‖𝑣‖𝐿𝑝((0,𝑡);𝑋)

≥ [∫

𝑡

0

‖𝑣 (𝑠)‖
𝑝
𝑑𝑠]

1/𝑝

< ∞
}

}

}

for 1 < 𝑝 < ∞,

𝐿
∞
((0, 𝑡) ; 𝑋) := {𝑣 : (0, 𝑡) → 𝑋 : ‖𝑣‖𝐿∞((0,𝑡);𝑋)

= ess sup
𝑡∈(0,𝑇)

‖𝑣 (𝑠)‖ < ∞} .

(9)

By means of these spaces, we define the following important
functional spaces:

U (Ω
𝑡
) = 𝐶 ([0, 𝑡] ; 𝐿

2
(Ω)) ∩ 𝐿

2
((0, 𝑡) ;𝑊

1

2
(Ω)) ,

U
0
(Ω

𝑡
) = {𝜂 ∈ U (Ω

𝑡
) : 𝜂|

Γ1,𝑡
= 0 in case Γ

1
̸= 0} .

(10)

Convention. In case 𝑛 = 1, the integrals ∫
Γ𝑗

𝑣(𝑥)𝑑Γ, 𝑗 = 1, 2

are equal to ∑𝐾

𝑘=1
𝑣(𝑥

𝑘
), where 𝑥

𝑘
∈ Γ

𝑗
and 𝐾 is the number

of points in Γ
𝑗
, and 𝐿

𝑝
(Γ

𝑗
) is simply R𝐾.

3. Weak Direct Problem and
Its Convolutional Form

Let us return to the direct problem (2)–(5). Throughout the
paper we assume the following basic regularity conditions
on the coefficients, the kernel, and the initial and boundary
functions:

𝑎
𝑖𝑗
∈ 𝐿

∞
(Ω) , 𝑎

𝑖𝑗
= 𝑎

𝑗𝑖
, 𝜗 ∈ 𝐶 (Γ

2
) , 𝜗 ≥ 0,

(11)

𝑎 ∈ 𝐿
𝑞1 (Ω) , where 𝑞

1
= 1 if 𝑛 = 1, 𝑞

1
>
𝑛

2
if 𝑛 ≥ 2

(12)

𝑚 ∈ 𝐿
1
(0, 𝑇) , 𝑔 ∈ 𝐿

2
((0, 𝑇) ;𝑊

1

2
(Ω)) ,

𝑔
𝑡
∈ 𝐿

2
(Ω

𝑇
) ,

(13)

𝑓 ∈ 𝐿
2
((0, 𝑇) ; 𝐿

𝑞2 (Ω)) , where 𝑞
2
= 1 if 𝑛 = 1,

𝑞
2
∈ (1, 𝑞

1
) if 𝑛 = 2, 𝑞

2
=

2𝑛

𝑛 + 2
if 𝑛 ≥ 3,

(14)

𝜙 = (𝜙
1
, . . . , 𝜙

𝑛
) ∈ (𝐿

2
(Ω

𝑇
))

𝑛 (15)

𝑢
0
∈ 𝐿

2
(Ω) , ℎ ∈ 𝐿

2
(Γ

2,𝑇
) (16)
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and the ellipticity condition

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝜆
𝑖
𝜆
𝑖
≥ 𝜖|𝜆|

2
, 𝑥 ∈ Ω, 𝜆 ∈ R

𝑛 with some 𝜖 > 0,

(17)

(for the sake of simplicity we introduced an assumption for
the extension of 𝑔 ontoΩ

𝑇
).

The first aim is to reformulate the problem (2)–(5) in a
weak form. Let us suppose that 𝑎

𝑖𝑗
∈ 𝑊

1

2
(Ω), (𝜕/𝜕𝑥

𝑖
)𝜙

𝑖
∈

𝐿
2
(Ω

𝑇
), 𝑖 = 1, . . . , 𝑛 and (2)–(5) has a classical solution 𝑢 ∈

𝑊
2,1

2
(Ω

𝑇
). Then, we multiply (2) with a test function 𝜂 from

the space

T (Ω
𝑇
) = {𝜂 ∈ 𝐿

2
((0, 𝑇) ;𝑊

1

2
(Ω)) :

𝜂
𝑡
∈ 𝐿

2
((0, 𝑇) ; 𝐿

2
(Ω)) ,

𝜂|
Γ1,𝑇
= 0 in case Γ

1
̸= 0}

(18)

and integrate by parts with respect to time and space varia-
bles. We obtain the following relation:

0 =∫
Ω

[𝑢 (𝑥, 𝑇) 𝜂 (𝑥, 𝑇)−𝑢
0
(𝑥) 𝜂 (𝑥, 0)] 𝑑𝑥−∬

Ω𝑇

𝑢𝜂
𝑡
𝑑𝑥𝑑𝑡

+∬
Ω𝑇

[

[

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑢

𝑥𝑗
−𝑚 ∗ 𝑢

𝑥𝑗
) 𝜂

𝑥𝑖
−𝑎 (𝑢−𝑚 ∗ 𝑢) 𝜂]

]

𝑑𝑥𝑑𝑡

+∬
Γ2,𝑇

(𝜗𝑢 + ℎ) 𝜂𝑑Γ𝑑𝑡 −∬
Ω𝑇

(𝑓𝜂 − 𝜙 ⋅ ∇𝜂) 𝑑𝑥𝑑𝑡.

(19)

This relation makes sense also in a more general case when
𝑎
𝑖𝑗
, 𝜙 satisfies only (11) and (15) and 𝑢 does not have regular

first-order time and second-order spatial derivatives.
We call a weak solution of the problem (2)–(5) a function

from the space U(Ω
𝑇
) that satisfies the relation (19) for any

𝜂 ∈ T(Ω
𝑇
) and in case Γ

1
̸= 0 fulfills the boundary condition

(4).

Lemma 1. The following assertions are valid.

(i) U(Ω
𝑇
) → 𝐿

2
((0, 𝑇); 𝐿

𝑞3(Ω)) where 𝑞
3
= ∞ if 𝑛 = 1, 𝑞

3
∈

(𝑞
1
𝑞
2
/(𝑞

1
−𝑞

2
),∞) if 𝑛 = 2 and 𝑞

3
= 2𝑛/(𝑛−2) if 𝑛 > 2, where

𝑞
1
and 𝑞

2
are given in (12) and (14), respectively;

(ii) for any 𝑢 ∈ 𝐿2((0, 𝑇); 𝐿𝑞3(Ω)) it holds 𝑎𝑢 ∈ 𝐿2((0, 𝑇);
𝐿
𝑞2(Ω)) and ‖𝑎𝑢‖

𝐿
2
((0,𝑇);𝐿

𝑞2 (Ω))
≤ 𝐶‖𝑎‖

𝐿
𝑞1 (Ω)

‖𝑢‖
𝐿
2
((0,𝑇);𝐿

𝑞3 (Ω))
,

where 𝐶 is a constant.

Proof. Since U(Ω
𝑇
) → 𝐿

2
((0, 𝑇);𝑊

1

2
(Ω)), the assertion

(i) follows from the continuous embedding of 𝑊1

2
(Ω) in

𝐿
𝑞3(Ω). The assertion (ii) can be proved by means of Hölder’s

inequality.

Theorem 2. The problem (2)–(5) has a unique weak solution.
This solution satisfies the estimate

‖𝑢‖U(Ω𝑇)

≤ 𝐶
0
[
𝑢0
𝐿2(Ω)

+
𝑓
𝐿2((0,𝑇);𝐿𝑞2 (Ω))

+
𝜙
(𝐿2(Ω𝑇))

𝑛

+ 𝜃
1
{
𝑔
𝐿2((0,𝑇);𝑊12 (Ω))

+
𝑔𝑡
𝐿2(Ω𝑇)

} + 𝜃
2‖ℎ‖𝐿2(Γ2,𝑇)

] ,

(20)

where 𝜃
1
= 0 in case Γ

1
= 0, 𝜃

2
= 0 in case Γ

2
= 0 and 𝐶

0
is a

constant depending on Ω, Γ
𝑗
, 𝑎

𝑖𝑗
, 𝑎, 𝜗 and𝑚.

Proof. The assertion of the theorem in case 𝑚 = 0 is well
known from the theory of parabolic equations (see, e.g., [2]).
Let Z be the operator that assigns to the data vector 𝑑 :=
(𝑢

0
, 𝑓, 𝜙, 𝑔, ℎ) theweak solution of the problem (2)–(5) in case

𝑚 = 0. Then it holds

‖Z𝑑‖U(Ω𝑇)
≤ RHS, (21)

where RHS is the right-hand side of (20).
Further, let us formulate the problem for the difference

𝑣 = 𝑢−Z𝑑. Introducing the linear operatorA by the formula

A𝑤 =Z(0, −𝑎𝑚 ∗ 𝑤, −
𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑚 ∗ 𝑤

𝑥𝑗
, 0, 0) , (22)

the weak problem (2)–(5) for the solution 𝑢 ∈ U(Ω
𝑇
)

equivalent to the following operator equation for the quantity
𝑣:

𝑣 = A𝑣 +AZ𝑑. (23)

We have to estimateA. For this purpose, we firstly prove the
following auxiliary inequality:

𝑚 ∗ 𝑦
𝐿2((0,𝑡);𝐿𝑝(Ω))

≤ ∫

𝑡

0

|𝑚 (𝑡 − 𝜏)|
𝑦
𝐿2((0,𝜏);𝐿𝑝(Ω))

𝑑𝜏,

𝑡 ∈ [0, 𝑇] ,

(24)

for any 𝑝 ≥ 1 and 𝑦 ∈ 𝐿2((0, 𝑡); 𝐿𝑝(Ω)).
Denoting 𝑦(𝑡) = 𝑦(⋅, 𝑡), ‖𝑦(𝑡)‖ = ‖𝑦(𝑡)‖

𝐿
𝑝
(Ω)

, mak-
ing use of the following property of the Bochner integral:
‖ ∫

𝑠

0
𝑤(𝑠, 𝜏)𝑑𝜏‖

𝐿
𝑝
(Ω)
≤ ∫

𝑠

0
‖𝑤(𝑠, 𝜏)‖

𝐿
𝑝
(Ω)
𝑑𝜏 for functions 𝑤 ∈

𝐿
1
((0, 𝑇); 𝐿

𝑝
(Ω)) and the Cauchy’s inequality, the relation
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(24) can be deduced bymeans of the following computations:

𝑚 ∗ 𝑦
𝐿2((0,𝑡);𝐿𝑝(Ω))

= [∫

𝑡

0



∫

𝑠

0

𝑚(𝜏) 𝑦 (𝑠 − 𝜏) 𝑑𝜏



2

𝐿
𝑝
(Ω)

𝑑𝑠]

1/2

≤ 𝐼, where

𝐼 = [∫

𝑡

0

(∫

𝑠

0

|𝑚 (𝜏)|
𝑦(𝑠 − 𝜏)

 𝑑𝜏)

2

𝑑𝑠]

1/2

=[∫

𝑡

0

|𝑚 (𝜏)| ∫

𝑡

𝜏

𝑦 (𝑠 − 𝜏)
 ∫

𝑠

0

|𝑚 (𝑧)|
𝑦(𝑠 − 𝑧)

 𝑑𝑧𝑑𝑠𝑑𝜏]

1/2

≤ [∫

𝑡

0

|𝑚 (𝜏)| [∫

𝑡

𝜏

𝑦 (𝑠 − 𝜏)


2

𝑑𝑠]

1/2

×[∫

𝑡

𝜏

(∫

𝑠

0

|𝑚 (𝑧)|
𝑦 (𝑠 − 𝑧)

 𝑑𝑧)

2

𝑑𝑠]

1/2

𝑑𝜏]

1/2

≤ [∫

𝑡

0

|𝑚 (𝜏)| [∫

𝑡−𝜏

0

𝑦 (𝑠)


2

𝑑𝑠]

1/2

𝑑𝜏]

1/2

× [∫

𝑡

0

(∫

𝑠

0

|𝑚 (𝑧)|
𝑦 (𝑠 − 𝑧)

 𝑑𝑧)

2

𝑑𝑠]

1/4

= [∫

𝑡

0

|𝑚 (𝑡 − 𝜏)|
𝑦
𝐿2((0,𝜏);𝐿𝑝(Ω))

𝑑𝜏]

1/2

× 𝐼
1/2
.

(25)

Next, let 𝑡 ∈ [0, 𝑇] and introduce the operator

𝑃
𝑡
𝑤 = {

𝑤 in Ω
𝑡

0 in Ω
𝑇
\ Ω

𝑡
.

(26)

Due to the causality we have Z(0, 𝑃
𝑡
𝑓, 𝑃

𝑡
𝜙, 0, 0)(𝑥, 𝑡) =

Z(0, 𝑓, 𝜙, 0, 0)(𝑥, 𝑡) for any (𝑥, 𝑡) ∈ Ω
𝑡
. Using these relations,

the continuity of the linear operator Z, the inequality (24),
and the boundedness of 𝑎

𝑖𝑗
, we compute the following:

‖A𝑤‖U(Ω𝑡)

=



Z(0, −𝑎𝑚 ∗ 𝑤, −
𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑚 ∗ 𝑤

𝑥𝑗
, 0, 0)

U(Ω𝑡)

=



Z(0, −𝑃
𝑡 [𝑎𝑚 ∗ 𝑤] , −𝑃𝑡

[

[

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑚 ∗ 𝑤

𝑥𝑗

]

]

, 0, 0)

U(Ω𝑡)

≤



Z(0, −𝑃
𝑡 [𝑎𝑚 ∗ 𝑤] , −𝑃𝑡

[

[

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑚 ∗ 𝑤

𝑥𝑗

]

]

, 0, 0)

U(Ω𝑇)

≤𝐶[
𝑃𝑡 [𝑎𝑚 ∗ 𝑤]

𝐿2((0,𝑇);𝐿𝑞2 (Ω))
+

𝑛

∑

𝑖=1


𝑃
𝑡
[𝑎

𝑖𝑗
𝑚 ∗ 𝑤

𝑥𝑗
]
𝐿2(Ω𝑇)

]

= 𝐶[‖𝑎𝑚 ∗ 𝑤‖𝐿2((0,𝑡);𝐿𝑞2 (Ω))
+

𝑛

∑

𝑖=1


𝑎
𝑖𝑗
𝑚 ∗ 𝑤

𝑥𝑗

𝐿2(Ω𝑡)
]

≤ 𝐶∫

𝑡

0

|𝑚 (𝑡 − 𝜏)| (‖𝑎𝑤‖𝐿2((0,𝜏);𝐿𝑞2 (Ω))
+ ‖∇𝑤‖𝐿2(Ω𝜏)

) 𝑑𝜏,

(27)

with some constants 𝐶 and 𝐶 depending on Ω, Γ
𝑗
, 𝑎

𝑖𝑗
, 𝑎, 𝜗.

Using Lemma 1, we obtain

‖𝑎𝑤‖𝐿2((0,𝜏);𝐿𝑞2 (Ω))
≤ 𝐶

1‖𝑎‖𝐿𝑞1 (Ω)‖𝑤‖𝐿2((0,𝜏);𝑊12 (Ω))
. (28)

Using this relation in (27), we arrive at the following basic
estimate forA:

‖A𝑤‖U(Ω𝑡)
≤ 𝐶

2
∫

𝑡

0

|𝑚 (𝑡 − 𝜏)| ‖𝑤‖U(Ω𝜏)
𝑑𝜏, 𝑡 ∈ [0, 𝑇] ,

(29)

where 𝐶
2
is a constant depending on Ω, Γ

𝑗
, 𝑎

𝑖𝑗
, 𝑎, 𝜗.

Let us define the weighted norms in U(Ω
𝑇
): ‖𝑣‖

𝜎
=

sup
0<𝑡<𝑇

𝑒
−𝜎𝑡
‖𝑣‖U(Ω𝑡)

where 𝜎 ≥ 0. The estimate (29) implies
the further estimate

‖A𝑤‖𝜎 ≤ 𝐶2
sup
0<𝑡<𝑇

𝑒
−𝜎𝑡
∫

𝑡

0

|𝑚 (𝑡 − 𝜏)| ‖𝑤‖U(Ω𝜏)
𝑑𝜏

= 𝐶
2
sup
0<𝑡<𝑇

∫

𝑡

0

𝑒
−𝜎(𝑡−𝜏)

|𝑚 (𝑡 − 𝜏)| 𝑒
−𝜎𝜏
‖𝑤‖U(Ω𝜏)

𝑑𝜏

≤ 𝐶
2
∫

𝑇

0

𝑒
−𝜎𝑠
|𝑚 (𝑠)| 𝑑𝑠‖𝑤‖𝜎.

(30)

Since ∫𝑇
0
𝑒
−𝜎𝑠
|𝑚(𝑠)|𝑑𝑠 → 0 as 𝜎 → ∞, there exists 𝜎

0
,

depending on 𝐶
2
and𝑚, such that 𝐶

2
∫
𝑇

0
𝑒
−𝜎0𝑠|𝑚(𝑠)|𝑑𝑠 ≤ 1/2.

Thus, ‖A𝑤‖
𝜎0
≤ (1/2)‖𝑤‖

𝜎0
. The operatorA is a contraction

in U(Ω
𝑇
). This implies the existence and uniqueness asser-

tions of the theorem.
To prove the estimate (20), we firstly deduce from (23)

the inequality ‖𝑣‖
𝜎0
≤ ‖A𝑣‖

𝜎0
+ ‖AZ𝑑‖

𝜎0
≤ (1/2)[‖𝑣‖

𝜎0
+

‖Z𝑑‖
𝜎0
]. This implies ‖𝑣‖

𝜎0
≤ ‖Z𝑑‖

𝜎0
. Using the equivalence

relations 𝑒−𝜎0𝑇‖ ⋅ ‖
0
≤ ‖ ⋅ ‖

𝜎0
≤ ‖ ⋅ ‖

0
, where ‖ ⋅ ‖

0
= ‖ ⋅ ‖U(Ω𝑇)

and (21), we reach (20).

We note the upper integration bound 𝑇 in (19) can be
released to be any number 𝑡 from the interval [0, 𝑇]. Indeed,
(19) is equivalent to the following problem:

0 = ∫
Ω

[𝑢 (𝑥, 𝑡) 𝜂 (𝑥, 𝑡) − 𝑢
0
(𝑥) 𝜂 (𝑥, 0)] 𝑑𝑥 −∬

Ω𝑡

𝑢𝜂
𝑡
𝑑𝑥𝑑𝑡

+∬
Ω𝑡

[

[

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑢

𝑥𝑗
− 𝑚 ∗ 𝑢

𝑥𝑗
) 𝜂

𝑥𝑖

−𝑎 (𝑢 − 𝑚 ∗ 𝑢) 𝜂]

]

𝑑𝑥𝑑𝑡
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+∬
Γ2,𝑡

(𝜗𝑢 + ℎ) 𝜂𝑑Γ𝑑𝑡

−∬
Ω𝑡

(𝑓𝜂 − 𝜙 ⋅ ∇𝜂) 𝑑𝑥𝑑𝑡, 𝑡 ∈ [0, 𝑇] ,

(31)

for any 𝜂 ∈ T(Ω
𝑇
). This assertion can be proved using the

standard technique defining the test function as follows:

𝜂
𝜖
(𝑥, 𝑡) =

{{{

{{{

{

𝜂 (𝑥, 𝜏) for 𝜏 ∈ [0, 𝑡] ,
𝜂 (𝑥, 𝜏) (1 −

𝜏 − 𝑡

𝜖
) for 𝜏 ∈ (𝑡, 𝑡 + 𝜖) ,

0 for 𝜏 ∈ [𝑡 + 𝜖, 𝑇] ,
(32)

and letting the parameter 𝜖 to approach 0.
Next we transform the weak direct problem (31) to a form

that does not contain a time derivative of the test function 𝜂.
This form enables the extension of the test space.This is useful
for treatment of problems for adjoint states of quasisolutions
of inverse problems in next sections.

Theorem 3. The function 𝑢 ∈ U(Ω
𝑇
) satisfies the relation

(19) for any 𝜂 ∈ T(Ω
𝑇
) if and only if it satisfies the following

relation:

0 =∫
Ω

𝑢 ∗ 𝜂𝑑𝑥 − ∫
Ω

∫

𝑡

0

𝑢
0
(𝑥) 𝜂 (𝑥, 𝜏) 𝑑𝜏𝑑𝑥

+ ∫
Ω

1 ∗ [

[

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑢

𝑥𝑗
− 𝑚 ∗ 𝑢

𝑥𝑗
) ∗ 𝜂

𝑥𝑖

−𝑎 (𝑢 − 𝑚 ∗ 𝑢) ∗ 𝜂]

]

𝑑𝑥

+ ∫
Γ2

1 ∗ (𝜗𝑢 + ℎ) ∗ 𝜂𝑑Γ

− ∫
Ω

1 ∗ (𝑓 ∗ 𝜂 −

𝑛

∑

𝑖=1

𝜙
𝑖
∗ 𝜂

𝑥𝑖
)𝑑𝑥, 𝑡 ∈ [0, 𝑇] ,

(33)

for any 𝜂 ∈ U
0
(Ω

𝑇
).

Here, according to the definition of the time convolution
in the previous section, 1 ∗ 𝑤(𝑡) = ∫𝑡

0
𝑤(𝜏)𝑑𝜏.

Proof. It is sufficient to prove that 𝑢 ∈ U(Ω
𝑇
) satisfies (31)

for any 𝜂 ∈ T(Ω
𝑇
) if and only if it satisfies (33) for any 𝜂 ∈

U
0
(Ω

𝑇
). Suppose that 𝑢 ∈ U(Ω

𝑇
) satisfies (31) and choose an

arbitrary 𝜂 ∈ T(Ω
𝑇
). Let 𝑡

1
be an arbitrary number on the

interval [0, 𝑇] and choose some function 𝜉𝑡1 ∈ T(Ω
𝑇
) such

that the relation

𝜉
𝑡1 (𝑥, 𝑡) = 𝜂 (𝑥, 𝑡

1
− 𝑡) for 𝑡 ∈ [0, 𝑡

1
] (34)

is valid. For instance, it is possible to define 𝜉𝑡1 as a periodic
function with respect to 𝑡, that is, 𝜉𝑡1(𝑥, 𝑡) = 𝜂(𝑥, 𝑡

1
− 𝑡) for

𝑡 ∈ [0, 𝑡
1
], 𝜉𝑡1(𝑥, 𝑡) = 𝜂(𝑥, 𝑡 − 𝑡

1
) for 𝑡 ∈ [𝑡

1
, 2𝑡

1
], 𝜉𝑡1(𝑥, 𝑡) =

𝜂(𝑥, 3𝑡
1
−𝑡) for 𝑡 ∈ [2𝑡

1
, 3𝑡

1
] and so on. Using the relation (31)

with 𝜂 replaced by 𝜉𝑡1 and setting there 𝑡 = 𝑡
1
we obtain the

equality

0 = 𝐾
1
(𝑡

1
) + 𝐾

2
(𝑡

1
) , (35)

where

𝐾
1
(𝑡) = ∫

Ω

[𝑢 (𝑥, 𝑡) 𝜂 (𝑥, 0) − 𝑢
0
(𝑥) 𝜂 (𝑥, 𝑡)] 𝑑𝑥

+ ∫
Ω

∫

𝑡

0

𝑢 (𝑥, 𝜏) 𝜂
𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝜏𝑑𝑥,

(36)

𝐾
2
(𝑡) = ∫

Ω

[

[

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑢

𝑥𝑗
− 𝑚 ∗ 𝑢

𝑥𝑗
) ∗ 𝜂

𝑥𝑖

−𝑎 (𝑢 − 𝑚 ∗ 𝑢) ∗ 𝜂]

]

𝑑𝑥

+ ∫
Γ2

(𝜗𝑢 + ℎ) ∗ 𝜂𝑑Γ

− ∫
Ω

(𝑓 ∗ 𝜂 −

𝑛

∑

𝑖=1

𝜙
𝑖
∗ 𝜂

𝑥𝑖
)𝑑𝑥.

(37)

Note that the time derivative of 𝜂 can be removed from𝐾
1
by

integration. Indeed, let 𝑡
2
∈ [0, 𝑇]. Then

∫

𝑡2

0

𝐾
1
(𝑡

1
) 𝑑𝑡

1
= ∫

𝑡2

0

∫
Ω

𝑢 (𝑥, 𝑡
1
) 𝜂 (𝑥, 0) 𝑑𝑥𝑑𝑡

1

− ∫

𝑡2

0

∫
Ω

𝑢
0
(𝑥) 𝜂 (𝑥, 𝑡

1
) 𝑑𝑥𝑑𝑡

1

+ ∫

𝑡2

0

∫
Ω

∫

𝑡1

0

𝑢 (𝑥, 𝜏) 𝜂
𝑡1
(𝑥, 𝑡

1
− 𝜏) 𝑑𝜏𝑑𝑥𝑑𝑡

1
.

(38)

Changing the order of the integrals over 𝜏 and 𝑡
1
in the last

term, we easily obtain

∫

𝑡2

0

𝐾
1
(𝑡

1
) 𝑑𝑡

1

= ∫
Ω

∫

𝑡2

0

𝑢 (𝑥, 𝜏) 𝜂 (𝑥, 𝑡
2
− 𝜏) 𝑑𝜏𝑑𝑥

− ∫

𝑡2

0

∫
Ω

𝑢
0
(𝑥) 𝜂 (𝑥, 𝑡

1
) 𝑑𝑥𝑑𝑡

1
.

(39)

Integrating now the whole equality (35) over 𝑡
1
from 0 to 𝑡

2
,

observing (37) and (39), and finally redenoting 𝑡
2
by 𝑡, we

reach the desired relation (33). Summing up, we have proved
that (33) holds for any 𝜂 ∈ T(Ω

𝑇
). But all terms in the right-

hand side of (33) are well defined for 𝜂 ∈ U
0
(Ω

𝑇
), too. Since

T(Ω
𝑇
) is densely embedded in U

0
(Ω

𝑇
), we conclude that

(33) holds for any 𝜂 ∈ U
0
(Ω

𝑇
).

It remains to show that (33) implies (31). Suppose that
𝑢 ∈ U(Ω

𝑇
) satisfies (33) and choose an arbitrary 𝜂 ∈ T(Ω

𝑇
)
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and 𝑡
1
∈ [0, 𝑇]. Again, let 𝜉𝑡1 be a function fromT(Ω

𝑇
) such

(34) is valid. Inserting 𝜉𝑡1 instead of 𝜂 into (33), differentiating
with respect to 𝑡 and setting 𝑡 = 𝑡

1
we come to the relation

(31). Theorem is proved.

Corollary 4. A function 𝑢 ∈ U(Ω
𝑇
) is a weak solution of (2)–

(5) if and only if it satisfies the relation (33) for any 𝜂 ∈ U
0
(Ω

𝑇
)

and in case Γ
1
̸= 0 fulfills the boundary condition (4).

4. Inverse Problems and Quasisolutions

In the sequel, let us pose some inverse problems for the weak
solution of (2)–(5). These problems are selected in order to
demonstrate the wide possibilities of the method that we will
introduce in Section 5.

Firstly, we suppose that (2)–(5) has the following specific
form:

𝑢
𝑡
= 𝐴𝑢 − 𝑚 ∗ 𝐴𝑢 + 𝑓

0
+ ∇ ⋅ 𝜙 +

𝑁

∑

𝑗=1

𝛾
𝑗
(𝑡) 𝜔

𝑗
(𝑥) in Ω

𝑇
,

𝑢 = 𝑢
0

in Ω × {0} ,

𝑢 = 𝑔 in Γ
1,𝑇
,

−𝜈
𝐴
⋅ ∇𝑢 + 𝑚 ∗ 𝜈

𝐴
⋅ ∇𝑢 = 𝜗𝑢 + ℎ + 𝜈 ⋅ 𝜙 in Γ

2,𝑇
,

(40)

where 𝜔 = (𝜔
1
, . . . , 𝜔

𝑁
) is unknown. The coefficients and

other given functions 𝑓
0
, 𝜙, 𝑢

0
, 𝑔, ℎ are assumed to satisfy

(11)–(17). Moreover, 𝛾 ∈ (𝐿2(0, 𝑇))𝑁 is prescribed.

IP1. Find the vector𝜔 ∈ (𝐿2(Ω))𝑁 such that the weak solution
of (40) satisfies the following instant additional conditions:

𝑢 (𝑥, 𝑇
𝑖
) = 𝑢

𝑇𝑖
(𝑥) , 𝑥 ∈ Ω, 𝑖 = 1, 2, . . . , 𝑁, (41)

where 0 < 𝑇
1
< 𝑇

2
< ⋅ ⋅ ⋅ < 𝑇

𝑁
≤ 𝑇 and 𝑢

𝑇𝑖
∈ 𝐿

2
(Ω),

𝑖 = 1, . . . , 𝑁 are given functions (observations of 𝑢).
Since ∑𝑁

𝑖=1
𝛾
𝑗
𝜔
𝑗
∈ 𝐿

2
((0, 𝑇); 𝐿

2
(Ω)) ⊂ 𝐿

2
((0, 𝑇); 𝐿

𝑞2(Ω))

for𝜔 ∈ (𝐿2(Ω))𝑁, theweak solution𝑢 of (40) exists inU(Ω
𝑇
);

hence, it has traces 𝑢(⋅, 𝑇
𝑖
) ∈ 𝐿

2
(Ω), 𝑖 = 1, . . . , 𝑁. In practice,

the term∑𝑁

𝑗=1
𝛾
𝑗
𝜔
𝑗
may represent an approximation of amore

general function 𝐹(𝑥, 𝑡) ∈ 𝐿2(Ω
𝑇
), where 𝛾

𝑗
, 𝑗 = 1, 2, . . . form

a basis in 𝐿2(0, 𝑇).
Further, let 𝑢

0
also be unknown.

IP2. Find the vector 𝜔 ∈ (𝐿
2
(Ω))

𝑁 and 𝑢
0
∈ 𝐿

2
(Ω) such

that the weak solution of (40) satisfies the following integral
additional conditions:

∫

𝑇

0

𝜅
𝑖
(𝑥, 𝑡) 𝑢 (𝑥, 𝑡) 𝑑𝑡 = 𝑣

𝑖
(𝑥) , 𝑥 ∈ Ω, 𝑖 = 1, 2, . . . , 𝑁 + 1,

(42)

where 𝑣
𝑖
∈ 𝐿

2
(Ω), 𝑖 = 1, . . . , 𝑁 + 1 are given observation

functions and 𝜅
𝑖
, 𝑖 = 1, . . . , 𝑁 are given weights that satisfy

the following condition:

𝜅𝑖 (𝑥, 𝑡)
 ≤ 𝜅 (𝑡) in Ω

𝑇
, 𝑖 = 1, . . . , 𝑁 + 1

with some 𝜅 ∈ 𝐿2 (0, 𝑇) .
(43)

Note that the integral ∫𝑇
0
𝜅
𝑖
(⋅, 𝑡)𝑢(⋅, 𝑡)𝑑𝑡 in (42) belongs to

𝐿
2
(Ω) for any 𝜔 ∈ (𝐿2(Ω))𝑁 and 𝑢

0
∈ 𝐿

2
(Ω). Indeed, for

such 𝜔 and 𝑢
0
it holds 𝑢 ∈ U(Ω

𝑇
) ⊂ 𝐿

2
(Ω

𝑇
), which implies



∫

𝑇

0

𝜅
𝑖
(𝑥, 𝑡) 𝑢 (𝑥, 𝑡) 𝑑𝑡

𝐿2(Ω)

≤ ‖𝜅‖𝐿2(0,𝑇)‖𝑢‖𝐿2(Ω𝑇)
< ∞.

(44)

In practice, the weights 𝜅
𝑖
are usually concentrated in neigh-

borhoods of some fixed values of time 𝑡 = 𝑇
𝑖
.

Finally, let us pose a nonlinear inverse problem for the
coefficient 𝑎 and the kernel𝑚. Assume that 𝑛 ∈ {1; 2; 3}.Then
any coefficient 𝑎 that belongs to𝐿2(Ω) satisfies (12).Moreover,
let us set 𝑞

1
= 2 if 𝑛 = 2 and Γ

2
̸≡ 0. The other coefficients

and the given functions 𝑢
0
, 𝑓, 𝜙, 𝑔, ℎ are assumed to satisfy

(11)–(17).

IP3. Find 𝑎 ∈ 𝐿2(Ω) and 𝑚 ∈ 𝐿
1
(0, 𝑇) such that the weak

solution of (2)–(5) satisfies the following integral additional
conditions:

𝑢 (𝑥, 𝑇) = 𝑢
𝑇
(𝑥) , 𝑥 ∈ Ω,

∫
Γ2

𝜅 (𝑥, 𝑡) 𝑢 (𝑥, 𝑡) 𝑑Γ = 𝑣 (𝑡) , 𝑡 ∈ (0, 𝑇) ,

(45)

where 𝑢
𝑇
∈ 𝐿

2
(Ω), 𝑣 ∈ 𝐿2(0, 𝑇) are given observation func-

tions and 𝜅 is a givenweight function such that 𝜅 ∈ 𝐿∞((0, 𝑇);
𝐿
2
(Γ

2
)).

As in IP1, we can show that the trace 𝑢(⋅, 𝑇) belongs
to 𝐿2(Ω). Moreover, using the property 𝑢 ∈ U(Ω

𝑇
), the

embedding of𝑊1

2
(Ω) in 𝐿2(Γ

2
) and Hölder’s inequality, one

can immediately check that the term ∫
Γ2

𝜅(𝑥, ⋅)𝑢(𝑥, ⋅)𝑑Γ in
(45) belongs to 𝐿2(0, 𝑇).

Available existence, uniqueness, and stability results
for IP1–IP3 require stronger smoothness of the data than
imposed in the present paper. Let us cite some of these results.

In case 𝑁 = 1, the well posedness of IP1 was proved in
[8]. Partial results were deduced earlier in [9]. Amore general
problem involving both IP1 and IP2 without the unknown
𝑢
0
in case 𝑁 = 1 was studied in [10] by means of different

techniques. IP1 and IP2 in case𝑚 = 0 and𝑁 = 1were treated
in many papers, for example, [11–14]. The case𝑁 > 1 is open
even if𝑚 = 0. Inverse problems to determine𝑚 with given 𝑎
were studied in a number of papers, for example, [7, 15–23].
The problem for 𝑎 with given𝑚 was treated in [8].

In the present paper, we will deal with quasisolutions of
IP1–IP3 and related cost functionals. DenoteZ

1
= (𝐿

2
(Ω))

𝑁.
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Let 𝑀 ⊆ Z
1
. The quasi-solution of IP1 in the set 𝑀 is an

element𝜔∗ ∈ argmin
𝜔∈𝑀

𝐽
1
(𝜔), where 𝐽

1
is the following cost

functional

𝐽
1
(𝜔) =

𝑁

∑

𝑖=1


𝑢(𝑥, 𝑇

𝑖
; 𝜔) − 𝑢

𝑇𝑖
(𝑥)


2

𝐿
2
(Ω)
, (46)

and 𝑢(𝑥, 𝑡; 𝜔) is the solution of (40) that corresponds to a
fixed element 𝜔.

Similarly, let𝑀 ⊆ Z
2
:= (𝐿

2
(Ω))

𝑁+1. The quasi-solution
of IP2 in the set𝑀 is 𝑧∗ ∈ argmin

𝑧∈𝑀
𝐽
2
(𝑧), where 𝐽

2
is the

cost functional

𝐽
2
(𝑧) =

𝑁+1

∑

𝑖=1



∫

𝑇

0

𝜅
𝑖
(𝑥, 𝑡) 𝑢 (𝑥, 𝑡; 𝑧) 𝑑𝑡 − 𝑣

𝑖
(𝑥)



2

𝐿
2
(Ω)

, (47)

and 𝑢(𝑥, 𝑡; 𝑧) is the weak solution of (40) that corresponds to
a given vector 𝑧 = (𝜔, 𝑢

0
).

Finally, defining𝑀 ⊆ Z
3
:= 𝐿

2
(Ω) × 𝐿

2
(0, 𝑇), the quasi-

solution of IP3 in 𝑀 is an element 𝑧∗ ∈ argmin
𝑧∈𝑀
𝐽
3
(𝑧),

where 𝐽
3
is the cost functional

𝐽
3
(𝑧) =

𝑢 (𝑥, 𝑇; 𝑧) − 𝑢𝑇 (𝑥)


2

𝐿
2
(Ω)

+



∫
Γ2

𝜅 (𝑥, 𝑡) 𝑢 (𝑥, 𝑡; 𝑧) 𝑑Γ − 𝑣 (𝑡)



2

𝐿
2
(0,𝑇)

,

(48)

and 𝑢(𝑥, 𝑡; 𝑧) is the weak solution of the direct problem (2)–
(5) corresponding to given 𝑧 = (𝑎,𝑚). Here, we restricted the
space for the unknown 𝑚 to 𝐿2(0, 𝑇), because we will seek
for the Fréchet derivative of 𝐽

3
in a Hilbert space. Moreover,

the kernel of the second addend corresponding to 𝑚 in the
representation formula of 𝐽

3
(90) is an element of 𝐿2(0, 𝑇) and

in general does not belong to the adjoint space 𝐿∞(0, 𝑇).
According to the above-mentioned arguments, the func-

tionals 𝐽
𝑘
, 𝑘 = 1, 2, 3, are well-defined in Z

1
, Z

2
, and Z

3
,

respectively.

5. The Fréchet Derivatives of Cost Functionals
of Inverse Problems

5.1. General Procedure. Suppose that the solution 𝑢 of the
direct problem depends on a vector of parameters 𝑝 that
has to be determined in an inverse problem making use
of certain measurements of 𝑢. Let the quasi-solution of the
inverse problem be sought by a method involving the Fréchet
derivative of the cost functional (i.e., some gradient-type
method). Usually in practice, a solution of a proper adjoint
problem is used to represent the Fréchet derivative.

We introduce a general procedure to deduce such adjoint
problems. Assume that Δ𝑢 is the difference of solutions of
the direct problem corresponding to a difference of the vector

of the parameters Δ𝑝. More precisely, we suppose that Δ𝑢 is
a solution of the following problem:

Δ𝑢
𝑡
= 𝐴Δ𝑢 − 𝑚 ∗ 𝐴Δ𝑢 + 𝑓

†
+ ∇ ⋅ 𝜙

† in Ω
𝑇
, (49)

Δ𝑢 = Δ𝑢
0

in Ω × {0} , (50)

Δ𝑢 = 0 in Γ
1,𝑇
, (51)

−𝜈
𝐴
⋅ ∇Δ𝑢 + 𝑚 ∗ 𝜈

𝐴
⋅ ∇Δ𝑢 = 𝜗Δ𝑢 + ℎ

†
+ 𝜈 ⋅ 𝜙

† in Γ
2,𝑇
,

(52)

with some data 𝑓†, 𝜙†, Δ𝑢
0
, ℎ† depending on Δ𝑝. We restrict

ourselves to the case when the Dirichlet boundary condition
of the state 𝑢 is independent of 𝑝. Therefore, the condition
(51) for Δ𝑢 is homogeneous.

In practice, the adjoint parabolic problems are usually
formulated as backward problems. In our context, it is better
to pose adjoint problems in the forward form. The involved
memory term with 𝑚 is defined via a forward convolution
and from the practical viewpoint, it is preferable to have the
direct and adjoint problems in a similar form (e.g., to simplify
parallelisation of computations).

More precisely, let the adjoint state 𝜓 be a solution of the
following problem:

𝜓
𝑡
= 𝐴𝜓 − 𝑚 ∗ 𝐴𝜓 + 𝑓

∘
+ ∇ ⋅ 𝜙

∘ in Ω
𝑇
,

𝜓 = 𝑢
∘ in Ω × {0} ,

𝜓 = 0 in Γ
1,𝑇
,

−𝜈
𝐴
⋅ ∇𝜓 + 𝑚 ∗ 𝜈

𝐴
⋅ ∇𝜓 = 𝜗𝜓 + ℎ

∘
+ 𝜈 ⋅ 𝜙

∘ in Γ
2,𝑇
,

(53)

where 𝑓∘, 𝜙∘, 𝑢∘, and ℎ∘ are some data depending on Δ𝑢 and
the cost functional under consideration.

Assume that the quadruplets 𝑓†, 𝜙†, Δ𝑢
0
, ℎ†, and 𝑓∘, 𝜙∘,

𝑢
∘, ℎ∘ satisfy the conditions (14)–(16).Then, due toTheorem2,

the problems (49)–(52) and (53) have unique weak solutions
in the space U(Ω

𝑇
). Actually, we have Δ𝑢, 𝜓 ∈ U

0
(Ω

𝑇
)

because of the homogeneous boundary conditions on Γ
1,𝑇

.
Let us write the relation (33) for Δ𝑢 and use the test

function 𝜂 = 𝜓. Then we obtain for any 𝑡 ∈ [0, 𝑇]

0 = ∫
Ω

Δ𝑢 ∗ 𝜓𝑑𝑥 − ∫
Ω

∫

𝑡

0

Δ𝑢
0
(𝑥) 𝜓 (𝑥, 𝜏) 𝑑𝜏𝑑𝑥

+ ∫
Ω

1 ∗ [

[

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(Δ𝑢

𝑥𝑗
− 𝑚 ∗ Δ𝑢

𝑥𝑗
) ∗ 𝜓

𝑥𝑖

−𝑎 (Δ𝑢 − 𝑚 ∗ Δ𝑢) ∗ 𝜓𝜂]

]

𝑑𝑥

+ ∫
Γ2

1 ∗ (𝜗Δ𝑢 + ℎ
†
) ∗ 𝜓𝑑Γ

− ∫
Ω

1 ∗ (𝑓
†
∗ 𝜓 −

𝑛

∑

𝑖=1

𝜙
†

𝑖
∗ 𝜓

𝑥𝑖
)𝑑𝑥.

(54)
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Secondly, let us write this relation for 𝜓 and use the test
function 𝜂 = Δ𝑢. Then we have for any 𝑡 ∈ [0, 𝑇]

0 =∫
Ω

𝜓 ∗ Δ𝑢𝑑𝑥 − ∫
Ω

∫

𝑡

0

𝑢
∘
(𝑥) Δ𝑢 (𝑥, 𝜏) 𝑑𝜏𝑑𝑥

+ ∫
Ω

1 ∗ [

[

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(𝜓

𝑥𝑗
− 𝑚 ∗ 𝜓

𝑥𝑗
) ∗ Δ𝑢

𝑥𝑖

−𝑎 (𝜓 − 𝑚 ∗ 𝜓) ∗ Δ𝑢]

]

𝑑𝑥

+ ∫
Γ2

1 ∗ (𝜗𝜓 + ℎ
∘
) ∗ Δ𝑢𝑑Γ

− ∫
Ω

1 ∗ (𝑓
∘
∗ Δ𝑢 −

𝑛

∑

𝑖=1

𝜙
∘

𝑖
∗ Δ𝑢

𝑥𝑖
)𝑑𝑥.

(55)

Subtracting (54) from (55), using the commutativity of the
convolution, the symmetricity relations 𝑎

𝑖𝑗
= 𝑎

𝑗𝑖
and

differentiating with respect to 𝑡, we arrive at the following
basic equality that can be used in various inverse problems:

∫
Ω

𝑢
∘
(𝑥) Δ𝑢 (𝑥, 𝑡) 𝑑𝑥 − ∫

Γ2

ℎ
∘
∗ Δ𝑢𝑑Γ

+ ∫
Ω

(𝑓
∘
∗ Δ𝑢 −

𝑛

∑

𝑖=1

𝜙
∘

𝑖
∗ Δ𝑢

𝑥𝑖
)𝑑𝑥

= ∫
Ω

Δ𝑢
0
(𝑥) 𝜓 (𝑥, 𝑡) 𝑑𝑥 − ∫

Γ2

ℎ
†
∗ 𝜓𝑑Γ

+ ∫
Ω

(𝑓
†
∗ 𝜓 −

𝑛

∑

𝑖=1

𝜙
†

𝑖
∗ 𝜓

𝑥𝑖
)𝑑𝑥, 𝑡 ∈ [0, 𝑇] .

(56)

5.2. Derivative of 𝐽
1

Theorem 5. The functional 𝐽
1
is the Fréchet differentiable in

(𝐿
2
(Ω))

𝑁 and

𝐽


1
(𝜔) Δ𝜔

=

𝑁

∑

𝑗=1

∫
Ω

𝑁

∑

𝑖=1

∫

𝑇𝑖

0

𝛾
𝑗
(𝑡) 𝜓

𝑖
(𝑥, 𝑇

𝑖
− 𝑡; 𝜔) 𝑑𝑡Δ𝜔

𝑗
(𝑥) 𝑑𝑥,

(57)

where 𝜓
𝑖
∈ U(Ω

𝑇𝑖
), 𝑖 = 1, . . . , 𝑁, are the unique 𝜔-dependent

weak solutions of the following problems:

𝜓
𝑖,𝑡
= 𝐴𝜓

𝑖
− 𝑚 ∗ 𝐴𝜓

𝑖
in Ω

𝑇𝑖
,

𝜓
𝑖
= 2 [𝑢 (𝑥, 𝑇

𝑖
; 𝜔) − 𝑢

𝑇𝑖
(𝑥)] in Ω × {0} ,

𝜓
𝑖
= 0 in Γ

1,𝑇𝑖
,

−𝜈
𝐴
⋅ ∇𝜓

𝑖
+ 𝑚 ∗ 𝜈

𝐴
⋅ ∇𝜓

𝑖
= 𝜗𝜓

𝑖
in Γ

2,𝑇𝑖
,

(58)

𝑖 = 1, . . . , 𝑁.

Proof. Let us fix some 𝜔, Δ𝜔 ∈ (𝐿2(Ω))𝑁. One can immedi-
ately check that it holds

𝐽
1
(𝜔 + Δ𝜔) − 𝐽

1
(𝜔)

= 2

𝑁

∑

𝑖=1

∫
Ω

[𝑢 (𝑥, 𝑇
𝑖
; 𝜔) − 𝑢

𝑇𝑖
(𝑥)] Δ𝑢 (𝑥, 𝑇

𝑖
; 𝜔) 𝑑𝑥

+

𝑁

∑

𝑖=1

∫
Ω

Δ𝑢(𝑥, 𝑇
𝑖
; 𝜔)

2

𝑑𝑥,

(59)

where Δ𝑢(𝑥, 𝑡; 𝜔) = 𝑢(𝑥, 𝑡; 𝜔 + Δ𝜔) − 𝑢(𝑥, 𝑡; 𝜔) ∈ U
0
(Ω

𝑇
) is

the weak solution of the following problem:

Δ𝑢
𝑡
= 𝐴Δ𝑢 − 𝑚 ∗ 𝐴Δ𝑢 +

𝑁

∑

𝑗=1

𝛾
𝑗
Δ𝜔

𝑗
in Ω

𝑇
,

Δ𝑢 = 0 in Ω × {0} ,

Δ𝑢 = 0 in Γ
1,𝑇
,

−𝜈
𝐴
⋅ ∇Δ𝑢 + 𝑚 ∗ 𝜈

𝐴
⋅ ∇Δ𝑢 = 𝜗Δ𝑢 in Γ

2,𝑇
.

(60)

Applying the estimate (20) to the solution of this problem
we deduce the following estimate for the second term in the
right-hand side of (59):

𝑁

∑

𝑖=1

∫
Ω

Δ𝑢(𝑥, 𝑇
𝑖
; 𝜔)

2

𝑑𝑥 ≤ 𝑛‖Δ𝑢‖
2

U(Ω𝑇)

≤ 𝐶
2

0
𝑛



𝑁

∑

𝑗=1

𝛾
𝑗
Δ𝜔

𝑗



2

𝐿
2
((0,𝑇);𝐿

𝑞2 (Ω))

≤ 𝐶
4‖𝜔‖

2

(𝐿2(Ω))
𝑁 ,

(61)

with some constant 𝐶
4
. This implies that 𝐽

1
is the Fréchet

differentiable and the first term in the right-hand side of (59)
represents the Fréchet derivative, that is,

𝐽


1
(𝜔) Δ𝜔 =

𝑁

∑

𝑖=1

𝜎
𝑖

with 𝜎
𝑖
= 2∫

Ω

[𝑢 (𝑥, 𝑇
𝑖
; 𝜔) − 𝑢

𝑇𝑖
(𝑥)] Δ𝑢 (𝑥, 𝑇

𝑖
; 𝜔) 𝑑𝑥.

(62)

Further, let us use the method presented in Section 5.1
to deduce the proper adjoint problems. Comparing (60) with
(49)–(52) we see that 𝑓†

= ∑
𝑁

𝑗=1
𝛾
𝑗
Δ𝜔

𝑗
, 𝜙† = Δ𝑢

0
= ℎ

†
= 0.

Therefore, the relation (56) has the form

∫
Ω

𝑢
∘
(𝑥) Δ𝑢 (𝑥, 𝑡) 𝑑𝑥 − ∫

Γ2

ℎ
∘
∗ Δ𝑢𝑑Γ

+ ∫
Ω

(𝑓
∘
∗ Δ𝑢 −

𝑛

∑

𝑖=1

𝜙
∘

𝑖
∗ Δ𝑢

𝑥𝑖
)𝑑𝑥

=

𝑁

∑

𝑗=1

∫
Ω

𝛾
𝑗
Δ𝜔

𝑗
∗ 𝜓𝑑𝑥, 𝑡 ∈ [0, 𝑇] .

(63)
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In order to deduce a formula for the component 𝜎
𝑖
in the

quantity 𝐽
1
(𝜔)Δ𝜔, we set 𝑢∘ = 𝑢∘

𝑖
= 2[𝑢(𝑥, 𝑇

𝑖
; 𝜔) − 𝑢

𝑇𝑖
(𝑥)],

ℎ
∘
= 𝑓

∘
= 𝜙

∘
= 0 and 𝑡 = 𝑇

𝑖
in (63). Then we immediately

have

𝜎
𝑖
=

𝑁

∑

𝑗=1

∫
Ω

𝛾
𝑗
Δ𝜔

𝑗
∗ 𝜓

𝑖
𝑑𝑥|

𝑡=𝑇𝑖
, (64)

where according to (53) and the definition of 𝑢∘
𝑖
, ℎ

∘
, 𝜙

∘, the
function 𝜓

𝑖
is the weak solution of the problem (58) in the

domain Ω
𝑇
instead of Ω

𝑇𝑖
. Due to Theorem 2, this problem

has a unique solution. From (62) and (64) we obtain (57).The
latter formula contains the values of 𝜓

𝑖
in Ω

𝑇𝑖
. Therefore, we

can restrict the problem (58) fromΩ
𝑇
to Ω

𝑇𝑖
.

To use the formula (57) one has to solve 𝑁 weak
problems for the functions𝜓

𝑖
in domainsΩ

𝑇𝑖
. In the following

theorem, we will show that computational work related to
the evaluation of the Fréchet derivative can be considerably
reduced. Actually, it is sufficient to solve𝑁 weak problems in
the smaller domainsΩ

𝑇𝑖−𝑇𝑖−1
, 𝑖 = 1, . . . , 𝑁. Here, 𝑇

0
= 0.

Theorem6. TheFréchet derivative of the functional 𝐽
1
can also

be written in the form

𝐽


1
(𝜔) Δ𝜔

=

𝑁

∑

𝑗=1

∫
Ω

𝑁

∑

𝑙=1

∫

𝑇𝑙

𝑇𝑙−1

𝛾
𝑗
(𝑡) 𝛽

𝑙
(𝑥, 𝑇

𝑙
− 𝑡, 𝜔) 𝑑𝑡Δ𝜔

𝑗
(𝑥) 𝑑𝑥,

(65)

where 𝛽
𝑙
∈ U

0
(Ω

𝑇𝑙−𝑇𝑙−1
) are the unique 𝜔-dependent weak

solutions of the following sequence of recursive problems in the
domains Ω

𝑇𝑙−𝑇𝑙−1
:

𝛽
𝑙,𝑡
= 𝐴𝛽

𝑙
− 𝑚 ∗ 𝐴𝛽

𝑙
− 𝑎𝑓

𝑙
− ∇ ⋅ Φ

𝑙 in Ω
𝑇𝑙−𝑇𝑙−1

,

𝛽
𝑙
= 𝑢

𝑙

0
in Ω × {0} ,

𝛽
𝑙
= 0 in Γ

1,𝑇𝑙−𝑇𝑙−1
,

−𝜈
𝐴
⋅ ∇𝛽

𝑙
+ 𝑚 ∗ 𝜈

𝐴
⋅ ∇𝛽

𝑙
= 𝜗𝛽

𝑙
− 𝜈 ⋅ Φ

𝑙 in Γ
2,𝑇𝑙−𝑇𝑙−1

,

(66)

where 𝑙 = 𝑁,𝑁 − 1, . . . , 2, 1. Here,

𝑢
𝑙

0
(𝑥) = 2 [𝑢 (𝑥, 𝑇

𝑙
; 𝜔) − 𝑢

𝑇𝑙
(𝑥)] + Θ

𝑙
𝛽
𝑙+1
(𝑥, 𝑇

𝑙+1
− 𝑇

𝑙
)

(67)

and the function 𝑓𝑙 and the vector Φ𝑙 are defined via 𝛽
𝑁
,

𝛽
𝑁−1
, . . . , 𝛽

𝑙+1
as follows:

𝑓
𝑙
= Θ

𝑙

𝑁−1

∑

𝑘=𝑙

∫

𝑇𝑘+1−𝑇𝑘

0

𝑚(𝑇
𝑘
− 𝑇

𝑙
+ 𝑡 + 𝜏) 𝛽

𝑘+1

× (𝑥, 𝑇
𝑘+1
− 𝑇

𝑘
− 𝜏) 𝑑𝜏,

(68)

Φ
𝑙
= (Φ

𝑙

1
, . . . , Φ

𝑙

𝑛
), Φ𝑙

𝑖
= ∑

𝑛

𝑗=1
𝑎
𝑖𝑗
(𝜕/𝜕𝑥

𝑗
)𝑓

𝑙 and Θ
𝑁
= 0, Θ

𝑙
=

1 for 𝑙 < 𝑁.

Proof. Firstly, let us check that (66) indeed have unique
weak solutions 𝛽

𝑙
in U

0
(Ω

𝑇𝑙−𝑇𝑙−1
). To this end we can use

Theorem2. For the problem𝛽
𝑁
this is immediate, because the

initial condition of the problem for 𝛽
𝑁
belongs to 𝐿2(Ω) and

other equations in this problem are homogeneous. Further,
we use the induction. Choose some 𝑙 in the range𝑁 > 𝑙 ≥ 1
and suppose that 𝛽

𝑘+1
∈ U

0
(Ω

𝑇𝑘+1−𝑇𝑘
) for all 𝑘 such that

𝑁 − 1 ≥ 𝑘 ≥ 𝑙. The aim is to us to show that then the
problem for 𝛽

𝑙
has a unique weak solution in U

0
(Ω

𝑇𝑙−𝑇𝑙−1
).

Let us represent the 𝑘th addend in (68) in the form

𝐼
𝑘
= ∫

𝑇𝑘+1−𝑇𝑘

0

𝑚(𝑇
𝑘
− 𝑇

𝑙
+ 𝑡 + 𝜏) 𝛽

𝑘+1
(𝑥, 𝑇

𝑘+1
− 𝑇

𝑘
− 𝜏) 𝑑𝜏

= ∫

𝑇𝑘+1−𝑇𝑘+𝑡

𝑡

𝑚(𝑇
𝑘
− 𝑇

𝑙
+ 𝜏) 𝛽

𝑘+1
(𝑥, 𝑇

𝑘+1
− 𝑇

𝑘
+ 𝑡 − 𝜏) 𝑑𝜏.

(69)

For any 𝑘 in the range𝑁 − 1 ≥ 𝑘 ≥ 𝑙 we have

𝐼𝑘


2

𝐿
2((0,𝑇𝑙−𝑇𝑙−1);𝑊

1
2 (Ω))

≤ ∑

|𝛼|≤1

∫

𝑇𝑙−𝑇𝑙−1

0

[∫

𝑇𝑘+1−𝑇𝑘+𝑡

𝑡

𝑚 (𝑇𝑘 − 𝑇𝑙 + 𝜏)


⋅
𝐷

𝛼

𝑥
𝛽
𝑘+1
(⋅, 𝑇

𝑘+1
−𝑇

𝑘
+𝑡−𝜏)

𝐿2(Ω)
𝑑𝜏]

2

𝑑𝑡

= ∑

|𝛼|≤1

∫

𝑇𝑙−𝑇𝑙−1

0

[∫

𝑇𝑘+1−𝑇𝑘+𝑡

𝑡

∫

𝑇𝑘+1−𝑇𝑘+𝑡

0

𝑚 (𝑇𝑘 − 𝑇𝑙 + 𝜏)
 𝑧𝑘,𝛼

⋅ (𝑇
𝑘+1
− 𝑇

𝑘
+ 𝑡 − 𝜏) 𝑑𝜏]

2

𝑑𝑡

= ∑

|𝛼|≤1

∫

𝑇𝑙−𝑇𝑙−1+𝑇𝑘+1−𝑇𝑘

𝑇𝑘+1−𝑇𝑘

[∫

𝑡

0

𝑚
𝑘
(𝜏) 𝑧

𝑘,𝛼
(𝑡 − 𝜏) 𝑑𝜏]

2

𝑑𝑡,

(70)

where 𝑧
𝑘,𝛼
(𝑡) = ‖𝐷

𝛼

𝑥
𝛽
𝑘+1
(⋅, 𝑡)‖

𝐿
2
(Ω)

for 𝑡 ∈ [0, 𝑇
𝑘+1
− 𝑇

𝑘
],

𝑧
𝑘,𝛼
(𝑡) = 0 for 𝑡 ∉ [0, 𝑇

𝑘+1
− 𝑇

𝑘
] and𝑚

𝑘
(𝑡) = |𝑚(𝑇

𝑘
− 𝑇

𝑙
+ 𝑡)|.

Since 𝑚 ∈ 𝐿1(0, 𝑇) and 𝛽
𝑘+1
∈ 𝐿

2
((0, 𝑇

𝑘+1
− 𝑇

𝑘
);𝑊

1

2
(Ω)), we

have 𝑚
𝑘
∈ 𝐿

1
(0, 𝑇

𝑙
− 𝑇

𝑙−1
+ 𝑇

𝑘+1
− 𝑇

𝑘
) and 𝑧

𝑘,𝛼
∈ 𝐿

2
(0, 𝑇

𝑙
−

𝑇
𝑙−1
+𝑇

𝑘+1
−𝑇

𝑘
). Due to the Young’s theorem for convolutions,

we get 𝑚
𝑘
∗ 𝑧

𝑘,𝛼
∈ 𝐿

2
(0, 𝑇

𝑙
− 𝑇

𝑙−1
+ 𝑇

𝑘+1
− 𝑇

𝑘
). Therefore,

‖𝐼
𝑘
‖
2

𝐿
2
((0,𝑇𝑙−𝑇𝑙−1);𝑊

1
2 (Ω))

< ∞. This implies that 𝑓
𝑙
belongs to

𝐿
2
((0, 𝑇

𝑙
− 𝑇

𝑙−1
);𝑊

1

2
(Ω)). From the latter relation and 𝑎

𝑖𝑗
∈

𝐿
∞
(Ω) we immediately have Φ𝑙

∈ (𝐿
2
(Ω

𝑇𝑙−𝑇𝑙−1
))
𝑛. Using the

embedding theorem and Lemma 1 we see that 𝑎𝑓𝑙 satisfies
the property (14). Finally, the initial condition 𝑢𝑙

0
belongs

to 𝐿2(Ω), because 𝑢 − 𝑢
𝑇𝑙
, 𝛽

𝑙+1
∈ 𝐶([0, 𝑇

𝑙+1
− 𝑇

𝑙
], 𝐿

2
(Ω)).

All assumptions of Theorem 2 are satisfied for the problem
for 𝛽

𝑙
. Consequently, it possesses a unique weak solution in

U
0
(Ω

𝑇𝑙−𝑇𝑙−1
).
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Secondly, let us define the functions

𝛽
∗

𝑙
(𝑥, 𝑡) =

𝑁

∑

𝑖=𝑙

𝜓
𝑖
(𝑥, 𝑇

𝑖
− 𝑇

𝑙
+ 𝑡) for (𝑥, 𝑡) ∈ Ω

𝑇𝑙−𝑇𝑙−1
,

(71)

where 𝑙 = 1 . . . , 𝑁 and 𝜓
𝑖
are the solutions of (58). We are

going to show that 𝛽
𝑙
= 𝛽

∗

𝑙
, 𝑙 = 1, . . . , 𝑁. From the definition

of 𝛽∗
𝑙
using the value of 𝜓

𝑙
(𝑥, 0) and simple computations, we

immediately get

𝛽
∗

𝑙
(𝑥, 0) = 2 [𝑢 (𝑥, 𝑇

𝑙
; 𝜔) − 𝑢

𝑇𝑙
(𝑥)] + Θ

𝑙
𝛽
∗

𝑙+1
(𝑥, 𝑇

𝑙+1
− 𝑇

𝑙
) ,

𝑙 = 1, . . . , 𝑁.

(72)

Let us fix 𝑙 = 1, . . . , 𝑁 and choose some 𝜂 ∈ T(Ω
𝑇𝑙−𝑇𝑙−1

).
We continue 𝜂 by the formulae 𝜂(𝑥, 𝑡) = 𝜂(𝑥, 𝑇

𝑙
− 𝑇

𝑙−1
) for

𝑡 > 𝑇
𝑙
− 𝑇

𝑙−1
and 𝜂(𝑥, 𝑡) = 𝜂(𝑥, 0) for 𝑡 < 0. Further, let us

define 𝜂
𝑖
(𝑥, 𝑡) = 𝜂(𝑥, 𝑇

𝑙
− 𝑇

𝑖
+ 𝑡) where 𝑖 = 𝑙, . . . , 𝑁. By the

definition, it holds 𝜂
𝑖
∈ T(Ω

𝑇𝑖
).

Let us write down the weak form (31) for the problem for
𝜓
𝑖
(58) with the test function 𝜂

𝑖
. We fix some 𝑡 ∈ [0, 𝑇

𝑙
−

𝑇
𝑙−1
] and compute the difference of this weak problem with 𝑡

replaced by𝑇
𝑖
−𝑇

𝑙
+𝑡 and 𝑡 replaced by𝑇

𝑖
−𝑇

𝑙
and take the sum

over 𝑖 = 𝑙, . . . , 𝑁. This results in the following expression:

0 = 𝑍
1
+ 𝑍

2
+ 𝑍

3
+ 𝑍

4
, (73)

where

𝑍
1
=

𝑁

∑

𝑖=𝑙

∫
Ω

[𝜓
𝑖
(𝑥, 𝑇

𝑖
− 𝑇

𝑙
+ 𝑡) 𝜂

𝑖
(𝑥, 𝑇

𝑖
− 𝑇

𝑙
+ 𝑡)

−𝜓
𝑖
(𝑥, 𝑇

𝑖
− 𝑇

𝑙
) 𝜂

𝑖
(𝑥, 𝑇

𝑖
− 𝑇

𝑙
)] 𝑑𝑥,

𝑍
2
=

𝑁

∑

𝑖=𝑙

∫∫
Ω𝑇𝑖−𝑇𝑙+𝑡

\Ω𝑇𝑖−𝑇𝑙

[

[

− 𝜓
𝑖
𝜂
𝑖,𝑡

+

𝑛

∑

𝑠,𝑗=1

𝑎
𝑠𝑗
𝜓
𝑖,𝑥𝑗
𝜂
𝑖,𝑥𝑠
− 𝑎𝜓

𝑖
𝜂
𝑖
]

]

𝑑𝑥𝑑𝑡

+

𝑁

∑

𝑖=𝑙

∫∫
Γ2,𝑇𝑖−𝑇𝑙+𝑡

\Γ2,𝑇𝑖−𝑇𝑙

𝜗𝜓
𝑖
𝜂
𝑖
𝑑Γ𝑑𝑡,

𝑍
3
=

𝑁

∑

𝑖=𝑙

∫∫
Ω𝑇𝑖−𝑇𝑙+𝑡

\Ω𝑇𝑖−𝑇𝑙

𝑎𝑚 ∗ 𝜓
𝑖
𝜂
𝑖
𝑑𝑥𝑑𝑡,

𝑍
4
= −

𝑁

∑

𝑖=𝑙

∫∫
Ω𝑇𝑖−𝑇𝑙+𝑡

\Ω𝑇𝑖−𝑇𝑙

𝑛

∑

𝑠,𝑗=1

𝑎
𝑠𝑗
𝑚 ∗ 𝜓

𝑖,𝑥𝑗
𝜂
𝑖,𝑥𝑠
𝑑𝑥𝑑𝑡.

(74)

Using the definitions of 𝜂 and 𝛽∗
𝑙
and the formula (72), we

have

𝑍
1
= ∫

Ω

[𝛽
∗

𝑙
(𝑥, 𝑡) 𝜂 (𝑥, 𝑡) − 𝛽

∗

𝑙
(𝑥, 0) 𝜂 (𝑥, 0)] 𝑑𝑥

= ∫
Ω

[𝛽
∗

𝑙
(𝑥, 𝑡) 𝜂 (𝑥, 𝑡)

− {2 [𝑢 (𝑥, 𝑇
𝑙
; 𝜔)−𝑢

𝑇𝑙
(𝑥)]+Θ

𝑙
𝛽
∗

𝑙+1
(𝑥, 𝑇

𝑙+1
−𝑇

𝑙
)}

×𝜂 (𝑥, 0) ] 𝑑𝑥.

(75)

Similarly, using the definitions of 𝜂 and 𝛽∗
𝑙
and changing the

variable of integration in 𝑍
2
, we deduce

𝑍
2
= ∫∫

Ω𝑡

[

[

−𝛽
∗

𝑙
𝜂
𝑡
+

𝑛

∑

𝑠,𝑗=1

𝑎
𝑠𝑗
𝛽
∗

𝑙
𝜂
𝑥𝑠
− 𝑎𝛽

∗

𝑙
𝜂]

]

𝑑𝑥𝑑𝑡

+ ∫∫
Γ2,𝑡

𝜗𝛽
∗

𝑙
𝜂𝑑Γ𝑑𝑡.

(76)

By the change of variable, the quantity 𝑍
3
is transformed to

𝑍
3
= ∫∫

Ω𝑡

𝑎 (𝑥)

𝑁

∑

𝑖=𝑙

(𝑚 ∗ 𝜓
𝑖
) (𝑥, 𝑇

𝑖
− 𝑇

𝑙
+ 𝑡) 𝜂 (𝑥, 𝑡) 𝑑𝑥𝑑𝑡.

(77)

Let us consider the term∑𝑁

𝑖=𝑙
(𝑚∗𝜓

𝑖
)(𝑥, 𝑇

𝑖
−𝑇

𝑙
+𝑡) in the latter

formula. We compute
𝑁

∑

𝑖=𝑙

(𝑚 ∗ 𝜓
𝑖
) (𝑥, 𝑇

𝑖
− 𝑇

𝑙
+ 𝑡)

=

𝑁

∑

𝑖=𝑙

∫

𝑇𝑖−𝑇𝑙+𝑡

0

𝑚(𝜏) 𝜓
𝑖
(𝑥, 𝑇

𝑖
− 𝑇

𝑙
+ 𝑡 − 𝜏) 𝑑𝜏

= ∫

𝑡

0

𝑚(𝜏)

𝑁

∑

𝑖=𝑙

𝜓
𝑖
(𝑥, 𝑇

𝑖
− 𝑇

𝑙
+ 𝑡 − 𝜏) 𝑑𝜏

+

𝑁

∑

𝑖=𝑙

∫

𝑇𝑖−𝑇𝑙+𝑡

𝑡

𝑚(𝜏) 𝜓
𝑖
(𝑥, 𝑇

𝑖
− 𝑇

𝑙
+ 𝑡 − 𝜏) 𝑑𝜏

= ∫

𝑡

0

𝑚(𝜏) 𝛽
∗

𝑙
(𝑥, 𝑡 − 𝜏) 𝑑𝜏

+

𝑁

∑

𝑖=𝑙

𝑖−1

∑

𝑘=𝑙

∫

𝑇𝑘+1−𝑇𝑘

0

𝑚(𝑇
𝑘
− 𝑇

𝑙
+ 𝑡 + 𝜏) 𝜓

𝑖
(𝑥, 𝑇

𝑖
− 𝑇

𝑘
− 𝜏) 𝑑𝜏

= (𝑚 ∗ 𝛽
∗

𝑙
) (𝑥, 𝑡)

+

𝑁−1

∑

𝑘=𝑙

∫

𝑇𝑘+1−𝑇𝑘

0

𝑚(𝑇
𝑘
− 𝑇

𝑙
+ 𝑡 + 𝜏)

×

𝑁

∑

𝑖=𝑘+1

𝜓
𝑖
(𝑥, 𝑇

𝑖
− 𝑇

𝑘
− 𝜏) 𝑑𝜏
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= (𝑚 ∗ 𝛽
∗

𝑙
) (𝑥, 𝑡)

+

𝑁−1

∑

𝑘=𝑙

∫

𝑇𝑘+1−𝑇𝑘

0

𝑚(𝑇
𝑘
− 𝑇

𝑙
+ 𝑡 + 𝜏)

× 𝛽
∗

𝑘+1
(𝑥, 𝑇

𝑘+1
− 𝑇

𝑘
− 𝜏) 𝑑𝜏.

(78)

Thus, (77) reads

𝑍
3

= ∫∫
Ω𝑡

𝑎𝑚 ∗ 𝛽
∗

𝑙
𝜂𝑑𝑥𝑑𝑡

+ ∫∫
Ω𝑡

𝑎[

𝑁−1

∑

𝑘=𝑙

∫

𝑇𝑘+1−𝑇𝑘

0

𝑚(𝑇
𝑘
− 𝑇

𝑙
+ 𝑡 + 𝜏)

×𝛽
∗

𝑘+1
(𝑥, 𝑇

𝑘+1
− 𝑇

𝑘
− 𝜏) 𝑑𝜏] 𝜂𝑑𝑥𝑑𝑡.

(79)

Using similar computations, we obtain

𝑍
4
= −∫∫

Ω𝑡

𝑛

∑

𝑠,𝑗=1

𝑎
𝑠𝑗
𝑚 ∗ 𝛽

∗

𝑙,𝑥𝑗
𝜂
𝑥𝑠
𝑑𝑥𝑑𝑡 − ∫∫

Ω𝑡

𝑛

∑

𝑠,𝑗=1

𝑎
𝑠𝑗

× [

𝑁−1

∑

𝑘=𝑙

∫

𝑇𝑘+1−𝑇𝑘

0

𝑚(𝑇
𝑘
− 𝑇

𝑙
+ 𝑡 + 𝜏)

×𝛽
∗

𝑘+1,𝑥𝑗
(𝑥, 𝑇

𝑘+1
− 𝑇

𝑘
− 𝜏) 𝑑𝜏] 𝜂

𝑥𝑠
𝑑𝑥𝑑𝑡.

(80)

Plugging (75), (76), (79), and (80) into (73), we arrive at a
certain weak problem for 𝛽∗

𝑙
that coincides with the weak

problem for 𝛽
𝑙
. Moreover, since 𝜓

𝑖
∈ U

0
(Ω

𝑇𝑖
), from (71) we

see that𝛽∗
𝑙
∈ U

0
(Ω

𝑇𝑙−𝑇𝑙−1
). But we have shown the uniqueness

of the weak solutions of the problems for 𝛽
𝑙
in U

0
(Ω

𝑇𝑙−𝑇𝑙−1
).

This implies 𝛽∗
𝑙
= 𝛽

𝑙
.

Finally, from (57), we have

𝐽


1
(𝜔) Δ𝜔 =

𝑁

∑

𝑗=1

∫
Ω

𝑁

∑

𝑖=1

∫

𝑇𝑖

0

𝛾
𝑗
(𝑡) 𝜓

𝑖
(𝑥, 𝑇

𝑖
− 𝑡) 𝑑𝑡Δ𝜔

𝑗
(𝑥) 𝑑𝑥

=

𝑁

∑

𝑗=1

∫
Ω

𝑁

∑

𝑖=1

𝑖

∑

𝑙=1

∫

𝑇𝑙

𝑇𝑙−1

𝛾
𝑗
(𝑡) 𝜓

𝑖
(𝑥, 𝑇

𝑖
− 𝑡) 𝑑𝑡Δ𝜔

𝑗
(𝑥) 𝑑𝑥.

(81)

Changing here the order of sums over 𝑖 and 𝑙 and observing
(71) with 𝛽∗

𝑙
replaced by 𝛽

𝑙
, we obtain (65). The proof is

complete.

5.3. Derivative of 𝐽
2

Theorem 7. The functional 𝐽
2
is the Fréchet differentiable in

(𝐿
2
(Ω))

𝑁+1 and

𝐽


2
(𝑧) Δ𝑧 =

𝑁

∑

𝑗=1

∫
Ω

∫

𝑇

0

𝛾
𝑗
(𝑡) 𝜓 (𝑥, 𝑇 − 𝑡; 𝑧) 𝑑𝑡 Δ𝜔

𝑗
(𝑥) 𝑑𝑥

+ ∫
Ω

𝜓 (𝑥, 𝑇; 𝑧) Δ𝑢
0
(𝑥) 𝑑𝑥,

(82)

where 𝜓 ∈ U(Ω
𝑇
) is the unique 𝑧-dependent weak solution of

the following problem:

𝜓
𝑡
= 𝐴𝜓 − 𝑚 ∗ 𝐴𝜓

+ 2

𝑁+1

∑

𝑖=1

𝜅
𝑖
(𝑥, 𝑇 − 𝑡)

× [∫

𝑇

0

𝜅
𝑖
(𝑥, 𝜏) 𝑢 (𝑥, 𝜏; 𝑧) 𝑑𝜏 − 𝑣

𝑖
(𝑥)] in Ω

𝑇
,

𝜓 = 0 in Ω × {0} ,

𝜓 = 0 in Γ
1,𝑇
,

−𝜈
𝐴
⋅ ∇𝜓 + 𝑚 ∗ 𝜈

𝐴
⋅ ∇𝜓 = 𝜗𝜓 in Γ

2,𝑇
.

(83)

Proof. Let us fix some Δ𝑧 = (Δ𝜔, Δ𝑢
0
) ∈ (𝐿

2
(Ω))

𝑁+1. It holds

𝐽
2
(𝑧 + Δ𝑧) − 𝐽

2
(𝑧)

= 2

𝑁+1

∑

𝑖=1

∫
Ω

∫

𝑇

0

𝜅
𝑖
(𝑥, 𝑡)

× [∫

𝑇

0

𝜅
𝑖
(𝑥, 𝜏) 𝑢 (𝑥, 𝜏; 𝑧) 𝑑𝜏 − 𝑣

𝑖
(𝑥)]

× Δ𝑢 (𝑥, 𝑡; 𝑧) 𝑑𝑡𝑑𝑥

+

𝑁+1

∑

𝑖=1

∫
Ω

[∫

𝑇

0

𝜅
𝑖
(𝑥, 𝑡) Δ𝑢 (𝑥, 𝑡; 𝑧) 𝑑𝑡]

2

𝑑𝑥,

(84)

where Δ𝑢(𝑥, 𝑡; 𝑧) = 𝑢(𝑥, 𝑡; 𝑧+Δ𝑧)−𝑢(𝑥, 𝑡; 𝑧) ∈ U
0
(Ω

𝑇
) is the

weak solution of the following problem:

Δ𝑢
𝑡
= 𝐴Δ𝑢 − 𝑚 ∗ 𝐴Δ𝑢 +

𝑁

∑

𝑗=1

𝛾
𝑗
Δ𝜔

𝑗
in Ω

𝑇
,

Δ𝑢 = Δ𝑢
0

in Ω × {0} ,

Δ𝑢 = 0 in Γ
1,𝑇
,

−𝜈
𝐴
⋅ ∇Δ𝑢 + 𝑚 ∗ 𝜈

𝐴
⋅ ∇Δ𝑢 = 𝜗Δ𝑢 in Γ

2,𝑇
.

(85)
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Using (43), the Cauchy inequality and estimate (20) from
Theorem 2 for the problem of Δ𝑢(𝑥, 𝑡; 𝑧), we come to the
estimate



𝑁+1

∑

𝑖=1

∫
Ω

[∫

𝑇

0

𝜅
𝑖
(𝑥, 𝑡) Δ𝑢 (𝑥, 𝑡; 𝑧) 𝑑𝑡]

2

𝑑𝑥



≤ (𝑁 + 1) ‖𝜅‖
2

𝐿
2
(0,𝑇)
‖Δ𝑢‖

2

𝐿
2(Ω𝑇)

≤ 𝐶
5
(𝑁 + 1) ‖𝜅‖

2

𝐿
2
(0,𝑇)
‖Δ𝑢‖

2

U(Ω𝑇)
≤ 𝐶

6‖Δ𝑧‖
2

(𝐿2(Ω))
𝑁+1 ,

(86)

with some constants 𝐶
5
and 𝐶

6
. Therefore, 𝐽

2
is the Fréchet

differentiable and the first term in the right-hand side of (84)
represents the Fréchet derivative, that is,

𝐽


2
(𝑧) Δ𝑧 = 2

𝑁+1

∑

𝑖=1

∫
Ω

∫

𝑇

0

𝜅
𝑖
(𝑥, 𝑡)

× [∫

𝑇

0

𝜅
𝑖
(𝑥, 𝜏) 𝑢 (𝑥, 𝜏; 𝑧) 𝑑𝜏 − 𝑣

𝑖
(𝑥)]

× Δ𝑢 (𝑥, 𝑡; 𝑧) 𝑑𝑡𝑑𝑥.

(87)

Comparing (85) with (49)–(52), we see that𝑓†
= ∑

𝑁

𝑗=1
𝛾
𝑗
Δ𝜔

𝑗
,

𝜙
†
= ℎ

†
= 0. Consequently, the relation (56) has the form

∫
Ω

𝑢
∘
(𝑥) Δ𝑢 (𝑥, 𝑡) 𝑑𝑥 − ∫

Γ2

ℎ
∘
∗ Δ𝑢𝑑Γ

+ ∫
Ω

(𝑓
∘
∗ Δ𝑢 −

𝑛

∑

𝑖=1

𝜙
∘

𝑖
∗ Δ𝑢

𝑥𝑖
)𝑑𝑥

= ∫
Ω

Δ𝑢
0
(𝑥) 𝜓 (𝑥, 𝑡) 𝑑𝑥

+

𝑁

∑

𝑗=1

∫
Ω

𝛾
𝑗
Δ𝜔

𝑗
∗ 𝜓𝑑𝑥, 𝑡 ∈ [0, 𝑇] .

(88)

To deduce a formula for 𝐽
2
(𝑧)Δ𝑧, we define

𝑓
∘
= 2

𝑁+1

∑

𝑖=1

𝜅
𝑖
(𝑥, 𝑇 − 𝑡) [∫

𝑇

0

𝜅
𝑖
(𝑥, 𝜏) 𝑢 (𝑥, 𝜏; 𝑧) 𝑑𝜏 − 𝑣

𝑖
(𝑥)] ,

(89)

𝑢
∘
= ℎ

∘
= 𝜙

∘
= 0 and 𝑡 = 𝑇 in (88). Then from (87) and (88),

we obtain (82), where due to (53), 𝜓
𝑖
is the weak solution of

the problem (83). In view of Theorem 2, this problem has a
unique solution inU(Ω

𝑇
).

5.4. Derivative of 𝐽
3

Theorem 8. The functional 𝐽
3
is the Fréchet differentiable in

𝐿
2
(Ω) × 𝐿

2
(0, 𝑇) and

𝐽


3
(𝑧) Δ𝑧 = ∫

Ω

[(𝑢 − 𝑚 ∗ 𝑢) ∗ 𝜓] (𝑥, 𝑇; 𝑧) Δ𝑎 (𝑥) 𝑑𝑥

+ ∫

𝑇

0

∫
Ω

[

[

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝑢
𝑥𝑗
∗ 𝜓

𝑥𝑖
− 𝑎𝑢 ∗ 𝜓]

]

× (𝑥, 𝑇 − 𝑡; 𝑧) 𝑑𝑥Δ𝑚 (𝑡) 𝑑𝑡,

(90)

where 𝜓 ∈ U
0
(Ω

𝑇
) is the unique 𝑧-dependent weak solution of

the problem

𝜓
𝑡
= 𝐴𝜓 − 𝑚 ∗ 𝐴𝜓 in Ω

𝑇
,

𝜓 = 2 [𝑢 (𝑥, 𝑇; 𝑧) − 𝑢
𝑇
(𝑥)] in Ω × {0} ,

𝜓 = 0 in Γ
1,𝑇
,

− 𝜈
𝐴
⋅ ∇𝜓 + 𝑚 ∗ 𝜈

𝐴
⋅ ∇𝜓 = 𝜗𝜓

− 2𝜅 (𝑥, 𝑇 − 𝑡)

×[∫
Γ2

𝜅 (𝑦, 𝑇− 𝑡) 𝑢 (𝑦, 𝑇− 𝑡; 𝑧) 𝑑Γ− 𝑣 (𝑇 − 𝑡)] in Γ
2,𝑇
.

(91)

Proof. Due to 𝑢(𝑥, 𝑡; 𝑧) ∈ U(Ω
𝑇
), 𝜅 ∈ 𝐿∞((0, 𝑇); 𝐿2(Γ

2
)),

𝑣 ∈ 𝐿
2
(0, 𝑇), and 𝑢

𝑇
∈ 𝐿

2
(Ω), the problem (91) satisfies the

assumptions of Theorem 2. Therefore, it has a unique weak
solution inU

0
(Ω

𝑇
).

Let Δ𝑧 = (Δ𝑎, Δ𝑚) ∈ 𝐿2(Ω) × 𝐿2(0, 𝑇) and define Δ̃𝑢 =
𝑢(𝑥, 𝑡; 𝑧+Δ𝑧)−𝑢(𝑥, 𝑡; 𝑧).We split Δ̃𝑢 as follows: Δ̃𝑢 = Δ𝑢+Δ̂𝑢,
where Δ𝑢 is the weak solution of the following problem:

Δ𝑢
𝑡
= 𝐴Δ𝑢 − 𝑚 ∗ 𝐴Δ𝑢 + Δ𝑎 [𝑢 − 𝑚 ∗ 𝑢] − Δ𝑚 ∗ 𝑎𝑢

− ∇ ⋅ [

[

Δ𝑚 ∗

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑢
𝑥𝑗

]

]

in Ω
𝑇
,

Δ𝑢 = 0 in Ω × {0} ,

Δ𝑢 = 0 in Γ
1,𝑇
,

− 𝜈
𝐴
⋅ ∇Δ𝑢 + 𝑚 ∗ 𝜈

𝐴
⋅ ∇Δ𝑢

= 𝜗Δ𝑢 − 𝜈 ⋅ [

[

Δ𝑚 ∗

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑢
𝑥𝑗

]

]

in Γ
2,𝑇
.

(92)

In view of Lemma 1(i), 𝑢 ∈ U(Ω
𝑇
), 𝑚 ∈ 𝐿

1
(0, 𝑇), and the

Young’s theorem, it holds 𝑢 − 𝑚 ∗ 𝑢 ∈ 𝐿2((0, 𝑇); 𝐿𝑞3(Ω)).
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Therefore, Lemma 1(ii) implies

‖Δ𝑎 [𝑢 − 𝑚 ∗ 𝑢]‖
𝐿
2
((0,𝑇);𝐿

𝑞2 (Ω))
≤ 𝐶

8
(𝑢,𝑚) ‖Δ𝑎‖𝐿𝑞1 (Ω)

≤ 𝐶
9
(𝑢,𝑚) ‖Δ𝑎‖𝐿2(Ω)

,

(93)

where 𝐶
8
and 𝐶

9
are some constants depending on 𝑢,𝑚.

Moreover, since 𝑢 ∈ 𝐿2((0, 𝑇);𝑊1

2
(Ω)), by Young’s inequality

we have also



Δ𝑚 ∗

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑢
𝑥𝑗

(𝐿2(Ω𝑇))
𝑛

≤ 𝐶
10
(𝑢) ‖Δ𝑚‖𝐿1(0,𝑇)

≤ 𝐶
11
(𝑢) ‖Δ𝑚‖𝐿2(0,𝑇),

(94)

with some constants 𝐶
10

and 𝐶
11

depending on 𝑢. The
obtained estimates show that assumptions of Theorem 2 are
satisfied for the problem (92) and it indeed has a unique weak
solution Δ𝑢 ∈ U(Ω

𝑇
). Moreover, applying the relation (20)

fromTheorem 2, we get

‖Δ𝑢‖U(Ω𝑇)
≤ 𝐶

12
(𝑚, 𝑢) [‖Δ𝑎‖𝐿2(Ω)

+ ‖Δ𝑚‖𝐿2(0,𝑇)]

= 𝐶
12
(𝑚, 𝑢) ‖Δ𝑧‖ ,

(95)

where 𝐶
12
(𝑚, 𝑢) is a constant depending on𝑚, 𝑢.

Further, writing the problem for Δ̃𝑢 and subtracting the
problem for Δ𝑢, we obtain the following problem for Δ̂𝑢:

Δ̂𝑢
𝑡
= 𝐴Δ̂𝑢 − 𝑚 ∗ 𝐴Δ̂𝑢 + 𝑓 + 𝑓 + ∇ ⋅ 𝜙 + ∇ ⋅ 𝜙 in Ω

𝑇
,

Δ̂𝑢 = 0 in Ω × {0} ,

Δ̂𝑢 = 0 in Γ
1,𝑇
,

−𝜈
𝐴
⋅ ∇Δ̂𝑢 + 𝑚 ∗ 𝜈

𝐴
⋅ ∇Δ̂𝑢 = 𝜗Δ̂𝑢 + 𝜈 ⋅ 𝜙 + 𝜈 ⋅ 𝜙 in Γ

2,𝑇
,

(96)

where

𝑓 = Δ𝑎Δ𝑢 − (𝑚 + Δ𝑚) ∗ Δ𝑎Δ𝑢 − Δ𝑚 ∗ Δ𝑎𝑢 − Δ𝑚 ∗ 𝑎Δ𝑢,

𝑓 = Δ𝑎Δ̂𝑢 − (𝑚 + Δ𝑚) ∗ Δ𝑎Δ̂𝑢 − Δ𝑚 ∗ 𝑎Δ̂𝑢,

𝜙 = − Δ𝑚 ∗

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
Δ𝑢

𝑥𝑗
, 𝜙 = −Δ𝑚 ∗

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
Δ̂𝑢

𝑥𝑗
.

(97)

Using again Lemma 1 and the Young’s inequality, we
deduce the estimates

𝑓
𝐿2((0,𝑇);𝐿𝑞2 (Ω))

≤ 𝐶
13
{[‖Δ𝑎‖𝐿2(Ω)

+ {‖𝑚‖𝐿2(0,𝑇) + ‖Δ𝑚‖𝐿2(0,𝑇)} ‖Δ𝑎‖𝐿2(Ω)

+‖Δ𝑚‖𝐿2(0,𝑇)‖𝑎‖𝐿2(Ω)
] ‖Δ𝑢‖U(Ω𝑇)

+‖𝑢‖U(Ω𝑇)
‖Δ𝑎‖𝐿2(Ω)‖Δ𝑚‖𝐿2(0,𝑇)}

≤ 𝐶
14
(𝑧, 𝑢) {[‖Δ𝑧‖ + ‖Δ𝑧‖

2
] ‖Δ𝑢‖U(Ω𝑇)

+ ‖Δ𝑧‖
2
} ,


𝑓
𝐿2((0,𝑇);𝐿𝑞2 (Ω))

≤ 𝐶
15
(𝑧) [‖Δ𝑧‖ + ‖Δ𝑧‖

2
]

Δ̂𝑢
U(Ω𝑇)

,

𝜙
(𝐿2(Ω𝑇))

𝑛 ≤ 𝐶
16‖Δ𝑚‖𝐿2(0,𝑇)‖Δ𝑢‖U(Ω𝑇)

≤ 𝐶
16 ‖Δ𝑧‖ ‖Δ𝑢‖U(Ω𝑇)

,


𝜙
(𝐿2(Ω𝑇))

𝑛 ≤ 𝐶17 ‖Δ𝑧‖

Δ̂𝑢
U(Ω𝑇)

,

(98)

with some constants 𝐶
13
⋅ ⋅ ⋅ 𝐶

17
. Therefore, applying the

relation (20) to the solution of the problem (96) we obtain


Δ̂𝑢
U(Ω𝑇)

≤ 𝐶
18
(𝑧, 𝑢)

× {[‖Δ𝑧‖ + ‖Δ𝑧‖
2
] {‖Δ𝑢‖U(Ω𝑇)

+

Δ̂𝑢
U(Ω𝑇)

} + ‖Δ𝑧‖
2
} ,

(99)

with some constant 𝐶
18
. In case ‖Δ𝑧‖ is small enough, that is,

‖Δ𝑧‖ + ‖Δ𝑧‖
2
≤

1

2𝐶
18
(𝑧, 𝑢)

, (100)

we have


Δ̂𝑢
U(Ω𝑇)

≤ 2𝐶
18
(𝑧, 𝑢)

× {[‖Δ𝑧‖ + ‖Δ𝑧‖
2
] ‖Δ𝑢‖U(Ω𝑇)

+ ‖Δ𝑧‖
2
} .

(101)

In view of (95), this implies


Δ̂𝑢
U(Ω𝑇)

≤ 𝐶
19
(𝑧, 𝑢) [‖Δ𝑧‖

2
+ ‖Δ𝑧‖

3
] , (102)

with a constant 𝐶
19
.

Similarly, for the solution of the problem (92), we deduce
the estimate

‖Δ𝑢‖U(Ω𝑇)
≤ 𝐶

20
(𝑧, 𝑢) ‖Δ𝑧‖ , (103)

with a constant 𝐶
20
.
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Now, we write the difference of 𝐽
3
in the following form:

𝐽
3
(𝑧 + Δ𝑧) − 𝐽

3
(𝑧)

= 2∫
Ω

[𝑢 (𝑥, 𝑇; 𝑧) − 𝑢
𝑇
(𝑥)] Δ𝑢 (𝑥, 𝑇; 𝑧) 𝑑𝑥

+ 2∫

𝑇

0

∫
Γ2

𝜅 (𝑥, 𝑡) [∫
Γ2

𝜅 (𝑦, 𝑡) 𝑢 (𝑦, 𝑡; 𝑧) 𝑑Γ − 𝑣 (𝑡)]

× Δ𝑢 (𝑥, 𝑡; 𝑧) 𝑑Γ𝑑𝑡 + Θ,

(104)
where

Θ = 2∫
Ω

[𝑢 (𝑥, 𝑇; 𝑧) − 𝑢
𝑇
(𝑥)] Δ̂𝑢 (𝑥, 𝑇; 𝑧) 𝑑𝑥

+ 2∫

𝑇

0

∫
Γ2

𝜅 (𝑥, 𝑡) [∫
Γ2

𝜅 (𝑦, 𝑡) 𝑢 (𝑦, 𝑡; 𝑧) 𝑑Γ − 𝑣 (𝑡)]

× Δ̂𝑢 (𝑥, 𝑡; 𝑧) 𝑑Γ𝑑𝑡

+ ∫
Ω

{(Δ𝑢 + Δ̂𝑢) (𝑥, 𝑇; 𝑧)}
2

𝑑𝑥

+ ∫

𝑇

0

{∫
Γ2

𝜅 (𝑥, 𝑡) (Δ𝑢 + Δ̂𝑢) (𝑥, 𝑡; 𝑧) 𝑑Γ}

2

𝑑𝑡.

(105)

Using (102), (103), and the property 𝜅 ∈ 𝐿∞((0, 𝑇); 𝐿2(Γ
2
)), we

obtain the estimate |Θ| ≤ 𝐶
21
(𝑧, 𝑢)∑

6

𝑗=2
‖Δ𝑧‖

𝑗 in case (100).
This shows that 𝐽

3
is the Fréchet differentiable and

𝐽


3
(𝑧) Δ𝑧 = 2∫

Ω

[𝑢 (𝑥, 𝑇; 𝑧) − 𝑢
𝑇
(𝑥)] Δ𝑢 (𝑥, 𝑇; 𝑧) 𝑑𝑥

+ 2∫

𝑇

0

∫
Γ2

𝜅 (𝑥, 𝑡)

× [∫
Γ2

𝜅 (𝑦, 𝑡) 𝑢 (𝑦, 𝑡; 𝑧) 𝑑Γ − 𝑣 (𝑡)]

× Δ𝑢 (𝑥, 𝑡; 𝑧) 𝑑Γ𝑑𝑡.

(106)
Finally, let us prove (90) and (91). Comparing (92) with

(49)–(52), we see that 𝑓†
= Δ𝑎[𝑢 − 𝑚 ∗ 𝑢] − Δ𝑚 ∗ 𝑎𝑢, 𝜙†

𝑖
=

−Δ𝑚 ∗ ∑
𝑛

𝑗=1
𝑎
𝑖𝑗
𝑢
𝑥𝑗
and Δ𝑢

0
= ℎ

†
= 0. Thus, (56) reads

∫
Ω

𝑢
∘
(𝑥) Δ𝑢 (𝑥, 𝑡) 𝑑𝑥 − ∫

Γ2

ℎ
∘
∗ Δ𝑢𝑑Γ

+ ∫
Ω

(𝑓
∘
∗ Δ𝑢 −

𝑛

∑

𝑖=1

𝜙
∘

𝑖
∗ Δ𝑢

𝑥𝑖
)𝑑𝑥

= ∫
Ω

({Δ𝑎 [𝑢 − 𝑚 ∗ 𝑢] − Δ𝑚 ∗ 𝑎𝑢} ∗ 𝜓

+Δ𝑚 ∗

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝑢
𝑥𝑗
∗ 𝜓

𝑥𝑖
)𝑑𝑥, 𝑡 ∈ [0, 𝑇] .

(107)

In order to obtain a formula for the right-hand side in (106),
we set 𝑢∘ = 2[𝑢(𝑥, 𝑇; 𝑧) − 𝑢

𝑇
(𝑥)],

ℎ
∘
(𝑥, 𝑡) = − 2𝜅 (𝑥, 𝑇 − 𝑡)

× [∫
Γ2

𝜅 (𝑦, 𝑇 − 𝑡) 𝑢 (𝑦, 𝑇 − 𝑡; 𝑧) 𝑑Γ − 𝑣 (𝑇 − 𝑡)] ,

(108)

𝑓
∘
= 𝜙

∘
= 0 and 𝑡 = 𝑇. Then, we obtain (90), where in view

of (53) the function 𝜓 is the weak solution of (91).

6. Further Aspects of Minimisation

6.1. Existence of Quasisolutions. For the convenience, we will
use also the symbol 𝑧 to denote the argument 𝜔 of 𝐽

1
.

Theorem 9. (i) Let 𝑘 ∈ {1; 2} and 𝑀 ⊂ Z
𝑘
be bounded,

closed, and convex. Then, IPk has a quasi-solution in𝑀. The
set of quasisolutions is closed and convex.

(ii) Let 𝑘 ∈ {1; 2; 3} and𝑀 ⊂Z
3
be compact.Then IPk has

a quasi-solution in𝑀.

Proof. Let us prove (i). The existence assertion follows from
Weierstrass existence theorem (see [24, Section 2.5, Theo-
rem 2D]) once we have proved that 𝐽

𝑘
is weakly sequentially

lower semicontinuous inF, that is,

𝐽
𝑘
(𝑧) ≤ lim inf

𝑛→∞
𝐽
𝑘
(𝑧

𝑛
) as 𝑧

𝑛
⇀ 𝑧 in Z

𝑘
. (109)

But (109) follows from the continuity and convexity of
𝐽
𝑘
[24]. The convexity of 𝐽

𝑘
can be immediately deduced

making use of the linearity of the ingredient 𝑢(𝑥, 𝑡; 𝑧) with
respect to 𝑧 inside the quadratic functional 𝐽

𝑘
(for similar

computations see [25, Theorem 2]). The closedness of the
set of quasisolutions is again a direct consequence of the
continuity of 𝐽

𝑘
. The convexity of the set of solutions follows

from the convexity of 𝐽
𝑘
.

Next, we prove (ii). Let 𝑚 = inf
𝑧∈𝑀
𝐽
𝑘
(𝑧) and 𝑧

𝑙
∈ 𝑀

be the minimising sequence, that is, lim 𝐽
𝑘
(𝑧

𝑙
) = 𝑚. By the

compactness, there exists a subsequence 𝑧
𝑙𝑗
∈ 𝑀 such that

lim 𝑧
𝑙𝑗
= 𝑧

∗
∈ 𝑀. Due to the continuity of 𝐽

𝑘
we have

lim 𝐽
𝑘
(𝑧

𝑙𝑗
) = 𝐽

𝑘
(𝑧

∗
). Thus, 𝐽

𝑘
(𝑧

∗
) = 𝑚. This proves (ii).

In practice, the compact set 𝑀 may be a bounded
and closed finite-dimensional subset of Z

𝑘
. The proof of

weak lower semicontinuity of 𝐽
3
may be harder because this

functional is not convex.

6.2. Discretisation and Minimisation. Let us consider the
penalised discrete problems

𝑧
†
∈ arg min

𝑧∈Z𝑘,𝐿

Φ
𝑘,𝐿
(𝑧) , Φ

𝑘,𝐿
= Π

𝐿
(𝑧) + 𝐽

𝑘
(𝑧) ,

(110)

where 𝑘 ∈ {1; 2; 3}, Z
𝑘,𝐿

is an 𝐿-dimensional subspace of
𝑍
𝑘
(𝐿 ∈ {1, 2, . . .}) and Π

𝐿
is a penalty function related to
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the set𝑀
𝐿
= 𝑃

𝐿
𝑀 with 𝑃

𝐿
being the orthogonal projection

ontoZ
𝑘,𝐿
. The general assumptions for Π

𝐿
are

Π
𝐿
-accretive, convex, Fréchet differentiable,

Π


𝐿
-uniformly Lipschitz continuous in Z

𝑘,𝐿
.

(111)

Theorem 10. The problem (110) has a solution.

Proof. The proof repeats the proof of the statement (ii) of
Theorem 9, because in view of the accretivity of Φ

𝑘,𝐿
, a

minimizing sequence is bounded and in a finite-dimensional
space any bounded sequence is compact.

The Fréchet derivative of Φ
𝑘,𝐿
, that is, Φ

𝑘,𝐿
(𝑧) = Π



𝐿
(𝑧) +

𝐽


𝑘
(𝑧) ∈Z∗

𝑘,𝐿
=Z

𝑘,𝐿
can be identified by a certain element in

Z
𝑘,𝐿
, that is,

Φ


𝑘,𝐿
(𝑧) Δ𝑧 = ⟨Φ



𝑘,𝐿
(𝑧) , Δ𝑧⟩

Z𝑘
∀Δ𝑧 ∈Z

𝑘,𝐿
, (112)

where ⟨⋅, ⋅⟩Z𝑘 is the inner product of Z𝑘
. In particular, the

addend 𝐽
𝑘
(𝑧) is identical to the element 𝑃

𝐿
𝑤
𝑘
(𝑧)where𝑤

𝑘
(𝑧)

is the kernel of the functional 𝐽
𝑘
(𝑧). Thus, by virtue of (57),

(65), (82), and (90), it holds

𝑤
1
(𝑧) = (

𝑁

∑

𝑖=1

∫

𝑇𝑖

0

𝛾
𝑗
(𝑡) 𝜓

𝑖
(⋅, 𝑇

𝑖
− 𝑡; 𝑧) 𝑑𝑡|

𝑗=1,...,𝑁
)

= (

𝑁

∑

𝑙=1

∫

𝑇𝑙

𝑇𝑙−1

𝛾
𝑗
(𝑡) 𝛽

𝑙
(⋅, 𝑇

𝑙
− 𝑡; 𝑧) 𝑑𝑡|

𝑗=1,...,𝑁
) ,

𝑤
2
(𝑧) = (∫

𝑇

0

𝛾
𝑗
(𝑡) 𝜓 (⋅, 𝑇 − 𝑡; 𝑧) 𝑑𝑡|

𝑗=1,...,𝑁
, 𝜓 (⋅, 𝑇; 𝑧)) ,

𝑤
3
(𝑧) = ( (𝑢 − 𝑚 ∗ 𝑢) ∗ 𝜓 (⋅, 𝑇) ,

∫
Ω

[

[

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝑢
𝑥𝑗
∗ 𝜓

𝑥𝑖
−𝑎𝑢 ∗ 𝜓]

]

(𝑥, 𝑇− ⋅) 𝑑𝑥) .

(113)

In 𝑤
1
, the functions 𝜓

𝑖
and 𝛽

𝑙
are the 𝑧- (or, equivalently, 𝜔-)

dependent weak solutions of the problems (58) and (66),
respectively. In𝑤

2
the function 𝜓 is the weak solution of (83)

and in 𝑤
3
the functions 𝑢 and 𝜓 are the 𝑧-dependent weak

solutions of (2)–(5) and (91), respectively.

Example 11. Consider the case 𝑘 = 1. Let 𝑀 = {𝑧 ∈ Z
1
:

‖𝑧‖ ≤ 𝜌}, where 𝜌 > 0. Further, let 𝜉
𝑗
, 𝑗 = 1, 2, . . ., be an

orthonormal basis in 𝐿2(Ω) and Z
1,𝐿
= (span(𝜉

1
, . . . , 𝜉

𝐿
))
𝑁.

Then 𝐽
1
(𝑧) is inZ

1,𝐿
identical to the element

𝑃
𝐿
𝑤
1
(𝑧) = (

𝐿

∑

𝑖=1

∫
Ω

𝑁

∑

𝑙=1

∫

𝑇𝑙

𝑇𝑙−1

𝛾
𝑗
(𝑡) 𝛽

𝑙
(𝑥, 𝑇

𝑙
− 𝑡; 𝑧) 𝑑𝑡

×𝜉
𝑖
(𝑥) 𝑑𝑥 𝜉

𝑖
|
𝑗=1,...,𝑁

) .

(114)

Moreover, it holds 𝑀
𝐿
= {𝑧 ∈ Z

1,𝐿
: ‖𝑧‖ ≤ 𝜌}. Define a

convex penalty functionΠ
𝐿
∈ 𝐶

∞
[0,∞) such thatΠ

𝐿
(𝑧) = 0

for ‖𝑧‖ ≤ 𝜌 and Π
𝐿
(𝑧) = 𝑑(‖𝑧‖

2
− 𝜌

2
) for ‖𝑧‖ ≥ 𝜌 + 𝜀 with

some 𝑑, 𝜀 > 0. Then Π
𝐿
satisfies (111).

Let 𝑘 ∈ {1; 2; 3}. Choose some initial guess 𝑧
0
∈ Z

𝑘,𝐿
.

Compute the approximate solutions by the gradient method

𝑧
𝑠+1
= 𝑧

𝑠
− 𝑐

𝑠
Φ



𝑘,𝐿
(𝑧

𝑠
) , (115)

where 𝑠 = 0, 1, 2, . . . and 𝑐
𝑠
> 0.

Theorem 12. Let 𝑘 ∈ {1; 2} and 𝑐
𝑠
be chosen by the rule

inf
𝑐>0

Φ
𝑘,𝐿
(𝑧

𝑠
− 𝑐Φ



𝑘,𝐿
(𝑧

𝑠
)) ≤ Φ

𝑘,𝐿
(𝑧

𝑠
− 𝑐

𝑠
Φ



𝑘,𝐿
(𝑧

𝑠
))

≤ inf
𝑐>0

Φ
𝑘,𝐿
(𝑧

𝑠
− 𝑐Φ



𝑘,𝐿
(𝑧

𝑠
)) + 𝛿

𝑠
,

(116)

where 𝛿
𝑠
≥ 0, ∑∞

𝑠=0
𝛿
𝑠
=: 𝛿 < ∞. Then it holds dist(𝑧

𝑠
, 𝑆) → 0

as 𝑠 → ∞, where 𝑆 is the set of solutions of (110).

Proof. The assertion follows fromTheorem 5.1.2 of [26] once
we have proved that Φ

𝑘,𝐿
is uniformly Lipschitz continuous,

Φ
𝑘,𝐿

is convex, and the set𝑀(𝑧
0
) = {𝑧 ∈ Z

𝑘,𝐿
: Φ

𝑘,𝐿
(𝑧) ≤

Φ
𝑘,𝐿
(𝑧

0
) + 𝛿} is bounded. The convexity of Φ

𝑘,𝐿
follows from

the convexity of its addends Π
𝐿
and 𝐽

𝑘
. The boundedness

of 𝑀(𝑧
0
) is a direct consequence of the accretivity of Φ

𝑘,𝐿

following from the accretivity of the addend Π
𝐿
.

It remains to show the uniform Lipschitz continuity of 𝐽
𝑘

inZ
𝑘,𝐿

(such a property forΠ

𝐿
is assumed in (111)). Let 𝑘 = 1.

Then by (113) and 𝐽
𝑘
(𝑧) = 𝑃

𝐿
𝑤
1
(𝑧) for any 𝑧, �̃� ∈ Z

𝑘,𝐿
, we

have

𝐽


1
(�̃�) − 𝐽



1
(𝑧)

≤
𝑃𝐿

𝑤1

(�̃�) − 𝑤
1
(𝑧)


≤ 𝐶
22

𝑁

∑

𝑖=1

𝜓𝑖 (⋅, ⋅; �̃�) − 𝜓𝑖 (⋅, ⋅; 𝑧)
U(Ω𝑇)

,

(117)

where 𝐶
22

is a constant independent of 𝑧 and �̃�. Further,
observing (58) and (40), the estimate (20) of Theorem 2 and
𝑧 = 𝜔, we deduce


𝐽


1
(�̃�) − 𝐽



1
(𝑧)

≤ 2𝐶

22
𝐶
0

𝑁

∑

𝑖=1

𝑢 (⋅, 𝑇𝑖; �̃�) − 𝑢 (⋅, 𝑇𝑖; 𝑧)
𝐿2(Ω)

≤ 𝐶
23‖𝑢 (⋅, ⋅; �̃�) − 𝑢 (⋅, ⋅; 𝑧)‖U(Ω𝑇)

≤ 𝐶
24 ‖�̃� − 𝑧‖ ,

(118)

where 𝐶
23
, 𝐶

24
are independent of 𝑧 and �̃�. This proves the

uniform Lipschitz continuity of 𝐽
1
. Such a property of 𝐽

2
can

be proved in a similar manner.

The convergence of 𝑧
𝑠
in case 𝑘 = 3 is an open issue. This

case ismore complex because IP3 is nonlinear and the Fréchet
derivative of 𝐽

3
is not uniformly Lipschitz continuous.

Thequasisolutions of IP1–IP3 are not expected to be stable
with respect to the noise of the data, that is, the problems
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under consideration may be ill posed. Nevertheless, from the
intuitive viewpoint, a discretisation should regularise an ill-
posed problem. Such a property of the discretisation has been
proved inmany cases [27, 28]. Alternatively, the index 𝑠 of the
gradient method could be used as a regularization parameter
(see [29, 30]). Moreover, the addend Π

𝐿
can be defined to be

the stabilizing term of the Tikhonov’s method instead of the
penalty function, that is, Π

𝐿
= 𝛼‖𝑧‖

2, where 𝛼 > 0 is the
regularisation parameter. Such a Π

𝐿
satisfies (111).
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