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The existence of periodic oscillation for a coupled FHN neural system with delays is investigated. Some criteria to determine the
oscillations are given. Simple and practical criteria for selecting the parameters in this network are provided. Some examples are
also presented to illustrate the result.

1. Introduction

Recently, several researchers have studied the dynamics of
coupled FHN neural systems [1–5]. Wang et al. have investi-
gated the following model [6]:
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The effects of time delay on bifurcation and synchro-
nization in the two synaptically coupled FHN neurons have
been investigated.The authors found that time delay can con-
trol the occurrence of bifurcation in the coupled FHN neural
model and synchronization is sometimes related to bifur-
cation transition. Fan and Hong introduced second time
delay in model (1) as follows [7]:
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Let 𝜏 = 𝜏
1
+ 𝜏
2
be a parameter. The authors have shown

that there is a critical value of the parameter; the steady state
of model (2) is stable when the parameter is less than the
critical value and unstable when the parameter is greater than
the critical value.Thus, the zero equilibrium loses its stability
when the parameter passes through the critical value, and a
Hopf bifurcation occurs and oscillations induced by the Hopf
bifurcation appeared. Zhen and Xu generated models (1) and
(2) to a three coupled FHN neurons network with time delay
as follows [8]:
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where 𝛼,𝛽 represent the synaptic strength of self-connection
and neighborhood interaction, respectively, and 𝑓(𝑥) is a
sufficiently smooth sigmoid amplification function such as
tanh(𝑥) and arctan(𝑥).Themethod of Lyapunov functional is
used to obtain the synchronization conditions of the neural
system. Noting that, for each neuron of model (3), the
synaptic strength of self-connection and neighborhoodinter-
action are the same under the same restrictive condition, the
dynamics of (3) are completely characterized by the following
system:
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where [𝑢
1
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]
𝑇 is a completely synchronous solution of sys-

tem (4). The Bautin bifurcation of synchronous solution for
this neural system (4) in which 𝛼, 𝛽 are regarded as the
bifurcating parameters is investigated. However, generally
speaking, the synaptic strength of self-connection, neigh-
borhoodinteraction for each neuron, and the time delays
are different. Therefore, in this paper, we will discuss the
following model:
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(𝑗 = 1, 3, 5) represent the time delays in signal transmission.
System (5) can be rewritten as follows:
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It is known that if all solutions of system (6) are bounded
and there exists a unique unstable equilibriumpoint of system
(6), then this particular instability will force system (6) to
generate a limit cycle, namely, a periodic oscillation [9].
We will provide some restrictive conditions which are easy
to check to ensure the existence of periodic oscillation. It
was pointed out that bifurcating method to determine the
periodic solution of system (6) is very difficult.
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According to [10], there is the same oscillatory behavior
for systems (8) and (6). So, in order to investigate the periodic
oscillatory behavior of system (6), we only need to deal with
system (8).
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> 1. (14)

Then, the trivial solution of system (8) is unstable, implying
that there is a periodic oscillatory solution of system (6).

Proof. From the assumptions, we know that system (8) has a
unique equilibrium point and all solutions are bounded. We
will prove that the unique equilibrium point is unstable. We
first discuss the case that 𝜏

1
= 𝜏
3
= 𝜏
5
= 𝜏
∗
in system (8). The

characteristic equation of system (8) is as follows:

det (𝜆𝐼 − 𝐴 − 𝐵𝑒−𝜆𝜏∗) = 0. (15)



4 Abstract and Applied Analysis

Equation (15) is equal to

6

∏
𝑘=1

(𝜆 − 𝜌
𝑘
− 𝜔
𝑘
𝑒
−𝜆𝜏∗) = 0. (16)

Therefore, we are led to an investigation of the nature of
the roots for the following equations:

𝜆 − 𝜌
𝑘
− 𝜔
𝑘
𝑒
−𝜆𝜏∗ = 0, 𝑘 = 1, 2, . . . , 6. (17)

For some 𝜌
𝑖
> 0, consider equation

𝜆 − 𝜌
𝑖
− 𝜔
𝑖
𝑒
−𝜆𝜏∗ = 0. (18)

If 𝜆 < 0 is a solution of (18), then |𝜆| = −𝜆; from (18) we
have

|𝜆| ≥
󵄨󵄨󵄨󵄨𝜔𝑖
󵄨󵄨󵄨󵄨 𝑒
|𝜆|𝜏∗ − 𝜌

𝑖
. (19)

Using the formula 𝑒𝑥 ≤ 𝑒𝑥(𝑥 > 0), leads to the fact that

1 ≥

󵄨󵄨󵄨󵄨𝜔𝑖
󵄨󵄨󵄨󵄨 𝑒
|𝜆|𝜏∗

|𝜆| + 𝜌
𝑖

=

󵄨󵄨󵄨󵄨𝜔𝑖
󵄨󵄨󵄨󵄨 𝜏∗𝑒
−𝜌𝑖𝜏∗ ⋅ 𝑒

(|𝜆|+𝜌𝑖)𝜏∗

(|𝜆| + 𝜌
𝑖
) 𝜏
∗

≥
󵄨󵄨󵄨󵄨𝜔𝑖
󵄨󵄨󵄨󵄨 𝜏∗𝑒
−𝜌𝑖𝜏∗ .

(20)

Equation (20) contradicts the first inequality of assump-
tion (14). Then, we discuss the case that 𝜏

1
= 𝜏
3
= 𝜏
5
=

𝜏∗ in system (8). Similarly, if 𝜆 < 0 is a solution of the
equation 𝜆 − 𝜌

𝑖
− 𝜔
𝑖
𝑒−𝜆𝜏
∗

= 0, we also have a contradic-
tion with the second inequality of assumption (14). Since
𝜏
∗
≤ 𝜏
𝑖
≤ 𝜏∗ (𝑖 = 1, 3, 5), one can conclude that there exists

a positive real part of the eigenvalue of system (8) for any 𝜏
𝑖

(𝑖 = 1, 3, 5) under the assumptions.Thismeans that the trivial
solution of system (8) is unstable, implying that there is a
periodic oscillatory solution of system (6) based on Chafee’s
criterion.

Theorem 4. Suppose that 𝑏
𝑖
> 0, 0 < 𝜀

𝑖
≪ 1, 𝑑

𝑖
< 0,

(𝛼
𝑖
+ 𝑐
𝑖
)
2
+ (4/3)𝑑

𝑖
< 0 (𝑖 = 1, 2, 3), and 𝐶 is a nonsingular

matrix. Let 𝜌
𝑘
= 𝜌
𝑘1
+ 𝑖𝜌
𝑘2

(𝜌
𝑘2

may equal zero) and 𝜔
𝑘
=

𝜔
𝑘1
+ 𝑖𝜔
𝑘2

(𝜔
𝑘2

may equal zero) (𝑘 = 1, 2, . . . , 6) denote the
eigenvalues of matrices 𝐴 and 𝐵, respectively. If, for some 𝜌

𝑖
,

|𝜌
𝑖1
| < 𝜔

𝑖1
as 𝜌
𝑖1
< 0, then the trivial solution of system (8)

is unstable, implying that system (6) has a periodic oscillatory
solution.

Proof. The assumptions guarantee that system (8) has a
unique equilibrium point and all solutions are bounded. In
this case, we first consider 𝜏

1
= 𝜏
3
= 𝜏
5
= 𝜏
∗
in system (8).

Then, for some 𝜌
𝑖
, let 𝜆 = 𝜆

1
+ 𝑖𝜆
2
; from (18) we have

𝜆
1
− 𝜌
𝑖1
− 𝜔
𝑖1
𝑒
− 𝜆1𝜏∗ cos (𝜆

2
𝜏
∗
) = 0,

𝜆
2
− 𝜌
𝑖2
+ 𝜔
𝑖2
𝑒
− 𝜆1𝜏∗ sin (𝜆

2
𝜏
∗
) = 0.

(21)

We will show that 𝜆
1
> 0 and there is an eigenvalue

which has positive real part of system (18). Let 𝑓(𝜆
1
) =

𝜆
1
− 𝜌
𝑖1
− 𝜔
𝑖1
𝑒−𝜆1𝜏∗ cos(𝜆

2
𝜏
∗
); then 𝑓(𝜆

1
) is a continuous

function of 𝜆
1
. If 𝜌
𝑖1
> 0, then select suitable delay 𝜏

∗
such

that 𝜔
𝑖1
cos(𝜆

2
𝜏
∗
) > −𝜌

𝑖1
. Therefore, 𝑓(0) = −𝜌

𝑖1
−

𝜔
𝑖1
cos(𝜆

2
𝜏
∗
) < 0. Noting that 𝑒−𝜆1𝜏∗ → 0 as 𝜆

1
→

+∞, obviously, there exists a suitably large 𝜆
1
(> 0) such

that 𝑓(𝜆
1
) = 𝜆

1
− 𝜌
𝑖1
− 𝜔
𝑖1
𝑒−𝜆1𝜏∗ cos(𝜆

2
𝜏
∗
) > 0. By the

continuity of 𝑓(𝜆
1
), there exists a positive 𝜆

1

∗
∈ (0, 𝜆

1
) such

that 𝑓(𝜆
1

∗
) = 0. If 𝜌

𝑖1
< 0, since |𝜌

𝑖1
| < 𝜔

𝑖1
(𝜔
𝑖1
̸= 0),

then there exists a suitable delay 𝜏
∗
and a positive 𝜆

1
such

that 𝜔
𝑖1
cos(𝜆

2
𝜏
∗
) < −𝜌

𝑖1
and 𝜆

1
− 𝜔
𝑖1
𝑒−𝜆1𝜏∗ cos(𝜆

2
𝜏
∗
) < 0

both hold. Then, 𝑓(0) = −𝜌
𝑖1
− 𝜔
𝑖1
cos(𝜆

2
𝜏
∗
) > 0 and

𝑓(𝜆
1
) = 𝜆
1
−𝜔
𝑖1
𝑒−𝜆1𝜏∗ cos(𝜆

2
𝜏
∗
) < 0. Again, from the contin-

uity of 𝑓(𝜆
1
), there exists a positive 𝜆

1

∗∗
∈ (0, 𝜆

1
) such

that 𝑓(𝜆
1

∗∗
) = 0. Thus, there is an eigenvalue of system

(18) that has positive real part. Implying that the trivial solu-
tion of system (8) is unstable. Thus, the trivial solution of
system (6) is also unstable. Based on the theory of delay
differential equation, the oscillatory behavior of the solution
will maintain as time delay increasing.Therefore, for any 𝜏

𝑖
≥

𝜏
∗
(𝑖 = 1, 3, 5), system (8), as well as system, (6) generates

a periodic oscillatory solution. We select a suitable delay 𝜏
∗

such that system (6) has a periodic oscillatory solution. This
oscillation is said to be induced by time delay.

4. Simulation Result

The parameter values are selected as 𝛼
1
= −1.5, 𝛼

2
= −1.5,

𝛼
3
= −1.2; 𝑏

1
= 0.16, 𝑏

2
= 0.25, 𝑏

3
= 0.12; 𝑐

1
= 1.3, 𝑐

2
= 1.302,

𝑐
3
= 1.305; 𝑑

1
= −0.705, 𝑑

2
= −0.706, 𝑑

3
= −0.707; 𝛽

1
= 1.5,

𝛽
2
= 1.5, 𝛽

3
= 0.15; 𝜀

1
= 0.05, 𝜀

2
= 0.025, 𝜀

3
= 0.085,

respectively. It is easy to check that the conditions of Lemmas
1 and 2 hold.The activation functions are selected as arctan(𝑢)
and tanh(𝑢), respectively. In this case, 𝛾

1
= 𝛾
3
= 𝛾
5
= 1,

and eigenvalues of matrices 𝐴 and 𝐵 are 𝜌
1
= −0.6238, 𝜌

2
=

−0.0892, 𝜌
3
= −0.6682, 𝜌

4
= −0.0440, 𝜌

5
= −0.5493,

and 𝜌
6
= −0.1679, and 𝜔

1
= 1.7562, 𝜔

2
= −1.5000,

𝜔
3
= −0.2562, 𝜔

4
= 0, and 𝜔

5
= 0, 𝜔

6
= 0, respectively.

Since |𝜌
1
| = 0.6238 < 𝜔

1
, there is a periodic oscillatory

solution based on Theorem 4. Both in Figures 1 and 2, the
time delays are selected as 𝜏

1
= 10, 𝜏

2
= 8, and 𝜏

3
= 4.

Then, we change delays as 𝜏
1
= 1, 𝜏

2
= 2, 𝜏

3
= 3; activation

function is kept as tanh(𝑢); periodic oscillatory solution also
occurred (Figure 3). In Figure 4, the parameter values are
selected as 𝛼

1
= −0.95, 𝛼

2
= −1.2, 𝛼

3
= −1.25; 𝑏

1
= 0.18, 𝑏

2
=

0.2, 𝑏
3
= 0.16; 𝑐

1
= 1.4, 𝑐

2
= 1.42, 𝑐

3
= 1.45; 𝑑

1
= −0.7, 𝑑

2
=

−0.72, 𝑑
3
= −0.75; 𝛽

1
= 1.25, 𝛽

2
= 1.2, 𝛽

3
= 1.15; 𝜀

1
= 0.05,

𝜀
2
= 0.045, and 𝜀

3
= 0.065, respectively. The activation func-

tion is tanh(𝑢).The eigenvalues ofmatrices 𝐴 and 𝐵 are 𝜌
1
=

−0.6179, 𝜌
2
= −0.0911, 𝜌

3
= −0.6498, 𝜌

4
= −0.0792,

𝜌
5
= −0.6481, 𝜌

6
= −0.1123 and 𝜔

1
= 2.3654, 𝜔

2
= −1.2154,

𝜔
3
= −1.1500, 𝜔

4
= 0, 𝜔

5
= 0, and 𝜔

6
= 0, respectively. We

see that periodic oscillatory solution appeared.

5. Conclusion

This paper discusses a three coupled FHN neurons model
in which the synaptic strength of self-connection, neighbor-
hoodinteraction for each neuron, and the time delays are
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Figure 1: Periodic oscillatory behavior, activation function: arctan(𝑢), and delays: (10, 8, 4).
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Figure 2: Periodic oscillatory behavior, activation function: tanh(𝑢), and delays: (10, 8, 4).
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Figure 3: Periodic oscillatory behavior, activation function: tanh(𝑢), and delays: (1, 2, 3).
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Figure 4: Periodic oscillatory behavior, activation function: tanh(𝑢), and delays: (9, 10, 12).

different. Two theorems are provided to determine the peri-
odic oscillatory behavior of the solutions based on Chafee’s
criterion of limit cycle. Computer simulation suggested that
those theorems only are sufficient conditions.
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