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Let L = —A + V be a Schrodinger operator, where A is the laplacian on R"” and the nonnegative potential V belongs to the
reverse Holder class B, for some s; > (n/2). Assume that w € A,(R"). Denote by Hi(w) the weighted Hardy space related to
the Schrodinger operator L = —A + V. Let %, = [b, %] be the commutator generated by a function b € BMOy(R") and the Riesz

transform & = V(-A + V) /2, Firstly, we show that the operator & is bounded from L' (w) into L

1
weak

(w). Secondly, we obtain the

endpoint estimates for the commutator [b, %]. Namely, it is bounded from the weighted Hardy space H, (w) into L}, (w).

1. Introduction

Let L = —A + V be a Schrédinger operator, where A is the
laplacian on R" and the nonnegative potential V belongs to
the reverse Holder class B for some s; > (n/2) andn > 3.In
this paper, we consider the Riesz transform associated with
the Schrodinger operator L as follows:

R =V(-A+V)V2 6)

Let b be a locally integrable function on R” and let T be a
linear operator. For a suitable function f, the commutator is
defined by T}, f = [b,T1f = bT(f) — T(bf). It is well known
that when T is a Calderén-Zygmund operator, Coifman et al.
[1] proved that [b, T] is a bounded operator on L? for 1 < p <
oo if and only if b € BMO(R").

Recently, some scholars have investigated the bounded-
ness of the commutators generated by a BMO function b and
Riesz transforms associated with the Schrodinger operator
(cf. [2-8]). It follows from [9] that Riesz transform associated
with the Schrédinger operator L is not a Calderén-Zygmund
operator if the potential V' € B, ((n/2) < s < n). Their
results imply that the boundedness of the commutators of
Riesz transform associated with the Schrédinger operator L
depends on the nonnegative potential V. In [5], the authors
have obtained the weighted L, 1 < p < oo, and weak
Llog L the estimates for the commutator %,,. In this paper we

are interested in the weighted Hardy space estimates for %,
which are also the weighted endpoint estimates. It is noted
that our main results generalize Theorem 2.7 and Theorem
41 in [3] to the weighted case and the function b that we
consider belongs to a larger class than the classical BMO
space.

Note that a nonnegative locally L® integrable function V
on R” is said to belong to B, (1 < s < c0) if there exists C > 0
such that the reverse Holder inequality

1 e
— s - 2
<|B| JBV(x) dx) < 3 LV(x) dx (2)

holds for every ball B in R". Obviously, B, ¢ B; ifs, > s;.
But it is important that the B, class has a property of “self-
improvement”; that is, if V' € B, then V € B,,, for some
e>0.

Assume V € B for some s; > (n/2). Then the auxiliary
function p(x, V) = p(x) introduced by Shen in [9] is defined
as follows:

st+e

1
p(x) = m(x,V)
) 3)
isup{r: n—ZJ V(y)dysl}, xeR".
>0 r B(x,r)



In [4], the authors define the class BMOy(p) of locally
integrable function b such that

o o b0 -y e+
B (x, 1) Jpeer) (%)

forall x € R" and r > 0, where 8 > 0 and by =
(1/1BJ) f b(y)dy. A norm for b € BMOg(p), denoted by [b]y,
is given %y the infimum of the constants satisfying (4), after
identifying functions that differ upon a constant. If we let
0 = 0in (4), then BMOgy(p) is exactly the John-Nirenberg
space BMO. Denote BMO,(p) = [Jgo BMOg(p). It is easy
to see that BMO ¢ BMOg(p) ¢ BMOy (p) for 0 < 0 < 0.
Hence, BMO ¢ BMO,,(p).
Throughout this paper, we set w(E) = IE w(x)dx for any
subset E € R". Assume that the nonnegative function w €
loc(IR") We say that w € A ([R”) for1 < p < oo if thereis a
constant C > 0 such that

s“p(|;|J w(x)dx>(|;|J.(w(x)f_ﬂdx>P

for all balls B in R", where (1/p) + (1/p') =1.
We say that w € A (R"), if there exists a positive constant
C > 0, such that

-1

<C, (5

Mw (x) < Cw(x), ae x€R", (6)
where M is a Hardy-Littlewood operator.

Given a weight function w € AP([R”) forl < p <
00, as usual we denote by LY(w) the space of all measurable
functions satisfying

1 = J 1 () (0 dx < co. %
When g = 00, L®(w) will be taken to mean L® and
I ooy =1l fll . Moreover, denote by Liveak(w) the space

of all measurable functions satisfying

sup [Aw {x € R"
A>0

: |f (x)l > /\}] < 0. (8)

In the rest of this paper, we always assume that w €
AR

Because V. > O and V € L?ﬁ(R”), the Schrédinger
operator L generates a (C,) contraction semigroup {T" : s >
0} = {e=L : s > 0}. The maximal function associated with
{TL: s> 0} is defined by M f(x) = sup. [T f(x)I.

The Hardy space H; (R") associated with the Schrodinger
operator L is defined in terms of the maximal function
mentioned above (cf. [10]). Recently, the weighted Hardy
space Hi(w) has been established by Liu et al. [11] and it is
defined as follows.

Definition 1. Afunction f € LY(w) is said to be in Hi(w) if the

maximal function M* f belongs to L' (w). The norm of such
. L

a function is defined by ”f"Hi(w) = 1M fllp o)
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Definition 2. Let 1 < g < co. A function a € L(w) is called

an H i’q(w)—atom if r < p(x,) and the following conditions
hold:

(i) suppa € B(xy, 1),
(i) lalla) < w(B(xg, )P

(iii) if 7 < (p(x0)/4), then [, a(x)dx = 0.

In [11], Liu et al. gave the following atomic decomposition
for the space H I{(w).

Proposition 3. AssumeV € B, for somes, > (n/2). Let f €
L'(w). Then f € H,(w) if and only if f can be written as f =
Z] A;a;, where a; are Hloo(w)—atoms, Zj [A;] < oo, and the
sum converges in the Hj (w) quasinorm. Moreover,

”f"Hi(w) ~ inf {Z |/\j|]> , 9)
j

where the infimum is taken over all atomic decompositions of
f into H*™-atoms.

Following the above definition of atoms and the above
atomic decomposition, we know that the weighted Hardy
space H, (w) is not the special case of Hardy spaces estab-
lished by Yang and Zhou in [12].

Now we are in a position to give the main results in this

paper.

Theorem 4. Let w € A,(R"). Suppose V € B fors > (n/2).
Then,

wlx e R VA + V)2 > of < E

(10)
for every a > 0.
Theorem 5. Let b € BMO,,(p). Then, for any A > 0,
n Clb]
©(x € R R f (0] > A) < == f i
‘ (11)
Vf € H; (w),

where 8 > 0. Namely, the commutator Ry, is bounded from
Hi(w) into Llweak(w).

This paper is organized as follows. In Section 2, we recall
some basic facts to prove main results in this paper. Section 3
gives the proof of weighted estimates of Riesz transform
associated with the Schrédinger operator. In Section 4, we
prove Theorem 5.

Throughout this paper, the letter C stands for a constant
and is not necessarily the same at each occurrence. By B, ~ B,,
we mean that there exists a constant C > 1 such that (1/C) <
(B,/B,) < C.Moreover, for the ball B = B(x, r), we denote the
ball MB by MB = B(x, Mr), where M is a positive constant.
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2. Preliminaries

Firstly, we recall some lemmas of the auxiliary function p(x)
which have been proved by Shen in [9]. Throughout this
section we always assume V' € B for some s, > (n/2).

Lemma 6. The measure V(x)dx satisfies the doubling condi-
tion; that is, there exists C > 0 such that

J V(y)dy < CJ V(y)dy (12)
B(x,2r) B(x,r)
holds for all balls B(x,r) in R".
Lemma?7. ForO <r < R < 00,
l/r"_zj V(y)dy
B(x,r)
R\®W2 t3)
sC(—) 1/R" J V(y)dy.

r B(x,R)
Lemma 8. Ifr = p(x), then

/72 J V(y)dy =1. (14)

B(x,r)

Moreover,
1/r"_zj V(y)dy ~1 if and only if r ~ p(x). (15)
B(x,r)

Lemma9. There existsly > 0 such that, for any x and y in R",

_ ) B Iy/(lg+1)
l(Hlx yl) <p(y)sc<l+|x y|) .

c p(x) Cpx) p(x)
(16)
In particular, p(x) ~ p(y) if |x — y| < Cp(x).
Lemma 10. There existsl; > 0 such that
\%
[0
BeR) [x -y
17)
C R\
< V(y)dy < C<1 + —) .
R JB(x,m (r)dy p(x)

For the proofs of Lemma 6 to Lemma 10, readers can refer
to [9].

A ball B(x, p(x)) is called critical. Due to Lemma 2.3 in
[10], we have Lemma 12 on R".

Proposition 11. There exists a sequence of points {x; };~, in R",
such that the family of critical balls Q. = B(xy, p(x;)), k > 1,
satisfies the following

(i) Uk Qk =R"
(ii) There exists N = N(p) such that, for every k € N, card
{7:4Q;N4Q,#0} < N.

Secondly, we recall the estimates of the fundamental
solution of the operator —A + V + it and give the estimates
of kernels of Riesz transform . Let I'(x, y,7) denote the
fundamental solution for the operator —A + V' + it, where
7 € R. Clearly, I'(x, y,7) = T(y, x, -1).

Lemma 12. Let N > 0 be an integer.

(1) Suppose'V € B, fors, > (n/2). Then there exists Cyy >

0 such that, for x # y,
T (%, 7)]
s (1/2) N -1 N n-2"
(1+|x—y||'r| ) (1+|x—y|p(x) ) |x -y

(18)

(2) Suppose V€ B, fors, > (n/2). Then there exists Cyy >
0 such that, for x + y,

[V,L (x, . 7)]
Cn
N TN
(1 +|x -y |T|(1/2)) (1 +|x = y| p(x) 1)
V(z)dz 1 )

X( 1 -2 J ot -1
|x - y|n B(y,lx=yl) |z - y|n |x - y|"
(19)

<

By the functional calculus, we may write

(A + V) W2 _ zi j =iy V(A +V + 1) \dr. (20)
T JR

Let f € C(R"). From (-A+V + 1) f(x) = jRn I(x, y,7)
f(»)dy, it follows that

Rf @)= [ K@) f(0)dy, @
where
K (x,y) = % JR (=it YV I (x, y,7)dr. (22)
And the adjoint operator of # is given by
A= | R sody, @

where

= 1
K(xy) =7~ JR (-iry PV I (y,x1)dr. (24)



Lemma 13. Suppose V' € B, for some s, > (n/2). Then there
exists § > 0, for any integer N > 0, and 0 < h < (|x — y|/16),

K (x, )|
Cn
(1 + |x - y| p(x)_l)N

( 1 J V(z)dz 1 >
X\ = s |
|x =y B(ylx-y) |z - y| |x - |

K (x,y + h) - K (x,y)|
Cx |n°
(1+]x =y peo™) Jx =y

(J’ V(z)dz 1 >
X T+ .
B(rlx-y) |z - y| |x -5

Lemmas 12 and 13 have been proved in [9] and in [2],
respectively.

Thirdly, we recall some important and useful properties
ofAP weights (cf. Chapter V in [13]).

<

<

(25)

Proposition 14. (i) Let w € A p 1< p<oo Then there exist
a constant C > 0 and r > 1 depending only on p and the A,
constant of w, such that

1/r
<|—113| J wrdx> < % J wdx, (26)
B B

for any ball B.
(i) Letw € A If 1< p < 00, thenw' P € A,

At last, we review some basic facts about the BMO space
BMOy(p), which have been proved in [4].

Proposition 15. Let 0 > 0 and let 1
BMOy(p), then

< p <oolfb e

1 » (1/p)
_ b - byl d )
<|B(x,r)| JB(x,r)l () B| 4

camf1+75)

forall B = B(x,r), withx € R" andr > 0, where 0 =( +1,)0
and Iy is the constant appearing in Lemma 9.

(27)

Lemma 16. Let b € BMOy(p), let B = B(x,, 1), and let s > 1;

then
2k r )6,
(xo) )

(28)

1 . (1/p)
8] g PO) ") <Ol 1+ TS

forallk € N, with 0’ as in (27).
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3. Weighted Estimates of Riesz Transforms
Associated with the Schrodinger Operators

In this section, we need to prove the weighted estimates of
the Riesz transform associated with the Schrédinger operator,
which will be used in the proof of Theorem 5.

Theorem 17. Let w € A, (R"). Suppose V € B, for some s >
(n/2). Then, for py < p < o0,

|a+ vy e, o < Cl sy (29)

where py (1/s) = (1/n).

= po/(po— 1) and (1/p,) =

Proof. By the improvement of “B,”,V € B, fors <s; < n. It
follows from the proof of Theorem 0.5in [9] that

|2+ V)"vf (0)] < c{m (|f|P1)(x)} .

+ 2sup

>0

| Komr0a]
|y-x|>e

(30)

where (l/p;) =1-(1/p,) =1-(1/s;)+(1/n) and K?(x, ¥)
is the kernel for the operator V(—A)_l/ 2

Since w € A;(R"), then it follows from Proposition 7.2 in
[14] that w € AP([R”) for any p > 1.

By [13, Theorem 1, page 201] and [13, Corollary 2, page
205]

for 57 < p < 0.
(31

|a+ 2 L, < ClF s

Since p} < p;, then

||(—A + V)*1/2Vf||y,(w) < C||f||LP(w), for py < p < 0.
(32)

O

By duality, we have the following.

Corollary 18. Let w € A (R"). Suppose V € B, for some s >
(n/2). Then, for 1 < p < p,,

[V-a+v)2 f”u»(w) < Cllfl1r (33)
where (1/p,) = (1/s) — (1/n).
Proof. It follows from (ii) in Proposition 14 that ' ~? e A o

for p(') < p' < 00, where (1/p) + (l/p') =
Theorem 17, we know that

1. By using

“(—A + V)_l/zvf"LP’ @y S C||f”1}"(wl"”)' (34)
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Therefore, by duality and (34),

||V(_A + V)_l/zf“Lp(w)

= sup
ol =t

J VEA+ VY (x) g () @ (x) dx|

= sup
loll, -1

jw FO) (A +V)V) (go) (v) dy|

1/p
< sup

ol =t

<J Al (y)dy)

(LIea s e of
(@wO) PPay)
1/p

= sup
ol =1

(] roreta)

(Ll o o

N4
KwO) P ay)

<C sup
loll =1

(JW [f D@ (y) dy>l/P

x (JR g () dy) !

< C"f”LP(w)'
(35)

This completes the proof of the above corollary. O

In order to prove Theorem 4, we need the following
lemmas.

Lemma 19 (see [11, Lemma 3.12]). Let r = p(x). Then there
exists a constant C > 0, such that

Jl | K (3, %)@ (y)dy < Co(x). (36)
x—=y|>r

By using the proof of Lemma 3.15 in [11], we immediately
have the following.

Lemma 20. Let r = p(x). Then there exists a constant C > 0,
such that

L KG9 -K G0y s Cow, @)
x—y|<r

where Ko(y, x) is the kernel of the operator V(—A)_(l/z).

Now we give the proof of Theorem 4.

Proof of Theorem 4. We show Theorem 4 by a method similar
to the one used in the proof of Theorem 2 in [15]. By the
Calderén-Zygmund decomposition in the proof of Theorem
3.5 on page 413 in [16], given f € L'(w) and a > 0, we have
f = fi+ fp, with f, = Y, b, such that the following hold.

(D) | fi(x)] < Ca, for a.e. x € R".

(2) Each b, is supported in a ball By,

J b (x)| @ (x) dx < Caw (By), J b, (x)dx = 0.
By By

(38)

(3) 2 (B < (C/)] g1

Because w € A (R") € A,(R"), by Corollary 18, we know
that & is bounded on L?(w); it is clear that

n [24 C C
wlxeR 12 f, 0> 5} <5 Wil < Sl

o
(39)
Let B, = B(xy, 1) and Q = | J, B(xy, 2ry.). Then
C
w(Q) < CZw (By) < ;”f”Ll(w)' (40)
3

We only need to consider & f,(x) for x € Q. Ifr;, >
(1/(m(x, V))), then (1/(m(y,V))) < Cry for any y € B. By
Lemma 19, we get

J | %by (x)| dx
|x—2x |>27

<| | KO @dydx @)
|x—xk|22rk By
< C“bk”Ll(w)'

If . < 1/(m(x;,V)), then 1/(m(x;,V)) ~ 1/(m(y,V)) for
any y € By. Since K (x, y) is a Calderén-Zygmund kernel,
by Lemma 19, Lemma 20, and [16, Lemma 3.3, page 413], we
obtain

J |9?bk (x)| w (x)dx
|x—2x |>27

<

J L%bk (x)l w(x)dx
Zrkslx—xk|<2/(m(xk,V))

+ J |<%bk (x)| w(x)dx
Ix=x122/(m(x.V))



<
JZrk<|xxk|<2/(m(xk,V))

< [ 1K () = Ko (o)l b ()] dy o () dx

+
erslx—xk|<2/(m(xk,v))

1K () - Ko (o)l I )l dy o () dx

+J J K ()| | (9)| dy @ (x) dx
[x—=x;|22/(m(x;.,V)) JBy

<C ”bk”Ll(w)'
(42)

Then

JQC |@f2 (x)| dx < ; J-(B(x,lfk))c

< Clekau(w) = CaZw (By)sC ”f"Ll(w)'
% %

Rb, (x)| w (x) dx

(43)

Therefore

ofreatjzpel> S Sl G

Theorem 4 is proved by combination of (39), (40), and
(44). O

4. Proof of Theorem 5

1 P _ o
For f € Hj(w) we can write f = 37 A;a;, where each a;

is a H;"®(w) atom and ZJ'?Z?OO 1Al < 2||f||HL1(w). Suppose that
suppa; € B; = B(xj,rj) with r; < p(xj). Write

Aof )= Y A (b(x) - by ) Ra; (x) xop, ()

j=co

)

A5 (b~ by)
Jrz(p(x;)14)

X .%aj (x) X(8B)) (x)

)

A (b (x) - ij) (45)
j:rj<(p(xj)/4)

x Ra;(x) X(8B;) (x)

_99<§ A (b—ij)aj> (x)
j=—00

=A (xX)+A,(xX)+A;(x)+A,(x).
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Using Holder inequality, the weighted L boundedness of
R, Propositions 14 and 15, for (1/gq) + (1/t) + (1/v) = 1 and
(1-(1/q)t =rwith1 < g < p,, we have

"(b (x) - bB) .%aj (x) X8B; (x)||L1(w)

1/v
s(J |b(x)—bB|vdx)
BBj
1/t
Ra, j rd
><|| aJ”Lq(w)( 8ij(x) x)

1/v
; c|83j|1“|83j|“t(|8_113A| [, beo- bBrdx)
J

X 1t
X ||aj“Lq(w)<@ IsBj w(x)rdx)

1/v 1/9)-1

< C[b]|8B; 8Bj|1”w(8Bj)(

r/t
X <|8% LB‘ w (x) dx>

i
< Clbly,

(46)

sincer; < p(xj).
When we consider the term A, (x), we note that p(xj) >
= p(xj)/4 as following:

[6) - )0, )] L,
: L' ja; (7)] dy
. 1J|x—x.|28r, IK (7)) 'b () - ij| w (x) dx}

< Lj |a; ()| dy

y {J o} 1 (47)
ez (14 x = y] fp () = o[
V(z) 1
d
* (Js(x,z|x—xj|) lx — 2" o |x — y| )

X |b (x) - ij| w (x) dx}

<[ Jo 0l 0+ Loy
Note that |x — le ~ |x - y| and
(1+—|x_y|) >C 1+—|x_xj|
p(x) p (x)

'x B x.| 1/(ky+1)
> C<1 + —]>
p(x;)

(48)
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Then by Lemma 16 and Proposition 14, for any y € Bj,

L(y)

5

1

J . . _\N/(ky+1
— J2k 3rjslx—xj|<2k 4,j (1 + |x _ xj| p Xj) l) /(ko+1)
|w(x
Ix x|
(K DN)/ (ko +1) 1
< 5~ (ke ot
& 2]
<
|x—2x;| <2k,
0 1 N 1/
Z ((e+1)N)/ (kg +1)) J |b—bB| dx
= |2k+4Bj| 2B, i

1 1/r
X (T J w(x)rdx>
|2 + Bj| g,

2k+41’-
2((k+1)N)/(kg+1)[b]9k<1 + J >

P (xj)
Lt d
x |2k+4Bj| «L’”“Bj @ (x) x

2k+41’-
2_((k+1)N)/(k°+l)[b]9k<1 4 J >

X <; J w (x) dx)
|2k+SBj| B(3245r,)

(ky+1)0

o k+4
r.
<y 2—<(k+1)N)/(ko+“[b]9k<1 + > M w)(y)
k=1

P (xj)

(ko+1)0

Mg

<

=~
I

1

Mg

<

=
Il

1

< C[bleM (@) (¥),

(49)

where we have chosen N large enough.

Similarly, for (1/p) + (1/q) + (1/r) = 1 and (1/s;) =
(1/p) + (1/n), using Holder inequality, Proposition 14, and
the boundedness of the fractional integral .7, we obtain, for

any y € Bj,

S k+4,.
rjslx x1|<2 r

! (1 + = x;] p(x))

= 1
I (y) < kzl Lk+3 _1>N/(k0+1)

= (DN 1) 1

(24r)"

IN
Mg

P
Il
—

8 Lx x;|<2k+ir; jl (VX2k+4Bj)(x) 'b - ij|a) (x)dx

5~ ((+)N)/ Uy +1) (2k+3rj)1fn+(n/q)+(n/r)

1
| — J
(2k+31’j) |se-x;| <2<,

1 1/r
x <k— J w(x)rdx)
’2 +3Bj' 243p,

X l'fl (VX2k+4Bj)”p

Mg

<

kol
Il

1

1/q
q >
X

2—((k+1)N)/(k0+1)(2k+3rj)2‘(”/51)

(g e bl

w (x) dx) “VXZkMBj ”sl

Mg

<

bl
Il
—_

< '2k+3B 2k+3B

2k+4r (ko+1)0
2 ((k+1)N /(k0+1)[b] k<1+ ]>

P (xj)

1
<|2k+SB| J B(y,2+*5r )w(x)dx>

M8

<

k=1

k+3. \2/s:
X (2 rj) VX2k+4Bju$1
o N (ko +1)0
< Zz((kJrl)N)/(kOJrl)[b]ek(l + j >
k=1 P("j)
1
x M (w _ J Vdx
@ () (2"*31")”72 2k3B;
j
(ko +1)0

<

k+4
2~ (DN D) k<1+ 2 r]->
P(xj)
ll

<1 2k+41’j> M )( )
p(x)) g

< C[blgM (@) ()

EMS

(50)

— 1 (VX2k+4B )(x)w(x) dx where we have chosen N large enough and we have used
'x x; | Lemma 10 in the sixth inequality above.

|b (x) - by,



Therefore,
L_ la; L () + L, ()} dy

< C[bly JB‘ |a; ()| M (@) (y) dy (51)

7

< Ctels | o] @ (3)dy < Clbls

J

where we have used the fact thatw € A ;.
Thus, ifp(xj) >r1;2 (p(xj))/4, then

(6 G) ) B, ) o e )], < CBLe- (52)

For Aj;, by using the vanishing condition of a; and
Lemma 13, then

(000~ by, ) a; () s )],
: Lj la; ()| dy
’ {L_mzs,j K (53) K (o)
X |b (x) = by | @ (x) dx]

< JBj |a; ()| dy

)
) J, C |y - xJ'|
N n—1+8
sz (1+ =yl /p ()" |- y

X (J- |V(Z3Ldz + ! )
B(x2|x-y|) |x — 2| |x - y|

x lb(x)—ij|w(x)dx}

= L_ la; T () + L ()} dy.
] (53)

First of all, we need to obtain the following estimate:

~(n/sy)
ety

B(x;,2k7))

||VXB(xj,2k*3rj) \%4 (Z) dz

)n—2—(n/s;) 1
k n-2
(2%7)
X J V(z)dz
B(xj,Zkr]-)

< (zkrj)n—Z—(n/sll) (

< (Zkrj

1+ 2krjm (xj, |V|))ll,

(54)

where we have used Lemma 10 in the last inequality above.
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Similarly, for (1/p) + (1/q) + (1/r) = 1 and (1/s,) =
(1/p) + (1/n), using Holder inequality, Proposition 14, and
the boundedness of the fractional integral ., we obtain, for
any y € Bj,

g (VXZ"*"B]-) (€9)

ool )

'xj - y|6 |b (x) - ij
X |6

R

k+3 P k+4,.
ri<lx—x;| <25ty (

w (x)dx

n—1
|x - xf' 'x —Xj

(2k+3rj)1—n+n/q+n/r

(1 + Zkrjp(x]-)_l>

< 2—(k+3)6

N/(l,+1)

T8

g 1/q
b- ij‘ dx)

1/r
w(x)rdx>

1
8 < |B (X, 2k+37’j)| Lxxj|<2k+4rj

1
X <-|B (x’ 2k+3rj)| Lx_xj|<2k+4rj
x| (Vs ),

k3 \17n/p
(2°r))
N/(p+1)

(1+25r0(x;) )
X<;J - |qu>“‘1
0] b

1/r
R r
’ < |B (.X', 2k+3rj)| J'|X—Xj|<2k+4rj a)(_x) dx)

X l'VXZkH Bj

00
< Zz—(k+3)6
k=1

S1

2k+3r')2_”/51

S (
< Zz—(k+3)6 i
k=1 (1 + Zkrjp(xj

),I)N/(l(ﬁl)

1/q
1 q
* < |B (x, 2k+3rj)| LX—Xj|<2k+4rj b- ij‘ dx)

1
P — d
*(wuﬁmeW@%“”x)

X l'VXZkH Bj

Sy

2
5~ (k+3)0 (2k+3rj )

(1+25r0(x) ")

<

T8
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1/q
: q
’ <M Lx_xj|<2k+4rj b- ij‘ dx)
1
’ W Lx—x.|<2k+4r' w (x) dx
J j j

1
’ <M «[Ix—x].|<2k+4rj V(2) dZ)
(2k+3rj)2

ZINN/(g+1)
(1 + Zkrjp(xj) )
q 1/q

j bby ['dx
|B 2k+3r |x—x; |<2k 4Tj j

J w (x)dx

2k+5r |x—y|<2k+ 5r-

J V(z)dz

|B x2k+3r xx|<2k4

k+4r (k0+1)9

2<"*3>‘5[b]9k<1 + J ) M () (y)

P (xj)

L =(N/(ly+1))

< 2—(k+3)6

Nk

N
Mg

=
Il
—

X (1 + Zkrjm (x]-, V))

2730 p1 kM (@) (y)

M3

<

T
i

< [bloM (@) () »
(55)

where we have chosen N large enough.
Secondly, for any y € B,

L(y)

< Lj |a; ()| dy

2] .

k3 <lx—x | <2kt (1 + 'X B xj| p(xj)—1>N/(lo+1)

x)—bB

)
X |xj _ y| w (x)dx

n

|x—x X=X

I

-N/(ly+1)
2—(k+3)6(1 . 2k+3rj ) N/(lp+1 .
i p(x) |B(x, 24|

J _ k+4
|x xj|<2 r;

k+3 N ~N/Ug+D)
2%r.
2—(k+3)6<1 Al )
p(x;)

J

<

M3

=~
]

X

b—ij|w(x)dx

<

il Nk

!

1 /! 1/r
x TJ b b, | dx)
'2 + B]' 2k+4Bj J
1/r
1 r
X <T J- w(x) dx>
|2 + Bj| 2k,

>(ko+1)9(N/(lo+1))

0o k+47"
Z (k330 1) k<1+ )

p(x)
1 d
x '2k+4Bj' Jzk+4Bj @ (x) X

1
2 k3841 k —J w(x)dx
[blo '2k+SB ' B(y254%,) (x)

27 F ]k M (W) (y)

Mg

<
k

1

Mg

<

bl
I
—_

< [blgM (w) (;V) >
(56)

where we have also chosen N large enough.
Therefore,

J, ls OHE O+ T}y
b]ej la; (»)| M () (y) dy (57)
bbj la; ()] @ (») dy < Clbl,.

Therefore, if r; < p(xj)/4, then

[(6Go) = b, ) B, (0 e 0], < CBLo- (58)

Thus, we have

" A C
w {x eR":|A; (%) > Z} < X”Ai(x)“Ll(w)

Clbly & (59)
STej;m'Ajl’ i=1,23.

Note that, for (1/r') + (1/r) = 1,

H(b a be) ajl'Ll(w)

1/r
1 r'
< |SBj'(@LBj b b dx) ]
1/r
< 1 J w(x)’dx)
|85 Jsz
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1/r'
< |SBj| <® L. |b (x) - bB|r dx> w(Bj)71
j J
1
w (x) dx>
<l8 Bj| Js J
C[b] (1 ' >9’

< + ——

’ P("j)

Clble
(60)
where r; < p(xj).
By Theorem 4, we get
a){xelR lA (x)|>—} Z/X(b b( )
LY (w)
Clbly |
<=2 -
j=—00
(61)
Therefore,
w {x eR":|[b,R] f (x)| > %}
4 ) 1
< C;w {x eR":|A; (%) > Z}
(62)

Clbly &
< T@j;mlu

C[b o

)

This completes the proof of Theorem 5.
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