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A novel approach is presented to realize the optimal 𝐻∞ exponential synchronization of nonidentical multiple time-delay chaotic
(MTDC) systems via fuzzy control scheme. A neural-network (NN)model is first constructed for theMTDC system.Then, a linear
differential inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-
space representation, a delay-dependent exponential stability criterion of the error system derived in terms of Lyapunov’s direct
method is proposed to guarantee that the trajectories of the slave system can approach those of themaster system. Subsequently, the
stability condition of this criterion is reformulated into a linear matrix inequality (LMI). According to the LMI, a fuzzy controller
is synthesized not only to realize the exponential synchronization but also to achieve the optimal𝐻∞ performance by minimizing
the disturbance attenuation level at the same time. Finally, a numerical example with simulations is given to demonstrate the
effectiveness of our approach.

1. Introduction

The stability analysis and stabilization of time-delay systems
are problems of considerable theoretical and practical signif-
icance and have attracted the interest of many investigators
for several years. Furthermore, time delays often appear in
various engineering systems [1], such as the structure control
of tall buildings, hydraulics, or electronic networks. Notably,
the introduction of a time-delay factor tends to complicate the
analysis. Consequently, convenientmethods to check stability
have long been sought later. The stability criteria of time-
delay systems so far have been approached from two main
directions based on the dependence on the size of delay.
One method is to contrive stability conditions which do not
include information on the delay, while the other method
takes time delay into account. The former case is often
referred to as delay-independent criterion and generally gives
good algebraic conditions. Nevertheless, the abandonment of
information on the size of the time delay necessarily causes
conservativeness of the criteria, especially when the delay

is comparatively small. Hence, delay-dependent criteria are
derived to deal with the stability problem in this study.

Moreover, time delays have gained increasing interest in
chaotic systems, ever since chaotic phenomenon in time-
delay systems was first found by Mackey and Glass [2].
Chaotic phenomena have been observed in numerous phys-
ical systems, which can lead to irregular performance and
possibly catastrophic failures [3]. Chaos is a well-known non-
linear phenomenon, and it is the seemingly random behavior
of a deterministic system that is characterized by sensitive
dependence on initial conditions [4]. Besides, chaos is occa-
sionally preferable but usually intrinsically unpredictable as it
can restrict the operating range of many physical devices and
reduce performance.Therefore, the ability to control chaos is
of much practical importance. According to these properties,
chaos has received a great deal of interest among scientists
from various research fields [5, 6]. One of the research fields
for communication, chaotic synchronization, has been inves-
tigated extensively.
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The chaotic synchronization of identical systems with
different initial conditions was first introduced by Pecora and
Carroll in 1990 [7]. They are intended to control one chaotic
system to follow another. Since the introduction of this con-
cept, various synchronization approaches have been widely
developed in the past two decades. Chaotic synchronization
can be applied in the vast areas of physics and engineering sci-
ence, especially in secure communication [8]. Consequently,
chaotic synchronization has become a popular study [9, 10].
However, all of them are focused on synchronizing two
identical chaotic systems with different initial conditions [11].
In fact, experimental and evenmore real systems are often not
fully identical; in particular, there are mismatches in parame-
ters of the systems [11]. Also, in many real world applications,
there are no exactly two identical chaotic systems. As a result,
the problem of chaos synchronization between two different
uncertain chaotic systems is an important research issue [12].
For instance, He et al. [13] investigate synchronization of two
nonidentical chaotic systems with time-varying delay and
parameter mismatches via impulsive control. To synchronize
nonidentical chaotic systems with unknown parameters,
Li et al. [14] proposed an approach based on the invariance
principle of differential equations, and employing a combina-
tion of feedback control and adaptive control. Li and Ge [15]
presented a new fuzzymodel to simulate and synchronize two
totally different and complicated chaotic systems.

In general, some noise or disturbances always exist that
may cause instability. The influence of the external distur-
bance will worsen the performance of chaotic systems.There-
fore, how to reduce the effect of external disturbances in the
synchronization process for chaotic systems is an important
issue [16, 17].The𝐻∞ control has been conferred for synchro-
nization in chaotic systems over the last few years [16–20],
and the 𝐻

∞ synchronization problem has been investigated
extensively for time-delay chaotic systems (e.g., see [21–23]).
Accordingly, the purpose of this study is to realize the expo-
nential synchronization of nonidentical multiple time-delay
chaotic (MTDC) systems and attenuate the effect of external
disturbances on the control performance to a minimum level
at the same time.

Neural-network-(NN-) based modeling has become an
active research field in the past few years due to its unique
merits in solving complex nonlinear system identification
and control problems [24–29]. Neural networks consist of
simple elements operating in parallel; these elements are
inspired by biological nervous systems. As a result, we can
train an NN to represent a particular function by adjusting
the weights between elements. As in nature, the connections
between elements largely determine the network function.
Individuals can train a neural network to perform a particular
function by adjusting the values of the connections (weights)
between elements. Hence, the nonlinear systems can be
approximated as close as desired by theNNmodels via repeti-
tive training. Recently, numerous reports on the success of
NN applications in control systems have appeared in the liter-
ature (see [30–35]). For instance, Limanond et al. [30] applied
neural networks to the optimal etch time control design
for a reactive ion etching process. Enns and Si [32] advanced
an NN-based approximate dynamic programming control

mechanism to helicopter flight control. Despite several
promising empirical results and its nonlinear mapping
approximation properties, the rigorous closed-loop stability
results for systems using NN-based controllers are still diffi-
cult to establish.Therefore, an LDI state-space representation
was introduced to deal with the stability analysis of NN
models (see [36]).

In the past few years, significant research efforts have been
devoted to fuzzy control, which has attracted a great deal
of attention from both the academic and industrial com-
munities, and there have been many successful applications.
For example, Wang et al. [37] presented a new measurement
system that comprises a model-based fuzzy logic controller,
an arterial tonometer, and a micro syringe device for the
noninvasive monitoring of the continuous blood pressure
wave form in the radial artery. A good tracking performance
control scheme, a hybrid fuzzy neural-network control for
nonlinear motor-toggle servomechanisms, was given by Wai
[38]; Hwang et al. [39] developed the trajectory tracking of a
car-like mobile robot using network-based fuzzy decentral-
ized sliding-mode control; a hybrid fuzzy-PI speed controller
for permanent magnet synchronous motors was proposed
in Sant [40]; Spatti et al. [41] introduced a fuzzy control
strategy for voltage regulation in electric power distribution
systems—this real-time controller would act on power trans-
formers equipped with under-load tap changers.

In spite of the successes of fuzzy control,many basic prob-
lems remain to be solved. Stability analysis and systematic
design are certainly among the most important issues for
fuzzy control systems. Recently, significant research efforts
have been devoted to these issues (see [42–45] and the
references therein). However, all of them have neglected the
modeling errors between the fuzzy models and the nonlinear
systems. In fact, the existence of modeling errors may be a
potential source of instability for control designs based on
the assumption that the fuzzy model exactly matches the
nonlinear plant [46]. In recent years, novel approaches to
overcome the influence of modeling errors in the field of
model-based fuzzy control for nonlinear systems have been
proposed byKiriakidis [46], Chen et al. [47, 48], andCao et al.
[49, 50].

Almost all the existing research works of synchronization
methodmade use of fuzzymodels to approximate the chaotic
systems (see [3, 4, 28, 42] and the references therein).
Although using fuzzy models to approximate the chaotic
systems is more simple than the neural-networks (NNs), the
NN models will approach the chaotic systems by iterative
training and adjusting theweights. In otherwords, themodel-
ing errors of NNmodels will be much less than those of fuzzy
models.With a view to the abovementioned, a novel approach
is proposed via the neural-network-(NN-) based technique
to realize the optimal 𝐻

∞ exponential synchronization
of nonidentical multiple time-delay chaotic (MTDC) systems
such that the trajectories of the slave systems can approach
those of the master systems and the effect of external distur-
bances on the control performance can be attenuated to a
minimum level. First, the NN model is constructed for the
chaotic systems with multiple time delays. Then, a linear
differential inclusion (LDI) state-space representation is
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established for the dynamics of the NNmodel. Next, in terms
of Lyapunov’s direct method, a delay-dependent criterion is
derived to guarantee the exponential stability of the error
system between the master system and slave system. Subse-
quently, the stability condition of this criterion is reformu-
lated into a linear matrix inequality (LMI). According to the
LMI, a fuzzy controller is synthesized not only to realize the
exponential synchronization but also to achieve the optimal
𝐻
∞ performance by minimizing the disturbance attenuation

level at the same time.
The remainder of this paper is organized as follows. The

system description is arranged in Section 2. In Section 3, a
robustness design of fuzzy control and a delay-dependent sta-
bility criterion are proposed to realize the optimal𝐻∞ expon-
ential synchronization. The design algorithm is given in
Section 4. In Section 5, the effectiveness of the proposed
approach is illustrated by a numerical simulation. Finally, the
conclusions are drawn in Section 6.

2. Problem Formulation

Consider two different multiple time-delay chaotic (MTDC)
systems in master-slave configuration. The dynamics of the
master system (𝑁

𝑚
) and slave system (𝑁

𝑠
) are described as

follows:

𝑁
𝑚
:

.

𝑋 (𝑡) = 𝑓 (𝑋 (𝑡)) +

𝑔

∑

𝑘=1

𝐻
𝑘
(𝑋 (𝑡 − 𝜏

𝑘
)) , (1)

𝑁
𝑠
:

̂
.

𝑋 (𝑡) =
̂
𝑓 (�̂� (𝑡)) +

𝑔

∑

𝑘=1

�̂�
𝑘
(�̂� (𝑡 − 𝜏

𝑘
))

+ 𝐵𝑈 (𝑡) + 𝐷 (𝑡) ,

(2)

where 𝑓(⋅), ̂𝑓(⋅), 𝐻
𝑘
(⋅), and �̂�

𝑘
(⋅) are the nonlinear vector-

valued functions, 𝜏
𝑘
(𝑘 = 1, 2, . . . , 𝑔) are the time delays, 𝑈(𝑡)

is the control input, and 𝐷(𝑡) denotes the external distur-
bance. Besides,𝑋(𝑡) and �̂�(𝑡) are the state vectors of𝑁

𝑚
and

𝑁
𝑠
, respectively.
In this section, a neural-network (NN)model is first con-

structed for the MTDC system. The dynamics of the NN
model are then converted into a linear differential inclusion
(LDI) state-space representation. Finally, based on the LDI
state-space representation, a fuzzy controller is synthesized to
realize the synchronization of nonidentical MTDC systems.

2.1. Neural-Network (NN) Model. The MTDC system can be
approximated by an NNmodel, as shown in Figure 1, that has
𝑆 layers with 𝐽

𝜎

(𝜎 = 1, 2, . . . , 𝑆) neurons for each layer, in
which 𝑥

1
(𝑡) ∼ 𝑥

𝛿
(𝑡) are the state variables and 𝑥

1
(𝑡 − 𝜏

1
) ∼

𝑥
1
(𝑡 − 𝜏

𝑔
), 𝑥

2
(𝑡 − 𝜏

1
) ∼ 𝑥

𝛿
(𝑡 − 𝜏

𝑔
) are the state variables with

delays.
To distinguish among these layers, the superscripts are

used for identification. Specifically, the number of the layer
is appended as a superscript to the names for each of these
variables. Thus, the weight matrix for the 𝜎th layer is written
as 𝑊

𝜎. Furthermore, it is assumed that V𝜎
𝜍
(𝑡)(𝜍 = 1, 2, . . . ,

𝐽
𝜎

; 𝜎 = 1, 2, . . . , 𝑆) is the net input and𝑇(V
𝜎

𝜍
(𝑡)) is the transfer

∑
T(·)

...

...

...

...

ẋ1(t)

ẋδ(t)

x1(t)

xδ(t)
x1(t − τ1)

x1(t − τg)
x2(t − τ1)

xδ(t − τg)

Figure 1: An NN model for 𝑁
𝑑
.

function of the neuron. Subsequently, the transfer function
vector of the 𝜎th layer is defined as

Ψ
𝜎

(V
𝜎

𝜍
(𝑡)) ≡ [𝑇 (V

𝜎

1
(𝑡)) 𝑇 (V

𝜎

2
(𝑡)) ⋅ ⋅ ⋅ 𝑇 (V

𝜎

𝐽
𝜎 (𝑡))]

𝑇

,

𝜎 = 1, 2, . . . , 𝑆,

(3)

where 𝑇(V
𝜎

𝜍
(𝑡)) (𝜍 = 1, 2, . . . , 𝐽

𝜎

) is the transfer function of
the 𝜍th neuron. The final output of NN model can then be
inferred as follows:

.

𝑋 (𝑡)

= Ψ
𝑆

(𝑊
𝑆

Ψ
𝑆−1

(𝑊
𝑆−1

Ψ
𝑆−2

× (⋅ ⋅ ⋅ Ψ
2

(𝑊
2

Ψ
1

(𝑊
1

Λ (𝑡))) ⋅ ⋅ ⋅))) ,

(4)

where Λ
𝑇

(𝑡) = [𝑋
𝑇

(𝑡)𝑋
𝑇

(𝑡 − 𝜏
𝑘
)] with 𝑋(𝑡) = [𝑥

1
(𝑡)𝑥

2
(𝑡) ⋅ ⋅ ⋅

𝑥
𝛿
(𝑡)]

𝑇,

𝑋(𝑡 − 𝜏
𝑘
) = [𝑥

1
(𝑡 − 𝜏

1
) ⋅ ⋅ ⋅ 𝑥

1
(𝑡 − 𝜏

𝑔
)

𝑥
2
(𝑡 − 𝜏

1
) ⋅ ⋅ ⋅ 𝑥

𝛿
(𝑡 − 𝜏

𝑔
)]

𝑇

,

for 𝑘 = 1, 2 . . . , 𝑔.

(5)

2.2. Linear Differential Inclusion (LDI). To handle the syn-
chronization problem of MTDC systems, this study estab-
lishes the following LDI state-space representation for the
dynamics of the NN model, described as [36, 51]

.

𝑂 (𝑡) = 𝐴 (𝑎 (𝑡)) 𝑂 (𝑡) , 𝐴 (𝑎 (𝑡)) =

𝜙

∑

𝑖=1

ℎ
𝑖
(𝑎 (𝑡)) �̃�

𝑖
, (6)

where 𝜙 is a positive integer, 𝑎(𝑡) is a vector signifying the
dependence of ℎ

𝑖
(⋅) on its elements, �̃�

𝑖
(𝑖 = 1, 2, . . . , 𝜙) are

constant matrices, and 𝑂(𝑡) = [𝑜
1
(𝑡)𝑜

2
(𝑡) ⋅ ⋅ ⋅ 𝑜

ℵ
(𝑡)]

𝑇. More-
over, it is assumed that ℎ

𝑖
(𝑎(𝑡)) ≥ 0 and ∑

𝜙

𝑖=1
ℎi(𝑎(𝑡)) = 1.

According to the properties of LDI, without loss of generality,
ℎ
𝑖
(𝑡) can be replaced by ℎ

𝑖
(𝑎(𝑡)). The following procedure

represents the dynamics of the NN model (4) using the LDI
state-space representation [36].
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To begin with, notice that the output 𝑇(V
𝜎

𝜍
(𝑡)) satisfies

𝑔
𝜎

𝜍0
V
𝜎

𝜍
(𝑡) ≤ 𝑇 (V

𝜎

𝜍
(𝑡)) ≤ 𝑔

𝜎

𝜍1
V
𝜎

𝜍
(𝑡) , V

𝜎

𝜍
(𝑡) ≥ 0,

𝑔
𝜎

𝜍1
V
𝜎

𝜍
(𝑡) ≤ 𝑇 (V

𝜎

𝜍
(𝑡)) ≤ 𝑔

𝜎

𝜍0
V
𝜎

𝜍
(𝑡) , V

𝜎

𝜍
(𝑡) < 0,

(7)

where 𝑔𝜎

𝜍0
and 𝑔

𝜎

𝜍1
denote the minimum andmaximum of the

derivative of 𝑇(V
𝜎

𝜍
(𝑡)), respectively, and are given in the fol-

lowing:

𝑔
𝜎

𝜍𝜑
=

{
{
{
{
{
{

{
{
{
{
{
{

{

min
V

𝑑𝑇 (V
𝜎

𝜍
(𝑡))

𝑑V𝜎
𝜍
(𝑡)

, when 𝜑 = 0,

max
V

𝑑𝑇 (V
𝜎

𝜍
(𝑡))

𝑑V𝜎
𝜍
(𝑡)

, when 𝜑 = 1.

(8)

Subsequently, the min-max matrix 𝐺
𝜎 of the 𝜎th layer is

defined as follows:

𝐺
𝜎

≡ diag [𝑔
𝜎

𝜍𝜑
𝜍

]

=

[

[

[

[

[

[

[

[

[

[

𝑔
𝜎

1𝜑
1

0 0 ⋅ ⋅ ⋅ 0

0 𝑔
𝜎

2𝜑
2

0

. . . 0

0 0 𝑔
𝜎

3𝜑
3

0

...
...

. . . 0

. . . 0

0 0 ⋅ ⋅ ⋅ 0 𝑔
𝜎

𝐽
𝜎
𝜑
𝐽

]

]

]

]

]

]

]

]

]

]

.

(9)

Besides, on the basis of the interpolationmethod, the transfer
function 𝑇(V

𝜎

𝜍
(𝑡)) can be represented as follows [36]:

𝑇 (V
𝜎

𝜍
(𝑡)) = (ℎ

𝜎

𝜍0
(𝑡) 𝑔

𝜎

𝜍0
+ ℎ

𝜎

𝜍1
(𝑡) 𝑔

𝜎

𝜍1
) V

𝜎

𝜍
(𝑡)

= (

1

∑

𝜑=0

ℎ
𝜎

𝜍𝜑
(𝑡) 𝑔

𝜎

𝜍𝜑
) V

𝜎

𝜍
(𝑡) ,

(10)

where the interpolation coefficients ℎ
𝜎

𝜍𝜑
(𝑡) ∈ [0, 1] and

∑
1

𝜑=0
ℎ
𝜎

𝜍𝜑
(𝑡) = 1. Equations (3) and (10) show that

Ψ
𝜎

(V
𝜎

𝜍
(𝑡))

≡ [𝑇 (V
𝜎

1
(𝑡)) 𝑇 (V

𝜎

2
(𝑡)) ⋅ ⋅ ⋅ 𝑇 (V

𝜎

𝐽
𝜎 (𝑡))]

𝑇

= [ (

1

∑

𝜑
1
=0

ℎ
𝜎

1𝜑
1

(𝑡) 𝑔
𝜎

1𝜑
1

) V
𝜎

1
(𝑡) (

1

∑

𝜑
2
=0

ℎ
𝜎

2𝜑
2

(𝑡) 𝑔
𝜎

2𝜑
2

) V
𝜎

2
(𝑡) ⋅ ⋅ ⋅ (

1

∑

𝜑
𝐽
=0

ℎ
𝜎

𝐽
𝜎
𝜑
𝐽

(𝑡) 𝑔
𝜎

𝐽
𝜎
𝜑
𝐽

) V
𝜎

𝐽
𝜎 (𝑡) ]

𝑇

.

(11)

Hence, the final output of the NNmodel (4) can be reformu-
lated as follows:
.

𝑋 (𝑡)

=

1

∑

𝑝=0

ℎ
𝑆

𝜍𝑝
(𝑡) 𝐺

𝑆

× (𝑊
𝑆

[⋅ ⋅ ⋅ [

1

∑

𝑛=0

ℎ
2

𝜍𝑛
(𝑡) 𝐺

2

× (𝑊
2

[

1

∑

𝑏=0

ℎ
1

𝜍𝑏
(𝑡) 𝐺

1

× (𝑊
1

Λ (𝑡)) ])] ⋅ ⋅ ⋅ ])

=

1

∑

𝑝=0

⋅ ⋅ ⋅

1

∑

𝑛=0

1

∑

𝑏=0

ℎ
𝑆

𝜍𝑝
(𝑡) ⋅ ⋅ ⋅ ℎ

2

𝜍𝑛
(𝑡) ℎ

1

𝜍𝑏
(𝑡) 𝐺

𝑆

𝑊
𝑆

⋅ ⋅ ⋅ 𝐺
2

𝑊
2

𝐺
1

𝑊
1

Λ (𝑡)

= ∑

Ω

ℎ
𝜎

𝜍Ω
(𝑡) 𝐶

𝜎

Ω
Λ (𝑡) ,

(12)

where
1

∑

𝑏=0

ℎ
1

𝜍𝑏
(𝑡) ≡

1

∑

𝑏
1
=0

ℎ
1

1𝑏
1

(𝑡)

1

∑

𝑏
2
=0

ℎ
1

2𝑏
2

(𝑡) ⋅ ⋅ ⋅

1

∑

𝑏
𝐽
=0

ℎ
1

𝐽
1
𝑏
𝐽

(𝑡) ,

1

∑

𝑛=0

ℎ
2

𝜍𝑛
(𝑡) ≡

1

∑

𝑛
1
=0

ℎ
2

1𝑛
1

(𝑡)

1

∑

𝑛
2
=0

ℎ
2

2𝑛
2

(𝑡) ⋅ ⋅ ⋅

1

∑

𝑛
𝐽
=0

ℎ
2

𝐽
2
𝑛
𝐽

(𝑡) ,

...

1

∑

𝑝=0

ℎ
𝑆

𝜍𝑝
(𝑡) ≡

1

∑

𝑝
1
=0

ℎ
𝑆

1𝑝
1

(𝑡)

1

∑

𝑝
2
=0

ℎ
𝑆

2𝑝
2

(𝑡) ⋅ ⋅ ⋅

1

∑

𝑝
𝐽
=0

ℎ
𝑆

𝐽
𝑆
𝑝
𝐽

(𝑡) ,

∑

Ω

ℎ
𝜎

𝜍Ω
(𝑡) ≡

1

∑

𝑝=0

⋅ ⋅ ⋅

1

∑

𝑛=0

1

∑

𝑏=0

ℎ
𝑆

𝜍𝑝
(𝑡) ⋅ ⋅ ⋅ ℎ

2

𝜍𝑛
(𝑡) ℎ

1

𝜍𝑏
(𝑡) ,

𝜍 = 1, 2, . . . , 𝐽
𝜎

,

𝐶
𝜎

Ω
≡ 𝐺

𝑆

𝑊
𝑆

⋅ ⋅ ⋅ 𝐺
2

𝑊
2

𝐺
1

𝑊
1

,

(13)

and 𝑏
𝜍
, 𝑛

𝜍
, 𝑝

𝜍
(𝜍 = 1, 2, . . . , 𝐽) represent the variables 𝜑 of

the 𝜍th neuron of the first, second, and 𝑆th layer, respectively.
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Finally, based on (6), the dynamics of the NNmodel (12) can
be rewritten as the following LDI state-space representation:

.

𝑋(𝑡) =

𝜙

∑

𝑖=1

ℎ
𝑖
(𝑡) 𝐶

𝑖
Λ (𝑡), (14)

where ℎ
𝑖
(𝑡) ≥ 0,∑𝜙

𝑖=1
ℎ
𝑖
(𝑡) = 1, 𝜙 is a positive integer and𝐶

𝑖
is

a constantmatrixwith appropriate dimension associatedwith
𝐶

𝜎

Ω
. Furthermore, the LDI state-space representation (14) can

be rearranged as follows:

.

𝑋 (𝑡) =

𝜙

∑

𝑖=1

ℎ
𝑖
(𝑡) {𝐴

𝑖
𝑋 (𝑡) +

𝑔

∑

𝑘=1

𝐴
𝑖𝑘
𝑋(𝑡 − 𝜏

𝑘
)} , (15)

where𝐴
𝑖
and𝐴

𝑖𝑘
are the partitions of𝐶

𝑖
corresponding to the

partitions of Λ𝑇

(𝑡).
From the abovementioned, the NN models of the master

and slave chaotic systems are described by the following LDI
state-space representations (16) and (17), respectively:

master :

.

𝑋 (𝑡) =

𝜙

∑

𝑖=1

ℎ
𝑖
(𝑡) {𝐴

𝑖
𝑋 (𝑡) +

𝑔

∑

𝑘=1

𝐴
𝑖𝑘
𝑋(𝑡 − 𝜏

𝑘
)} ,

(16)

slave :

.

�̂� (𝑡) =

𝜙

∑

𝑗=1

̂
ℎ
𝑗
(𝑡) [�̂�

𝑗
�̂� (𝑡) +

𝑔

∑

𝑘=1

̂
𝐴

𝑗𝑘
�̂� (𝑡 − 𝜏

𝑘
)]

+ 𝐵𝑈 (𝑡) .

(17)

2.3. Fuzzy Controller. On the basis of the state-feedback
control scheme, a fuzzy controller is utilized to make the
slave system synchronize with the master system. The fuzzy
controller is in the following form:

Control Rule 𝑙 : IF 𝑒
1
(𝑡) is 𝑀

𝑙1
and ⋅ ⋅ ⋅ and 𝑒

𝛿
(𝑡) is 𝑀

𝑙𝛿
,

THEN 𝑈 (𝑡) = −𝐾
𝑙
𝐸 (𝑡), (18)

where 𝑙 = 1, 2, . . . , 𝜌, and 𝜌 is the number of IF-THEN rules
of the fuzzy controller and𝑀

𝑙𝜂
(𝜂 = 1, 2, . . . , 𝛿) are the fuzzy

sets.Therefore, the final output of this fuzzy controller can be
inferred as follows:

𝑈 (𝑡) =

−∑
𝜌

𝑙=1
𝑤

𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡)

∑
𝜌

𝑙=1
𝑤

𝑙
(𝑡)

= −

𝜌

∑

𝑙=1

ℎ
𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡) , (19)

with𝑤
𝑙
(𝑡) ≡ ∏

𝛿

𝜂=1
𝑀

𝑙𝜂
(𝑒

𝜂
(𝑡)),𝑀

𝑙𝜂
(𝑒

𝜂
(𝑡)) is the grade of mem-

bership of 𝑒
𝜂
(𝑡) in𝑀

𝑙𝜂
.

3. Stability Analysis and Chaotic
Synchronization via Fuzzy Control

In this section, the synchronization of nonidentical multiple
time-delay chaotic (MTDC) systems is examined under the
influence ofmodeling error.The exponential synchronization
scheme of the multiple time-delay chaotic systems is describ-
ed as follows.

3.1. Error Systems. From (1) and (2), the synchronization
error is defined as 𝐸(𝑡) ≡ �̂�(𝑡) − 𝑋(𝑡) = [𝑒

1
(𝑡), 𝑒

2
(𝑡), . . . ,

𝑒
𝛿
(𝑡)]

𝑇, and then the dynamics of the error system under the
fuzzy control (19) can be described as follows:

.

𝐸 (𝑡) = Ψ̂ + 𝐷 (𝑡) − Ψ

+

𝜙

∑

𝑖=1

𝜙

∑

𝑗=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡)

̂
ℎ
𝑗
(𝑡) ℎ

𝑙
(𝑡)

× {𝐺
𝑖𝑙
𝐸 (𝑡) + (�̂�

𝑗
− 𝐴

𝑖
) �̂� (𝑡)

+

𝑔

∑

𝑘=1

(
̂
𝐴

𝑗𝑘
− 𝐴

𝑖𝑘
) �̂� (𝑡 − 𝜏

𝑘
)

+

𝑔

∑

𝑘=1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)}

−

𝜙

∑

𝑖=1

𝜙

∑

𝑗=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡)

̂
ℎ
𝑗
(𝑡) ℎ

𝑙
(𝑡)

× {𝐺
𝑖𝑙
𝐸 (𝑡) + (�̂�

𝑗
− 𝐴

𝑖
) �̂� (𝑡)

+

𝑔

∑

𝑘=1

(
̂
𝐴

𝑗𝑘
− 𝐴

𝑖𝑘
) �̂� (𝑡 − 𝜏

𝑘
)

+

𝑔

∑

𝑘=1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)}

=

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) {𝐺

𝑖𝑙
𝐸 (𝑡) +

𝑔

∑

𝑘=1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)}

+ 𝐷 (𝑡) + Φ (𝑡) ,

(20)
where

𝐺
𝑖𝑙
≡ 𝐴

𝑖
− 𝐵𝐾

𝑙
,

Ψ̂ ≡
̂
𝑓 (�̂� (𝑡)) +

𝑔

∑

𝑘=1

�̂�
𝑘
(�̂� (𝑡 − 𝜏

𝑘
)) + 𝑈 (𝑡) ,

Ψ ≡ 𝑓 (𝑋 (𝑡)) +

𝑔

∑

𝑘=1

𝐻
𝑘
(𝑋 (𝑡 − 𝜏

𝑘
)) ,

(21)

with

𝑈 (𝑡) = −

𝜌

∑

𝑙=1

ℎ
𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡) ,

Φ (𝑡) ≡ Ψ̂ − Ψ

− {

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) [𝐺

𝑖𝑙
𝐸 (𝑡) +

𝑔

∑

𝑘=1

𝐴
𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]} .

(22)
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Suppose that there exists a bounding matrix Θ𝑅
𝑖𝑙
such that

‖Φ (𝑡)‖ ≤













𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) Θ𝑅

𝑖ℓ
𝐸 (𝑡)













(23)

for the trajectory 𝐸(𝑡), and the bounding matrix Θ𝑅
𝑖𝑙
can be

described as follows:

Θ𝑅
𝑖𝑙
= 𝜀

𝑖𝑙
𝑅, (24)

where 𝑅 is the specified structured bounding matrix and
‖𝜀

𝑖𝑙
‖ ≤ 1, for 𝑖 = 1, 2, . . . , 𝜙; 𝑙 = 1, 2, . . . , 𝜌. Equations (23)

and (24) show that

Φ
𝑇

(𝑡) Φ (𝑡) ≤

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) ‖𝑅𝐸 (𝑡)‖





𝜀
𝑖𝑙






×

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡)





𝜀
𝑖𝑙





‖𝑅𝐸 (𝑡)‖

≤ [𝑅𝐸 (𝑡)]
𝑇

[𝑅𝐸 (𝑡)] .

(25)

Namely, Φ(𝑡) is bounded by the specified structured bound-
ing matrix 𝑅.

Remark 1 (see [47]). The following simple example describes
the procedures for determining 𝜀

𝑖𝑙
and 𝑅. First, assume that

the possible bounds for all elements in Θ𝑅
𝑖𝑙
are

Θ𝑅
𝑖𝑙
=

[

[

[

[

[

[

[

Θ𝑟
11

𝑖𝑙
Θ𝑟

12

𝑖𝑙
Θ𝑟

13

𝑖𝑙

Θ𝑟
21

𝑖𝑙
Θ𝑟

22

𝑖𝑙
Θ𝑟

23

𝑖𝑙

Θ𝑟
31

𝑖𝑙
Θ𝑟

32

𝑖𝑙
Θ𝑟

33

𝑖𝑙

]

]

]

]

]

]

]

, (26)

where −𝑟
𝑞𝑠

≤ Δ𝑟
𝑞𝑠

𝑖𝑙
≤ 𝑟

𝑞𝑠 for some 𝑟
𝑞𝑠

𝑖𝑙
with 𝑞, 𝑠 = 1, 2, 3; 𝑖 =

1, 2, . . . , 𝜙, and 𝑙 = 1, 2, . . . , 𝜌.

A possible depiction for the bounding matrix Θ𝑅
𝑖𝑙
is

Θ𝑅
𝑖𝑙
=

[

[

𝜀
11

𝑖𝑙
0 0

0 𝜀
22

𝑖𝑙
0

0 0 𝜀
33

𝑖𝑙

]

]

[

[

𝑟
11

𝑟
12

𝑟
13

𝑟
21

𝑟
22

𝑟
23

𝑟
31

𝑟
32

𝑟
33

]

]

= 𝜀
𝑖𝑙
𝑅, (27)

where −1 ≤ 𝜀
𝑞𝑞

𝑖𝑙
≤ 1 for 𝑞 = 1, 2, 3. Notice that 𝜀

𝑖𝑙
can be

chosen by other forms as long as ‖𝜀
𝑖𝑙
‖ ≤ 1. The validity of

(23) is then checked in the simulation. If it is not satisfied, we
can expand the bounds for all elements inΘ𝑅

𝑖𝑙
and repeat the

design procedure until (23) holds.

3.2. Delay-Dependent Stability Criterion for Exponential 𝐻∞

Synchronization. In this subsection, a delay-dependent crite-
rion is proposed to guarantee the exponential stability of the
error system described in (20). Moreover, in general, some
noises or disturbances always exist that may cause instability.
The influence of the external disturbance 𝐷(𝑡) will worsen
the performance of chaotic systems. To reduce the effect of
the external disturbance, an optimal 𝐻∞ scheme is used to

design the fuzzy control so that the effect of external distur-
bance on control performance can be attenuated to a mini-
mum level. In other words, the fuzzy controller (19) realizes
exponential synchronization and at the same time achieves
the optimal𝐻∞ control performance in this study.

Before examination of the stability of the error system,
some definitions and a lemma are given follows.

Lemma 2 (see [52]). For the real matrices 𝐴 and 𝐵 with
appropriate dimension,

𝐴
𝑇

𝐵 + 𝐵
𝑇

𝐴 ≤ 𝜆𝐴
𝑇

𝐴 + 𝜆
−1

𝐵
𝑇

𝐵, (28)

where 𝜆 is a positive constant.

Definition 3 (see [51]). The slave system (2) can exponentially
synchronize with the master system (1) (i.e., the error system
(20) is exponentially stable) if there exist two positive num-
bers 𝛼 and 𝛽 such that the synchronization error satisfies

‖𝐸 (𝑡)‖ ≤ 𝛼 exp (−𝛽 (𝑡 − 𝑡
0
)) , ∀𝑡 ≥ 0, (29)

where the positive number 𝛽 is called the exponential
convergence rate.

Definition 4 (see [19–23]). The master system (1) and slave
system (2) are said to be exponential 𝐻∞ synchronization if
the following conditions are satisfied:

(i) with zero disturbance (i.e.,𝐷(𝑡) = 0), the error system
(20) with the fuzzy controller (19) is exponentially
stable;

(ii) under the zero initial conditions (i.e., 𝐸(𝑡) = 0 for 𝑡 ∈

[−𝜏max, 0], in which 𝜏max is the maximal value of 𝜏
𝑘
’s)

and a given constant 𝜅 > 0, the following condition
holds:

Θ (𝐸 (𝑡) , 𝜕 (𝑡)) = ∫

∞

0

𝐸
𝑇

(𝑡) 𝐸 (𝑡) 𝑑𝑡 − 𝜅
2

∫

∞

0

𝐷
𝑇

(𝑡) 𝐷 (𝑡) 𝑑𝑡

≤ 0,

(30)

where the parameter 𝜅 is called the 𝐻
∞ norm bound

or the disturbance attenuation level. If the minimum
𝜅 is found (i.e., the error system can reject the
external disturbance as strong as possible) to satisfy
the previous conditions, the fuzzy controller (19) is an
optimal𝐻∞ synchronizer [18].

Theorem 5. For given positive constants 𝑎 and 𝑛, if there exist
two symmetric positive definite matrices 𝑃, 𝜓

𝑘
and positive

constants 𝜉, 𝜅 so that the following inequalities hold, then the
exponential 𝐻∞ synchronization with the disturbance attenu-
ation 𝜅 is guaranteed via the fuzzy controller (19) consider.

Δ
𝑖𝑙
≡

𝑔

∑

𝑘=1

𝜏
𝑘
𝑃𝐺

𝑖𝑙
+

𝑔

∑

𝑘=1

𝜏
𝑘
𝐺

𝑇

𝑖𝑙
𝑃 +

𝑔

∑

𝑘=1

𝜓
𝑘
+ 𝑛𝑔𝑅

𝑇

𝑅 + 𝐼

+

𝑔

∑

𝑘=1

𝜏
2

𝑘
𝑃

2

(𝜉
−1

+ 𝑛
−1

+ 𝑔𝑎
−1

) < 0,

(31a)
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∇
𝑖𝑘

≡ 𝑔𝑎𝐴

𝑇

𝑖𝑘
𝐴

𝑖𝑘
− 𝜓

𝑘
< 0, (31b)

𝜅 > √𝜉𝑔, (31c)

where 𝐺
𝑖𝑙
≡ 𝐴

𝑖
− 𝐵𝐾

𝑙
, for 𝑖 = 1, 2, . . . , 𝜙; 𝑘 = 1, 2, . . . , 𝑔, and

𝑙 = 1, 2, . . . , 𝜌.

Proof. Let the Lyapunov function for the error system (20) be
defined as

𝑉 (𝑡) =

𝑔

∑

𝑘=1

𝐸
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡) +

𝑔

∑

𝑘=1

∫

𝜏
𝑘

0

𝐸
𝑇

(𝑡 − 𝜋) 𝜓
𝑘
𝐸 (𝑡 − 𝜋) 𝑑𝜋,

(32)

where the weighting matrices 𝑃 = 𝑃
𝑇

> 0 and 𝜓
𝑘
= 𝜓

𝑇

𝑘
> 0.

We then evaluate the time derivative of 𝑉(𝑡) on the trajecto-
ries of (20) to obtain

.

𝑉 (𝑡) =

𝑔

∑

𝑘=1

𝜏
𝑘
[

.

𝐸

𝑇

(𝑡) 𝑃𝐸 (𝑡) + 𝐸
𝑇

(𝑡) 𝑃

.

𝐸 (𝑡)]

+

𝑔

∑

𝑘=1

[𝐸
𝑇

(𝑡) 𝜓
𝑘
𝐸 (𝑡) − 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]

=

𝑔

∑

𝑘=1

𝜏
𝑘
{

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) [𝐺

𝑖𝑙
𝐸 (𝑡) +

𝑔

∑

𝑑=1

𝐴
𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)]

+𝐷(𝑡) + Φ (𝑡) }

𝑇

𝑃𝐸 (𝑡) +

𝑔

∑

𝑘=1

𝜏
𝑘
𝐸

𝑇

(𝑡) 𝑃

× {

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) [𝐺

𝑖𝑙
𝐸 (𝑡) +

𝑔

∑

𝑑=1

𝐴
𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)

+𝐷 (𝑡) + Φ (𝑡) ]}

+

𝑔

∑

𝑘=1

[𝐸
𝑇

(𝑡) 𝜓
𝑘
𝐸 (𝑡) − 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]

=

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡) [𝜏
𝑘
𝐺

𝑇

𝑖𝑙
𝑃 + 𝜏

𝑘
𝑃𝐺

𝑖𝑙
+ 𝜓

𝑘
] 𝐸 (𝑡)

+

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝑔

∑

𝑑=1

ℎ
𝑖
(𝑡) [𝐸

𝑇

(𝑡 − 𝜏
𝑑
) 𝜏

𝑘
𝐴

𝑇

𝑖𝑑
𝑃𝐸 (𝑡)

+ 𝐸
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐴

𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)]

+

𝑔

∑

𝑘=1

𝜏
𝑘
[𝐷

𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡) + 𝐸

𝑇

(𝑡) 𝜏
𝑘
𝑃𝐷 (𝑡)

+Φ
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡) + 𝐸

𝑇

(𝑡) 𝜏
𝑘
𝑃Φ (𝑡)]

−

𝑔

∑

𝑘=1

[𝐸
𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)] .

(33)

According to Lemma 2 and (33), we have

.

𝑉 (𝑡) ≤

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡) [𝜏
𝑘
𝐺

𝑇

𝑖𝑙
𝑃 + 𝜏

𝑘
𝑃𝐺

𝑖𝑙
+ 𝜓

𝑘
] 𝐸 (𝑡)

+

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝑔

∑

𝑑=1

ℎ
𝑖
(𝑡) [𝑎𝐸

𝑇

(𝑡 − 𝜏
𝑑
) 𝐴

𝑇

𝑖𝑑
𝐴

𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)

+𝑎
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃

2

𝐸 (𝑡)]

+

𝑔

∑

𝑘=1

[𝜉𝐷
𝑇

(𝑡) 𝐷 (𝑡) + 𝜉
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃

2

𝐸 (𝑡)

+𝑛Φ
𝑇

(𝑡) Φ (𝑡) + 𝑛
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃

2

𝐸 (𝑡)]

−

𝑔

∑

𝑘=1

[𝐸
𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)]

(34)

≤

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡)

× [𝜏
𝑘
𝐺

𝑇

𝑖𝑙
𝑃 + 𝜏

𝑘
𝑃𝐺

𝑖𝑙
+ 𝜓

𝑘
] 𝐸 (𝑡)

+

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

𝑔

∑

𝑑=1

ℎ
𝑖
(𝑡) [𝑎𝐸

𝑇

(𝑡 − 𝜏
𝑑
) 𝐴

𝑇

𝑖𝑑
𝐴

𝑖𝑑
𝐸 (𝑡 − 𝜏

𝑑
)

+𝑎
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃

2

𝐸 (𝑡) ]

+

𝑔

∑

𝑘=1

[𝜉𝐷
𝑇

(𝑡) 𝐷 (𝑡) + 𝜉
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃

2

𝐸 (𝑡)

+𝑛𝐸
𝑇

(𝑡) 𝑅
𝑇

𝑅𝐸 (𝑡) + 𝑛
−1

𝐸
𝑇

(𝑡) 𝜏
2

𝑘
𝑃

2

𝐸 (𝑡)]

−

𝑔

∑

𝑘=1

[𝐸
𝑇

(𝑡 − 𝜏
𝑘
) 𝜓

𝑘
𝐸 (𝑡 − 𝜏

𝑘
)] (by (25))

(35)

=

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡)

× [

𝑔

∑

𝑘=1

𝜏
𝑘
𝑃𝐺

𝑖𝑙
+

𝑔

∑

𝑘=1

𝜏
𝑘
𝐺

𝑇

𝑖𝑙
𝑃

+

𝑔

∑

𝑘=1

𝜓
𝑘
+ 𝑛𝑔𝑅

𝑇

𝑅

+

𝑔

∑

𝑘=1

𝜏
𝑘
𝑃

2

(𝜉
−1

+ 𝑛
−1

+ 𝑔𝑎
−1

)]𝐸 (𝑡)

+

𝑔

∑

𝑘=1

𝜙

∑

𝑖=1

ℎ
𝑖
(𝑡) 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) [𝑔𝑎𝐴

𝑇

𝑖𝑘
𝐴

𝑖𝑘
− 𝜓

𝑘
]

× 𝐸 (𝑡 − 𝜏
𝑘
) + 𝜉𝑔𝐷

𝑇

(𝑡) 𝐷 (𝑡) .

(36)
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From (36), we have
.

𝑉 (𝑡) + 𝐸
𝑇

(𝑡) 𝐸 (𝑡) − 𝜅
2

𝐷
𝑇

(𝑡) 𝐷 (𝑡)

≤

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝐸

𝑇

(𝑡) Δ
𝑖𝑙
𝐸 (𝑡)

+

𝜙

∑

𝑖=1

𝑔

∑

𝑘=1

ℎ
𝑖
(𝑡) 𝐸

𝑇

(𝑡 − 𝜏
𝑘
) ∇

𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)

+ (𝜉𝑔 − 𝜅
2

)𝐷
𝑇

(𝑡) 𝐷 (𝑡)

≤

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡) 𝜆max (Δ 𝑖𝑙

) 𝐸
𝑇

(𝑡) 𝐸 (𝑡)

+

𝜙

∑

𝑖=1

𝑔

∑

𝑘=1

ℎ
𝑖
(𝑡) 𝜆max (∇𝑖𝑘

) 𝐸
𝑇

(𝑡 − 𝜏
𝑘
) 𝐸 (𝑡 − 𝜏

𝑘
)

+ (𝜉𝑔 − 𝜅
2

)𝐷
𝑇

(𝑡) 𝐷 (𝑡) < 0,

(37)

where

Δ
𝑖𝑙
≡

𝑔

∑

𝑘=1

𝜏
𝑘
𝑃𝐺

𝑖𝑙
+

𝑔

∑

𝑘=1

𝜏
𝑘
𝐺

𝑇

𝑖𝑙
𝑃 +

𝑔

∑

𝑘=1

𝜓
𝑘
+ 𝑛𝑔𝑅

𝑇

𝑅 + 𝐼

+

𝑔

∑

𝑘=1

𝜏
2

𝑘
𝑃

2

(𝜉
−1

+ 𝑛
−1

+ 𝑔𝑎
−1

) (see (31a)) ,

∇
𝑖𝑘

≡ 𝑔𝑎𝐴

𝑇

𝑖𝑘
𝐴

𝑖𝑘
− 𝜓

𝑘
(see (31b)) .

(38)

Integrating (37) from 𝑡 = 0 to 𝑡 = ∞, the following
inequality is obtained as

𝑉 (∞)−𝑉 (0)+∫

∞

0

𝐸
𝑇

(𝑡) 𝐸 (𝑡) 𝑑𝑡−𝜅
2

∫

∞

0

𝐷
𝑇

(𝑡) 𝐷 (𝑡) 𝑑𝑡≤0.

(39)

With zero initial conditions (i.e., 𝐸(𝑡) ≡ 0 for 𝑡 ∈ [−𝜏max, 0]),
we have

∫

∞

0

𝐸
𝑇

(𝑡) 𝐸 (𝑡) 𝑑𝑡 ≤ 𝜅
2

∫

∞

0

𝐷
𝑇

(𝑡) 𝐷 (𝑡) 𝑑𝑡. (40)

That is, (30) and the 𝐻
∞ control performance are achieved

with a prescribed attenuation 𝜅.
Since
𝑔

∑

𝑘=1

𝜏
𝑘
𝜆min (𝑃) 𝐸

𝑇

(𝑡) 𝐸 (𝑡)

≤

𝑔

∑

𝑘=1

𝜏
𝑘
𝐸

𝑇

(𝑡) 𝑃𝐸 (𝑡)

= 𝑉 (𝑡) −

𝑔

∑

𝑘=1

∫

𝜏
𝑘

0

𝐸
𝑇

(𝑡 − 𝜋) 𝜓
𝑘
𝐸 (𝑡 − 𝜋) 𝑑𝜋

< 𝑉 (𝑡)

(41)

(from (32)), we can get the following inequality from (37):
.

𝑉 (𝑡) + 𝐸
𝑇

(𝑡) 𝐸 (𝑡) − 𝜅
2

𝐷
𝑇

(𝑡) 𝐷 (𝑡)

<

𝜙

∑

𝑖=1

𝜌

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡)

𝜆max (Δ 𝑖𝑙
)

∑
𝑔

𝑘=1
𝜏
𝑘
𝜆min (𝑃)

𝑉 (𝑡) < 0.

(42)

Then, we can easily obtain

𝑉 (𝑡)|
𝜕(𝑡)=0

< 𝑉 (𝑡
0
) exp𝛽 (𝑡 − 𝑡

0
) , (43)

where 𝛽 = ∑
𝜙

𝑖=1
∑

𝜌

𝑙=1
ℎ
𝑖
(𝑡)ℎ

𝑙
(𝑡)[𝜆max(Δ 𝑖𝑙

)/∑
𝑔

𝑘=1
𝜏
𝑘
𝜆min(𝑃)] <

0.
Equations (32) and (43) show that

𝑔

∑

𝑘=1

𝜏
𝑘
𝜆min (𝑃) 𝐸

𝑇

(𝑡) 𝐸 (𝑡)

≤

𝑔

∑

𝑘=1

𝐸
𝑇

(𝑡) 𝜏
𝑘
𝑃𝐸 (𝑡)

< 𝑉 (𝑡
0
) exp𝛽 (𝑡 − 𝑡

0
)

−

𝑔

∑

𝑘=1

∫

𝜏
𝑘

0

𝐸
𝑇

(𝑡 − 𝜋) 𝜓
𝑘
𝐸 (𝑡 − 𝜋) 𝑑𝜋

< 𝑉 (𝑡
0
) exp𝛽 (𝑡 − 𝑡

0
) .

(44)

That is, ‖𝐸(𝑡)‖2 ≤ (𝑉(𝑡
0
)/∑

𝑔

𝑘=1
𝜏
𝑘
𝜆min(𝑃)) exp𝛽(𝑡−𝑡

0
).There-

fore, we conclude that

‖𝐸 (𝑡)‖ ≤ 𝛼 exp (−𝛽 (𝑡 − 𝑡
0
)) ,

with 𝛼 ≡ √

𝑉 (𝑡
0
)

∑
𝑔

𝑘=1
𝜏
𝑘
𝜆min (𝑃)

> 0, 𝛽 ≡ −

1

2

𝛽 > 0.

(45)

Hence, on basis of theDefinition 3, the error system (20) with
the fuzzy controller (19) is exponentially stable for 𝐷(𝑡) = 0.

Corollary 6. Equations (31a) and (31b) can be reformulated
into LMIs via the following procedure.

By introducing the new variables 𝑄 = 𝑃
−1, 𝐹

𝑙
= 𝐾

𝑙
𝑄, and

𝜓
𝑘
= 𝑄𝜓

𝑘
𝑄, (31a) and (31b) can be rewritten as follows:
𝑔

∑

𝑘=1

𝜏
𝑘
{𝐴

𝑖
𝑄 − 𝐵𝐹

𝑙
+ 𝑄𝐴

𝑇

𝑖
− 𝐹

𝑇

𝑙
𝐵

𝑇

}

+

𝑔

∑

𝑘=1

𝜓
𝑘
+ 𝑛𝑔𝑄𝑅

𝑇

𝑅𝑄 + 𝑄𝐼𝑄

+

𝑔

∑

𝑘=1

𝜏
2

𝑘
(𝜉

−1

+ 𝑛
−1

+ 𝑔𝑎
−1

) 𝐼 < 0,

(46a)

𝑔𝑎𝑄𝐴

𝑇

𝑖𝑘
𝐴

𝑖𝑘
𝑄 − 𝜓

𝑘
< 0, (46b)

for 𝑖 = 1, 2, . . . , 𝜙; 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑔 and 𝑙 = 1, 2, ⋅ ⋅ ⋅ , 𝜌. According
to Schur’s complement [36], it is easy to show that the linear
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matrix inequalities in (46a) and (46b) are equivalent to the
following LMIs in (47a) and (47b):

[

[

Ξ 𝑄𝑅
𝑇

𝑄

𝑅𝑄
𝑇

−(𝑛𝑔)
−1

𝐼 0

Q 0 −𝐼

]

]

< 0, (47a)

[
−𝜓

𝑘
𝑄𝐴

𝑇

𝑖𝑘

𝐴
𝑖𝑘
𝑄 −(𝑔𝑎)

−1

𝐼

] < 0, (47b)

where

Ξ ≡

𝑔

∑

𝑘=1

𝜏
𝑘
𝐴

𝑖
𝑄 −

𝑔

∑

𝑘=1

𝜏
𝑘
𝐵𝐹

𝑙

+

𝑔

∑

𝑘=1

𝜏
𝑘
𝑄𝐴

𝑇

𝑖
−

𝑔

∑

𝑘=1

𝜏
𝑘
𝐹

𝑇

𝑙
𝐵

𝑇

+

𝑔

∑

𝑘=1

𝜓
𝑘
+

𝑔

∑

𝑘=1

𝜏
2

𝑘
(𝜉

−1

+ 𝑛
−1

+ 𝑔𝑎
−1

) 𝐼.

(48)

Hence, Theorem 5 can be transformed into an LMI
problem, and efficient interior-point algorithms are now
available in Matlab LMI Solver to solve this problem.

Corollary 7 (see [53]). In order to verify the feasibility of
solving the inequalities in (47a) and (47b) using LMI Solver
(Matlab), the interior-point optimization techniques are uti-
lized to compute feasible solutions. Such techniques require that
the system of LMI is constrained to be strictly feasible; that is,
the feasible set has a nonempty interior. For feasibility problems,
the LMI Solver by feasp (feasp is the syntax used to test
feasibility of a system of LMIs inMATLAB) is shown as follows:

find 𝑥 such that the LMI 𝐿 (𝑥) < 0, (49a)

(in this study, (49a) can be represented as (47a) and (47b)) and

minimize 𝑡 subject to 𝐿 (𝑥) < 𝑡 × 𝐼. (49b)

From the abovementioned, the LMI constraint is always
strictly feasible in 𝑥, 𝑡 and the original LMI (49a) is feasible
if and only if the global minimum 𝑡min (the global minimum
𝑡min is the scalar value returned as the output argument by
feasp) of (49b) satisfies 𝑡min < 0. In other words, if 𝑡min < 0

will satisfy (47a) and (47b) then the stability conditions (31a)
and (31b) inTheorem 5 can be met. Then, the obtained fuzzy
controller (19) can exponentially stabilize the error system,
and the 𝐻

∞ control performance is achieved at the same
time.

Corollary 8. In order to achieve optimal 𝐻
∞ exponential

synchronization, the fuzzy control design is formulated as the
following constrained optimization problem:

minimize 𝜅 > √𝜉g
subject to 𝑄 = 𝑄

𝑇

> 0,

𝜓
𝑘
= 𝜓

𝑇

𝑘
> 0, (47a) and (47b).

(50)

More details to search the minimum 𝜅 are given as
follows.

The positive constant 𝜉 is minimized by the mincx
function of Matlab LMI toolbox. Therefore, the minimum
disturbance attenuation level 𝜅min > √𝜉min𝑔 can be obtained.

Remark 9. In order to reduce the computational burden, this
study sets the positive constants 𝑎 and 𝑛 as unity.

Remark 10. It is an important issue to reduce the effect of
external disturbances in the synchronization process. The
𝐻

∞ norm bound 𝜅 is generally chosen as a positive small
value less than unity for attenuation of disturbance. A smaller
𝜅 is desirable as this yields better performance. However,
a smaller 𝜅 will result in a smaller 𝜉, making the stability
conditions (31a) more difficult to satisfy.

Remark 11. According to (25), the modeling error Φ(𝑡) is
assumed to be bounded by the specified structured bounding
matrix 𝑅, and then a larger Φ(𝑡) results in a larger 𝑅. Since
thematricesΔ

𝑖𝑙
must be negative definite tomeet the stability

condition (31a), a larger𝑅will makeTheorem 5more difficult
to satisfy.

4. Algorithm

The complete design procedure can be summarized as fol-
lows.

Problem 1. Given two different multiple time-delay chaotic
systems with different initial conditions, the problem is
centered on how to synthesize a fuzzy controller to realize the
optimal H ∞ exponential synchronization.

We can solve this problem based on the following steps.

Step 1. Construct the neural-network (NN) models of the
master system (1) and the slave system (2), respectively.
According to the interpolation method, the NN models are
then converted into LDI state-space representations.

Step 2. On the basis of the state-feedback control scheme, a
fuzzy controller (19) is synthesized to exponentially stabilize
the error system.

Step 3. Define the synchronization error 𝐸(𝑡) = �̂�(𝑡) −

𝑋(𝑡), and then the dynamics of the error system (20) can be
obtained.

Step 4. Based on Corollary 8, the positive constant 𝜉 is
minimized by themincx function ofMatlab LMI toolbox, and
then we have the minimum disturbance attenuation level.

Step 5. The matrices 𝑄, 𝐹
𝑙
, and 𝜓

𝑘
can be obtained with the

minimum disturbance attenuation 𝜅min.

5. Numerical Example

The following example illustrates the effectiveness of the
previous algorithm.
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Problem 2. The purpose of this example is to synthesize a
fuzzy controller to achieve optimal𝐻∞ exponential synchro-
nization. Consider the modifiedmultiple time-delay Genesio
and Lorenz chaotic systems in master-slave configuration,
described as follows:

.

𝑥
1
(𝑡) = 𝑥

2
(𝑡) ,

.

𝑥
2
(𝑡) = 𝑥

3
(𝑡) ,

.

𝑥
3
(𝑡) = −6𝑥

1
(𝑡) − 2.92𝑥

2
(𝑡 − 0.015)

− 1.2𝑥
3
(𝑡) + 𝑥

2

1
(𝑡 − 0.13)

(51)

.

�̂�
1
(𝑡) = 10 (�̂�

2
(𝑡) − �̂�

1
(𝑡)) + 𝐷 (𝑡) + 𝑢

1
(𝑡) ,

.

�̂�
2
(𝑡) = 28�̂�

1
(𝑡) − �̂�

2
(𝑡 − 0.13)

− �̂�
1
(𝑡) �̂�

3
(𝑡) + 𝐷 (𝑡) + 𝑢

2
(𝑡) ,

.

�̂�
3
(𝑡) = �̂�

1
(𝑡) �̂�

2
(𝑡) − (

8

3

) �̂�
3
(𝑡 − 0.015) + 𝐷 (𝑡) + 𝑢

3
(𝑡) ,

(52)

where [𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)]

𝑇 and [�̂�
1
(𝑡) �̂�

2
(𝑡) �̂�

3
(𝑡)]

𝑇 are the
state vectors of master and slave systems, respectively. Let
the different initial conditions of master and slave systems be
[𝑥

1
(0) = −0.5𝑥

2
(0) = 2𝑥

3
(0) = 6] and [�̂�

1
(0) = 0.2�̂�

2
(0) =

−1.5�̂�
3
(0) = 5], and the external disturbance 𝐷(𝑡) =

0.5 sin(2.3𝑡).

Figures 2(a) and 2(b) show the chaotic behaviors of the
master (51) and slave (52) systems, respectively.

Solution 1. We can solve the previous problem based on the
following steps.

Step 1. Establish the NN models for master and slave sys-
tems via back propagation algorithm, respectively. First, the
NN model to approximate the master chaotic system is
constructed by 7–3, and the transfer functions of the hidden
layer are chosen as follows:

𝑇 (V
𝜎

𝜍
(𝑡)) = {

2

[1 + exp (−V𝜎
𝜍
(𝑡) /0.5)]

− 1} ,

for 𝜎 = 1.

(53)

On the other hand, the transfer functions of the output layer
are chosen as follows:

𝑇 (V
𝜎

𝜍
(𝑡)) = V

𝜎

𝜍
(𝑡) , for 𝜎 = 2. (54)

After training, we can obtain the following connection
weights (the indices in 𝑊

𝜎

𝜍𝜗
state that the weight of the 𝜎th

layer in the NN model represents the connection to the 𝜍th
neuron from the 𝜗th source):

𝑊
1

= [𝑊
1

𝜍𝜗
] = 10

−3

×

[

[

[

[

[

[

[

[

−1.03122 5.94314 −20.9809 0.13627 507.458 868.021 588.569 0.2062 651.633

8.37089 26.8407 21.6151 0.00088 −239.108 −740.187 −377.569 −0.01391 76.6848

501.958 −3.80717 132.938 0.80211 135.643 137.647 57.0662 0.06242 992.269

1963.99 −273.63 359.637 8.01727 −848.291 −61.2187 −668.702 5.75107 −843.648

−2.69396 −2.90578 −10.7761 0.02579 −892.099 −976.195 203.963 0.06003 −114.643

−770.561 146.747 −194.79 1.70179 61.5951 −325.754 −474.057 0.70796 −786.694

−495.801 7.53321 −127.132 −0.59639 558.334 −675.635 308.158 −0.00742 923.796

]

]

]

]

]

]

]

]

,

𝑊
2

= [𝑊
2

𝜍𝜗
] = 10

2

× [

0.22075 0.37482 −0.15363 −0.00174 0.2211 −0.00355 −0.14954

−0.12996 −0.05835 −0.00991 0.00027 −0.84887 −0.00075 −0.40655

11.2915 −7.58331 4.85989 −0.05542 −35.5864 −0.22732 5.1942

] .

(55)

Then, the net inputs of the 𝜎th (𝜎 = 1, 2) layer are as follows
(the symbol V𝜎

𝜍
denotes the net input of the 𝜍th neuron of the

𝜎th layer in the NN model, and the indices 𝜎 and 𝜍 shown in
ℎ
𝜎

𝜍𝜑
(𝜑 = 1, 2) indicate the same thing):

V
1

𝜍
(𝑡) = 𝑊

1

𝜍1
𝑥
1
(𝑡) + 𝑊

1

𝜍2
𝑥
2
(𝑡) + 𝑊

1

𝜍3
𝑥
3
(𝑡) + 𝑊

1

𝜍4
𝑥
1
(𝑡 − 0.13)

+ 𝑊
1

𝜍5
⋅ 0 + 𝑊

1

𝜍6
⋅ 0 + 𝑊

1

𝜍7
⋅ 0 + 𝑊

1

𝜍8
𝑥
2
(𝑡 − 0.015)

+ 𝑊
1

𝜍9
⋅ 0, 𝜍 = 1, 2, 3, 4, 5, 6, 7,

(56a)

V
2

𝜍
(𝑡) = 𝑊

2

𝜍1
𝑇 (V

1

1
(𝑡)) + 𝑊

2

𝜍2
𝑇 (V

1

2
(𝑡))

+ 𝑊
2

𝜍3
𝑇 (V

1

3
(𝑡)) + 𝑊

2

𝜍4
𝑇 (V

1

4
(𝑡)) + 𝑊

2

𝜍5
𝑇 (V

1

5
(𝑡))

+ 𝑊
2

𝜍6
𝑇 (V

1

6
(𝑡)) + 𝑊

2

𝜍7
𝑇 (V

1

7
(𝑡)) , 𝜍 = 1, 2, 3,

(56b)

.

𝑋 (𝑡) =
[

[

.

𝑥
1
(𝑡)

.

𝑥
2
(𝑡)

.

𝑥
3
(𝑡)

]

]

=
[

[

[

𝑇 (V
2

1
(𝑡))

𝑇 (V
2

2
(𝑡))

𝑇 (V
2

3
(𝑡))

]

]

]

. (57)

Based on (8), theminimumandmaximumof the derivative of
each transfer function shown in (53) and (54) can be obtained
as follows:

𝑔
1

𝜍0
= 0, 𝑔

2

𝜍0
= 1,

𝑔
1

𝜍1
= 𝑔

2

𝜍1
= 1, for 𝜍 = 1, 2, . . . , 𝐽

𝜎

.

(58)

In order to simplify the notation, we let𝑔1

𝜍0
= 𝑔

1

0
,𝑔1

𝜍1
= 𝑔

1

1
,

𝑔
2

𝜍0
= 𝑔

2

0
and 𝑔

2

𝜍1
= 𝑔

2

1
. Then, according to the interpolation
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method, we have

.

𝑥
1
(𝑡) =

1

∑

𝑑=0

ℎ
2

1𝑑
(𝑡) 𝑔

2

𝑑

7

∑

𝜍=1

𝑊
2

1𝜍
𝑇 (V

1

𝜍
(𝑡))

=

1

∑

𝑑=0

ℎ
2

1𝑑
(𝑡) 𝑔

2

𝑑

7

∑

𝜍=1

𝑊
2

1𝜍
(ℎ

1

𝜍0
(𝑡) 𝑔

1

0
+ ℎ

1

𝜍1
(𝑡) 𝑔

1

1
) V

1

𝜍
(𝑡)

=

1

∑

𝑑=0

ℎ
2

1𝑑
(𝑡) 𝑔

2

𝑑

×

1

∑

𝑠=0

1

∑

𝑝=0

1

∑

𝑟=0

1

∑

𝑜=0

1

∑

𝑐=0

1

∑

𝑙=0

1

∑

𝑘=0

ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡)

× ℎ
1

4𝑜
(𝑡) ℎ

1

5𝑐
(𝑡) ℎ

1

6𝑙
(𝑡) ℎ

1

7𝑘
(𝑡)

⋅ (𝑔
1

𝑠
𝑊

2

𝜍1
V
1

1
(𝑡) + 𝑔

1

𝑝
𝑊

2

𝜍2
V
1

2
(𝑡) + 𝑔

1

𝑟
𝑊

2

𝜍3
V
1

3
(𝑡)

+ 𝑔
1

𝑜
𝑊

2

𝜍4
V
1

4
(𝑡) + 𝑔

1

𝑐
𝑊

2

𝜍5
V
1

5
(𝑡) + 𝑔

1

𝑙
𝑊

2

𝜍6
V
1

6
(𝑡)

+𝑔
1

𝑘
𝑊

2

𝜍7
V
1

7
(𝑡)) ,

.

𝑥
2
(𝑡) =

1

∑

𝑒=0

ℎ
2

2𝑒
(𝑡) 𝑔

2

𝑒

7

∑

𝜍=1

𝑊
2

2𝜍
𝑇 (V

1

𝜍
(𝑡))

=

1

∑

𝑒=0

ℎ
2

2𝑒
(𝑡) 𝑔

2

𝑒

7

∑

𝜍=1

𝑊
2

1𝜍
(ℎ

1

𝜍0
(𝑡) 𝑔

1

0
+ ℎ

1

𝜍1
(𝑡) 𝑔

1

1
) V

1

𝜍
(𝑡)

=

1

∑

𝑒=0

ℎ
2

2𝑒
(𝑡) 𝑔

2

𝑒

×

1

∑

𝑠=0

1

∑

𝑝=0

1

∑

𝑟=0

1

∑

𝑜=0

1

∑

𝑐=0

1

∑

𝑙=0

1

∑

𝑘=0

ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡)

× ℎ
1

4𝑜
(𝑡) ℎ

1

5𝑐
(𝑡) ℎ

1

6𝑙
(𝑡) ℎ

1

7𝑘
(𝑡)

⋅ (𝑔
1

𝑠
𝑊

2

𝜍1
V
1

1
(𝑡) + 𝑔

1

𝑝
𝑊

2

𝜍2
V
1

2
(𝑡) + 𝑔

1

𝑟
𝑊

2

𝜍3
V
1

3
(𝑡)

+ 𝑔
1

𝑜
𝑊

2

𝜍4
V
1

4
(𝑡) + 𝑔

1

𝑐
𝑊

2

𝜍5
V
1

5
(𝑡)

+𝑔
1

𝑙
𝑊

2

𝜍6
V
1

6
(𝑡) + 𝑔

1

𝑘
𝑊

2

𝜍7
V
1

7
(𝑡)) ,

.

𝑥
3
(𝑡) =

1

∑

𝑓=0

ℎ
2

3𝑓
(𝑡) 𝑔

2

𝑓

7

∑

𝜍=1

𝑊
2

2𝜍
𝑇 (V

1

𝜍
(𝑡))

=

1

∑

𝑓=0

ℎ
2

3𝑓
(𝑡) 𝑔

2

𝑓

7

∑

𝜍=1

𝑊
2

1𝜍
(ℎ

1

𝜍0
(𝑡) 𝑔

1

0
+ ℎ

1

𝜍1
(𝑡) 𝑔

1

1
) V

1

𝜍
(𝑡)

=

1

∑

𝑓=0

ℎ
2

3𝑓
(𝑡) 𝑔

2

𝑓

×

1

∑

𝑠=0

1

∑

𝑝=0

1

∑

𝑟=0

1

∑

𝑜=0

1

∑

𝑐=0

1

∑

𝑙=0

1

∑

𝑘=0

ℎ
1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡)

× ℎ
1

3𝑟
(𝑡) ℎ

1

4𝑜
(𝑡) ℎ

1

5𝑐
(𝑡) ℎ

1

6𝑙
(𝑡) ℎ

1

7𝑘
(𝑡)

⋅ (𝑔
1

𝑠
𝑊

2

𝜍1
V
1

1
(𝑡) + 𝑔

1

𝑝
𝑊

2

𝜍2
V
1

2
(𝑡)

+ 𝑔
1

𝑟
𝑊

2

𝜍3
V
1

3
(𝑡) + 𝑔

1

𝑜
𝑊

2

𝜍4
V
1

4
(𝑡) + 𝑔

1

𝑐
𝑊

2

𝜍5
V
1

5
(𝑡)

+𝑔
1

𝑙
𝑊

2

𝜍6
V
1

6
(𝑡) + 𝑔

1

𝑘
𝑊

2

𝜍7
V
1

7
(𝑡)) .

(59)

On the basis of (9), let

𝐺
1

=

[

[

[

[

[

[

[

[

[

[

[

𝑔
1

𝑠
0 0 0 0 0 0

0 𝑔
1

𝑝
0 0 0 0 0

0 0 𝑔
1

𝑟
0 0 0 0

0 0 0 𝑔
1

𝑜
0 0 0

0 0 0 0 𝑔
1

𝑐
0 0

0 0 0 0 0 𝑔
1

𝑙
0

0 0 0 0 0 0 𝑔
1

𝑘

]

]

]

]

]

]

]

]

]

]

]

,

𝐺
2

=
[

[

[

𝑔
2

𝑑
0 0

0 𝑔
2

𝑒
0

0 0 g2
𝑓

]

]

]

,

(60)

then, 𝐸
𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘

≡ 𝐺
2

𝑊
2

𝐺
1

𝑊
1

= [ΥRℵ
]
3×9

, R = 1, 2, 3; ℵ =

1, 2 . . . , 9.
Plugging (56a) and (56b) into (59) leads to

.

𝑋(𝑡) =

1

∑

𝑑=0

1

∑

𝑒=0

1

∑

𝑓=0

1

∑

𝑠=0

1

∑

𝑝=0

1

∑

𝑟=0

1

∑

𝑜=0

1

∑

𝑐=0

1

∑

𝑙=0

1

∑

𝑘=0

ℎ
2

1𝑑
(𝑡)

× ℎ
2

2𝑒
(𝑡) ℎ

2

3𝑓
(𝑡) ℎ

1

1𝑠
(𝑡) ℎ

1

2𝑝
(𝑡) ℎ

1

3𝑟
(𝑡) ℎ

1

4𝑜
(𝑡)

× ℎ
1

5𝑐
(𝑡) ℎ

2

6𝑙
(𝑡) ℎ

2

7𝑘
(𝑡) {𝐴

𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘
𝑋(𝑡)

+ 𝐴
𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘1

𝑋 (𝑡 − 0.13)

+𝐴
𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘2

𝑋 (𝑡 − 0.015)} ,

(61)

where 𝑋(𝑡) = [𝑥
1
(𝑡) 𝑥

2
(𝑡) 𝑥

3
(𝑡)]

𝑇, 𝑋(𝑡 − 0.13) = [𝑥
1
(𝑡 −

0.13) 0 0]
𝑇,𝑋(𝑡 − 0.015) = [0 𝑥

2
(𝑡 − 0.015) 0]

𝑇,

𝐴
𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘

=
[

[

Υ
11

Υ
12

Υ
13

Υ
21

Υ
22

Υ
23

Υ
31

Υ
32

Υ
33

]

]

,

𝐴
𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘1

=
[

[

Υ
14

Υ
15

Υ
16

Υ
24

Υ
25

Υ
26

Υ
34

Υ
35

Υ
36

]

]

,

𝐴
𝑑𝑒𝑓𝑠𝑝𝑟𝑜𝑐𝑙𝑘2

=
[

[

Υ
17

Υ
18

Υ
19

Υ
27

Υ
28

Υ
29

Υ
37

Υ
38

Υ
39

]

]

.

(62)

Next, by renumbering thematrices shown in (61), the NN
model of master system can be rewritten as the following LDI
state-space representation:

.

𝑋(𝑡) =

1024

∑

𝑖=1

ℎ
𝑖
(𝑡) {𝐴

𝑖
𝑋 (𝑡) +

2

∑

𝑘=1

𝐴
𝑖𝑘
𝑋(𝑡 − 𝜏

𝑘
)} , (63)
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where 𝜏
1
= 0.13, 𝜏

2
= 0.015,

𝐴
1
= 𝐴

0000000000
, . . . , 𝐴

1023
= 𝐴

1111111110
,

𝐴
1024

= 𝐴
1111111111

,

𝐴
11

= 𝐴
0000000000 1

, . . . , 𝐴
1023 1

= 𝐴
1111111110 1

,

𝐴
1024 1

= 𝐴
1111111111 1

,

𝐴
12

= 𝐴
0000000000 2

, . . . , 𝐴
1023 2

= 𝐴
1111111110 2

,

𝐴
1024 2

= 𝐴
1111111111 2

.

(64)

Similarly, the connection weights of the NN model for the
slave system are obtained as follows:

�̂�

1

= [�̂�

1

𝜍𝜗
] = 10

−3

×

[

[

[

[

[

[

[

[

152.414 −108.845 5.89316

25.9179 −1.25408 0.23133

16.4571 −32.4571 −0.07041

185.863 −168.015 63.4102

30.1031 −6.65419 20.3791

−29.6884 2.93641 −19.0384

−30.3835 −2.8972 14.6662

−2.46010 141.365 −68.6751

−0.03779 143.659 −441.921

−0.03095 −427.963 350.75

0.77781 398.267 807.329

−0.18987 592.515 817.051

0.14757 −116.821 494.393

−0.05355 −107.568 −478.976

379.275 0.92354 −435.589

−736.338 0.04626 951.915

−752.998 0.05790 −927.148

−618.194 2.26166 −347.51

−708.535 0.22644 946.027

170.087 −0.19531 −269.934

−853.276 0.04245 −381.7

]

]

]

]

]

]

]

]

,

�̂�

2

= [�̂�

2

𝜍𝜗
] = 10

−2

× [

−0.02461 −2.39353 −2.95221 0.00325

0.36735 −35.2973 3.22363 −0.06269

−2.20513 8.93374 −5.80935 −1.25235

−0.54634 −0.78523 −0.23624

−32.8677 −48.5154 −16.6456

164.85 164.933 −10.6894

] .

(65)

Step 2. The procedures of constructing the NNmodel for the
slave system are similar to those for that of themaster system,
and thenwe have theNNmodel of the slave system as follows:

.

�̂� (𝑡) =

1024

∑

𝑗=1

̂
ℎ
𝑗
(𝑡) {�̂�

𝑗
�̂� (𝑡) +

2

∑

𝑘=1

̂
𝐴

𝑗𝑘
�̂� (𝑡 − 𝜏

𝑘
)} + 𝐵𝑈 (𝑡) ,

(66)

where �̂�(𝑡) = [�̂�
1
(𝑡) �̂�

2
(𝑡) �̂�

3
(𝑡)]

𝑇, �̂�(𝑡 − 0.13) = [0

�̂�
2
(𝑡−0.13) 0]

𝑇, �̂�(𝑡−0.015) = [0 0 �̂�
3
(𝑡−0.015)]

𝑇 and𝐵

is identity matrix.The responses of
.

𝑋(𝑡) and
.

�̂�(𝑡) for original
systems and𝑁𝑁models are shown in Figures 3(a) and 3(b).

Step 3. In order to synchronize the master and slave systems,
a fuzzy controller is synthesized as follows:

Control Rule 1 : IF 𝑒
1
(𝑡) is 𝑀

1
, THEN 𝑈 (𝑡) = −𝐾

1
𝐸 (𝑡) ,

Control Rule 2 : IF 𝑒
1
(𝑡) is 𝑀

2
, THEN 𝑈 (𝑡) = −𝐾

2
𝐸 (𝑡) ,

(67)

where 𝑀
1
and 𝑀

2
are the membership functions for each 𝑒

1

(see Figure 4) as follows:

𝑀
1
(𝑒

1
(𝑡)) =

1

2

(1 +

𝑒
1
(𝑡)

𝑞

) , (68a)

𝑀
2
(𝑒

1
(𝑡)) =

1

2

(1 −

𝑒
1
(𝑡)

𝑞

) . (68b)

Based on (19), we have the overall fuzzy controller

𝑈 (𝑡) = −

∑
2

𝑙=1
𝑤

𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡)

∑
2

𝑙=1
𝑤

𝑙
(𝑡)

= −

2

∑

𝑙=1

ℎ
𝑙
(𝑡) 𝐾

𝑙
𝐸 (𝑡) , (69)

with 𝑤
𝑙
(𝑡) ≡ 𝑀

𝑙
(𝑒

1
(𝑡)), ℎ

𝑙
(𝑡) ≡ 𝑤

𝑙
(𝑡)/∑

2

𝑙=1
𝑤

𝑙
(𝑡).

Based on (20), the dynamics of the error system are
obtained as follows:

.

𝐸 (𝑡) =

1024

∑

𝑖=1

2

∑

𝑘=1

2

∑

𝑙=1

ℎ
𝑖
(𝑡) ℎ

𝑙
(𝑡)

× {𝐺
𝑖𝑙
𝐸 (𝑡) + 𝐴

𝑖𝑘
𝐸 (𝑡 − 𝜏

𝑘
)} + 𝐷 (𝑡) + Φ (𝑡) ,

(70)

where𝐺
𝑖𝑙
≡ 𝐴

𝑖
−𝐵𝐾

𝑙
, Ψ̂ ≡ 𝑓(�̂�(𝑡))+∑

2

𝑘=1
𝐻

𝑘
(�̂�(𝑡−𝜏

𝑘
))+𝑈(𝑡),

with𝑈(𝑡) = −∑
2

𝑙=1
ℎ
𝑙
(𝑡)𝐾

𝑙
𝐸(𝑡),Ψ ≡

̂
𝑓(𝑋(𝑡))+ ∑

2

𝑘=1
�̂�

𝑘
(𝑋(𝑡−

𝜏
𝑘
)), Φ(𝑡) ≡ Ψ̂ − Ψ − {∑

1024

𝑖=1
∑

2

𝑘=1
∑

2

𝑙=1
ℎ
𝑖
(𝑡)ℎ

𝑙
(𝑡)[𝐺

𝑖𝑙
𝐸(𝑡) +

𝐴
𝑖𝑘
𝐸(𝑡 − 𝜏

𝑘
)}.

Step 4. According to (55) and (61)–(70), the LMIs in (47a)
and (47b) can be solved via the Matlab LMI toolbox. In
accordance with Remark 1, the specified structured bounding
matrix 𝑅 and 𝜀

𝑖𝑙
are set as

𝑅 =
[

[

18000 0 0

0 18000 0

0 0 18000

]

]

, 𝜀
𝑖𝑙
=

[

[

1 0 0

0 1 0

0 0 1

]

]

. (71)

Based on Corollary 8, the positive constant 𝜉 is mini-
mized by the mincx function of Matlab LMI toolbox 𝜉min =

0.0000125, and then we have the minimum disturbance
attenuation level 𝜌min = 0.006.

Step 5. The common solutions 𝑄, 𝐹
1
, 𝐹

2
, 𝜓

1
, and 𝜓

2
of the

stability conditions (31a) and (31b) can be obtained with the
best value 𝑡𝑚𝑖𝑛 of LMI Solver (Matlab) as −2.202477 × 10

−7

as follows:

𝑄 = 10
−6

×
[

[

0.7456 0 0

0 0.7454 −0.0001

0 −0.0001 0.7452

]

]

, (72)
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Figure 2: (a) Chaotic behavior of themaster system (51). (b) Chaotic
behavior of the slave system (52) without control.

𝐹
1
=

[

[

0.0071 0 0

0 0.0071 0

0 0 0.0071

]

]

, (73a)

𝐹
2
=

[

[

0.0071 0 0

0 0.0071 0

0 0 0.0071

]

]

. (73b)

In addition, the resulting controller gains are

𝐾
1
= 10

3

×
[

[

9.4701 −0.0004 −0.0055

0.0004 9.4701 0.0014

0.0055 −0.0014 9.4701

]

]

,

𝐾
2
= 10

3

×
[

[

9.4701 0.0001 0.0013

−0.0001 9.4701 −0.0053

−0.0013 0.0053 9.4701

]

]

,

𝜓
1
= 𝜓

2
=

[

[

1.0344 0 −0.0032

0 1.0345 0.0002

−0.0032 0.0002 1.0345

]

]

.

(74)
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Figure 3: (a) The responses of
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Figure 5: State responses of both master and slave systems.
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Figure 6: The chaotic behaviors of the master and slave systems.

Figure 5 displays the state responses of both master and
slave systems. The chaotic behaviors of the master and
slave systems are shown in Figure 6. Besides, Figure 7 illus-
trates the synchronization errors (𝑒

1
, 𝑒

2
, and 𝑒

3
) which

converge to zero. Moreover, the assumption of ‖Φ(𝑡)‖ ≤

‖∑
1024

𝑖=1
∑

2

𝑙=1
ℎ
𝑖
(𝑡)ℎ

𝑙
(𝑡)Θ𝑅

𝑖𝑙
𝐸(𝑡)‖ is satisfied from the illustra-

tion shown in Figure 8.
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Figure 7: State responses of the error system.
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6. Conclusion

This study proposes a novel approach not only to realize
the exponential synchronization of nonidentical multiple
time-delay chaotic (MTDC) systems but also to achieve the
optimal 𝐻∞ performance at the same time. First, a neural-
network (NN)model is employed to approximate theMTDC
system.Then, a linear differential inclusion (LDI) state-space
representation is established for the dynamics of the NN
model. Next, in terms of Lyapunov’s direct method, a delay-
dependent stability criterion is derived to ensure that the
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slave system can exponentially synchronize with the master
system. Subsequently, the stability condition of this criterion
is reformulated into a linear matrix inequality (LMI). On the
basis of the Lyapunov stability theory and LMI approach,
a fuzzy controller is synthesized to realize the exponential
𝐻

∞ synchronization of the chaotic master-slave systems and
reduce the 𝐻

∞ norm from disturbance to synchronization
error at the lowest level. Finally, the simulation results
demonstrate that the exponential𝐻∞ synchronization of two
different MTDC systems can be achieved by the designed
fuzzy controller. algorithm, respectively. First, the NNmodel
to approximate the master chaotic
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