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Wu and Liu (2012) presented some results for the existence and uniqueness of the periodic solutions for the hematopoiesis model.
This paper gives a simple approach to find an approximate period of the model.

Wu and Liu studied the following hematopoiesis model [1]:
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where 𝑥 denotes the density of mature cells in blood circula-
tion. The physical meaning of other parameters is referred to
[1].

Equation (1) admits periodic solutions as revealed in [1].
Hereby we suggest a simple approach to the search for an
approximate period of (1) using a simple amplitude-frequen-
cy formulation [2–5]. To this end, we rewrite (1) in the form
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Assume that the periodic solution can be expressed in the
form

𝑥 (𝑡) = 𝐴 cos𝜔𝑡. (3)

Submitting (3) into (2) results in the following residual:
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(4)

In order to use the amplitude-frequency formulation [2–
5], we choose two trial frequencies and locate them at 𝑡 =
𝜋/(4𝜔).
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respectively, we have
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The frequency can be then obtained approximately in the
form [2–5]
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This formulation has been widely used to solve periodic
solutions of various nonlinear oscillators [6–13], and it is
often called as He’s frequency formulation, He’s amplitude-
frequency formulation, or He’s frequency-amplitude formu-
lation. In case 𝜔2 < 0, no period solution is admitted. A
similar criterion is given for a nonlinear equation arising in
electrospinning process [14].
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