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For those semigroups, which may have power type singularities and whose generators are abstract multivalued linear operators,
we characterize the behaviour with respect to a certain set of intermediate and interpolation spaces. The obtained results are then
applied to provide maximal time regularity for the solutions to a wide class of degenerate integro- and non-integro-differential
evolution equations in Banach spaces.

1. Introduction

Let 𝑋 be a complex Banach space and let {T
𝐴
(𝑡)}

𝑡≥0
be a

semigroup of operators on 𝑋, which is generated by a multi-
valued linear operator 𝐴 : D(𝐴) ⊆ 𝑋 → 𝑋 and which may
have a power type singularity at the origin 𝑡 = 0, that is,

T𝐴 (𝑡)
L(𝑋)

≤ 𝐶
0
𝑡
]
, ∀𝑡 > 0,

T
𝐴 (0) 𝑥 = 𝑥, ∀𝑥 ∈ 𝑋,

(1)

for some nonnegative constant 𝐶
0
and nonpositive exponent

], where L(𝑋) denotes the Banach algebra of all endomor-
phisms of 𝑋 endowed with the uniform operator norm. In
this context our aimhere is twofold.Thefirst is to characterize
the behaviour of {T

𝐴
(𝑡)}

𝑡≥0
with respect to some intermedi-

ate and interpolation spaces between𝑋 and the domainD(𝐴)

of 𝐴. The second is to investigate how this behaviour reflects
on the question of maximal time regularity for the solutions
to a class of degenerate integro- and non-integrodifferential
initial value problems in𝑋.

The class of operators we will deal with consists precisely
of those multivalued linear operators 𝐴 whose single-valued
resolvents satisfy the following estimate:


(𝜆𝐼 − 𝐴)

−1L(𝑋)
≤ 𝐶(|𝜆| + 1)

−𝛽
, ∀𝜆 ∈ Σ

𝛼
. (2)

Here, 𝐼 is the identity operator, 𝐶 is a positive constant, 𝛽 ∈

(0, 1], and Σ
𝛼
is the complex region {𝑧 ∈ C : Re 𝑧 ≥

−𝑐(|Im 𝑧|+1)
𝛼
,Im 𝑧 ∈ R}, 𝑐 > 0, 𝛼 ∈ [𝛽, 1]. It thus happens

(cf. [1–3]) that𝐴 is the infinitesimal generator of a semigroup
of linear bounded operators in 𝑋 satisfying (1) with ] = ]

𝛼,𝛽
,

where ]
𝛼,𝛽

= (𝛽 − 1)/𝛼.
To outline the motivations of our research, let us assume

for a moment that𝐴 is a single-valued linear operator satisfy-
ing (2). It is well known that if 𝛽 = 1, then 𝐴 is the infinites-
imal generator of a bounded analytic semigroup. For this
case, an extensive literature exists concerning the behaviour
of {T

𝐴
(𝑡)}

𝑡≥0
with respect to the real interpolation spaces

(𝑋,D(𝐴))
𝛾,𝑝
, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞], and its applica-

tion to questions of maximal regularity for the solutions
to nondegenerate (possibly nonautonomous) integro- and
non-integrodifferential abstract Cauchy problems. See, for
instance, [4–11]. Due to (1) with ] = ]

1,𝛽
, the case of 𝛼 =

1 and 𝛽 ∈ (0, 1) is definitely worsened and the literature
for it is considerably less conspicuous, although estimate of
type (2), with (Re 𝜆 + |Im 𝜆|

𝛽
)
−1 in place of (|𝜆| + 1)

−𝛽,
goes back even to [12, Remark p. 383] in the ambit of Abel
summable semigroups admitting uniform derivatives of all
orders. One of the main problems with the case 𝛽 ∈ (0, 1) is
that some equivalent characterizations of (𝑋,D(𝐴))

𝛾,𝑝
begin

to fail (cf. [13]), so that some spaces which were just real
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interpolation spaces between 𝑋 and D(𝐴) in the case 𝛽 =

1 become only intermediate spaces in the case 𝛽 ∈ (0, 1).
However, avoiding questions of interpolation theory and of
maximal regularity, a quite satisfactorily semigroup theory
for the single-valued case with 𝛽 ∈ (0, 1) and its application
to the unique solvability of some concrete partial (non-
integro-) differential equations have been developed in [14–
18]. Since the multivalued case embraces the single-valued
one, our contribution in this field is to fill this gap, supplying a
theory for the behaviour of singular semig 𝑛 intermediate and
interpolation spaces which, in the case 𝛽 = 1, reduces to that
in [9, 11]. As an effect of this theory, there is the possibility
of investigating questions of maximal time regularity for an
entire class of nondegenerate evolution equations which does
not fall within the case 𝛽 = 1.

The case when 𝐴 is really a multivalued linear operator
arises naturally when we shift our attention to degenerate
evolution equations of the type considered in [1–3]. There, a
semigroup theory for multivalued linear operators was intro-
duced as a tool to handle degenerate equations by means of
analogous techniques of the nondegenerate ones. Such a the-
ory has been then successfully applied to questions of maxi-
mal regularity for the solutions to a wide class of degenerate
integro- and non-integrodifferential equations. We quote [2,
19–23] where, in general and unless 𝛽 = 1, it is shown that
the time regularity of the solutions decreases with respect
to that of the data. In this respect, we mention the recent
results in [20] where, under an additional condition of space
regularity on the data and provided that 𝛼 and 𝛽 are large
enough, the loss of time regularity is restored. Regrettably
(cf. the appendix below), we have found some inaccuracies
in [20, Section 4], and for this reason we must indicate some
changes to that paper. On the other side, fortunately, the basic
idea in [20] is correct and remedy can be applied to all the
inappropriate items. Furthermore, unexpectedly, we will see
that the more delicate approach followed in this paper not
only corrects the mistakes in [20], but also gives rise to an
effective improvement of the achievable results. In fact, here,
we will straighten out, refine, and extend [20], enlarging the
class of the admissible spaces to which the data may belong,
weakening the assumption for the pair (𝛼, 𝛽), and complicat-
ing the structure of the underlying equations. This is why we
will first analyze the behaviour of the semigroup generated by
𝐴with respect to some intermediate and interpolation spaces
which turn out to be equivalent only in the case𝛽 = 1. Indeed,
the phenomena exhibited in [13] for the single-valued case
extend to themultivalued one (cf. [24]), and, until now, for the
mentioned behaviour there exist no more than some partial
results obtained in [2, 19, 24].

We now give the detailed plan of the paper. In Section 2,
for a multivalued linear operator 𝐴 having domain D(𝐴)

and satisfying (2), we introduce the corresponding generated
semigroup {e𝑡𝐴}

𝑡≥0
. This leads us to define also the linear

bounded operators [(−𝐴)𝜃]∘e𝑡𝐴, Re 𝜃 ≥ 0, 𝑡 > 0, ([(−𝐴)0]∘

e𝑡𝐴 = e𝑡𝐴) and to recall the fundamental estimates for
their L(𝑋)-norm. For the operators [(−𝐴)𝜃]∘e𝑡𝐴 a semi-
group type property is proven in Proposition 1. We then
introduce the spaces we will deal with in this paper, that is,

the interpolation spaces (𝑋,D(𝐴))
𝛾,𝑝

and the spaces 𝑋𝛾,𝑝

𝐴
,

𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞]. Special attention is given
to the embeddings linking these two classes of spaces
which, in general, are equivalent only in the case 𝛽 =

1. Some relations existing between the spaces 𝑋
𝛾,𝑝

𝐴
for

different values of 𝛾 and 𝑝 are proven in Proposition 2
and discussed in Remarks 3–5. We conclude the sec-
tion recalling the estimates proven in [19, 24] for the
norms ‖[(−𝐴)𝜃]∘e𝑡𝐴‖L(𝑋;(𝑋,D(𝐴))𝛾,𝑝)

, Re 𝜃 ≥ 0, and ‖[(−𝐴)
1
]
∘

e𝑡𝐴‖L(𝑌
𝑝

𝛾 ;𝑋)
,𝑌𝑝

𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
}. In Remarks 7 and 8we

explain why, unless we renounce to optimality, in the case𝛽 <

1 these estimates can not be directly extended to the norms
‖[(−𝐴)

𝜃
]
∘e𝑡𝐴‖L(𝑋;𝑋

𝛾,𝑝

𝐴
)
and ‖[(−𝐴)

𝜃
]
∘e𝑡𝐴‖L(𝑌

𝑝

𝛾 ;𝑋)
, Re 𝜃 ≥ 1,

respectively.
In Section 3, we investigate the behaviour of the operators

[(−𝐴)
𝜃
]
∘e𝑡𝐴 with respect to both of the spaces (𝑋,D(𝐴))

𝛾,𝑝

and 𝑋
𝛾,𝑝

𝐴
. First, in Proposition 9, we deal with the norms

‖[(−𝐴)
𝜃
]
∘e𝑡𝐴‖L(𝑋;𝑋

𝛾,𝑝

𝐴
)
,Re 𝜃 ≥ 0, and we show that, except for

replacing (𝑋,D(𝐴))
𝛾,𝑝

with 𝑋𝛾,∞

𝐴
if 𝑝 = ∞ and with 𝑋𝛽𝛾,𝑝

𝐴

if 𝑝 ∈ [1,∞), the same estimates of [19] for the norms
‖[(−𝐴)

𝜃
]
∘e𝑡𝐴‖L(𝑋;(𝑋,D(𝐴))𝛾,𝑝)

continue to hold.The second sig-
nificant result is Proposition 12where, extending those in [24]
to values of 𝜃 other than one, we establish estimates for the
norms ‖[(−𝐴)𝜃]∘e𝑡𝐴‖L(𝑌

𝑝

𝛾 ;𝑋)
, Re 𝜃 ≥ 1, 𝑌𝑝

𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑝
,

𝑋
𝛾,𝑝

𝐴
}. As a byproductwe deduce the basicCorollary 14,which

in Section 5 will be a key tool in proving the equivalence
between the following problem (3) and the fixed-point equa-
tion (179). The estimates in Proposition 12 are then merged
together with those in [19] to achieve estimates for the norms
‖[(−𝐴)

𝜃
]
∘e𝑡𝐴‖L((𝑋,D(𝐴))𝛾,𝑝 ,(𝑋,D(𝐴))𝛿,𝑝)

, Re 𝜃 ≥ 1. In particular,
two different estimates are obtained, if 𝛾 + 𝛿 < 1 or not. For
if 𝛾 + 𝛿 < 1, then (cf. the proof of Proposition 16) we can take
advantage of the reiteration theorem for interpolation spaces
and obtain estimates that, unless 𝛽 = 1, are better than those
rougher estimates derived in the general case 𝛾, 𝛿 ∈ (0, 1) (see
Remarks 17 and 18). We stress that if 𝛽 = 1, 𝜃 ∈ N and 𝐴

is single-valued, then we restore the estimates in [9]. Finally,
in Proposition 20, a combination of Propositions 9 and 12
yields the estimate for the norms ‖[(−𝐴)𝜃]∘e𝑡𝐴‖

L(𝑋
𝛾,𝑝

𝐴
,𝑋
𝛿,𝑝

𝐴
)
,

Re 𝜃 ≥ 1. Since 𝛽 < 1, the spaces 𝑋𝜎,𝑞

𝐴
are, in general, only

intermediate spaces between𝑋 andD(𝐴) for 𝜎 ∈ (0, 𝛽); here
the reiteration theorem does not apply and a weaker result is
obtained (cf. (101)–(103)).

The estimates of Section 3 are applied in Section 4 to
study the time regularity of those operator functions 𝑄

𝑗
, 𝑗 =

1, . . . , 6, that we will need in Section 5. In particular (cf.
formula (106)), wemodify the definition of𝑄

2
in [20, Section

4] in order that it is well defined, at least when acting on
functions 𝑔 ∈ 𝐶

𝛿
([0, 𝑇]; 𝑋), 𝛿 ∈ ((2 − 𝛼 − 𝛽)/𝛼, 1) (cf.

Corollary 26). Consequently, operators 𝑄
3
and 𝑄

4
in [20]

change too, and the new 𝑄
5
and 𝑄

6
should be introduced

(cf. formulae (107)–(110)). The Hölder in time regularity of
the 𝑄

𝑗
’s is characterized in Lemmas 22, 24, 30, and 32 and

Propositions 29 and 36. The main feature of these results is
to show that the loss of regularity produced by 𝑄

2
and
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𝑄
5
can be restored, in 𝑄

3
and 𝑄

6
respectively, employing

the regularization property established in [20, Section 3] for
a wide range of general convolution operators.

In Section 5 we analyze the maximal time regularity of
the strict solutions V to the following class of degenerate
integrodifferential equations in a complex Banach space𝑋:

d
d𝑡

(𝑀V (𝑡)) = [𝜆
0
𝑀+ 𝐿] V (𝑡) +

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V) (𝑡)

+

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(𝑡) 𝑦𝑖2

+ 𝑓 (𝑡) , 𝑡 ∈ 𝐼
𝑇
,

𝑀V (0) = 𝑀V
0
.

(3)

Here, 𝐼
𝑇
= [0, 𝑇], 𝜆

0
∈ C, 𝑛

1
, 𝑛

2
∈ N, ℎ

𝑖2
: 𝐼

𝑇
→ C, 𝑦

𝑖2
∈ 𝑋,

𝑖
2
= 1, . . . , 𝑛

2
, whereas, 𝑍 being another complex Banach

space andP : 𝑍×𝑋 → 𝑋 being a bilinear bounded operator,
𝑘
𝑖1
: 𝐼

𝑇
→ 𝑍, andK(𝑘

𝑖1
, 𝐿

𝑖1
V)(𝑡) = ∫

𝑡

0
P(𝑘

𝑖1
(𝑡−𝑠), 𝐿

𝑖1
V(𝑠))d𝑠,

𝑖
1
= 1, . . . , 𝑛

1
. Of course, if 𝑍 = C, thenPmay be the scalar

multiplication in 𝑋. As𝑀, 𝐿, and 𝐿
𝑖1
, 𝑖
1
= 1, . . . , 𝑛

1
, we take

closed single-valued linear operators from 𝑋 to itself, whose
domains fulfill the relation D(𝐿) ⊆ ⋂

𝑛1

𝑖1=1
[D(𝑀) ∩ D(𝐿

𝑖1
)],

and we require 𝐿 to have a bounded inverse, allowing 𝑀

to be not invertible. Hence, in general, 𝐴 = 𝐿𝑀
−1 is only

a multivalued linear operator in 𝑋 having domain D(𝐴) =

𝑀(D(𝐿)). Assuming that 𝐴 satisfies (2) and that the data 𝑘
𝑖1
,

ℎ
𝑖2
, 𝑦

𝑖2
and 𝑓, 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, are suitably chosen,

problem (3) is then reduced to an equivalent fixed point-
equation for the new unknown 𝑤 = 𝐿(V − V

0
), V

0
∈ D(𝐿).

It is here that the results of Sections 3 and 4 play their role,
leading us to Theorem 48. In that theorem, provided that
5𝛼 + 2𝛽 > 6, we will prove that if 𝑘

𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍), ℎ

𝑖2
∈ 𝐶

𝜎𝑖2

(𝐼
𝑇
;C), 𝑦

𝑖2
∈ 𝑌

𝑟

𝛾𝑖2

, 𝑌𝑟
𝛾𝑖2

∈ {(𝑋,D(𝐴))
𝛾𝑖2
,𝑟
, 𝑋

𝛾𝑖2
,𝑟

𝐴
}, and 𝑓 ∈ 𝐶

𝜇

(𝐼
𝑇
; 𝑋) for opportunely chosen 𝜂

𝑖1
, 𝜎

𝑖2
, 𝛾

𝑖2
, and 𝜇, 𝑖

𝑙
=

1, . . . , 𝑛
𝑙
, 𝑙 = 1, 2, then problem (3) has a unique strict

solution V ∈ 𝐶
𝜏
(𝐼
𝑇
;D(𝐿)) satisfying V(0) = V

0
and

𝐿V, d𝑀V/d𝑡 ∈ 𝐶
𝜏
(𝐼
𝑇
; 𝑋), where 𝜏 = min

𝑖𝑙=1,...,𝑛𝑙,𝑙=1,2
{𝜂
𝑖1
, 𝜎

𝑖2
}

(cf. Remark 51). Section 5 concludes with applications of
Theorem 48 to integral and nonintegral subcases of (3), (cf.
Theorems 52–54 and 56). We stress that Theorem 48 repairs,
generalizes, and improves [20, Theorems 5.6 and 5.7], where
similar results were proven only for the case (𝑛

1
, 𝑛

2
, 𝑌

𝑝

𝜓) =

(1, 1, 𝑋
𝜓,𝑝

𝐴
) and under the stronger condition 3𝛼 + 8𝛽 > 10.

In Section 6, we give an application of Theorem 48 to a
concrete case of problem (3) arising in the theory of heat con-
duction for materials with memory. In particular, we show
how Theorem 48 characterizes the appropriate functional
framework where to search for the solution of the inverse
problem of recovering both V and the vector (𝑘

1
, . . . , 𝑘

𝑟1
), 𝑟

1
≤

𝑛
1
, in (3) with (𝑖

2
, 𝑛

2
) = (𝑖

1
, 𝑛

1
) and ℎ

𝑖1
= 𝑘

𝑖1
, 𝑖
1
= 1, . . . , 𝑛

1
.

Finally, in the Appendix we explain how to amend [20,
Theorems 5.6 and 5.7] in accordance to Theorem 48.

2. Multivalued Linear Operators,
Singular Semigroups, and the Spaces
(𝑋,D(𝐴))

𝛾,𝑝
and 𝑋

𝛾,𝑝

𝐴

Let 𝑋 be a complex Banach space endowed with norm ‖ ⋅ ‖
𝑋

and let P(𝑋) be the collection of all the subsets of 𝑋. For
a number 𝜆 ∈ C and elementsU,V,W ∈ P(𝑋) \ 0, 𝜆U, and
V +W denote the subsets of 𝑋 defined by {𝜆𝑢 : 𝑢 ∈ U} and
{V + 𝑤 : V ∈ V, 𝑤 ∈ W}, respectively. Then, a mapping 𝐴
from 𝑋 into P(𝑋) is called a multivalued linear operator in
𝑋 if its domainD(𝐴) = {𝑥 ∈ 𝑋 : 𝐴𝑥 ̸= 0} is a linear subspace
of 𝑋 and 𝐴 satisfies the following: (i) 𝐴𝑥 + 𝐴𝑦 ⊂ 𝐴(𝑥 + 𝑦),
for all 𝑥, 𝑦 ∈ D(𝐴); (ii) 𝜆𝐴𝑥 ⊂ 𝐴(𝜆𝑥), for all 𝜆 ∈ C, for all
𝑥 ∈ D(𝐴). From now on, the shortening m. l. will be always
used for multivalued linear.

The set R(𝐴) = ⋃
𝑥∈D(𝐴) 𝐴𝑥 is called the range of 𝐴. If

R(𝐴) = 𝑋, then 𝐴 is said to be surjective. The following
properties of a m. l. operator 𝐴 are immediate consequences
of its definition (cf. [1,Theorems 2.1 and 2.2]): (iii)𝐴𝑥+𝐴𝑦 =

𝐴(𝑥 + 𝑦), for all 𝑥, 𝑦 ∈ D(𝐴); (iv) 𝜆𝐴𝑥 = 𝐴(𝜆𝑥), for all 𝜆 ∈
C \ {0}, for all 𝑥 ∈ D(𝐴); (v) 𝐴0 is a linear subspace of 𝑋
and 𝐴𝑥 = 𝑦 + 𝐴0 for any 𝑦 ∈ 𝐴𝑥, 𝑥 ∈ D(𝐴). In particular, 𝐴
is single-valued if and only if 𝐴0 = {0}.

If𝐴 is anm. l. operator in𝑋, then its inverse𝐴−1 is defined
to be the operator having domainD(𝐴

−1
) = R(𝐴) such that

𝐴
−1
𝑦 = {𝑥 ∈ D(𝐴) : 𝑦 ∈ 𝐴𝑥}, 𝑦 ∈ D(𝐴

−1
). 𝐴−1 is an m. l.

operator in 𝑋 too, and (𝐴
−1
)
−1

= 𝐴. The set 𝐴−1
0 = {𝑥 ∈

D(𝐴) : 0 ∈ 𝐴𝑥} is called the kernel of 𝐴 and denoted by
N(𝐴). If N(𝐴) = {0}; that is, if 𝐴−1 is single-valued, then 𝐴
is said to be injective. Observe that (v) yields 𝐴𝑥 = 𝐴0 if and
only if 𝑥 ∈ N(𝐴).

Given U ∈ P(𝑋) \ 0, we write 𝐴(U) = ⋃
𝑢∈U∩D(𝐴) 𝐴𝑢,

so that, in particular, 𝐴(𝑋) = 𝐴(D(𝐴)) = R(𝐴). If 𝐴
𝑗
,

𝑗 = 1, 2 are m. l. operators in 𝑋 and 𝜆 ∈ C, then the scalar
multiplication 𝜆𝐴

1
, the sum 𝐴

1
+𝐴

2
, and the product 𝐴

1
𝐴
2

are defined by

D (𝜆𝐴
1
) = D (𝐴

1
) ,

(𝜆𝐴
1
) 𝑥 = 𝜆𝐴

1
𝑥, 𝑥 ∈ D (𝜆𝐴

1
) ,

D (𝐴
1
+ 𝐴

2
) = D (𝐴

1
) ∩D (𝐴

2
) ,

(𝐴
1
+ 𝐴

2
) 𝑥 = 𝐴

1
𝑥 + 𝐴

2
𝑥, 𝑥 ∈ D (𝐴

1
+ 𝐴

2
) ,

D (𝐴
1
𝐴
2
) = {𝑥 ∈ D (𝐴

2
) : 𝐴

1
(𝐴

2
𝑥) ̸= 0} ,

(𝐴
1
𝐴
2
) 𝑥 = 𝐴

1
(𝐴

2
𝑥) , 𝑥 ∈ D (𝐴

1
𝐴
2
) ,

(4)

where 𝜆𝐴
1
, 𝐴

1
+ 𝐴

2
and 𝐴

1
𝐴
2
are m. l. operators in 𝑋 and

(𝐴
1
𝐴
2
)
−1
= 𝐴

−1

2
𝐴
−1

1
.

Let 𝐴 and 𝐵 be m. l. operators in 𝑋. We write 𝐴 ⊂ 𝐵 if
D(𝐴) ⊆ D(𝐵) and𝐴𝑥 ⊆ 𝐵𝑥 for every 𝑥 ∈ D(𝐴). Clearly,𝐴 ⊂

𝐵 ⊂ 𝐴 if and only if 𝐴 = 𝐵. If 𝐴 ⊂ 𝐵 and 𝐴𝑥 = 𝐵𝑥 for every
𝑥 ∈ D(𝐴), then𝐵 is called an extension of𝐴. If a linear single-
valued operator 𝑆 has domainD(𝑆) = D(𝐴) and 𝑆 ⊂ 𝐴, that
is, 𝑆𝑥 ∈ 𝐴𝑥 for every 𝑥 ∈ D(𝐴), then 𝑆 is called a section of𝐴.
With an arbitrary section 𝑆, it holds𝐴𝑥 = 𝑆𝑥+𝐴0, 𝑥 ∈ D(𝐴),
andR(𝐴) = R(𝑆) + 𝐴0, but this latter sum may or may not
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be direct (cf. [25, p. 14]). A method for constructing sections
is provided in [25, Proposition I.5.2].

If 𝑋
𝑗
, 𝑗 = 1, 2, are two complex Banach spaces, then the

linear space of all bounded single-valued linear operators 𝐿
from 𝑋

1
= D(𝐿) to 𝑋

2
is denoted by L(𝑋

1
; 𝑋

2
) (L(𝑋

1
) if

𝑋
1
= 𝑋

2
) and it is equipped with the uniform operator norm

‖𝐿‖L(𝑋1 ;𝑋2)
= sup

‖𝑥‖𝑋1
≤1
‖𝐿𝑥‖

𝑋2
= inf

𝐾≥0
{‖𝐿𝑥‖

𝑋2
≤ 𝐾‖𝑥‖

𝑋1
:

𝑥 ∈ 𝑋
1
}. Then the resolvent set 𝜌(𝐴) of a m. l. operator 𝐴 is

defined to be the set {𝑧 ∈ C : (𝑧𝐼 − 𝐴)
−1

∈ L(𝑋)}, with 𝐼
being the identity operator in 𝑋. The basic properties of the
resolvent set of single-valued linear operators hold the same
for m. l. operators. First, if 𝜌(𝐴) ̸= 0, then 𝐴 is closed; that is,
its graph {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : 𝑥 ∈ D(𝐴), 𝑦 ∈ 𝐴𝑥} is closed (cf.
[25, p. 43]). Further (cf. [1,Theorem 2.6]), 𝜌(𝐴) is an open set
and the operator function 𝑧 ∈ 𝜌(𝐴) → (𝑧𝐼 − 𝐴)

−1
∈ L(𝑋)

is holomorphic. Finally (cf. [1, formula (2.1)]), the resolvent
equation (𝜆

2
−𝜆

1
)(𝜆

1
𝐼−𝐴)

−1
(𝜆

2
𝐼−𝐴)

−1
= (𝜆

1
𝐼−𝐴)

−1
−(𝜆

2
𝐼−

𝐴)
−1, 𝜆

1
, 𝜆

2
∈ 𝜌(𝐴), is satisfied, too. Unlike the single-valued

case, instead, for 𝑧 ∈ 𝜌(𝐴) the following inclusions hold (cf.
[1, Theorem 2.7]):

(𝑧𝐼 − 𝐴)
−1
𝐴 ⊂ 𝑧(𝑧𝐼 − 𝐴)

−1
− 𝐼 ⊂ 𝐴(𝑧𝐼 − 𝐴)

−1
. (5)

Then, in general, 𝑧(𝑧𝐼 −𝐴)−1 − 𝐼, 𝑧 ∈ 𝜌(𝐴), is only a bounded
section of the m. l. operator 𝐴(𝑧𝐼 − 𝐴)

−1. Throughout this
paper, we denote this bounded section by 𝐴∘

(𝑧𝐼 − 𝐴)
−1, but

we warn the reader that here 𝐴∘ does not necessarily denote
a section of 𝐴 itself. Of course, if 𝐴 is single-valued, then
𝐴
∘
(𝑧𝐼 − 𝐴)

−1 reduces to 𝐴(𝑧𝐼 − 𝐴)−1. Notice that (5) implies
that (𝑧𝐼−𝐴)−1𝐴, 𝑧 ∈ 𝜌(𝐴), is single-valued onD(𝐴) and (𝑧𝐼−
𝐴)

−1
𝐴𝑥 = (𝑧𝐼 − 𝐴)

−1
𝑦 with any 𝑦 ∈ 𝐴𝑥, 𝑥 ∈ D(𝐴). Another

difference with the single-valued case is that for every 𝑧 ∈

𝜌(𝐴) it holdsN((𝑧𝐼 − 𝐴)
−1
) = 𝐴0. Indeed, ((𝑧𝐼 − 𝐴)−1)−10 =

(𝑧𝐼 − 𝐴)0 = 𝐴0. Therefore, in the m. l. case, {0} ⊊ N((𝑧𝐼 −

𝐴)
−1
), 𝑧 ∈ 𝜌(𝐴). However (cf. [24, Lemma 2.1]), if 0 ∈ 𝜌(𝐴),

thenN(𝐴
∘
(𝑧𝐼 − 𝐴)

−1
) = {0}, and, in addition, 𝑥 ∉ 𝐴0 if and

only if 𝐴∘
(𝑧𝐼 − 𝐴)

−1
𝑥 ∉ 𝐴0, 𝑧 ∈ 𝜌(𝐴). We also recall that

for every 𝜆
1
, 𝜆

2
∈ 𝜌(𝐴) the following slight variants of the

resolvent equation hold (cf. [24, Lemma 2.2]):

(𝜆
2
− 𝜆

1
) (𝜆

1
𝐼 − 𝐴)

−1
𝐴
∘
(𝜆

2
𝐼 − 𝐴)

−1

= 𝐴
∘
(𝜆

1
𝐼 − 𝐴)

−1
− 𝐴

∘
(𝜆

2
𝐼 − 𝐴)

−1
,

(𝜆
2
− 𝜆

1
) 𝐴

∘
(𝜆

1
𝐼 − 𝐴)

−1
(𝜆

2
𝐼 − 𝐴)

−1

= 𝐴
∘
(𝜆

1
𝐼 − 𝐴)

−1
− 𝐴

∘
(𝜆

2
𝐼 − 𝐴)

−1
.

(6)

In particular, if 0 ∈ 𝜌(𝐴), then, since 𝐴∘
(0𝐼 − 𝐴)

−1
= −𝐼, the

first in (6) with (𝜆
1
, 𝜆

2
) = (0, 𝜆) yields 𝜆(−𝐴)−1𝐴∘

(𝜆𝐼−𝐴)
−1
=

−𝐼 − 𝐴
∘
(𝜆𝐼 − 𝐴)

−1
= −𝜆(𝜆𝐼 − 𝐴)

−1; that is,

𝐴
−1
𝐴
∘
(𝜆𝐼 − 𝐴)

−1
= (𝜆𝐼 − 𝐴)

−1
, 𝜆 ∈ 𝜌 (𝐴) . (7)

Let (𝐴,D(𝐴)) be am. l. operator in𝑋 satisfying the following
resolvent condition:

(H1) 𝜌(𝐴) contains a region Σ
𝛼
= {𝑧 ∈ C : Re 𝑧 ≥

−𝑐(|Im 𝑧| + 1)
𝛼
,Im 𝑧 ∈ R},

𝛼 ∈ (0, 1], 𝑐 > 0, and for some exponent 𝛽 ∈ (0, 𝛼]

and constant 𝐶 > 0 the following estimate holds:

(𝜆𝐼 − 𝐴)

−1L(𝑋)
≤ 𝐶(|𝜆| + 1)

−𝛽
, ∀𝜆 ∈ Σ

𝛼
. (8)

Introduce the family {e𝑡𝐴}
𝑡≥0

∈ L(𝑋) defined by e0𝐴 = 𝐼 and

e𝑡𝐴 =
1

2𝜋𝑖
∫
Γ

e𝑡𝜆(𝜆𝐼 − 𝐴)−1d𝜆, 𝑡 > 0, (9)

where Γ ⊊ Σ
𝛼
\ {𝑧 ∈ C : Re 𝑧 ≥ 0} is the contour parame-

trized by 𝜆 = −𝑐(|𝜂| + 1)
𝛼
+ 𝑖𝜂, 𝜂 ∈ (−∞,∞). Then (cf. [1, pp.

360, 361]), {e𝑡𝐴}
𝑡≥0

is a semigroup on𝑋, infinitely many times
strongly differentiable for 𝑡 > 0 with

𝐷
𝑘

𝑡
e𝑡A =

1

2𝜋𝑖
∫
Γ

𝜆
𝑘e𝑡𝜆(𝜆𝐼 − 𝐴)−1d𝜆,

𝑡 > 0, 𝑘 ∈ N = {1, 2, . . .} ,

(10)

where 𝐷𝑘

𝑡
= d𝑘/d𝑡𝑘. In general, no analyticity should be

expected for e𝑡𝐴. For if 𝛼 < 1 in (H1), then Σ
𝛼
does not con-

tain any sector Λ
𝜔+𝜋/2

= {𝑧 ∈ C \ {0} : | arg 𝑧| < 𝜔 +

𝜋/2}, 𝜔 ∈ (0, 𝜋/2), and [15, Theorem 5.3], which extends e𝑡𝐴
analytically to the sectorΛ

𝜔
containing the positive real axis,

is not applicable. We stress that (9) andN((𝑧𝐼 − 𝐴)
−1
) = 𝐴0,

𝑧 ∈ 𝜌(𝐴), imply 𝐴0 ⊆ N(e𝑡𝐴) for every 𝑡 > 0, whereas
N(e0𝐴) = N(𝐼) = {0}. Hence, if 𝐴 is really an m. l. operator,
then {0} ⊊ 𝐴0 ⊆ ⋂

𝑡>0
N(e𝑡𝐴). From the semigroup property

it also follows thatN(e𝑡0𝐴) ⊆ N(e𝑡1𝐴) for 𝑡
1
≥ 𝑡

0
≥ 0.

Now, for every 𝜃 ∈ C such thatRe 𝜃 ≥ 0 we set

[(−𝐴)
𝜃
]
∘

e𝑡𝐴 =
1

2𝜋𝑖
∫
Γ

(−𝜆)
𝜃e𝑡𝜆(𝜆𝐼 − 𝐴)−1d𝜆, 𝑡 > 0. (11)

Here, for themultivalued function (−𝜆)𝜃 = e𝜃Ln(−𝜆) we choose
the principal branch holomorphic in the region C \ {𝑧 ∈

C : Re 𝑧 ≥ 0}, where for principal branch we mean the
principal determination ln |𝑧| + 𝑖 arg(𝑧) of Ln(𝑧). We briefly
recall themain properties of operators [(−𝐴)𝜃]∘e𝑡𝐴. Of course,
[(−𝐴)

0
]
∘e𝑡𝐴 = e𝑡𝐴, 𝑡 > 0. As shown in [26, p. 426], [(−𝐴)𝑘]∘

e𝑡𝐴, 𝑘 ∈ N, 𝑡 > 0, is a section of (−𝐴)𝑘e𝑡𝐴, so that from (10) we
get

(−1)
𝑘
𝐷
𝑘

𝑡
e𝑡𝐴 = [(−𝐴)

𝑘
]
∘

e𝑡𝐴 ⊂ (−𝐴)
𝑘e𝑡𝐴, 𝑡 > 0, 𝑘 ∈ N.

(12)

Moreover (cf. [19, formula (22)] with 𝜃 ≥ 0 being replaced by
Re 𝜃 ≥ 0), we get

[(−𝐴)
𝜃
]
∘

e𝑡𝐴 − [(−𝐴)𝜃]
∘

e𝑠𝐴 = −∫

𝑡

𝑠

[(−𝐴)
𝜃+1

]
∘

e𝜉𝐴d𝜉,

Re 𝜃 ≥ 0, 0 < 𝑠 < 𝑡.

(13)

Finally, (H1) implies the following estimates (cf. [1, 24,
Section 3]):

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋)

≤ 𝑐
𝛼,𝛽,𝜃

𝑡
(𝛽−Re 𝜃−1)/𝛼

, Re 𝜃 ≥ 0, 𝑡 > 0,

(14)
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where the 𝑐
𝛼,𝛽,𝜃

’s are positive constants depending on 𝛼, 𝛽,
and 𝜃. Thus, letting 𝜃 = 0 in (14), we see that if 𝛽 ∈ (0, 1),
then the operator function 𝑡 ∈ (0,∞) → e𝑡𝐴 ∈ L(𝑋) may
be singular at the origin and the semigroup is not necessarily
strongly continuous in the 𝑋-norm on the closure D(𝐴) of
D(𝐴) in 𝑋. Notice that if 𝛼 + 𝛽 > 1, then the singularity is a
weak one, in the sense that {e𝑡𝐴}

𝑡≥0
is integrable in norm in

any interval [0, 𝜏], 𝜏 > 0. Further (cf. [24, Lemma 3.9]), if
𝛼 + 𝛽 > 1, then 𝐴0 = ⋂

𝑡>0
N(e𝑡𝐴), and if 𝛼 = 1, then 𝐴0 =

N(e𝑡𝐴) for every 𝑡 > 0.
Observe that 𝐴0 ⊆ N([(−𝐴)

𝜃
]
∘e𝑡𝐴), Re 𝜃 ≥ 0, 𝑡 > 0,

so that 𝐴0 ⊆ ⋂
𝑡>0

N([(−𝐴)
𝜃
]
∘e𝑡𝐴), Re 𝜃 ≥ 0. The operators

[(−𝐴)
𝜃
]
∘e𝑡𝐴 satisfy the following semigroup type property.

Proposition 1. Let 𝜃
𝑗
∈ C,Re𝜃

𝑗
≥ 0, and let 𝑡

𝑗
> 0, 𝑗 = 1, 2.

Then

[(−𝐴)
𝜃1]

∘

e𝑡1𝐴[(−𝐴)𝜃2]
∘

e𝑡2𝐴 = [(−𝐴)
𝜃1+𝜃2]

∘

e(𝑡1+𝑡2)𝐴. (15)

Proof. First, the function 𝜆 ∈ 𝜌(𝐴) → (−𝜆)
𝜃e𝑡𝜆(𝜆𝐼 − 𝐴)−1 ∈

L(𝑋) being holomorphic for everyRe 𝜃 ≥ 0 and 𝑡 > 0, and
the contour Γ in (11) with (𝜃, 𝑡) = (𝜃

2
, 𝑡
2
) can be replaced with

the contour Γ ⊊ Σ
𝛼
\ {𝑧 ∈ C : Re 𝑧 ≥ 0} parametrized by

𝜇 = −𝑐

(|𝜂| + 1)

𝛼
+ 𝑖𝜂, 𝜂 ∈ (−∞,∞), 𝑐 ∈ (0, 𝑐), and lies to the

right of Γ. Then, for every 𝑥 ∈ 𝑋, from the resolvent equation
we obtain

[(−𝐴)
𝜃1]

∘

e𝑡1𝐴[(−𝐴)𝜃2]
∘

e𝑡2𝐴𝑥

= (
1

2𝜋𝑖
)

2

∫
Γ

(−𝜆)
𝜃1e𝑡1𝜆

× [∫
Γ


(−𝜇)
𝜃2e𝑡2𝜇(𝜆𝐼 − 𝐴)−1(𝜇𝐼 − 𝐴)−1𝑥 d𝜇]d𝜆

= (
1

2𝜋𝑖
)

2

∫
Γ

(−𝜆)
𝜃1e𝑡1𝜆(𝜆𝐼 − 𝐴)−1

× [(∫
Γ


(−𝜇)
𝜃2e𝑡2𝜇(𝜇 − 𝜆)−1d𝜇)𝑥] d𝜆

− (
1

2𝜋𝑖
)

2

∫
Γ


(−𝜇)
𝜃2e𝑡2𝜇(𝜇𝐼 − 𝐴)−1

× [(∫
Γ

(−𝜆)
𝜃1e𝑡1𝜆(𝜆 − 𝜇)−1d𝜆)𝑥] d𝜇.

(16)

Now, after having enclosed Γ and Γ on the left with an arcΔ
𝑅

of the circle {𝑧 ∈ C : |𝑧 + 𝑐

| = 𝑅}, 𝑅 > 𝑐 − 𝑐

, we apply the
residue theorem and let 𝑅 go to infinity. To this purpose, we
observe that since the contours Γ and Γ both lie in the half-
plane {𝑧 ∈ C : Re 𝑧 ≤ −𝑐


}, the arc Δ

𝑅
may be parametrized

in polar coordinates byRe 𝑧 = −𝑐

+𝑅 cos𝜑,Im 𝑧 = 𝑅 sin𝜑,

𝜑 ∈ (𝜋/2, 3𝜋/2). Then, for every 𝑧 ∈ Δ
𝑅
we have


(−𝑧)

𝜃e𝑡𝑧 = |𝑧|
Re 𝜃e−Im 𝜃 arg(−𝑧)e𝑡Re 𝑧

≤ (𝑅 + 𝑐

)
Re 𝜃

e(𝜋/2)|Im 𝜃|e−𝑡𝑐


e𝑡𝑅 cos𝜑
.

(17)

Since 𝑡 > 0 and 𝜑 ∈ (𝜋/2, 3𝜋/2), the right-hand side of the
latter inequality goes to zero as 𝑅 goes to infinity, so that
lim

𝑅→∞,𝑧∈Δ𝑅
(−𝑧)

𝜃e𝑡𝑧 = 0 for every Re 𝜃 ≥ 0 and 𝑡 > 0.
The residue theorem together with the fact that Γ lies to the
right of Γ thus yields ∫

Γ

(−𝜇)

𝜃2e𝑡2𝜇(𝜇−𝜆)−1d𝜇 = 2𝜋𝑖(−𝜆)
𝜃2e𝑡2𝜆

and ∫
Γ
(−𝜆)

𝜃1e𝑡1𝜆(𝜆−𝜇)−1d𝜆 = 0. Replacing these identities in
(16) and using the equality (−𝜆)𝜃1(−𝜆)𝜃2 = (−𝜆)

𝜃1+𝜃2 which
is satisfied for the principal branch of the function (−𝜆)

𝜃
=

e𝜃Ln(−𝜆), we finally find

[(−𝐴)
𝜃1]

∘

e𝑡1𝐴[(−𝐴)𝜃2]
∘

e𝑡2𝐴𝑥

=
1

2𝜋𝑖
∫
Γ

(−𝜆)
𝜃1+𝜃2e(𝑡1+𝑡2)𝜆(𝜆𝐼 − 𝐴)−1𝑥 d𝜆.

(18)

The right-hand side being precisely [(−𝐴)𝜃1+𝜃2]∘e(𝑡1+𝑡2)𝐴𝑥, the
proof is complete.

For an m. l. operator 𝐴 satisfying (H1) we introduce now
the spaces (𝑋,D(𝐴))

𝛾,𝑝
and𝑋𝛾,𝑝

𝐴
. We first specify a topology

onD(𝐴) equipping it with the norm ‖𝑥‖D(𝐴) = inf
𝑦∈𝐴𝑥

‖𝑦‖
𝑋
,

𝑥 ∈ D(𝐴). Since 𝐴−1
∈ L(𝑋), this norm is equivalent to the

graph norm andmakesD(𝐴) a complex Banach space (cf. [2,
Proposition 1.11]). As𝑋

1
and𝑋

2
being given normed complex

linear spaces, we will write 𝑋
1
→ 𝑋

2
if 𝑋

1
⊆ 𝑋

2
and there

exists a positive constant 𝐶
0
such that ‖𝑥‖

𝑋2
≤ 𝐶

0
‖𝑥‖

𝑋1
for

every 𝑥 ∈ 𝑋
1
. If 𝑋

1
→ 𝑋

2
→ 𝑋

1
, that is, if 𝑋

1
= 𝑋

2

and the norms ‖ ⋅ ‖
𝑋1

and ‖ ⋅ ‖
𝑋2

are equivalent, then we will
write 𝑋

1
≅ 𝑋

2
. Of course, D(𝐴) with the norm ‖ ⋅ ‖D(𝐴)

satisfies D(𝐴) → 𝑋. In fact, if 𝑥 ∈ D(𝐴), then for every
𝑦 ∈ 𝐴𝑥 we have 𝑥 = 𝐴

−1
𝑦, so that ‖𝑥‖

𝑋
≤ ‖𝐴

−1
‖L(𝑋)

‖𝑦‖
𝑋
≤

𝐶‖𝑦‖
𝑋
. Taking the infimum with respect to 𝑦 ∈ 𝐴𝑥, we thus

find ‖𝑥‖
𝑋
≤ 𝐶‖𝑥‖D(𝐴) for every 𝑥 ∈ D(𝐴). If 𝑌 is a Banach

space, we denote by 𝐶((0,∞); 𝑌) the set of all continuos
functions from (0,∞) to 𝑌, and for a 𝑌-valued strongly
measurable function 𝑔(𝜉), 𝜉 ∈ (0,∞), we set ‖𝑔(𝜉)‖

𝐿
∗

𝑞
(𝑌)

=

(∫
∞

0
‖𝑔(𝜉)‖

𝑞

𝑌
(d𝜉/𝜉))1/𝑞, 𝑞 ∈ [1,∞), and ‖𝑔(𝜉)‖

𝐿
∗

∞
(𝑌)

=

sup
𝜉∈(0,∞)

‖𝑔(𝜉)‖
𝑌
. Let 𝑝

0
, 𝑝

1
∈ [1,∞) or let 𝑝

0
= 𝑝

1
= ∞,

and for 𝛾 ∈ (0, 1) define 𝑝−1 = (1 − 𝛾)𝑝
−1

0
+ 𝛾𝑝

−1

1
if 𝑝

0
, 𝑝

1
∈

[1,∞) and 𝑝 = ∞ if 𝑝
0
= 𝑝

1
= ∞. Let us set

(𝑋,D (𝐴))𝛾,𝑝

= {𝑥 ∈ 𝑋 : 𝑥 = V
0 (𝜉) + V

1 (𝜉) , 𝜉 ∈ (0,∞) ,

V
0
∈ 𝐶 ((0,∞) ;𝑋) , V1 ∈ 𝐶 ((0,∞) ;D (𝐴)) ,

𝜉
𝛾V

0 (𝜉)
𝐿∗
𝑝0
(𝑋)

+

𝜉
𝛾−1V

1 (𝜉)
𝐿∗
𝑝1
(D(𝐴))

< ∞} ,

‖𝑥‖(𝑋,D(𝐴))𝛾,𝑝

= inf
V0 ,V1

{
𝜉

𝛾V
0 (𝜉)

𝐿∗
𝑝0
(𝑋)

+

𝜉
𝛾−1V

1 (𝜉)
𝐿∗
𝑝1
(D(𝐴))

} .

(19)

This characterization of the spaces (𝑋,D(𝐴))
𝛾,𝑝

is that
obtained by the so-called “mean-methods”, and it is equiv-
alent to that performed by the “K-method” (cf. [27, The-
orem 1.5.2 and Remark 1.5.2/2]) and the “trace-method”
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(cf. [27, Theorem 1.8.2]). Then, due to [27, Theorem 1.3.3],
for every 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞] the space (𝑋,D(𝐴))

𝛾,𝑝

is an exact real interpolation space of exponent 𝛾 between
𝑋 and D(𝐴). Observe that by exchanging the role of 𝑋 and
D(𝐴) and performing the transformation 𝜉 = 𝜏

−1, we get
(𝑋,D(𝐴))

𝛾,𝑝
= (D(𝐴), 𝑋)

1−𝛾,𝑝
. Also, if D(𝐴) = 𝑋, then

(𝑋,D(𝐴))
𝛾,𝑝

≅ 𝑋 (cf. [27, Theorem 1.3.3(f)]). The definition
of the spaces (𝑋,D(𝐴))

𝛾,𝑝
is meaningful even for the limiting

cases (𝛾, 𝑝) = (𝑖,∞), 𝑖 = 0, 1, whereas (𝑋,D(𝐴))
𝑖,𝑝
, 𝑖 = 0, 1,

𝑝 ∈ [1,∞), reduces to the zero element of 𝑋. In particular
(cf. [28, pp. 10–15]), denoting by �̃�𝑋 the completion ofD(𝐴)

relative to 𝑋 and endowing it with the norm ‖ ⋅ ‖
�̃�
𝑋 in [28, p.

14], we get (𝑋,D(𝐴))
0,∞

≅ 𝑋 and (𝑋,D(𝐴))
1,∞

≅ �̃�
𝑋. Let

𝛾
1
∈ (0, 1) and let 𝑝

𝑗
∈ [1,∞], 𝑗 = 1, 2. Then, for 𝛾

2
∈ (0, 𝛾

1
)

and 𝑞
𝑗
∈ [1, 𝑝

𝑗
], 𝑗 = 1, 2, the following chain of embeddings

holds:

D (𝐴) → (𝑋,D (𝐴))1,∞ → (𝑋,D (𝐴))𝛾1,1

→ (𝑋,D (𝐴))𝛾1,𝑞1
→ (𝑋,D (𝐴))𝛾1,𝑝1

→ (𝑋,D (𝐴))𝛾2,1
→ (𝑋,D (𝐴))𝛾2,𝑞2

→ (𝑋,D (𝐴))𝛾2,𝑝2
→ D (𝐴).

(20)

Let 𝛾 ∈ [0, 1]. Recall that a Banach space𝐸 is said to be of class
𝐽(𝛾, 𝑋,D(𝐴)) ∩ 𝐾(𝛾,𝑋,D(𝐴)) and shortened to 𝐸 ∈ 𝐽(𝛾) ∩

𝐾(𝛾), if𝐸 is an intermediate space between (𝑋,D(𝐴))
𝛾,∞

and
(𝑋,D(𝐴))

𝛾,1
, that is, if (𝑋,D(𝐴))

𝛾,1
→ 𝐸 → (𝑋,D(𝐴))

𝛾,∞
.

From (20) it thus follows that (𝑋,D(𝐴))
𝛾,𝑝

∈ 𝐽(𝛾) ∩ 𝐾(𝛾),
for every 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞]. Moreover, since
(𝑋,D(𝐴))

𝑖,1
= {0}, 𝑖 = 0, 1, and (𝑋,D(𝐴))

0,∞
≅ 𝑋, we have

D(𝐴) ∈ 𝐽(1)∩𝐾(1) and𝑋 ∈ 𝐽(0)∩𝐾(0). Then (cf. [28, p. 12],
[27, Theorem 1.10.2], and [9, Section 1.2.3]), for 𝛾

𝑗
∈ (0, 1)

and 𝑝
𝑗
∈ [1,∞], 𝑗 = 0, 1, 2, the reiteration theorem yields

((𝑋,D (𝐴))𝛾1,𝑝1
, (𝑋,D (𝐴))𝛾2,𝑝2

)
𝛾0,𝑝0

≅ (𝑋,D (𝐴))(1−𝛾0)𝛾1+𝛾0𝛾2,𝑝0
,

((𝑋,D (𝐴))𝛾1 ,𝑝1
,D (𝐴))

𝛾0,𝑝0

≅ (𝑋,D (𝐴))(1−𝛾0)𝛾1+𝛾0,𝑝0
,

(𝑋, (𝑋,D (𝐴))𝛾2,𝑝2
)
𝛾0,𝑝0

≅ (𝑋,D (𝐴))𝛾0𝛾2,𝑝0
.

(21)

Finally (cf. [29, Theorem 1.II and Remark 1.III]), we recall
that if 𝑋

1
and 𝑋

2
are two complex Banach spaces and 𝑇 ∈

L(𝑋
1
; 𝑋

2
) is such that 𝑇 ∈ L(𝑌

1𝑘
; 𝑌

2𝑘
), 𝑌

𝑗𝑘
⊆ 𝑋

𝑗
, 𝑗, 𝑘 = 1, 2,

then 𝑇 ∈ L((𝑌
11
, 𝑌

12
)
𝛾0,𝑝0

; (𝑌
21
, 𝑌

22
)
𝛾0,𝑝0

), 𝛾
0
∈ (0, 1), 𝑝

0
∈

[1,∞], and

‖𝑇‖L((𝑌11
,𝑌12

)𝛾0,𝑝0
;(𝑌21

,𝑌22
)𝛾0,𝑝0

)
≤ ‖𝑇‖

1−𝛾0

L(𝑌11
;𝑌21

)
‖𝑇‖

𝛾0

L(𝑌12
;𝑌22

)
.

(22)

As a consequence of this general result and the identity

((𝑋,D (𝐴))𝛾1,𝑝1
, 𝑋)

𝛾0,𝑝0

= (𝑋, (𝑋,D (𝐴))𝛾1,𝑝1
)
1−𝛾0 ,𝑝0

,

(23)

from the third in (21) we find that if 𝑇 ∈ L(𝑋) is such that
𝑇 ∈ L(𝑋; (𝑋,D(𝐴))

𝛾1,𝑝1
) and 𝑇 ∈ L((𝑋,D(𝐴))

𝛾2,𝑝2
; 𝑋),

then 𝑇 ∈ L((𝑋,D(𝐴))
𝛾0𝛾2,𝑝0

; (𝑋,D(𝐴))
(1−𝛾0)𝛾1,𝑝0

), 𝛾
𝑗
∈ (0, 1),

𝑝
𝑗
∈ [1,∞], 𝑗 = 0, 1, 2, and the following estimate holds:

‖𝑇‖L((𝑋,D(𝐴))𝛾0𝛾2,𝑝0 ;(𝑋,D(𝐴))(1−𝛾0)𝛾1,𝑝0 )

≤ ‖𝑇‖
1−𝛾0

L(𝑋;(𝑋,D(𝐴))𝛾1,𝑝1 )
‖𝑇‖

𝛾0

L((𝑋,D(𝐴))𝛾2,𝑝2 ;𝑋)
.

(24)

Notice that here 𝛾
0
𝛾
2
+(1−𝛾

0
)𝛾
1
∈ (min{𝛾

1
, 𝛾
2
},max{𝛾

1
, 𝛾
2
}) ⊊

(0, 1) for every 𝛾
0
∈ (0, 1). Therefore, if we let 𝛾 = 𝛾

0
𝛾
2
and let

𝛿 = (1 − 𝛾
0
)𝛾
1
, then 𝛾 + 𝛿 < 1, 𝛾

1
= 𝛿/(1 − 𝛾

0
) > 𝛿, and 𝛾

2
=

𝛾/𝛾
0
> 𝛾. Hence, in order that the additional inequalities 𝛾

𝑗
<

1, 𝑗 = 1, 2, are satisfied, we have to choose 𝛾
0
∈ (𝛾, 1−𝛿). Aswe

will see this simple observation will be the key for the proof
of the second estimates (90) in the following Proposition 16.

We recall that for every fixed 𝑥 ∈ D(𝐴) the map 𝑇(𝜆) =
𝜆𝑥 satisfies ‖𝑇‖L(C;𝑋) = ‖𝑥‖

𝑋
, ‖𝑇‖L(C;D(𝐴)) = ‖𝑥‖D(𝐴) and

‖𝑇‖L(C,(𝑋,D(𝐴))𝛾,𝑝) = ‖𝑥‖
(𝑋,D(𝐴))𝛾,𝑝

. Then (22) with 𝑋
1
= 𝑌

11
=

𝑌
12
= C, 𝑋

2
= 𝑌

21
= 𝑋 and 𝑌

22
= D(𝐴) yields the interpola-

tion inequality:

‖𝑥‖(𝑋,D(𝐴))𝛾,𝑝
≤ 𝑐

0‖𝑥‖
1−𝛾

𝑋
‖𝑥‖

𝛾

D(𝐴)
,

𝑥 ∈ D (𝐴) , 𝛾 ∈ (0, 1) , 𝑝 ∈ [1,∞] ,

(25)

with 𝑐
0
being the positive constant depending on 𝛾 and𝑝 such

that ‖𝜆‖
(C,C)𝛾,𝑝 ≤ 𝑐

0
|𝜆|.

As another application of (22) and for further needs, we
also recall that if 𝐴 satisfies (H1), then 𝐴∘

(𝑧𝐼 − 𝐴)
−1 satisfies

the estimate (cf. [24, formulae (4.16) and (4.17)]).
Consider


𝐴
∘
(𝑧𝐼 − 𝐴)

−1L(𝑋)
≤ (𝐶 + 1) (|𝑧| + 1)

1−𝛽
, ∀𝑧 ∈ Σ

𝛼
,


𝐴
∘
(𝑧𝐼 − 𝐴)

−1L(D(𝐴);𝑋)
≤ 𝐶(|𝑧| + 1)

−𝛽
, ∀𝑧 ∈ Σ

𝛼
.

(26)

From (26), using (22) with 𝑋
𝑗
= 𝑌

𝑗1
= 𝑌

22
= 𝑋, 𝑗 = 1, 2, and

𝑌
12
= D(𝐴), it then follows for every 𝛾 ∈ (0, 1) and𝑝 ∈ [1,∞]


𝐴
∘
(𝑧𝐼 − 𝐴)

−1L((𝑋,D(𝐴))𝛾,𝑝 ;𝑋)

≤ 𝑐
1(𝐶 + 1)

1−𝛾
𝐶
𝛾
(|𝑧| + 1)

1−𝛽−𝛾
, ∀𝑧 ∈ Σ

𝛼
,

(27)

where 𝑐
1
is the positive constant depending on 𝛾 and 𝑝 such

that ‖𝑥‖
𝑋
≤ 𝑐

1
‖𝑥‖

(𝑋,𝑋)𝛾,𝑝
.

For 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞] we now define the Banach
spaces𝑋𝛾,𝑝

𝐴
by

𝑋
𝛾,𝑝

𝐴
= {𝑥 ∈ 𝑋 : [𝑥]

𝑋
𝛾,𝑝

𝐴

:=

𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
𝑥
𝐿∗
𝑝
(𝑋)

< ∞} ,

‖𝑥‖
𝑋
𝛾,𝑝

𝐴

= ‖𝑥‖𝑋 + [𝑥]𝑋
𝛾,𝑝

𝐴

.

(28)

It is a well-known fact that if 𝐴 is single-valued and 𝛽 = 1 in
(H1), then (𝑋,D(𝐴))

𝛾,𝑝
≅ 𝑋

𝛾,𝑝

𝐴
(cf. [30,Theorem 3.1] and [27,

Theorem 1.14.2]). On the contrary, if 𝛽 ∈ (0, 1), then such
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an equivalence is no longer true, as first observed in [13,
Theorem 2] for single-valued operators and, in the case
𝑝 = ∞, in [2, Theorem 1.12] for the m. l. ones. Recently,
extending [13] to m. l. operators and [2] to 𝑝 ∈ [1,∞], in
[24, Proposition 4.3] it has been shown that the following
embedding relations hold:

𝑋
𝛾,𝑝

𝐴
→ (𝑋,D(𝐴))𝛾,𝑝, 𝛾 ∈ (0, 1) , 𝑝 ∈ [1,∞] , (29)

(𝑋,D(𝐴))𝛾,𝑝 → 𝑋
𝛾+𝛽−1,𝑝

𝐴
, 𝛾 ∈ (1 − 𝛽, 1) , 𝑝 ∈ [1,∞] .

(30)

Then, as in the single-valued case, (𝑋,D(𝐴))
𝛾,𝑝

≅ 𝑋
𝛾,𝑝

𝐴
if 𝛽 =

1 in (H1). More precisely (see the proof of [24, Proposition
4.3]), if 𝑥 ∈ 𝑋𝛾,𝑝

𝐴
, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞], then

‖𝑥‖(𝑋,D(𝐴))𝛾,𝑝
≤ 2‖𝑥‖

𝑋
𝛾,𝑝

𝐴

, (31)

whereas if 𝑥 ∈ (𝑋,D(𝐴))
𝛾,𝑝
, 𝛾 ∈ (1 − 𝛽, 1), 𝑝 ∈ [1,∞], then

‖𝑥‖
𝑋
𝛾+𝛽−1,𝑝

𝐴

≤ 𝑐
2‖𝑥‖(𝑋,D(𝐴))𝛾,𝑝

, (32)

with 𝑐
2
being a positive constant depending on 𝛽, 𝛾 and 𝑝.

By setting 𝛿 = 𝛾+𝛽−1, 𝛾 ∈ (1−𝛽, 1), from (30) it follows

D (𝐴) → (𝑋,D(𝐴))1+𝛿−𝛽,𝑝 → 𝑋
𝛿,𝑝

𝐴
→ 𝑋,

𝛿 ∈ (0, 𝛽) , 𝑝 ∈ [1,∞] .

(33)

Then, if 𝛽 ∈ (0, 1), the spaces 𝑋𝛿,𝑝

𝐴
, 𝛿 ∈ (0, 1), 𝑝 ∈ [1,∞], are

intermediate spaces between𝑋 andD(𝐴) only for 𝛿 ∈ (0, 𝛽),
whereas, when 𝛿 ∈ [𝛽, 1), they may be smaller than D(𝐴).
In any case, when 𝛽 ∈ (0, 1), it is not known if the spaces
𝑋
𝛿,𝑝

𝐴
, 𝛿 ∈ (0, 𝛽), 𝑝 ∈ [1,∞], are only intermediate or just

interpolation spaces between𝑋 andD(𝐴).
Notice that [𝑋𝛾,𝑝

𝐴
∩ 𝐴0] = {0}, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞].

Indeed, assume that there exists 𝑥 ̸= 0 such that 𝑥 ∈ [𝑋
𝛾,𝑝

𝐴
∩

𝐴0] for some 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞]. Then, since 𝑥 ∈ 𝐴0 =
N((𝑧𝐼 − 𝐴)

−1
), 𝑧 ∈ 𝜌(𝐴), we have 𝐴∘

(𝜉𝐼 − 𝐴)
−1
𝑥 = 𝜉(𝜉 −

𝐴)
−1
𝑥−𝑥 = −𝑥 for every 𝜉 > 0 and [𝑥]

𝑋
𝛾,𝑝

𝐴

= ‖𝜉
𝛾
‖
𝐿
∗

𝑝
(𝑋)
‖𝑥‖

𝑋
=

∞, contradicting 𝑥 ∈ 𝑋
𝛾,𝑝

𝐴
. This property plays a key role in

the proof of many of the results in [24]. Further, due to (30), it
implies that [D(𝐴) ∩ 𝐴0] = [(𝑋,D(𝐴))

𝛾,𝑝
∩ 𝐴0] = {0}, 𝛾 ∈

(1 − 𝛽, 1), 𝑝 ∈ [1,∞]. On the contrary, since {0} may be a
proper subset of [(𝑋,D(𝐴))

𝛾,𝑝
∩𝐴0] for 𝛾 ∈ (0, 1 − 𝛽], 𝛽 < 1,

in general it is not true that [D(𝐴) ∩ 𝐴0] = {0}. This is true,
instead, if 𝛽 = 1. In this case the topological direct sum𝑋

0
=

D(𝐴) ⊕ 𝐴0 is a closed subspace of 𝑋, and if 𝑋 is reflexive, it
coincides with the whole𝑋 (cf. [3, Theorems 2.4 and 2.6]).

For every 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞] from (27), (29), and
(31) it follows


𝐴
∘
(𝑧𝐼 − 𝐴)

−1L(𝑋
𝛾,𝑝

𝐴
;𝑋)

≤ 2𝑐
1(𝐶 + 1)

1−𝛾
𝐶
𝛾
(|𝑧| + 1)

1−𝛽−𝛾
, ∀𝑧 ∈ Σ

𝛼
.

(34)

Hence, for 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞] we may rewrite (27) and
(34) more compactly as

𝐴
∘
(𝑧𝐼 − 𝐴)

−1L(𝑌
𝑝

𝛾 ;𝑋)
≤ 𝑐

3(|𝑧| + 1)
1−𝛽−𝛾

, ∀𝑧 ∈ Σ
𝛼
, (35)

where 𝑌𝑝
𝛾

∈ {(𝑋,D(𝐴))
𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
} and 𝑐

3
is equal to 𝑐

1
(𝐶 +

1)
1−𝛾

𝐶
𝛾 or 2𝑐

1
(𝐶 + 1)

1−𝛾
𝐶
𝛾 according that 𝑌𝑝

𝛾
= (𝑋,D(𝐴))

𝛾,𝑝

or 𝑌𝑝
𝛾
= 𝑋

𝛾,𝑝

𝐴
.

With the exception of the case 𝛽 = 1, in general it is not
clear if embeddings analogous to (20) hold even for the spaces
𝑋
𝛾,𝑝

𝐴
. In fact, using (20), (29), and (30) we can only prove that

if 𝛾 ∈ (1 − 𝛽, 1) and 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞, then

𝑋
𝛾,𝑞

𝐴
→ (𝑋,D (𝐴))𝛾,𝑞 → (𝑋,D (𝐴))𝛾,𝑞 → 𝑋

𝛾+𝛽−1,𝑝

𝐴
, (36)

whereas if 1 − 𝛽 < 𝛾
2
< 𝛾

1
< 1 and 𝑝

1
, 𝑝

2
∈ [1,∞], then

𝑋
𝛾1,𝑝1

𝐴
→ (𝑋,D (𝐴))𝛾1,𝑝1

→ (𝑋,D (𝐴))𝛾2,𝑝2
→ 𝑋

𝛾2+𝛽−1,𝑝2

𝐴
.

(37)

What can be provedwithout invoking (20), (29), and (30) and
using only the definition of the norm ‖ ⋅ ‖

𝑋
𝛾,𝑝

𝐴

is instead the
following result, which extends to the spaces𝑋𝛾,𝑝

𝐴
the embed-

dings (𝑋,D(𝐴))
𝛾1,𝑝

→ (𝑋,D(𝐴))
𝛾2,𝑝

, and (𝑋,D(𝐴))
𝛾1,∞

→

(𝑋,D(𝐴))
𝛾2,𝑝

, 0 < 𝛾
2
< 𝛾

1
< 1, 𝑝 ∈ [1,∞] (cf. (20) with

(𝑝
1
, 𝑝

2
) = (𝑝, 𝑝) and (𝑝

1
, 𝑝

2
) = (∞, 𝑝)).

Proposition 2. Let 𝐴 be an m. l. operator satisfying the resol-
vent condition (H1). Then the following embeddings hold for
every 0 < 𝛾

2
< 𝛾

1
< 1 and 𝑝 ∈ [1,∞]:

𝑋
𝛾1,𝑝

𝐴
→ 𝑋

𝛾2,𝑝

𝐴
, (38)

𝑋
𝛾1,∞

𝐴
→ 𝑋

𝛾2,𝑝

𝐴
. (39)

Proof. If 𝛽 = 1 in (H1), then there is nothing to prove since
(𝑋,D(𝐴))

𝛾,𝑝
≅ 𝑋

𝛾,𝑝

𝐴
and both (38) and (39) follow from (20).

Therefore, without loss of generality, we assume that 𝛽 ∈

(0, 𝛼] is such that 𝛽 < 𝛼 if 𝛼 = 1. We begin by proving (38).
Let first 𝑝 ∈ [1,∞). For every 𝑥 ∈ 𝑋

𝛾1,𝑝

𝐴
, 0 < 𝛾

2
< 𝛾

1
< 1, we

write
[𝑥]

𝑝

𝑋
𝛾2,𝑝

𝐴

= 𝐼
1
+ 𝐼

2
, (40)

where

𝐼
𝑗
= ∫

𝑏𝑗

𝑎𝑗


𝜉
𝛾2𝐴

∘
(𝜉𝐼 − 𝐴)

−1
𝑥


𝑝

𝑋

d𝜉
𝜉
, 𝑗 = 1, 2, (41)

(𝑎
1
, 𝑏
1
, 𝑎

2
, 𝑏
2
) = (0, 1, 1,∞). Using the first inequality in (26)

we find

𝐼
1
≤ (𝐶 + 1)

𝑝
‖𝑥‖

𝑝

𝑋
∫

1

0

𝜉
𝛾2𝑝−1

(𝜉 + 1)
(1−𝛽)𝑝d𝜉

≤ 2
(1−𝛽)𝑝

(𝐶 + 1)
𝑝
‖𝑥‖

𝑝

𝑋
∫

1

0

𝜉
𝛾2𝑝−1d𝜉 ≤ [𝑐

4‖𝑥‖𝑋
𝛾1,𝑝

𝐴

]

𝑝

,

(42)

where 𝑐
4
= 2

1−𝛽
(𝐶+1)(𝛾

2
𝑝)

−1/𝑝. Concerning 𝐼
2
, instead, using

𝛾
2
− 𝛾

1
< 0, we get

𝐼
2
= ∫

∞

1

𝜉
(𝛾2−𝛾1)𝑝


𝜉
𝛾1𝐴

∘
(𝜉𝐼 − 𝐴)

−1
𝑥


𝑝

𝑋

d𝜉
𝜉

≤ ∫

∞

1


𝜉
𝛾1𝐴

∘
(𝜉𝐼 − 𝐴)

−1
𝑥


𝑝

𝑋

d𝜉
𝜉

≤ [𝑥]
𝑝

𝑋
𝛾1,𝑝

𝐴

≤ ‖𝑥‖
𝑝

𝑋
𝛾1,𝑝

𝐴

.

(43)
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Summing up (40)–(43) and setting 𝑐
5
= [(𝑐

4
)
𝑝
+ 1]

1/𝑝, it thus
follows ‖𝑥‖

𝑋
𝛾2,𝑝

𝐴

= ‖𝑥‖
𝑋
+[𝑥]

𝑋
𝛾2,𝑝

𝐴

≤ (1+𝑐
5
)‖𝑥‖

𝑋
𝛾1,𝑝

𝐴

, completing
the proof of (38) in the case 𝑝 ∈ [1,∞). Let 𝑝 = ∞. For every
𝑥 ∈ 𝑋

𝛾1,∞

𝐴
, 0 < 𝛾

2
< 𝛾

1
< 1, we write

[𝑥]
𝑋
𝛾2,∞

𝐴

= max {𝐼
3
, 𝐼
4
} , (44)

where 𝐼
𝑗
= sup

𝜉∈𝑈𝑗
‖𝜉

𝛾2𝐴
∘
(𝜉𝐼 − 𝐴)

−1
𝑥‖

𝑋
, 𝑗 = 3, 4, 𝑈

3
= (0, 1),

𝑈
4
= [1,∞). Again, the first inequality in (26) yields

𝐼
3
≤ (𝐶 + 1) ‖𝑥‖𝑋 sup

𝜉∈(0,1)

[𝜉
𝛾2
(𝜉 + 1)

1−𝛽
]

≤ 2
1−𝛽

(𝐶 + 1) ‖𝑥‖
𝑋
𝛾1,∞

𝐴

.

(45)

Instead, using 𝛾
2
− 𝛾

1
< 0, we have

𝐼
4
= sup

𝜉∈[1,∞)

𝜉
𝛾2−𝛾1


𝜉
𝛾1𝐴

∘
(𝜉𝐼 − 𝐴)

−1
𝑥
𝑋

≤ [𝑥]
𝑋
𝛾1,∞

𝐴

≤ ‖𝑥‖
𝑋
𝛾1,∞

𝐴

.

(46)

Summing up (44)–(46) and setting 𝑐
6
= 2

1−𝛽
(𝐶 + 1), we thus

find ‖𝑥‖
𝑋
𝛾2,∞

𝐴

= ‖𝑥‖
𝑋
+ [𝑥]

𝑋
𝛾2,∞

𝐴

≤ (1 + 𝑐
6
)‖𝑥‖

𝑋
𝛾1,∞

𝐴

. This com-
pletes the proof of (38) for the case 𝑝 = ∞. We now prove
(39). Due to (38) with 𝑝 = ∞, it suffices to assume that 𝑝 ∈

[1,∞). As above, for every 𝑥 ∈ 𝑋
𝛾1,∞

𝐴
, 0 < 𝛾

2
< 𝛾

1
< 1, we

write [𝑥]𝑝
𝑋
𝛾2,𝑝

𝐴

= 𝐼
1
+ 𝐼

2
, where 𝐼

1
and 𝐼

2
are defined by (41).

Hence, the same computations as in (42) yield

𝐼
1
≤ [𝑐

4‖𝑥‖𝑋
𝛾1,∞

𝐴

]
𝑝

. (47)

As far as 𝐼
2
is concerned, instead, we have

𝐼
2
≤ [𝑥]

𝑝

𝑋
𝛾1,∞

𝐴

∫

∞

1

𝜉
(𝛾2−𝛾1)𝑝−1d𝜉 ≤ [𝑐

7‖𝑥‖𝑋
𝛾1,∞

𝐴

]
𝑝

, (48)

where 𝑐
7
= [(𝛾

1
− 𝛾

2
)𝑝]

−1/𝑝. Summing up (47) and (48) and
setting 𝑐

8
= [(𝑐

4
)
𝑝
+ (𝑐

7
)
𝑝
]
1/𝑝, we deduce ‖𝑥‖

𝑋
𝛾2,𝑝

𝐴

≤ (1 +

𝑐
8
)‖𝑥‖

𝑋
𝛾1,∞

𝐴

. The proof is complete.

Remark 3. Notice that (37) with 𝑝
1
= 𝑝

2
= 𝑝 yields 𝑋𝛾1,𝑝

𝐴
→

𝑋
𝛾2+𝛽−1,𝑝

𝐴
, 1 − 𝛽 < 𝛾

2
< 𝛾

1
< 1, and this latter embedding is

less accurate than (38).

Remark 4. Themain problem for extending (20) to the spaces
𝑋
𝛾,𝑝

𝐴
in the case 𝛽 < 1 is that it is not clear if it holds 𝑋𝛾,𝑞

𝐴
→

𝑋
𝛾,𝑝

𝐴
, 1 ≤ 𝑞 < 𝑝 ≤ ∞. In fact, the embedding

(𝑋,D (𝐴))𝛾,𝑞 → (𝑋,D (𝐴))𝛾,𝑞,

𝛾 ∈ (0, 1) , 1 ≤ 𝑞 < 𝑝 ≤ ∞,

(49)

is a consequence of the property of the functional 𝐾 enter-
ing the definition of the interpolation spaces (𝑋,D(𝐴))

𝛾,𝑝

through the “𝐾-method”, and in particular of its mono-
tonicity (see the proof of [27, Theorem 1.3.3(c), (d)]). With
embedding (49) at hands, to derive (20) it thus suffices to

prove that (𝑋,D(𝐴))
𝛾1,∞

→ (𝑋,D(𝐴))
𝛾2,1

, 0 < 𝛾
2
< 𝛾

1
< 1

(see the proof of [27, Theorem 1.3.3(e)] taking there (𝐴
0
,

𝐴
1
, 𝜃, 𝜃) = (D(𝐴), 𝑋, 1−𝛾

1
, 1−𝛾

2
) and using (D(𝐴), 𝑋)

1−𝛾,𝑝
=

(𝑋,D(𝐴))
𝛾,𝑝
). If we try to repeat the proof of (49) for the

spaces 𝑋𝛾,𝑝

𝐴
, we will be faced with two problems. The first is

that we do not know if the function𝑔(𝜉) = ‖𝐴
∘
(𝜉𝐼 − 𝐴)

−1
𝑥‖

𝑋
,

𝜉 ∈ (0,∞), 𝑥 ∈ 𝑋, is monotone decreasing, which would
allow us to prove 𝑋𝛾,𝑝

𝐴
→ 𝑋

𝛾,∞

𝐴
, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞). For

if 𝑔(𝜉) was monotone decreasing, then for every 𝜉 ∈ (0,∞)

and 𝑥 ∈ 𝑋𝛾,𝑝

𝐴
, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞), we would find

𝜉
𝛾
𝑔 (𝜉) = 𝑐

9
(∫

𝜉

0

𝜇
𝛾𝑝 d𝜇

𝜇
)

1/𝑝

𝑔 (𝜉)

≤ 𝑐
9
(∫

𝜉

0

[𝜇
𝛾
𝑔 (𝜇)]

𝑝 d𝜇
𝜇
)

1/𝑝

≤ 𝑐
9[𝑥]𝑋

𝛾,𝑝

𝐴

,

(50)

where 𝑐
9
= (𝛾𝑝)

−1/𝑝. Taking the supremum with respect to
𝜉 ∈ (0,∞) in the latter inequality, we would get [𝑥]

𝑋
𝛾,∞

𝐴

≤

𝑐
9
[𝑥]

𝑋
𝛾,𝑝

𝐴

, proving 𝑋𝛾,𝑝

𝐴
→ 𝑋

𝛾,∞

𝐴
, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞). The

second problem is that the function 𝜉𝛾𝑔(𝜉) is not necessarily
bounded for 𝑥 ∈ 𝑋𝛾,𝑝

𝐴
, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞), precluding us to

prove 𝑋𝛾,𝑞

𝐴
→ 𝑋

𝛾,𝑝

𝐴
, 𝛾 ∈ (0, 1), 𝑞 ∈ [1, 𝑝). Indeed, from (35)

we can only find 𝜉𝛾𝑔(𝜉) ≤ 𝑐
3
𝜉
𝛾
(𝜉 + 1)

1−𝛽−𝛾
‖𝑥‖

𝑋
𝛾,𝑝

𝐴

, and when
𝛽 < 1, the right-hand side of this inequality goes to infinity
as 𝜉 goes to infinity. On the contrary, if 𝜉𝛾𝑔(𝜉)were bounded,
then for every 1 ≤ 𝑞 < 𝑝 < ∞ we would obtain

[𝑥]
𝑝

𝑋
𝛾,𝑝

𝐴

= ∫

∞

0

[𝜉
𝛾
𝑔 (𝜉)]

𝑝 d𝜉
𝜉

≤ ( sup
𝜉∈(0,∞)

𝜉
𝛾
𝑔 (𝜉))

𝑝−𝑞

∫

∞

0

[𝜉
𝛾
𝑔 (𝜉)]

𝑞 d𝜉
𝜉

= [𝑥]
𝑝−𝑞

𝑋
𝛾,∞

𝐴

[𝑥]
𝑝

𝑋
𝛾,𝑝

𝐴

.

(51)

If now in addition 𝑔(𝜉) were also monotone decreasing, in
order that [𝑥]

𝑋
𝛾,∞

𝐴

≤ 𝑐
9
[𝑥]

𝑋
𝛾,𝑞

𝐴

, from the latter inequality we
would get [𝑥]

𝑋
𝛾,𝑝

𝐴

≤ (𝑐
9
)
(𝑝−𝑞)/𝑝

[𝑥]
𝑋
𝛾,𝑞

𝐴

, completing the proof of
𝑋
𝛾,𝑞

𝐴
→ 𝑋

𝛾,𝑝

𝐴
, 𝛾 ∈ (0, 1), 1 ≤ 𝑞 < 𝑝 < ∞. Due to the former

computations, we can thus conclude that in the case 𝛽 < 1 the
quoted problems are the main obstacles which prevent us to
extend (49) and, as its consequence, (20) to the spaces𝑋𝛾,𝑝

𝐴
.

Remark 5. Let 0 < 𝛾
2
< 𝛾

1
< 1 be fixed and for every 𝑝 ∈

[1,∞] and let us set𝐴
𝑝
= 𝑋

𝛾2,𝑝

𝐴
and 𝐵

𝑝
= 𝑋

𝛾1,𝑝

𝐴
. We thus have

the two families of setsA = {𝐴
𝑝
}
𝑝∈[1,∞]

andB = {𝐵
𝑝
}
𝑝∈[1,∞]

.
Let first 𝛽 = 1. In this case, since (𝑋,D(𝐴))

𝛾,𝑝
≅ 𝑋

𝛾,𝑝

𝐴
, from

(20) we deduce that the sets 𝐴
𝑝
and 𝐵

𝑝
are related by the

following inclusions in which 1 < 𝑞
1
< 𝑞

2
< ∞:

𝐵
1
⊆ 𝐵

𝑞1
⊆ 𝐵

𝑞2
⊆ 𝐵

∞
⊆ 𝐴

1
⊆ 𝐴

𝑞1
⊆ 𝐴

𝑞2
⊆ 𝐴

∞
. (52)

Now let 𝛽 < 1. As observed in Remark 4, in this case the
embedding 𝑋𝛾,𝑞

𝐴
→ 𝑋

𝛾,𝑝

𝐴
, 1 ≤ 𝑞 < 𝑝 ≤ ∞, may be not
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satisfied and the chain of inclusions (52) could not take place.
However, (38) and (39) hold true and for every 𝑝 ∈ [1,∞],
and we have 𝐵

𝑝
⊆ 𝐴

𝑝
and 𝐵

∞
⊆ 𝐴

𝑝
.

We have already pointed out that {e𝑡𝐴}
𝑡≥0

may be not
strongly continuous in the 𝑋-norm on D(𝐴). On the con-
trary, the following result (cf. [24, Proposition 5.2] for the
proof) shows that the things are finer on (𝑋,D(𝐴))

𝛾,𝑝
and

𝑋
𝛾,𝑝

𝐴
. Later, we will need this fact.

Proposition 6. Let 𝐴 be as in Proposition 2. If 𝛾 ∈ (1 − 𝛽, 1);
then {e𝑡𝐴}

𝑡≥0
is strongly continuous in the 𝑋-norm on 𝑌

𝑝

𝛾
∈

{(𝑋,D(𝐴))
𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
} for every 𝑝 ∈ [1,∞].

We conclude the section listing some estimates for the
operators [(−𝐴)𝜃]∘e𝑡𝐴 defined by (11) with respect to the
spaces (𝑋,D(𝐴))

𝛾,𝑝
and 𝑋

𝛾,𝑝

𝐴
. First, in [19, Lemma 3.1] it is

shown that [(−𝐴)𝜃]∘e𝑡𝐴𝑥 ∈ D(𝐴) for every𝑥 ∈ 𝑋 and that the
estimate ‖[(−𝐴)𝜃]∘e𝑡𝐴𝑥‖D(𝐴) ≤ ‖[(−𝐴)

𝜃+1
]
∘e𝑡𝐴𝑥‖

𝑋
is satisfied.

Hence, using (14), we get


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋;D(𝐴))

≤ 𝑐
𝛼,𝛽,𝜃+1

𝑡
(𝛽−Re 𝜃−2)/𝛼

,

Re 𝜃 ≥ 0, 𝑡 > 0.

(53)

Combining (14) and (53) with (25) and letting 𝑐
10

= 𝑐
0

(𝑐
𝛼,𝛽,𝜃

)
1−𝛾

(𝑐
𝛼,𝛽,𝜃+1

)
𝛾, it thus follows (cf. [19, Proposition 3.1])

that for every 𝛾 ∈ (0, 1) and 𝑝 ∈ [1,∞] the following estimate
holds:


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋;(𝑋,D(𝐴))𝛾,𝑝)

≤ 𝑐
10
𝑡
(𝛽−𝛾−Re 𝜃−1)/𝛼

,

Re 𝜃 ≥ 0, 𝑡 > 0.

(54)

Remark 7. We stress that if 𝛽 < 1, then we can not derive an
estimate for the L(𝑋;𝑋

𝛾,𝑝

𝐴
)-norm of [(−𝐴)𝜃]∘e𝑡𝐴 simply by

replacing (𝑋,D(𝐴))
𝛾,𝑝

with 𝑋𝛾,𝑝

𝐴
in (54). This is for two rea-

sons. First, when 𝛾 ∈ [𝛽, 1), we are not assured that [(−𝐴)𝜃]∘

e𝑡𝐴𝑥 ∈ 𝑋
𝛾,𝑝

𝐴
for every 𝑥 ∈ 𝑋. For if 𝛾 ∈ [𝛽, 1), then the

space 𝑋𝛾,𝑝

𝐴
may be smaller than the domain D(𝐴) to which

[(−𝐴)
𝜃
]
∘e𝑡𝐴𝑥 belongs by virtue of [19, Lemma 3.1]. The sec-

ond reason is that, even limiting to 𝛾 ∈ (0, 𝛽) in order
that D(𝐴) → 𝑋

𝛾,𝑝

𝐴
, from (31) we only get ‖[(−𝐴)𝜃]∘e𝑡𝐴

𝑥‖
(𝑋,D(𝐴))𝛾,𝑝

≤ 2‖[(−𝐴)
𝜃
]
∘e𝑡𝐴𝑥‖

𝑋
𝛾,𝑝

𝐴

, 𝑥 ∈ 𝑋, and we do not
know if the right-hand side can be bounded from above by
some constant times 𝑡(𝛽−𝛾−Re 𝜃−1)/𝛼

‖𝑥‖
𝑋
. Of course, we can

employ (32), but in this way all that we can reach is the
estimate


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋;𝑋

𝛾+𝛽−1,𝑝

𝐴
)

≤ 𝑐
11
𝑡
(𝛽−𝛾−Re 𝜃−1)/𝛼

,

Re 𝜃 ≥ 0, 𝑡 > 0,

(55)

where 𝑐
11

= 𝑐
2
𝑐
10
, 𝛾 ∈ (1 − 𝛽, 1) and 𝑝 ∈ [1,∞]. Letting

𝛿 = 𝛾 + 𝛽 − 1, (55) can be rewritten equivalently as

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋;𝑋

𝛿,𝑝

𝐴
)

≤ 𝑐
11
𝑡
(2𝛽−𝛿−Re 𝜃−2)/𝛼

,

Re 𝜃 ≥ 0, 𝑡 > 0,

(56)

where 𝛿 ∈ (0, 𝛽) and 𝑝 ∈ [1,∞]. When 𝛽 < 1, there are good
motivations to believe that estimate (56) is not the best one.
In fact, for instance, when (𝜃, 𝑝) = (0,∞), (56) leads us to an
estimate which is rougher than the estimate


e𝑡𝐴L(𝑋;𝑋

𝛿,∞

𝐴
)
≤ 𝑐

12
𝑡
(𝛽−𝛿−1)/𝛼

, 𝛿 ∈ (0, 1) , 𝑡 > 0, (57)

as shown in [2, Proposition 3.2], with 𝑐
12

being a positive
constant depending on 𝛼, 𝛽, and 𝛿. Also, (57) ensures that
e𝑡𝐴𝑥, 𝑥 ∈ 𝑋, belongs to 𝑋𝛿,∞

𝐴
for every 𝛿 ∈ (0, 1) and not

only for 𝛿 ∈ (0, 𝛽) as (56) suggests. Furthermore, due to (31),
estimate (57) yields (54) with (𝜃, 𝛾, 𝑝) = (0, 𝛿,∞). This leads
us to believe that (57) can be improved and that estimate (54)
holds the same if𝑋𝛾,∞

𝐴
is taken in place of (𝑋,D(𝐴))

𝛾,∞
.

Now let 𝑌𝑝
𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
}, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞].

As far as the estimates for the L(𝑌
𝑝

𝛾
; 𝑋)-norm of operators

[(−𝐴)
𝜃
]
∘e𝑡𝐴 are concerned, instead, at the moment only the

following estimates for the case 𝜃 = 1 are available (cf. [24,
Lemma 5.1]):


[(−𝐴)

1
]
∘

e𝑡𝐴
L(𝑌

𝑝

𝛾 ;𝑋)

≤ 𝑐
13
𝑡
(𝛽+𝛾−2)/𝛼

,

𝑡 > 0, 𝛾 ∈ (0, 1) , 𝑝 ∈ [1,∞] ,

(58)

with 𝑐
13
being a positive constant depending on 𝛼, 𝛽, 𝛾, and𝑝.

Estimates (58) are successfully applied in [24, Corollary 5.4]
to prove that if 𝛼 + 𝛽 > 1, then the map 𝑡 → e𝑡𝐴 is Hölder
continuous from [0,∞) to L(𝑌

𝑝

𝛾
; 𝑋), 𝛾 ∈ (2 − 𝛼 − 𝛽, 1),

𝑝 ∈ [1,∞], with Hölder exponent 𝜎 = (𝛼 + 𝛽 + 𝛾 − 2)/𝛼.
In Section 3 we will extend (58), proving some estimates for
theL(𝑌

𝑝

𝛾
; 𝑋)-norm of [(−𝐴)𝜃]∘e𝑡𝐴,Re 𝜃 ≥ 1, which reduce

to (58) in the case 𝜃 = 1.

Remark 8. Observe that an estimate for the norm ‖[(−𝐴)
𝜃
]
∘

e𝑡𝐴‖L(𝑌
𝑝

𝛾 ;𝑋)
, Re 𝜃 ≥ 1, 𝑡 > 0, 𝑌𝑝

𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
}, 𝛾 ∈

(0, 1), 𝑝 ∈ [1,∞], can be obtained combining (14), (15), and
(58). Indeed, using (15), for everyRe 𝜃 ≥ 1, 𝑡 > 0 and 𝑥 ∈ 𝑌𝑝

𝛾
,

we have

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

=

[(−𝐴)

𝜃−1
]
∘

e(𝑡/2)𝐴[(−𝐴)1]
∘

e(𝑡/2)𝐴𝑥
𝑋

≤

[(−𝐴)

𝜃−1
]
∘

e(𝑡/2)𝐴
L(𝑋)


[(−𝐴)

1
]
∘

e(𝑡/2)𝐴𝑥
𝑋
.

(59)

Therefore, due to (14) and (58), from (59) we deduce that

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑌

𝑝

𝛾 ;𝑋)

≤ 𝑐
14
𝑡
(2𝛽+𝛾−Re 𝜃−2)/𝛼

,

Re 𝜃 ≥ 1, 𝑡 > 0,

(60)
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where 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞] and 𝑐
14

= 2
(2+Re 𝜃−𝛾−2𝛽)/𝛼

𝑐
𝛼,𝛽,𝜃−1

𝑐
13
. As we will see in the next section estimate (60) is

not optimal, in the sense that the negative exponent (2𝛽 +

𝛾 − Re 𝜃 − 2)/𝛼 can be refined; of course, unless 𝛽 = 1.
The main reason to believe that (60) can be improved is
that its derivation consists of two steps: the first in which
[(−𝐴)

𝜃
]
∘e𝑡𝐴 is decomposed with the help of (15), and the

second in which (60) is obtained combining estimates of
very different nature, such as (14) and (58). It is thus to be
expected that in this double step derivation some regularity
goes missing and that a better result can be reached analyzing
more detailedly [(−𝐴)𝜃]∘e𝑡𝐴𝑥 for 𝑥 ∈ 𝑌𝑝

𝛾
.

3. Behaviour of [(−𝐴)𝜃]∘e𝑡𝐴 in
(𝑋,D(𝐴))

𝛾,𝑝
and 𝑋

𝛾,𝑝

𝐴

According to Remark 7 we begin by improving (54), showing
that the same estimate holdswith (𝑋,D(𝐴))

𝛾,𝑝
being replaced

by𝑋𝛾,∞

𝐴
if 𝑝 = ∞ and by𝑋𝛽𝛾,𝑝

𝐴
if 𝑝 ∈ [1,∞).Throughout this

and the next section, 𝐴 will be an m. l. operator in 𝑋 having
nonempty domain D(𝐴) and satisfying the resolvent condi-
tion (H1) of Section 2.

Proposition 9. Let Re𝜃 ≥ 0, 𝛾 ∈ (0, 1) and let 𝑝 ∈ [1,∞].
Then, there exist positive constants 𝑐

𝑗
, 𝑗 = 15, 16, depending on

𝛼, 𝛽, 𝛾, 𝜃, and 𝑝 such that

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋;𝑋

𝛾,∞

𝐴
)

≤ 𝑐
15
𝑡
(𝛽−𝛾−R e 𝜃−1)/𝛼

,

𝑡 > 0, 𝑝 = ∞,

(61)


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋;𝑋

𝛽𝛾,𝑝

𝐴
)

≤ 𝑐
16
𝑡
(𝛽−𝛾−R e 𝜃−1)/𝛼

,

𝑡 > 0, 𝑝 ∈ [1,∞) .

(62)

Proof. If 𝛽 = 1, then (𝑋,D(𝐴))
𝛾,𝑝

≅ 𝑋
𝛾,𝑝

𝐴
and (61) and (62)

with 𝑐
𝑗
= 𝑐

2
𝑐
10
, 𝑗 = 15, 16, follow by taking 𝛽 = 1 in (32) and

(54).Therefore, without the loss of generality, we assume that
𝛽 ∈ (0, 𝛼] is such that 𝛽 < 𝛼 if 𝛼 = 1. Let 𝜃 ∈ C, Re 𝜃 ≥ 0,
𝛾 ∈ (0, 1), and 𝑝 ∈ [1,∞) be fixed and let 𝑥 be an arbitrary
element of𝑋. Then, for every 𝑡 > 0 we have

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋
𝛾,∞

𝐴

=

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

+

𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝐿∗
∞
(𝑋)

,

(63)

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋
𝛽𝛾,𝑝

𝐴

=

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

+

𝜉
𝛽𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝐿∗
𝑝
(𝑋)

.

(64)

Of course, from estimate (54) we find

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

≤ 𝑐
𝛾,𝑝
𝑐
10‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
,

𝑡 > 0,

(65)

with 𝑐
𝛾,𝑝

being such that ‖𝑦‖
𝑋
≤ 𝑐

𝛾,𝑝
‖𝑦‖

(𝑋,D(𝐴))𝛾,𝑝
, 𝑦 ∈ (𝑋,

D(𝐴))
𝛾,𝑝
, 𝑝 ∈ [1,∞]. It thus suffices to investigate only the

second terms on the right-hand side of (63) and (64). We
begin by proving (61). First, using the second identity in (6),
for every 𝜉 ∈ (0,∞) we get

𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥

=
1

2𝜋𝑖
∫
Γ

𝜉
𝛾
(−𝜆)

𝜃e𝑡𝜆𝐴∘
(𝜉𝐼 − 𝐴)

−1
(𝜆𝐼 − 𝐴)

−1
𝑥 d𝜆

= 𝜉
𝛾
[
1

2𝜋𝑖
∫
Γ

(−𝜆)
𝜃e𝑡𝜆(𝜆 − 𝜉)−1d𝜆]𝐴∘

(𝜉𝐼 − 𝐴)
−1
𝑥

−
1

2𝜋𝑖
∫
Γ

𝜉
𝛾
(−𝜆)

𝜃e𝑡𝜆(𝜆 − 𝜉)−1𝐴∘
(𝜆𝐼 − 𝐴)

−1
𝑥 d𝜆

= −
1

2𝜋𝑖
∫
Γ

𝜉
𝛾
(−𝜆)

𝜃e𝑡𝜆(𝜆 − 𝜉)−1 [𝜆(𝜆𝐼 − 𝐴)−1 − 𝐼] 𝑥 d𝜆

=
1

2𝜋𝑖
∫
Γ

𝜉
𝛾
(−𝜆)

𝜃+1e𝑡𝜆(𝜆 − 𝜉)−1(𝜆𝐼 − 𝐴)−1𝑥 d𝜆.

(66)

Here we have used twice the equality ∫
Γ
(−𝜆)

𝜃e𝑡𝜆(𝜆−𝜉)−1d𝜆 =
0, 𝜉 ∈ (0,∞), which follows from Cauchy’s formula after
having enclosed Γ on the left with an arc of the circle {𝑧 ∈

C : |𝑧 + 𝑐| = 𝑅}, 𝑅 > 0, and letting 𝑅 to infinity. From (66),
using ‖(𝜆𝐼 − 𝐴)−1‖L(𝑋)

≤ 𝐶(|𝜆| + 1)
−𝛽

≤ 𝐶|𝜆|
−𝛽, 𝜆 ∈ Σ

𝛼
, it

follows that


𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

≤ 𝐶(2𝜋)
−1
‖𝑥‖𝑋

× ∫
Γ

𝜉
𝛾
|𝜆|

1+Re 𝜃−𝛽e−Im 𝜃 arg(−𝜆)e𝑡Re𝜆𝜆 − 𝜉


−1
|d𝜆|

≤ 𝐶(2𝜋)
−1e(𝜋/2)|Im 𝜃|

‖𝑥‖𝑋

× ∫
Γ

(
𝜉

|𝜆|
)

𝛾

|𝜆|
𝛾+Re 𝜃−𝛽e𝑡Re𝜆



1 − (
𝜉

𝜆
)



−1

|d𝜆| .

(67)

Now, sinceRe 𝜆 ≤ −𝑐 <0 for every 𝜆∈Γ and since 𝜉 ∈ (0,∞),
we have



1 − (
𝜉

𝜆
)



=



1 − (
𝜉𝜆

|𝜆|
2
)



= [1 + (
𝜉

|𝜆|
)

2

−
2𝜉Re 𝜆
|𝜆|

2
]

1/2

≥ [1 + (
𝜉

|𝜆|
)

2

]

1/2

.

(68)
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Therefore, for every 𝜆 ∈ Γ and 𝜉 ∈ (0,∞) the following
inequality holds:

(
𝜉

|𝜆|
)

𝛾

1 − (
𝜉

𝜆
)



−1

≤ (
𝜉

|𝜆|
)

𝛾

[1 + (
𝜉

|𝜆|
)

2

]

−1/2

≤ 𝛾
𝛾/2
(1 − 𝛾)

(1−𝛾)/2
=: 𝑐

𝛾
,

(69)

where we have used the fact that the function 𝑓(𝑠) = 𝑠
𝛾
(1 +

𝑠
2
)
−1/2, 𝑠 ≥ 0, 𝛾 ∈ (0, 1), attains its maximum value 𝑐

𝛾
at the

point 𝑠
𝛾
= 𝛾

1/2
(1 − 𝛾)

−1/2. Coming back to (67) and setting
𝑐
17
= 𝐶(2𝜋)

−1e(𝜋/2)|Im 𝜃|
𝑐
𝛾
, we thus find (here we use also that

on Γ it holds |𝜆| ≥ 𝑐, so that Re 𝜆 = −𝑐(|Im 𝜆| + 1)
𝛼
≥ −𝑐

(1 + 𝑐
−1
)
𝛼
|𝜆|

𝛼):

𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

≤ 𝑐
17‖𝑥‖𝑋∫

Γ

|𝜆|
𝛾+Re 𝜃−𝛽e𝑡Re𝜆

|d𝜆|

≤ 𝑐
17‖𝑥‖𝑋∫

Γ

|𝜆|
𝛾+Re 𝜃−𝛽e−𝑐(1+𝑐

−1
)
𝛼
𝑡|𝜆|
𝛼

|d𝜆|

≤ 2𝑐
17‖𝑥‖𝑋∫

∞

0

𝜇
𝛾+Re 𝜃−𝛽e−𝑐𝛼𝑡𝜇

𝛼

d𝜇,

(70)

where 𝑐
𝛼
= 𝑐(1 + 𝑐

−1
)
𝛼. Finally, taking the supremum with

respect to 𝜉 ∈ (0,∞) in (70) and performing the transforma-
tion 𝑐

𝛼
𝑡𝜇
𝛼
= 𝑠 in the integral on the right, we obtain

𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝐿∗
∞
(𝑋)

≤ 𝑐
18‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
,

(71)

where 𝑐
18

= 2𝑐
17
𝛼
−1
𝑐
(𝛽−𝛾−Re 𝜃−1)/𝛼
𝛼

𝐸((𝛾 + Re 𝜃 + 1 − 𝛽)/𝛼),
𝐸(𝜒), 𝜒 > 0, being the Euler gamma function ∫∞

0
𝑠
𝜒−1e−𝑠d𝑠.

Then, summing up (65) and (71), from (63) it follows that

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋
𝛾,∞

𝐴

≤ (𝑐
𝛾,∞

𝑐
10
+ 𝑐

18
) ‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
,

Re 𝜃 ≥ 0, 𝑡 > 0.

(72)

Since 𝑥 ∈ 𝑋 was arbitrary, this completes the proof of (61)
with 𝑐

15
= 𝑐

𝛾,∞
𝑐
10
+ 𝑐

18
. Let us now prove (62). For every 𝑝 ∈

[1,∞) we write

𝜉
𝛽𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥


𝑝

𝐿
∗

𝑝
(𝑋)

= 𝐼
1
+ 𝐼

2
, (73)

where 𝐼
𝑗
= ∫

𝑏𝑗

𝑎𝑗

‖𝜉
𝛽𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘e𝑡𝐴𝑥‖

𝑝

𝑋
(d𝜉/𝜉), 𝑗 =

1, 2, (𝑎
1
, 𝑏
1
, 𝑎

2
, 𝑏
2
) = (0, 1, 1,∞). First, (35) with 𝑌

𝑝

𝛾
= (𝑋,

D(𝐴))
𝛾,𝑝

yields

𝐼
1
≤

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥


𝑝

(𝑋,D(𝐴))𝛾,𝑝
∫

1

0

𝜉
𝛽𝛾𝑝−1

[𝑐
3(𝜉 + 1)

1−𝛽−𝛾
]
𝑝

d𝜉.

(74)

Therefore, since (𝜉 + 1)1−𝛽−𝛾 ≤ 𝑐
𝛽,𝛾

for every 𝜉 ∈ (0, 1], where
𝑐
𝛽,𝛾

= 2
1−𝛽−𝛾 or 𝑐

𝛽,𝛾
= 1 according that 𝛾 ∈ (0, 1 − 𝛽) or

𝛾 ∈ [1 − 𝛽, 1), from (54), we deduce that

𝐼
1
≤ [𝑐

𝛽,𝛾
𝑐
3
]
𝑝
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥


𝑝

(𝑋,D(𝐴))𝛾,𝑝
∫

1

0

𝜉
𝛽𝛾𝑝−1d𝜉

= [𝑐
19‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
]
𝑝

,

(75)

with 𝑐
19

= 𝑐
𝛽,𝛾
𝑐
3
𝑐
10
(𝛽𝛾𝑝)

−1/𝑝. As far as 𝐼
2
is concerned,

exploiting (71) and recalling that we have assumed 𝛽 < 1, we
obtain

𝐼
2
= ∫

∞

1

𝜉
(𝛽−1)𝛾𝑝


𝜉
𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥


𝑝

𝑋

d𝜉
𝜉

≤ [𝑐
18‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
]
𝑝

∫

∞

1

𝜉
(𝛽−1)𝛾𝑝−1 d𝜉

≤ [𝑐
20‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
]
𝑝

,

(76)

where 𝑐
20
= 𝑐

18
[(1−𝛽)𝛾𝑝]

−1/𝑝. Summing up (73)–(76), it thus
follows that


𝜉
𝛽𝛾
𝐴
∘
(𝜉𝐼 − 𝐴)

−1
[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝐿∗
𝑝
(𝑋)

≤ 𝑐
21‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
,

(77)

where 𝑐
21
= [(𝑐

19
)
𝑝
+ (𝑐

20
)
𝑝
]
1/𝑝. Finally, (65) and (77) lead us

to

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋
𝛽𝛾,𝑝

𝐴

≤ (𝑐
𝛾,𝑝
𝑐
10
+ 𝑐

21
) ‖𝑥‖𝑋𝑡

(𝛽−𝛾−Re 𝜃−1)/𝛼
,

Re 𝜃 ≥ 0, 𝑡 > 0.

(78)

Since 𝑥 ∈ 𝑋 was arbitrary, this completes the proof of (62)
with 𝑐

16
= 𝑐

𝛾,𝑝
𝑐
10
+ 𝑐

21
.

Remark 10. If 𝜃 = 0, then (61) is precisely the estimate (57). In
this sense our result improves [2] and shows that (54) holds
the same with (𝑋,D(𝐴))

𝛾,𝑝
being replaced with 𝑋𝛾,∞

𝐴
if 𝑝 =

∞ and 𝑋𝛽𝛾,𝑝

𝐴
and if 𝑝 ∈ [1,∞). Also, when 𝛽 < 1, (61) and

(62) are in two aspects better than the estimate (55) deduced
from (54) with the help of (32). First, here we do not need to
restrict 𝛾 to (1 − 𝛽, 1). Further, despite limiting 𝛾 to (1 − 𝛽, 1),
(61) and (62) show that [(−𝐴)𝜃]∘e𝑡𝐴𝑥,Re 𝜃 ≥ 0, 𝑡 > 0, 𝑥 ∈ 𝑋,
enjoys more regularity than that predicted by (55). For, since
when 𝛽 < 1 it holds 0 < 𝛾 + 𝛽 − 1 < 𝛽𝛾 < 𝛾, from (38) and
(39) it follows𝑋𝛾,∞

𝐴
→ 𝑋

𝛽𝛾,𝑝

𝐴
→ 𝑋

𝛾+𝛽−1,𝑝

𝐴
, 𝑝 ∈ [1,∞].

Remark 11. We recall that when 𝛽 < 1 the spaces 𝑋𝜎,𝑝

𝐴
, 𝜎 ∈

(0, 1), 𝑝 ∈ [1,∞], are intermediate spaces between 𝑋 and
D(𝐴) for 𝜎 ∈ (0, 𝛽), but they may be contained in D(𝐴)

for 𝜎 ∈ [𝛽, 1). Therefore, whereas (61) is satisfied for spaces
𝑋
𝜎,∞

𝐴
eventually smaller thanD(𝐴), for (62) to hold we have

to consider only spaces 𝑋𝜎,𝑝

𝐴
, 𝑝 ∈ [1,∞), bigger than D(𝐴).

In fact, letting 𝜎 = 𝛽𝛾, we have 𝜎 ∈ (0, 𝛽) for every 𝛾 ∈ (0, 1).
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In accordance with Remark 8 we now improve estimate
(58).

Proposition 12. Let Re𝜃 ≥ 1, 𝛾 ∈ (0, 1), 𝑝 ∈ [1,∞] and let
𝑌
𝑝

𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
}. Then, there exists a positive con-

stant 𝑐
22
depending on 𝛼, 𝛽, 𝛾, 𝜃, and 𝑝 such that


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑌

𝑝

𝛾 ;𝑋)

≤ 𝑐
22
𝑡
(𝛽+𝛾−R e 𝜃−1)/𝛼

, 𝑡 > 0. (79)

Proof. First, using the identity𝐴∘
(𝑧𝐼−𝐴)

−1
= 𝑧(𝑧𝐼−𝐴)

−1
−𝐼,

𝑧 ∈ Σ
𝛼
, for every 𝑥 ∈ 𝑋, we rewrite [(−𝐴)𝜃]∘e𝑡𝐴𝑥, Re 𝜃 ≥ 0,

in the following way:

[(−𝐴)
𝜃
]
∘

e𝑡𝐴𝑥

= −
1

2𝜋𝑖
∫
Γ

(−𝜆)
𝜃−1e𝑡𝜆𝜆(𝜆𝐼 − 𝐴)−1𝑥 d𝜆

= −
1

2𝜋𝑖
∫
Γ

(−𝜆)
𝜃−1e𝑡𝜆 [𝐴∘

(𝜆𝐼 − 𝐴)
−1
𝑥 + 𝐼] 𝑥 d𝜆

= −
1

2𝜋𝑖
∫
Γ

(−𝜆)
𝜃−1e𝑡𝜆𝐴∘

(𝜆𝐼 − 𝐴)
−1
𝑥 d𝜆, 𝑡 > 0.

(80)

Here we have used ∫
Γ
(−𝜆)

𝜃−1e𝑡𝜆d𝜆 = 0, which follows from
the Cauchy formula applied to (−𝜆)𝜃e𝑡𝜆 after having enclosed
Γ on the left with an arc of the circle {𝑧 ∈ C : |𝑧 + 𝑐| = 𝑅},
𝑅 > 0, and letting 𝑅 to infinity. Let now 𝜃 ∈ C, Re 𝜃 ≥ 1,
𝛾 ∈ (0, 1), and 𝑝 ∈ [1,∞] be fixed and let 𝑥 be an arbitrary
element of 𝑌𝑝

𝛾
. From (35) it then follows that


[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

≤ c
23‖𝑥‖𝑌

𝑝

𝛾
∫
Γ

|𝜆|
Re 𝜃−1e𝑡Re𝜆

(|𝜆| + 1)
1−𝛽−𝛾

|d𝜆| , 𝑡 > 0,

(81)

where 𝑐
23
= (2𝜋)

−1e(𝜋/2)|Im 𝜃|
𝑐
3
. Now, recalling that |𝜆| ≥ 𝑐 >

0 for every 𝜆 ∈ Γ, we have |𝜆| ≤ |𝜆| + 1 ≤ (1 + 𝑐
−1
)|𝜆|, 𝜆 ∈ Γ.

As a consequence, the following inequality holds:

(|𝜆| + 1)
1−𝛽−𝛾

≤ 𝑐
𝛽,𝛾|𝜆|

1−𝛽−𝛾
, ∀𝜆 ∈ Γ, (82)

where 𝑐
𝛽,𝛾

= (1 + 𝑐
−1
)
1−𝛽−𝛾 or 𝑐

𝛽,𝛾
= 1 according that 𝛾 ∈

(0, 1 − 𝛽] or 𝛾 ∈ (1 − 𝛽, 1) ((0, 1 − 𝛽] = 0 if 𝛽 = 1). Therefore,
setting 𝑐

24
= 2𝑐

𝛽,𝛾
𝑐
23
, (81) and (82) yield


[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

≤ 𝑐
24‖𝑥‖𝑌

𝑝

𝛾
∫

∞

0

𝜇
Re 𝜃−𝛽−𝛾e−𝑐𝛼𝑡𝜇

𝛼

d𝜇, 𝑡 > 0,

(83)

with 𝑐
𝛼
being as in (70). Finally, the transformation 𝑐

𝛼
𝑡𝜇
𝛼
= 𝑠

in the last integral leads us to the following estimate:

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑋

≤ 𝑐
25‖𝑥‖𝑌

𝑝

𝛾
𝑡
(𝛽+𝛾−Re 𝜃−1)/𝛼

, 𝑡 > 0, (84)

where 𝑐
25

= 𝑐
24
𝛼
−1
𝑐
(𝛽+𝛾−Re 𝜃−1)/𝛼
𝛼

𝐸((Re 𝜃 + 1 − 𝛽 − 𝛾)/𝛼),
𝐸(𝜒), 𝜒 > 0, is the Euler’s gamma function. Notice that here

Re 𝜃 ≥ 1 impliesRe 𝜃 + 1 − 𝛽 − 𝛾 ≥ 2 − 𝛽 − 𝛾 > 0 for every
𝛽 ∈ (0, 1] and 𝛾 ∈ (0, 1), so that 𝐸((Re 𝜃 + 1 − 𝛽 − 𝛾)/𝛼)

makes sense. Since (84) is satisfied for every arbitrary element
𝑥 ∈ 𝑌

𝑝

𝛾
, the proof is complete with 𝑐

22
= 𝑐

25
.

Remark 13. Estimate (79) is better than (60) obtained in
Remark 8 using (14), (15), and (58). In fact, for every 𝛽 ∈

(0, 𝛼], 𝛼 ∈ (0, 1], 𝛾 ∈ (0, 1) and Re 𝜃 ≥ 1, the following
inequality holds:

𝜌
1
:=

(2𝛽 + 𝛾 −Re 𝜃 − 2)
𝛼

≤
(𝛽 + 𝛾 −Re 𝜃 − 1)

𝛼
:= 𝜌

2
< 0.

(85)

Then, 𝑡𝜌2 ≤ 𝑡
𝜌1 , 𝑡 ∈ (0, 1], and (79) is more accurate than (60)

for small values of 𝑡.

Estimate (79) with 𝜃 = 1 yields the following result which
we will need in Section 5 to prove the equivalence between
problem (170) and the fixed-point equation (179).

Corollary 14. Let 𝛼+𝛽 > 1 in (H1). Then, for every 𝑥 ∈ 𝑋 the
following equalities hold:

𝐴
−1
(e𝑡𝐴 − 𝐼) 𝑥 = (e𝑡𝐴 − 𝐼)𝐴−1

𝑥 = ∫

𝑡

0

e(𝑡−𝑠)𝐴𝑥 d𝑠, 𝑡 ≥ 0.

(86)

Proof. The assertion is obvious for 𝑡 = 0. Let 𝑡 > 0 and let
𝑥 ∈ 𝑋. Commuting 𝐴−1

∈ L(𝑋) with the integral sign, from
(9) and the resolvent equation, we have 𝐴−1e𝑡𝐴𝑥 = e𝑡𝐴𝐴−1

𝑥,
which proves the first equality in (86). To prove the second
equality, we first write

(e𝑡𝐴 − 𝐼)𝐴−1
𝑥 = ∫

𝑡

0

[𝐷
𝑟
e𝑟𝐴]

𝑟=𝑡−𝑠
𝐴
−1
𝑥 d𝑠

= −∫

𝑡

0

[(−𝐴)
1
]
∘

e(𝑡−𝑠)𝐴𝐴−1
𝑥 d𝑠,

(87)

and we show that the latter integral is convergent. Indeed,
since 𝛼+𝛽 > 1, we may consider𝐴−1

𝑥 ∈ D(𝐴) as an element
of (𝑋,D(𝐴))

𝛾,𝑝
, where 𝛾 ∈ (2 − 𝛼 − 𝛽, 1) and 𝑝 ∈ [1,∞].

With this choice for 𝛾, from (79) with 𝜃 = 1 and (25) we
obtain (here we use also ‖𝐴−1

𝑥‖D(𝐴) = inf
𝑦∈𝐴(𝐴

−1
𝑥)
‖𝑦‖

𝑋
=

inf
𝑦∈(𝐴𝐴

−1
)𝑥
‖𝑦‖

𝑋
= ‖𝑥‖D(𝐴𝐴−1) ≤ ‖𝑥‖

𝑋
, due to 𝐼 ⊂ 𝐴𝐴

−1.
Then, ‖𝐴−1

𝑥‖
(𝑋,D(𝐴))𝛾,𝑝

≤ 𝑐
0
‖𝐴

−1
𝑥‖

1−𝛾

𝑋
‖𝐴

−1
𝑥‖

𝛾

D(𝐴) ≤ 𝑐
0

‖𝐴
−1
‖
1−𝛾

L(𝑋)
‖𝑥‖

𝑋
):



∫

𝑡

0

[(−𝐴)
1
]
∘

e(𝑡−𝑠)𝐴𝐴−1
𝑥 d𝑠

𝑋

≤ 𝑐
22


𝐴
−1
𝑥
(𝑋,D(𝐴))𝛾,𝑝

∫

𝑡

0

(𝑡 − 𝑠)
(𝛽+𝛾−2)/𝛼d𝑠

≤ 𝑐
22
𝑐
𝛼,𝛽,𝛾

𝑐
0


𝐴
−1

1−𝛾

L(𝑋)
‖𝑥‖𝑋𝑡

(𝛼+𝛽+𝛾−2)/𝛼
,

(88)
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where 𝑐
𝛼,𝛽,𝛾

= 𝛼(𝛼 + 𝛽 + 𝛾 − 2)
−1. We now recall that (cf. [24,

formula (3.21)])

[(−𝐴)
1
]
∘

e𝑡𝐴(−𝐴)−𝜁=[(−𝐴)1−𝜁]
∘

e𝑡𝐴, Re 𝜁 ∈ (1 − 𝛽, 1] ,

𝑡 > 0,

(89)

with (−𝐴)
−𝜁 being the negative fractional powers of −𝐴

defined by (cf. [24, Section 3]) (2𝜋𝑖)−1 ∫
Γ
(−𝜆)

−𝜁
(𝜆𝐼 − 𝐴)

−1d𝜆,
Re 𝜁 > 1 − 𝛽. To complete the proof it thus suffices to apply
(89) with 𝜁 = 1 to (87) and to recall that [(−𝐴)0]∘e𝑡𝐴 = e𝑡𝐴,
𝑡 > 0. Notice that the integral on the right-hand side of
(86) is convergent, too. In fact, from (14), it follows that
‖ ∫

𝑡

0
e(𝑡−𝑠)𝐴𝑥 d𝑠‖X ≤ 𝑐

𝛼,𝛽,0
‖𝑥‖

𝑋
∫
𝑡

0
(𝑡 − 𝑠)

(𝛽−1)/𝛼d𝑠 = 𝛼(𝛼 + 𝛽 −

1)
−1
𝑐
𝛼,𝛽,0

‖𝑥‖
𝑋
𝑡
(𝛼+𝛽−1)/𝛼.

Remark 15. In particular, from (86) it follows that if 𝛼+𝛽 > 1,
then ∫𝑡

0
e(𝑡−𝑠)𝐴𝑥 ds ∈ D(𝐴) for every 𝑥 ∈ 𝑋 and (e𝑡𝐴 − 𝐼)𝑥 ⊆

𝐴∫
𝑡

0
e(𝑡−𝑠)𝐴𝑥 ds. This extends to m. l. operators satisfying

(H1) the well-known result for sectorial single-valued linear
operators (see, for instance, [9, Proposition 2.1.4(ii)] and [11,
Proposition 1.2(ii)]).

With the help of (54) and Proposition 12, we can now
derive the following interpolation estimates (90) for the
operators [(−𝐴)𝜃]∘e𝑡𝐴, Re 𝜃 ≥ 1, which are considered as
operators from (𝑋,D(𝐴))

𝛾,𝑝
to (𝑋,D(𝐴))

𝛿,𝑝
. As we will see

in the proof of Proposition 16, here the fact that the spaces
(𝑋,D(𝐴))

𝜎,𝑝
are real interpolation spaces between 𝑋 and

D(𝐴) plays a key role. For it allows us to exploit the inter-
polation inequality (24) in the derivation of our estimates in
the case 𝛾 + 𝛿 < 1.

Proposition 16. Let Re𝜃 ≥ 1, 𝛾, 𝛿 ∈ (0, 1), and 𝑝 ∈ [1,∞].
Then, there exist positive constants 𝑐

𝑗
, 𝑗 = 26, 27, depending on

𝛼, 𝛽, 𝛾, 𝛿, 𝜃, and 𝑝 such that for every 𝑡 > 0


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L((𝑋,D(𝐴))𝛾,𝑝 ;(𝑋,D(𝐴))𝛿,𝑝)

≤ {
𝑐
26
𝑡
(2𝛽+𝛾−𝛿−R e 𝜃−2)/𝛼

, 𝛾, 𝛿 ∈ (0, 1) ,

𝑐
27
𝑡
(𝛽+𝛾−𝛿−R e 𝜃−1)/𝛼

, 𝑖𝑓 𝛾 + 𝛿 < 1.

(90)

Proof. For brevity, we will use the shortenings 𝑌𝑝
𝜎

= (𝑋,

D(𝐴))
𝜎,𝑝

, 𝜎 ∈ (0, 1), 𝑝 ∈ [1,∞]. We begin by proving the
first estimate in (90). Let 𝜃 ∈ C, Re 𝜃 ≥ 1, 𝛾, 𝛿 ∈ (0, 1)

and 𝑝 ∈ [1,∞] be fixed and let 𝑥 be an arbitrary element of
𝑌
𝑝

𝛾
. Moreover, let 𝜁 and 𝜁 be two arbitrary complex numbers

such that 𝜃 = 𝜁 + 𝜁
 and whose real parts satisfy Re 𝜁 ≥ 0

and Re 𝜁 ≥ 1. From the decomposition formula (15) it then
follows for every 𝑡 > 0:

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑌
𝑝

𝛿

=


[(−𝐴)

𝜁
]
∘

e(𝑡/2)𝐴[(−𝐴)𝜁


]

∘

e(𝑡/2)𝐴𝑥
𝑌
𝑝

𝛿

≤

[(−𝐴)

𝜁
]
∘

e(𝑡/2)𝐴
L(𝑋;𝑌

𝑝

𝛿
)


[(−𝐴)

𝜁


]

∘

e(𝑡/2)𝐴𝑥
𝑋

≤

[(−𝐴)

𝜁
]
∘

e(𝑡/2)𝐴
L(𝑋;𝑌

𝑝

𝛿
)


[(−𝐴)

𝜁


]

∘

e(𝑡/2)𝐴
L(𝑌

𝑝

𝛾 ;𝑋)

‖𝑥‖
𝑌
𝑝

𝛾
.

(91)

Therefore, using (54) and (79) with the triplet (𝜃, 𝛾, 𝑡) being
equal to (𝜁, 𝛿, 𝑡/2) and (𝜁, 𝛾, 𝑡/2), respectively, from (91) and
Re 𝜃 = Re 𝜁 +Re 𝜁, we deduce that

[(−𝐴)

𝜃
]
∘

e𝑡𝐴𝑥
𝑌
𝑝

𝛿

≤ 𝑐
10
𝑐
22
(
𝑡

2
)

(𝛽−𝛿−Re 𝜁−1)/𝛼
(
𝑡

2
)

(𝛽+𝛾−Re 𝜁−1)/𝛼
‖𝑥‖

𝑌
𝑝

𝛾

≤ 𝑐
26
𝑡
(2𝛽+𝛾−𝛿−Re 𝜃−2)/𝛼

‖𝑥‖
𝑌
𝑝

𝛾
, 𝑡 > 0,

(92)

where 𝑐
26
= 2

(2+Re 𝜃+𝛿−𝛾−2𝛽)/𝛼
𝑐
10
𝑐
22
. This completes the proof

of the first estimate in (90), due to the arbitrariness of 𝑥 ∈

𝑌
𝑝

𝛾
. Let us now prove the second estimate in (90). Let 𝜃 ∈ C,

Re 𝜃 ≥ 1, 𝛾, 𝛿 ∈ (0, 1), 𝛾 + 𝛿 < 1, and 𝑝 ∈ [1,∞] be fixed.
Using 𝛾 + 𝛿 < 1, we fix 𝛾

2
∈ (𝛾/(1 − 𝛿), 1) ⊊ (𝛾, 1), and we let

𝛾
1
= (𝛾

2
𝛿)/(𝛾

2
− 𝛾). Clearly, since 𝛾

2
∈ (𝛾/(1 − 𝛿), 1), we have

𝛾
1
∈ (𝛿, 1). In addition, it holds:

1 − 𝛿 >
𝛾
1
− 𝛿

𝛾
1

= (
𝛾
2
𝛿

𝛾
2
− 𝛾

− 𝛿)(
𝛾
2
− 𝛾

𝛾
2
𝛿

) =
𝛾

𝛾
2

> 𝛾. (93)

Due to (93), we now set 𝛾
0
= 𝛾/𝛾

2
= (𝛾

1
− 𝛿)/𝛾

1
∈ (𝛾, 1 − 𝛿),

so that 𝛾 = 𝛾
0
𝛾
2
and 𝛿 = (1 − 𝛾

0
)𝛾
1
. From (24) with 𝑝

0
= 𝑝 it

thus follows that

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑌

𝑝

𝛾 ;𝑌
𝑝

𝛿
)

≤

[(−𝐴)

𝜃
]
∘

e𝑡𝐴


1−𝛾0

L(𝑋;𝑌
𝑝1
𝛾1
)


[(−𝐴)

𝜃
]
∘

e𝑡𝐴


𝛾0

L(𝑌
𝑝2
𝛾2
;𝑋)

, 𝑡 > 0,

(94)

where 𝑝
𝑗
∈ [1,∞], 𝑗 = 1, 2. Applying (54) and (79) with the

pair (𝛾, 𝑝) being replaced with (𝛾
1
, 𝑝

1
) and (𝛾

2
, 𝑝

2
), respec-

tively, from (94) we finally obtain

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑌

𝑝

𝛾 ;𝑌
𝑝

𝛿
)

≤ [𝑐
10
𝑡
(𝛽−𝛾1−Re 𝜃−1)/𝛼

]
1−𝛾0

[𝑐
22
𝑡
(𝛽+𝛾2−Re 𝜃−1)/𝛼

]
𝛾0

≤ (𝑐
10
)
1−𝛾0

(𝑐
22
)
𝛾0
𝑡
[𝛽+𝛾0𝛾2−(1−𝛾0)𝛾1−Re 𝜃−1]/𝛼

= (𝑐
10
)
𝛿/𝛾1

(𝑐
22
)
𝛾/𝛾2

𝑡
(𝛽+𝛾−𝛿−Re 𝜃−1)/𝛼

, 𝑡 > 0.

(95)

This completes the proof of the second estimate in (90) with
𝑐
27
= (𝑐

10
)
𝛿/𝛾1(𝑐

22
)
𝛾/𝛾2 .
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Remark 17. We stress that if 𝛽 < 1 and 𝛾 + 𝛿 < 1, then the
first estimate in (90) is rougher than the second one for small
values of 𝑡, which justify our special attention to the case 𝛾 +
𝛿 < 1. Indeed, if 𝛽 < 1, then for everyRe 𝜃 ≥ 1 the following
inequality holds:

𝜌
3
:=

(2𝛽 + 𝛾 − 𝛿 −Re 𝜃 − 2)
𝛼

<
(𝛽 + 𝛾 − 𝛿 −Re 𝜃 − 1)

𝛼
=: 𝜌

4
< 0,

(96)

so that 𝑡𝜌4 ≤ 𝑡
𝜌3 for 𝑡 ∈ (0, 1]. In other words, if 𝛽 and

𝛾 + 𝛿 are both less than one, then the second estimate in (90)
establishes that the norm ‖[(−𝐴)

𝜃
]
∘e𝑡𝐴‖L((𝑋,D(𝐴))𝛾,𝑝 ;(𝑋,D(𝐴))𝛿,𝑝)

,
Re 𝜃 ≥ 1, may blow up as 𝑡 goes to 0, but with an order of
singularity lower than that predicted by the first estimate. In
this sense, though less general, the second estimate in (90) is
better than the first one.

Remark 18. The reasonwhy the second estimate in (90) yields
a better exponent than the first one is the same mentioned
in Remark 8. That is, while the first estimate is obtained in
two steps: decomposing [(−𝐴)𝜃]∘e𝑡𝐴 through (15) and then
applying (54) and (79), the second estimate is essentially
derived in a single step, using (24).

The following Remark 19 points out why, with the excep-
tion of the case when 𝛽 = 1 and 𝐴 is single-valued, to prove
(90) we can not proceed as in [9, Proposition 2.2.9].

Remark 19. In the optimal case 𝛽 = 1, the exponents in both
estimates (90) coincide equals to ] = 𝛾 − 𝛿 − Re 𝜃. Hence,
in this special case, the assumption 𝛾 + 𝛿 < 1 does not give
any enhancement. Also, if we further assume that 𝜃 ∈ N, then
we restore the same estimates as in [9, Proposition 2.2.9(i)].
In this respect, our result extends [9] to the m. l. case, even
though our proof really differs from that in [9]. For, there, the
norms in the spaces (𝑋,D(𝐴))

𝜎,𝑝
are replacedwith the norms

in the spacesD
𝐴
(𝜎, 𝑝), with the latter being the spaces of all

𝑥 ∈ 𝑋 such that ‖𝑥‖D𝐴(𝜎,𝑝) = ‖𝑥‖
𝑋
+ [𝑥]D𝐴(𝜎,𝑝)

< ∞, where
[𝑥]D𝐴(𝜎,𝑝)

= ‖𝜉
(2−𝛽−𝜎)/𝛼

[(−𝐴)
1
]
∘e𝜉𝐴‖

𝐿
∗

𝑝
(𝑋)

. It is well known
that if 𝛽 = 1 and 𝐴 is single-valued, then (𝑋,D(𝐴))

𝜎,𝑝
≅

D
𝐴
(𝜎, 𝑝) (cf. [31, Theorem 3], [9, Proposition 2.2.2] and [27,

Theorem 1.14.5]). On the contrary, if (𝛼, 𝛽) ̸= (1, 1) and/or 𝐴
is really an m. l. operator, such equivalence is no longer true
and we have

𝑋
𝜎,𝑝

𝐴
→ (𝑋,D (𝐴))𝜎,𝑝 → D

𝐴
(𝛼𝜎, 𝑝) , 𝑝 ∈ [1,∞) ,

𝑋
𝜎,∞

𝐴
→ (𝑋,D (𝐴))𝜎,∞ → D

𝐴 (𝜎,∞) , 𝑝 = ∞.

(97)

Differently from the spaces 𝑋𝜎,𝑝

𝐴
and as a consequence of

𝐴0 ⊆ ⋂
𝑡>0

N([(−𝐴)
1
]
∘e𝑡𝐴), the spaces D

𝐴
(𝜎, 𝑝) contain 𝐴0.

It can thus be shown that if 𝛼 + 𝛽 > 1, then for every
𝜎 ∈ (2 − 𝛼 − 𝛽, 1) and 𝜑 ∈ (0, (𝛼 + 𝛽 + 𝜎 − 2)/𝛼) (here

(𝛼 + 𝛽 + 𝜎 − 2)/𝛼 < 1, since 𝜎 < 1 ≤ 2 − 𝛽) the following
embeddings hold:

{0} ∪ [D𝐴
(𝜎, 𝑝) \ 𝐴0] → 𝑋

𝜑,𝑝

𝐴
→ (𝑋,D (𝐴))𝜑,𝑝,

𝑝 ∈ [1,∞) ,

{0} ∪ [D𝐴 (𝜎,∞) \ 𝐴0] → 𝑋
(𝛼+𝛽+𝜎−2)/𝛼,∞

𝐴

→ (𝑋,D (𝐴))(𝛼+𝛽+𝜎−2)/𝛼,∞,

(98)

with {0} ∪ [D
𝐴
(𝜎, 𝑝) \ 𝐴0] being endowed with the norm

of D
𝐴
(𝜎, 𝑝). Obviously, due to (29), it suffices to prove the

embeddings on the right of (97) and on the left of (98). It is
out of the aims of this paper to go into the details of these
proofs, and for them we refer the readers to [24, Proposition
6.3]. Here we want only tomake clear that, with the exception
of the case when 𝛽 = 1 and 𝐴 is single-valued, embeddings
(97) and (98) prevent us from carrying out the proof of
estimates (90) simply by repeating the computations in [9].
Notice that, due to the property [𝑋𝜎,𝑝

𝐴
∩ 𝐴0] = {0}, from the

second embeddings in (97) and (98) it follows that if 𝛼+𝛽 > 1

and 𝜎 ∈ (2 − 𝛼 − 𝛽, 1), then

𝑋
𝜎,∞

𝐴
→ {0} ∪ [D𝐴 (𝜎,∞) \ 𝐴0] → 𝑋

(𝛼+𝛽+𝜎−2)/𝛼,∞

𝐴
.

(99)

Since (𝛼+𝛽+𝜎−2)/𝛼 ≤ 𝜎 (indeed, 𝛼 ≤ 1 ≤ (2−𝛽−𝜎)/(1−𝜎)

implies 𝛼 + 𝛽 + 𝜎 − 2 ≤ 𝛼𝜎), (99) agrees with (38) for 𝑝 = ∞.
In addition, if 2𝛼 + 𝛽 > 2 and 𝜎 ∈ ((2 − 𝛼 − 𝛽)/𝛼, 1), then the
first embeddings in (97) and (98) yield for every 𝜑 ∈ (0, (𝛼 +

𝛽 + 𝛼𝜎 − 2)/𝛼) the following:

𝑋
𝜎,𝑝

𝐴
→ {0} ∪ [D𝐴

(𝛼𝜎, 𝑝) \ 𝐴0] → 𝑋
𝜑,𝑝

𝐴
, 𝑝 ∈ [1,∞) .

(100)

Since 𝜑 < (𝛼 + 𝛽 + 𝛼𝜎 − 2)/𝛼 ≤ 𝜎, (100) agrees with (38) for
𝑝 ∈ [1,∞). Furthermore, if 𝛽 = 1, then from (29), (30), and
(99) it follows that (𝑋,D(𝐴))

𝜎,∞
≅ 𝑋

𝜎,∞

𝐴
≅ {0}∪[D

𝐴
(𝜎,∞)\

𝐴0], 𝜎 ∈ (0, 1). This confirms that in the real m. l. case the
equivalence between 𝑋

𝜎,𝑝

𝐴
, (𝑋,D(𝐴))

𝜎,𝑝
and D

𝐴
(𝜎, 𝑝) does

not hold even when 𝛽 = 1.

Using Propositions 9 and 12, we now obtain estimates for
the operators [(−𝐴)𝜃]∘e𝑡𝐴,Re 𝜃 ≥ 1, considered as operators
from 𝑋

𝛾,𝑝

𝐴
to 𝑋

𝛿,𝑝

𝐴
. Clearly, since 𝛽 < 1 the spaces 𝑋𝜎,𝑝

𝐴
may

be not real interpolation spaces between𝑋 andD(𝐴), we can
not proceed as in the proof of the second estimate in (90) and
a weaker result has to be expected.

Proposition 20. Let Re𝜃 ≥ 1, 𝛾, 𝛿 ∈ (0, 1), and 𝑝 ∈ [1,∞].
Then, there exist positive constants 𝑐

𝑗
, 𝑗 = 28, 29, 30, depending

on 𝛼, 𝛽, 𝛾, 𝛿, 𝜃, and 𝑝 such that

[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋

𝛾,∞

𝐴
;𝑋
𝛿,∞

𝐴
)

≤ 𝑐
28
𝑡
(2𝛽+𝛾−𝛿−Re𝜃−2)/𝛼

,

𝑝 = ∞, 𝑡 > 0,

(101)


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋

𝛾,𝑝

𝐴
;𝑋
𝛽𝛿,𝑝

𝐴
)

≤ 𝑐
29
𝑡
(2𝛽+𝛾−𝛿−Re𝜃−2)/𝛼

,

𝑝 ∈ [1,∞) , 𝑡 > 0.

(102)
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Moreover, if 𝛾 ∈ (0, 1) and 𝛿 ∈ (1−𝛽, 1) are such that 𝛾+𝛿 < 1,
then


[(−𝐴)

𝜃
]
∘

e𝑡𝐴
L(𝑋

𝛾,𝑝

𝐴
;𝑋
𝛿+𝛽−1,𝑝

𝐴
)

≤ 𝑐
30
𝑡
(𝛽+𝛾−𝛿−R e −1)/𝛼

,

𝑝 ∈ [1,∞] , 𝑡 > 0.

(103)

Proof. Due to (61) and (79), in order to prove (101) and
(102) it suffices to repeat the same computations as in (91)
and (92), with the pair ((𝑋,D(𝐴))

𝛾,𝑝
, (𝑋,D(𝐴))

𝛿,𝑝
) being

replaced with (𝑋
𝛾,∞

𝐴
, 𝑋

𝛿,∞

𝐴
) or with (𝑋

𝛾,𝑝

𝐴
, 𝑋

𝛽𝛿,𝑝

𝐴
) provided

that 𝑝 = ∞ or 𝑝 ∈ [1,∞). In this way we derive (101) and
(102) with 𝑐

𝑗+13
= 2

(2+Re 𝜃+𝛿−𝛾−2𝛽)/𝛼
𝑐
𝑗
𝑐
22
, 𝑗 = 15, 16. As far

as (103) is concerned, we recall that if 𝑋
𝑗
, 𝑗 = 1, . . . , 4, are

four Banach spaces such that 𝑋
𝑗
→ 𝑋

𝑗+2
, 𝑗 = 1, 2, and

𝐿 ∈ L(𝑋
3
; 𝑋

2
), then 𝐿 ∈ L(𝑋

1
; 𝑋

4
) with ‖𝐿‖L(𝑋1 ;𝑋4)

≤

𝐶
1
𝐶
2
‖𝐿‖L(𝑋3 ;𝑋2)

,𝐶
1
and𝐶

2
being the positive constants such

that ‖𝑥‖
𝑋𝑗+2

≤ 𝐶
𝑗
‖𝑥‖

𝑋𝑗
, 𝑥 ∈ 𝑋

𝑗
, 𝑗 = 1, 2. Applying this

result to 𝐿 = [(−𝐴)
𝜃
]
∘e𝑡𝐴 with (𝑋

1
, 𝑋

2
, 𝑋

3
, 𝑋

4
) = (𝑋

𝛾,𝑝

𝐴
, (𝑋,

D(𝐴))
𝛿,𝑝
, (𝑋,D(𝐴))

𝛾,𝑝
, 𝑋

𝛿+𝛽−1,𝑝

𝐴
), from (29)–(32) and the

second estimate in (90) we deduce (103) with 𝑐
30

= 2𝑐
2
𝑐
27
.

This completes the proof.

Remark 21. The assumption 𝛾 + 𝛿 < 1 with 𝛾 ∈ (0, 1) and
𝛿 ∈ (1 − 𝛽, 1) implies that 𝛾 ∈ (0, 1 − 𝛿) ⊊ (0, 𝛽). Therefore
(cf. Remark 11), we conclude that for (103) to hold we have
to consider [(−𝐴)𝜃]∘e𝑡𝐴, Re 𝜃 ≥ 1, as an operator between
the intermediate spaces 𝑋𝛾,𝑝

𝐴
and 𝑋

𝜀,𝑝

𝐴
, where 𝛾, 𝜀 ∈ (0, 𝛽),

𝜀 = 𝛿 + 𝛽 − 1, 𝛿 ∈ (1 − 𝛽, 1), 𝛾 + 𝛿 < 1.

4. Hölder Regularity of Some
Operator Functions

Here, we study the Hölder regularity of those operator func-
tions that we will need in Section 5. From now on, with
(𝑍, ‖ ⋅ ‖

𝑍
) being a complex Banach space, 𝐶([𝑎, 𝑏]; 𝑍) =

𝐶
0
([𝑎, 𝑏]; 𝑍) and 𝐶

𝛿
([𝑎, 𝑏]; 𝑍), 𝛿 ∈ (0, 1), 𝑎 < 𝑏, denote,

respectively, the spaces of all continuous and 𝛿-Hölder con-
tinuous functions from [𝑎, 𝑏] into𝑍 endowed with the norms
‖𝑔‖

0,𝑎,𝑏;𝑍
= sup

𝑡∈[𝑎,𝑏]
‖𝑔(𝑡)‖

𝑍
and ‖𝑔‖

𝛿,𝑎,𝑏;𝑍
= ‖𝑔‖

0,𝑎,𝑏;𝑍
+

|𝑔|
𝛿,𝑎,𝑏;𝑍

, where |𝑔|
𝛿,𝑎,𝑏;𝑍

is the seminorm sup
𝑎≤𝑡1<𝑡2≤𝑏

(𝑡
2
−

𝑡
1
)
−𝛿
‖𝑔(𝑡

2
) − 𝑔(𝑡

1
)‖
𝑍
. We endow the subspace𝐶𝛿

0
([𝑎, 𝑏]; 𝑍) =

{𝑔 ∈ 𝐶
𝛿
([𝑎, 𝑏];Z) : 𝑔(𝑎) = 0}, 𝛿 ∈ [0, 1) with the norm

‖ ⋅ ‖
𝛿,𝑎,𝑏;𝑍

. Further, for 𝑘 ∈ N and 𝛿 ∈ (0, 1) we set 𝐶𝑘([𝑎, 𝑏];
𝑍) = {𝑔 ∈ 𝐶([𝑎, 𝑏]; 𝑍) : 𝐷

𝑘

𝑡
𝑔 ∈ 𝐶([𝑎, 𝑏]; 𝑍)}, ‖𝑔‖

𝑘,𝑎,𝑏;𝑍
=

∑
𝑘

0
‖𝐷

𝑗

𝑡
𝑔‖

0,𝑎,𝑏;𝑍
(𝐷0

𝑡
= 𝐼), and𝐶𝑘+𝛿([𝑎, 𝑏]; 𝑍) = {𝑔 ∈ 𝐶

𝑘
([𝑎, 𝑏];

𝑍) : 𝐷
𝑘

𝑡
𝑔 ∈ 𝐶

𝛿
([𝑎, 𝑏]; 𝑍)}, ‖𝑔‖

𝑘+𝛿,𝑎,𝑏;𝑍
= ‖𝑔‖

𝑘,𝑎,𝑏;𝑍
+ |𝐷

𝑘

𝑡

𝑔|
𝛿,𝑎,𝑏;𝑍

. Recall that if 0 ≤ 𝛿
2
≤ 𝛿

1
≤ 1, then 𝐶𝛿1([𝑎, 𝑏]; 𝑍) →

𝐶
𝛿2([𝑎, 𝑏]; 𝑍) and ‖𝑔‖

𝛿2,𝑎,𝑏;𝑍
≤ max{1, (𝑏 − 𝑎)𝛿1−𝛿2}‖𝑔‖

𝛿1,𝑎,𝑏;𝑍
,

𝑔 ∈ 𝐶
𝛿1([𝑎, 𝑏]; 𝑋). Finally, given three complexBanach spaces

(𝑋
𝑘
, ‖ ⋅ ‖

𝑋𝑘
), 𝑘 = 1, 2, 3, and a bilinear bounded operator P

from𝑋
1
×𝑋

2
to𝑋

3
with norm𝐶

0
, that is,P ∈ B(𝑋

1
×𝑋

2
; 𝑋

3
)

and ‖P‖B(𝑋1×𝑋2 ;𝑋3)
= sup

‖𝑥𝑘‖𝑋
𝑘
=1,𝑘=1,2

‖P(𝑥
1
, 𝑥

2
)‖
𝑋3

= 𝐶
0
,

we denote byK the convolution operator

K (V
1
, V
2
) (𝑡) = ∫

𝑡

0

P (V
1 (𝑡 − 𝑟) , V2 (𝑟)) d𝑟,

𝑡 ∈ [0, 𝑏] , 𝑏 > 0,

(104)

where V
𝑘
: [0, 𝑏] → 𝑋

𝑘
, 𝑘 = 1, 2. Of course, if (𝑋

1
, 𝑋

2
) =

(C, 𝑋
3
) and if P is the scalar multiplication in 𝑋

3
, that is,

P(𝑧, 𝑥) = 𝑧𝑥, 𝑧 ∈ C, 𝑥 ∈ 𝑋
3
, then 𝐶

0
= 1 and K reduces

to the usual convolution operator K(V
1
, V
2
)(𝑡) = ∫

𝑡

0
V
1
(𝑡 −

𝑟)V
2
(𝑟) d𝑟. As usual, for every 𝑞 ∈ [1,∞], we will denote by

𝑞
 the conjugate exponent of 𝑞.

Now let𝑋
3
= 𝑋 and introduce the following linear oper-

ators 𝑄
𝑗
, 𝑗 = 1, . . . , 6, where 𝑔

𝑗
∈ 𝐶

𝛿𝑗([0, 𝑇]; 𝑋), 𝑗 = 1, 2, 5,
𝑔
𝑙𝑘
∈ 𝐶

𝛿𝑙
𝑘 ([0, 𝑇], 𝑋

𝑘
), 𝑙 = 3, 6, 𝑘 = 1, 2, 𝑔

4
∈ 𝐶

𝛿4([0, 𝑇];C),
𝑦 ∈ 𝑌

𝑝

𝛾
, 𝑌𝑝

𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑝
, 𝑋

𝛾,𝑝

𝐴
}, 𝑝 ∈ [1,∞], and 𝑡 ∈ [0, 𝑇],

𝑇 > 0 as follows:

[𝑄
1
𝑔
1
] (𝑡) := ∫

𝑡

0

e(𝑡−𝑠)𝐴𝑔
1 (𝑠) d𝑠, (105)

[𝑄
2
𝑔
2
] (𝑡) := ∫

𝑡

0

[(−𝐴)
1
]
∘

e(𝑡−𝑠)𝐴 [𝑔
2 (𝑠) − 𝑔2 (𝑡)] d𝑠, (106)

[𝑄
3
(𝑔

31
, 𝑔

32
)] (𝑡) := [𝑄

2
K (𝑔

31
, 𝑔

32
)] (𝑡) , (107)

[𝑄
4
(𝑔

4
, 𝑦)] (𝑡) := [𝑄

2
(𝑔

4
𝑦)] (𝑡) , (108)

[𝑄
5
𝑔
5
] (𝑡) := [e𝑡𝐴 − 𝐼] 𝑔

5 (𝑡) , (109)

[𝑄
6
(𝑔

61
, 𝑔

62
)] (𝑡) := [𝑄

5
K (𝑔

61
, 𝑔

62
)] (𝑡) , (110)

with 𝑔
4
𝑦 being the function from [0, 𝑇] to 𝑌

𝑝

𝛾
defined by

(𝑔
4
𝑦)(𝑡) = 𝑔

4
(𝑡)𝑦. We will find conditions on 𝛿

𝑗
, 𝛿

𝑙𝑘
, 𝛿

4
, 𝛾 ∈

(0, 1), 𝑗 = 1, 2, 5, 𝑙 = 3, 6, 𝑘 = 1, 2, in order that 𝑄
𝑗
𝑔
𝑗
∈ 𝐶

𝜏𝑗

([0,𝑇];𝑋), 𝑄
𝑙
(𝑔

𝑙1
, 𝑔

𝑙2
) ∈ 𝐶

𝜏𝑙([0, 𝑇]; 𝑋) and 𝑄
4
(𝑔

4
, 𝑦) ∈ 𝐶

𝜏4

([0,𝑇];𝑋) for opportunely chosen 𝜏
𝑗
,𝜏
𝑙
,𝜏
4
∈ (0, 1).We empha-

size of the presence of the increment 𝑔
2
(𝑠) − 𝑔

2
(𝑡) inside the

integral defining 𝑄
2
𝑔
2
. As we will see, and differently from

𝑄
1
, it is just this presence which makes 𝑄

2
𝑔
2
well-defined

for smooth enough functions 𝑔
2
. This is the reason why the

operator𝑄
2
as it was defined in [20, formula (4.12)] canmake

no sense and has to be replaced with that defined by the
present (106) (cf. the appendix below). We begin our analysis
on the 𝑄

𝑗
’s with the following result proven in [20, Lemma

4.1]. Sincewewill need it later, here, removing somemisprints
in [20], we report its short proof for the reader’s convenience.

Lemma 22. Let 𝛼 + 𝛽 > 1 in (H1). Then, for every 𝛿
1
∈ (0,

(𝛼 + 𝛽 − 1)/𝛼), the operator 𝑄
1
defined by (105) maps 𝐶𝛿1

([0, 𝑇]; 𝑋) into 𝐶𝛿1
0
([0, 𝑇]; 𝑋), and for every 𝑡 ∈ [0, 𝑇] satisfies

the following estimate, where 𝑝 ∈ (𝛼/(𝛼 + 𝛽 − 1 − 𝛼𝛿
1
),∞) as

follows:

𝑄1
𝑔
1

𝛿1,0,𝑡;𝑋
≤ 𝐶

1 (𝑡) (∫

𝑡

0

𝑔1


𝑝

𝛿1,0,𝑠;𝑋
ds)

1/𝑝

. (111)

Here 𝐶
1
(𝑡) is a nondecreasing function of 𝑡 depending also on

𝛼, 𝛽, 𝛿
1
, and 𝑝.
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Proof. Let 𝑔
1
∈ 𝐶

𝛿1([0, 𝑇]; 𝑋), 𝛿
1
∈ (0, (𝛼 + 𝛽 − 1)/𝛼), and 𝑡 ∈

[0, 𝑇]. From (14) and the Hölder inequality with 𝑝 ∈ (𝛼/(𝛼 +

𝛽 − 1 − 𝛼𝛿
1
),∞) ⊊ (1,∞), for any 𝜏 ∈ [0, 𝑡], we deduce that

[𝑄1
𝑔
1
] (𝜏)

𝑋

≤ 𝑐
𝛼,𝛽,0

∫

𝜏

0

(𝜏 − 𝑠)
(𝛽−1)/𝛼𝑔1

0,0,𝑠;𝑋
d𝑠

≤ 𝑐
31
𝜏
[𝛼−(1−𝛽)𝑝


]/(𝛼𝑝

)
(∫

𝜏

0

𝑔1


𝑝

𝛿1,0,𝑠;𝑋
d𝑠)

1/𝑝

≤ 𝑐
31
𝜏
[𝛼−(1+𝛼𝛿1−𝛽)𝑝


]/(𝛼𝑝

)
𝜏
𝛿1(∫

𝜏

0

𝑔1


𝑝

𝛿1,0,𝑠;𝑋
d𝑠)

1/𝑝

,

(112)

where 𝑐
31
= 𝑐

𝛼,𝛽,0
𝛼
1/𝑝


[𝛼−(1−𝛽)𝑝

]
−1/𝑝


. Here 𝛼−(1+𝛼𝛿
1
−𝛽)

𝑝

> 0, since 𝑝 ∈ (1, 𝛼/(1 + 𝛼𝛿

1
− 𝛽)). For 1 − 1/𝑝 > 1 − (𝛼 +

𝛽 − 1 − 𝛼𝛿
1
)/𝛼 = (1 + 𝛼𝛿

1
− 𝛽)/𝛼. passing to the supremum

with respect to 𝜏 ∈ [0, 𝑡] in (112) we thus find

𝑄1
𝑔
1

0,0,𝑡;𝑋

≤ 𝑐
31
𝑡
[𝛼−(1+𝛼𝛿1−𝛽)𝑝


]/(𝛼𝑝

)
𝑡
𝛿1(∫

𝑡

0

𝑔1


𝑝

𝛿1,0,𝑠;𝑋
d𝑠)

1/𝑝

.

(113)

Now let (since [𝑄
1
𝑔
1
](0) = 0, the case 𝑡

1
= 0 follows from

(112) with 𝜏 = 𝑡
2
) 0 < 𝑡

1
< 𝑡

2
≤ 𝑡. The change of variable

𝑡 − 𝑠 = 𝑟 in (105) leads us to [𝑄
1
𝑔
1
](𝑡

2
) − [𝑄

1
𝑔
1
](𝑡

1
) = ∑

2

𝑘=1

𝐼
𝑘;𝑡1 ,𝑡2,𝑔1

, where 𝐼
1;𝑡1,𝑡2 ,𝑔1

:= ∫
𝑡2

𝑡1

e𝑟𝐴𝑔
1
(𝑡
2
− 𝑟) d𝑟 and 𝐼

2;𝑡1 ,𝑡2,𝑔1
:=

∫
𝑡1

0
e𝑟𝐴[𝑔

1
(𝑡
2
− 𝑟) − 𝑔

1
(𝑡
1
− 𝑟)] d𝑟. Reasoning as in (112) and

using the inequality 𝑡𝜇
2
− 𝑡

𝜇

1
≤ (𝑡

2
− 𝑡

1
)
𝜇, 𝜇 ∈ (0, 1], we get


𝐼
1;𝑡1,𝑡2 ,𝑔1

𝑋

≤ 𝑐
31
(𝑡
2
− 𝑡

1
)
[𝛼−(1−𝛽)𝑝


]/(𝛼𝑝

)
(∫

𝑡2

𝑡1

𝑔1


𝑝

𝛿1 ,0,𝑡2−𝑟;𝑋
d𝑟)

1/𝑝

≤ 𝑐
31
𝑡
[𝛼−(1+𝛼𝛿1−𝛽)𝑝


]/(𝛼𝑝

)

2
(𝑡
2
− 𝑡

1
)
𝛿1
(∫

𝑡

0

𝑔1


𝑝

𝛿1,0,𝑡−𝑟;𝑋
d𝑟)

1/𝑝

.

(114)

Similarly, but taking advantage from 𝑔
1
∈ 𝐶

𝛿1([0, 𝑇]; 𝑋), we
obtain


𝐼
2;𝑡1 ,𝑡2,𝑔1

𝑋

≤ 𝑐
𝛼,𝛽,0

(𝑡
2
− 𝑡

1
)
𝛿1
∫

𝑡1

0

𝑟
(𝛽−1)/𝛼𝑔1

𝛿1 ,0,𝑡2−𝑟;𝑋
d𝑟

≤𝑐
31
𝑡
[𝛼−(1+𝛼𝛿1−𝛽)𝑝


]/(𝛼𝑝

)

1
𝑡
𝛿1

1
(𝑡
2
− 𝑡

1
)
𝛿1
(∫

𝑡

0

𝑔1


𝑝

𝛿1,0,𝑡−𝑟;𝑋
d𝑟)

1/𝑝

.

(115)

Thus, letting 𝑐
1
(𝑡) = 𝑐

31
𝑡
[𝛼−(1+𝛼𝛿1−𝛽)𝑝


]/(𝛼𝑝

) from (114) and

(115) it follows that

[𝑄1
𝑔
1
] (𝑡

2
) − [𝑄

1
𝑔
1
] (𝑡

1
)
𝑋

≤ 𝑐
1 (𝑡) (𝑡

𝛿1 + 1) (𝑡
2
− 𝑡

1
)
𝛿1
(∫

𝑡

0

𝑔1


𝑝

𝛿1,0,𝑡−𝑟;𝑋
d𝑟)

1/𝑝

.

(116)

Finally, summing up (113) and (116) and using ∫𝑡
0
‖𝑔

1
‖
𝑝

𝛿1,0,𝑡−𝑟;𝑋

d𝑟 = ∫
𝑡

0
‖𝑔

1
‖
𝑝

𝛿1,0,𝑠;𝑋
d𝑠, we derive (111) with 𝐶

1
(𝑡) = 𝑐

1
(𝑡)(2𝑡

𝛿1 +

1). This completes the proof.

Remark 23. We stress that if we renounce to its Hölder
regularity, then for 𝑄

1
𝑔
1
to be well-defined it suffices that 𝛼

and𝛽 are as in Lemma 22 and that𝑔
1
ismerely in𝐶([0, 𝑇]; 𝑋).

In fact (see the last part of the proof of Corollary 14,
replacing there 𝑥 with 𝑔

1
(𝑠)), ‖[𝑄

1
𝑔
1
](𝑡)‖

𝑋
≤ 𝛼(𝛼 + 𝛽 −

1)
−1
𝑐
𝛼,𝛽,0

‖𝑔
1
‖
0,0,𝑡;𝑋

𝑡
(𝛼+𝛽−1)/𝛼, 𝑡 ∈ [0, 𝑇].

Lemma 24. Let 3𝛼 + 𝛽 > 3 in (H1). Then, for every 𝛿
2
∈

((3 − 2𝛼 − 𝛽)/𝛼, 1), the operator 𝑄
2
defined by (106) maps

𝐶
𝛿2([0, 𝑇]; 𝑋) into 𝐶]2

0
([0, 𝑇]; 𝑋), ]

2
= (𝛼𝛿

2
+ 2𝛼 + 𝛽 − 3)/𝛼 ∈

(0, 𝛿
2
], and for every 𝑡 ∈ [0, 𝑇] it satisfies the following estimate:

𝑄2
𝑔
2

]2,0,𝑡;𝑋
≤ 𝐶

2 (𝑡)
𝑔2

𝛿2,0,𝑡;𝑋
. (117)

Here 𝐶
2
(𝑡) is a nondecreasing function of 𝑡 depending also on

𝛼, 𝛽, and 𝛿
2
.

Proof. Denote by 𝛼 the number (1 −𝛼)/𝛼. In particular, since
3𝛼 + 𝛽 > 3 implies 𝛼 ∈ (2/3, 1], we have 𝛼 ∈ [0, 1/2). Let
𝑡 ∈ [0, 𝑇], 𝑔

2
∈ 𝐶

𝛿2([0, 𝑇]; 𝑋), 𝛿
2
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), and

]
2
= (𝛼𝛿

2
+ 2𝛼 + 𝛽 − 3)/𝛼 ∈ (0, 𝛿

2
]. We notice that (𝛼𝛿

2
+ 𝛽 −

2)/𝛼 = ]
2
+ 𝛼 − 1 and (𝛼𝛿

2
+ 𝛽 − 3)/𝛼 = ]

2
− 2. Then, using

(14) with 𝜃 = 1, for every 𝜏 ∈ [0, 𝑡] we obtain

[𝑄2
𝑔
2
] (𝜏)

𝑋

≤ 𝑐
𝛼,𝛽,1

𝑔2
𝛿2,0,𝜏;𝑋

∫

𝜏

0

(𝜏 − 𝑠)
(𝛼𝛿2+𝛽−2)/𝛼d𝑠

= 𝑐
32

𝑔2
𝛿2,0,𝜏;𝑋

𝜏
]2+𝛼,

(118)

where 𝑐
32
= 𝑐

𝛼,𝛽,1
(]
2
+ 𝛼)

−1. Hence

𝑄2
𝑔
2

0,0,𝑡;𝑋
≤ 𝑐

32

𝑔2
𝛿2,0,𝑡;𝑋

𝑡
]2+𝛼. (119)

Now let (since [𝑄
2
𝑔
2
](0) = 0, the case 𝑡

1
= 0 follows

from (118) with 𝜏 = 𝑡
2
) 0 < 𝑡

1
< 𝑡

2
≤ 𝑡. We have
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[𝑄
2
𝑔
2
](𝑡

2
) − [𝑄

2
𝑔
2
](𝑡

1
) = ∑

3

𝑘=1
𝐽
𝑘;𝑡1 ,𝑡2 ,𝑔2

, where for a function
𝑔 : [0, 𝑇] → 𝑋 we set

𝐽
1;𝑡1 ,𝑡2,𝑔

:= ∫

𝑡1

0

{[(−𝐴)
1
]
∘

e(𝑡2−𝑠)𝐴 − [(−𝐴)1]
∘

e(𝑡1−𝑠)𝐴}

× [𝑔 (𝑠) − 𝑔 (𝑡1)] d𝑠,

𝐽
2;𝑡1 ,𝑡2,𝑔

:= ∫

𝑡1

0

[(−𝐴)
1
]
∘

e(𝑡2−𝑠)𝐴 [𝑔 (𝑡
1
) − 𝑔 (𝑡

2
)] d𝑠,

𝐽
3;𝑡1 ,𝑡2,𝑔

:= ∫

𝑡2

𝑡1

[(−𝐴)
1
]
∘

e(𝑡2−𝑠)𝐴 [𝑔 (𝑠) − 𝑔 (𝑡2)] d𝑠.

(120)

First, using (13) with (𝑠, 𝑡, 𝜃) = (𝑡
1
−𝑠, 𝑡

2
−𝑠, 1), 𝑠 ∈ (0, 𝑡

1
), and

(14) with 𝜃 = 2, and letting (𝑐
33
, 𝑐
34
) = (𝑐

𝛼,𝛽,2
(1−]

2
)
−1
, 𝑐
33
]−1
2
),

we get


𝐽
1;𝑡1 ,𝑡2 ,𝑔2

𝑋

≤ 𝑐
𝛼,𝛽,2

𝑔2
𝛿2,0,𝑡1 ;𝑋

∫

𝑡1

0

[∫

𝑡2−𝑠

𝑡1−𝑠

𝜉
(𝛽−3)/𝛼d𝜉] (𝑡

1
− 𝑠)

𝛿2d𝑠

≤ 𝑐
𝛼,𝛽,2

𝑔2
𝛿2,0,𝑡1 ;𝑋

∫

𝑡1

0

[∫

𝑡2−𝑠

𝑡1−𝑠

𝜉
(𝛼𝛿2+𝛽−3)/𝛼d𝜉] d𝑠

= 𝑐
33

𝑔2
𝛿2 ,0,𝑡1;𝑋

∫

𝑡1

0

[(𝑡
1
− 𝑠)

]2−1
− (𝑡

2
− 𝑠)

]2−1
] d𝑠

= 𝑐
34

𝑔2
𝛿2 ,0,𝑡1;𝑋

[𝑡
]2
1
+ (𝑡

2
− 𝑡

1
)
]2
− 𝑡

]2
2
]

≤ 𝑐
34

𝑔2
𝛿2 ,0,𝑡2;𝑋

(𝑡
2
− 𝑡

1
)
]2
.

(121)

Let us turn to 𝐽
2;𝑡1 ,𝑡2,𝑔2

. We first observe that the integral
∫
𝑡1

0
[(−𝐴)

1
]
∘e(𝑡2−𝑠)𝐴d𝑠 is convergent. For, ‖ ∫𝑡1

0
[(−𝐴)

1
]
∘e(𝑡2−𝑠)𝐴

d𝑠‖
𝑋
≤ 𝑐

𝛼,𝛽,1
∫
𝑡1

0
(𝑡
2
− 𝑠)

(𝛽−2)/𝛼d𝑠 ≤ 𝐶
𝛼,𝛽,𝑡1 ,𝑡2

, where 𝐶
𝛼,𝛽,𝑡1 ,𝑡2

is
equal to 𝑐

𝛼,𝛽,1
ln[𝑡

2
(𝑡
2
− 𝑡

1
)
−1
] if 𝛽 = 1 and to 𝛼(2 − 𝛼 − 𝛽)−1

𝑐
𝛼,𝛽,1

[(𝑡
2
− 𝑡

1
)
(𝛼+𝛽−2)/𝛼

− 𝑡
(𝛼+𝛽−2)/𝛼

2
] if 𝛽 ∈ (0, 1). Thus, we

may rewrite it as −∫𝑡2−𝑡1
𝑡2

[(−𝐴)
1
]
∘e𝑟𝐴d𝑟 = ∫

𝑡2−𝑡1

𝑡2

𝐷
𝑟
e𝑟𝐴d𝑟 =

e(𝑡2−𝑡1)𝐴 − e𝑡2𝐴. Consequently,


𝐽
2;𝑡1 ,𝑡2,𝑔2

𝑋

≤ 𝑐
𝛼,𝛽,0

[(𝑡
2
− 𝑡

1
)
(𝛽−1)/𝛼

+ 𝑡
(𝛽−1)/𝛼

2
]
𝑔2

𝛿2 ,0,𝑡2;𝑋
(𝑡
2
− 𝑡

1
)
𝛿2

≤ 𝑐
𝛼,𝛽,0

{1 + [𝑡
2
(𝑡
2
− 𝑡

1
)
−1
]
(𝛽−1)/𝛼

}

×
𝑔2

𝛿2,0,𝑡2;𝑋
(𝑡
2
− 𝑡

1
)
(𝛼𝛿2+𝛽−1)/𝛼

≤ 2𝑐
𝛼,𝛽,0

𝑔2
𝛿2,0,𝑡2;𝑋

(𝑡
2
− 𝑡

1
)
]2+2𝛼

,

(122)

where we have used [𝑡
2
(𝑡
2
− 𝑡

1
)
−1
]
(𝛽−1)/𝛼

≤ 1 and (𝛼𝛿
2
+

𝛽 − 1)/𝛼 = ]
2
+ 2𝛼. As far as 𝐽

3;𝑡1 ,𝑡2 ,𝑔2
is concerned, instead,

reasoning as in the derivation of (118) we find


𝐽
3;𝑡1 ,𝑡2,𝑔2

𝑋
≤ 𝑐

𝛼,𝛽,1

𝑔2
𝛿2,0,𝑡2 ;𝑋

∫

𝑡2

𝑡1

(𝑡
2
− 𝑠)

]2+𝛼−1d𝑠

= 𝑐
32

𝑔2
𝛿2,0,𝑡2;𝑋

(𝑡
2
− 𝑡

1
)
]2+𝛼

.

(123)

Then, summing up (121)–(123) and letting 𝑐
2
(𝑡) = 𝑐

34
+

2𝑐
𝛼,𝛽,0

𝑡
2𝛼
+ 𝑐

32
𝑡
𝛼, we obtain

[𝑄2
𝑔
2
] (𝑡

2
) − [𝑄

2
𝑔
2
] (𝑡

1
)
𝑋

≤

3

∑

𝑘=1


𝐽
𝑘;𝑡1 ,𝑡2 ,𝑔2

𝑋

≤ 𝑐
2 (𝑡)

𝑔2
𝛿2 ,0,𝑡;𝑋

(𝑡
2
− 𝑡

1
)
]2
.

(124)

Finally, (119) and (124) yield (117) with𝐶
2
(𝑡) = 𝑐

32
𝑡
]2+𝛼 +𝑐

2
(𝑡).

Remark 25. In particular, Lemma 24 establishes that, with the
exception of the case 𝛽 = 1 in which ]

2
= 𝛿

2
, 𝑄

2
produces a

loss of regularity equal to 𝛿
2
− ]

2
= (3 − 2𝛼 − 𝛽)/𝛼.

As Corollary 14, the next result will be needed to prove
the equivalence between problem (170) and the fixed-point
equation (179). From now on, if 𝐴−1

∈ L(𝑋) and 𝑔 ∈

𝐶
𝛿
([0, 𝑇]; 𝑋), 𝛿 ∈ [0, 1), with 𝐴

−1
𝑔 we will always mean

the function in 𝐶
𝛿
([0, 𝑇];D(𝐴)) defined by (𝐴

−1
𝑔)(𝑡) =

𝐴
−1
(𝑔(𝑡)). Notice that ‖𝐴−1

𝑔‖
𝛿,0,𝑡;D(𝐴) ≤ ‖𝑔‖

𝛿,0,𝑡;𝑋
, 𝑡 ∈ [0, 𝑇].

Corollary 26.

(i) Let 2𝛼 + 𝛽 > 2 in (H1). Then, for every 𝑔 ∈ 𝐶
𝛿

([0, 𝑇]; 𝑋), 𝛿 ∈ ((2 − 𝛼 − 𝛽)/𝛼, 1),

𝐴
−1
[𝑄

2
𝑔] (𝑡) = −∫

𝑡

0

e(𝑡−𝑠)𝐴 [𝑔 (𝑠) − 𝑔 (𝑡)] ds, t ∈ [0,T] .

(125)

(ii) Let 𝛼 + 𝛽 > 1 in (H1). Then, for every 𝑔 ∈ 𝐶([0, 𝑇]; 𝑋)

[𝑄
2
(𝐴

−1
𝑔)] (𝑡) = −∫

𝑡

0

e(𝑡−𝑠)𝐴 [𝑔 (𝑠) − 𝑔 (𝑡)] ds, t ∈ [0,T] .

(126)

Proof. Of course, it suffices to assume that 𝑡 ∈ (0, 𝑇]. Let us
first prove (i). So, let 2𝛼 + 𝛽 > 2, 𝑔 ∈ 𝐶

𝛿
([0, 𝑇]; 𝑋), 𝛿 ∈ ((2 −

𝛼 − 𝛽)/𝛼, 1), and 𝑡 ∈ (0, 𝑇], and we observe that both sides of
(125) are well defined. Indeed, replacing the pair (𝑔

2
, 𝛿

2
) with

(𝑔, 𝛿), from (118) we get

[𝑄2
𝑔] (𝑡)

𝑋

≤ 𝑐
𝛼,𝛽,1

𝛼(𝛼𝛿 + 𝛼 + 𝛽 − 2)
−1𝑔

𝛿,0,𝑡;𝑋
𝑡
(𝛼𝛿+𝛼+𝛽−2)/𝛼

.

(127)
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On the other side, 𝐼
𝑡,𝑔

= ∫
𝑡

0
e(𝑡−𝑠)𝐴[𝑔(𝑠) − 𝑔(𝑡)]d𝑠 satisfies


𝐼
𝑡,𝑔

𝑋
≤ 𝑐

𝛼,𝛽,0

𝑔
𝛿,0,𝑡;𝑋

∫

𝑡

0

(𝑡 − 𝑠)
(𝛼𝛿+𝛽−1)/𝛼d𝑠

≤ 𝑐
35

𝑔
𝛿,0,𝑡;𝑋

𝑡
(𝛼+𝛼𝛿+𝛽−1)/𝛼

,

(128)

where 𝑐
35

= 𝛼(𝛼𝛿 + 𝛼 + 𝛽 − 1)
−1
𝑐
𝛼,𝛽,0

. Then, commuting
𝐴
−1

∈ L(𝑋) with the integral signs, using (80) with 𝜃 = 1,
and taking into account (7), we find

𝐴
−1
[𝑄

2
𝑔
2
] (𝑡)

= 𝐴
−1
∫

𝑡

0

[−
1

2𝜋𝑖
∫
Γ

e(𝑡−𝑠)𝜆𝐴∘
(𝜆𝐼 − 𝐴)

−1d𝜆][𝑔
2 (𝑠) − 𝑔2 (𝑡)] d𝑠

=−∫

𝑡

0

[
1

2𝜋𝑖
∫
Γ

e(𝑡−𝑠)𝜆𝐴−1
𝐴
∘
(𝜆𝐼 − 𝐴)

−1d𝜆] [𝑔
2 (𝑠)−𝑔2 (𝑡)] d𝑠

= −∫

𝑡

0

[
1

2𝜋𝑖
∫
Γ

e(𝑡−𝑠)𝜆(𝜆𝐼 − 𝐴)−1d𝜆] [𝑔2 (𝑠) − 𝑔2 (𝑡)] d𝑠.

(129)

Since (2𝜋𝑖)−1 ∫
Γ
e(𝑡−𝑠)𝜆(𝜆𝐼 − 𝐴)

−1d𝜆 = e(𝑡−𝑠)𝐴, the proof of
(125) is complete. We now prove (ii). Let 𝛼 + 𝛽 > 1, 𝑔 ∈

𝐶([0, 𝑇]; 𝑋) and 𝑡 ∈ (0, 𝑇]. Then, for every 𝛾 ∈ (2 − 𝛼 − 𝛽, 1),
the same reasonings made to derive (88), except for replacing
𝑥 with g(𝑠) − 𝑔(𝑡), yield


[𝑄

2
(𝐴

−1
𝑔)] (𝑡)

𝑋

≤ 2𝑐
22
𝑐
𝛼,𝛽,𝛾

𝑐
0


𝐴
−1

1−𝛾

L(𝑋)

𝑔
0,0,𝑡;𝑋

𝑡
(𝛼+𝛽+𝛾−2)/𝛼

.

(130)

Hence, [𝑄
2
(𝐴

−1
𝑔)](𝑡) being meaningful, we obtain (126)

simply applying to it formula (89) with 𝜁 = 1 and then using
[(−𝐴)

0
]
∘e(𝑡−𝑠)𝐴 = e(𝑡−𝑠)𝐴, 𝑠 ∈ (0, 𝑡). In particular, a better

estimate than (130) holds. For, [𝑄
2
(𝐴

−1
𝑔)](𝑡) = − ∫

𝑡

0
e(𝑡−𝑠)𝐴

[𝑔(𝑠) − 𝑔(𝑡)]d𝑠 satisfies


[𝑄

2
(𝐴

−1
𝑔)] (𝑡)

𝑋
≤ 2𝑐

𝛼,𝛽,0

𝑔
0,0,𝑡;𝑋

∫

𝑡

0

(𝑡 − 𝑠)
(𝛽−1)/𝛼d𝑠

≤ 2𝑐
36

𝑔
0,0,𝑡;𝑋

𝑡
(𝛼+𝛽−1)/𝛼

,

(131)

where 𝑐
36
= 𝛼(𝛼 + 𝛽 − 1)

−1
𝑐
𝛼,𝛽,0

. The proof is complete.

Let us now examine the operator 𝑄
3
defined by (107). To

this purpose we need the following result which is proved in
[20, Corollary 3.2].

Lemma 27. Let 𝛿
3𝑘

∈ (0, 1), 𝑘 = 1, 2, be such that 𝜎
3
=

𝛿
31
+ 𝛿

32
∈ (0, 1/𝑝


), 𝑝 ∈ (1/(1 − 𝛿

31
),∞). Then the convolu-

tion operator K defined by (104) maps 𝐶𝛿31 ([0, 𝑇]; 𝑋
1
) ×

𝐶
𝛿32 ([0, 𝑇]; 𝑋

2
) into 𝐶𝜎3

0
([0, 𝑇]; 𝑋), and for every 𝑡 ∈ [0, 𝑇]

satisfies the following estimate:


K(𝑔

31
, 𝑔

32
)
𝜎3 ,0,𝑡;𝑋

≤ 𝑡
−𝜎3+1/𝑝



𝑐
3 (𝑡)


𝑔
31

𝛿31 ,0,𝑡;𝑋1
(∫

𝑡

0


𝑔
32



𝑝

𝛿32
,0,𝑠;𝑋2

ds)
1/𝑝

.

(132)

Here 𝑐
3
(𝑡) is a nondecreasing function of 𝑡 depending also on 𝛿

31

and 𝛿
32
. Further, in the cases 𝛿

31
∈ (0, 1), 𝛿

32
= 0, and 𝛿

31
=

𝛿
32
= 0, the following estimates hold, respectively, as follows:


K (𝑔

31
, 𝑔

32
)
𝛿31 ,0,𝑡;𝑋

≤ 𝐶
0
𝑡
1−𝛿31 (1 + 𝑡

𝛿31 )

𝑔
31

𝛿31 ,0,𝑡;𝑋1


𝑔
32

0,0,𝑡;𝑋2
,


K (𝑔

31
, 𝑔

32
)
0,0,𝑡;𝑋

≤ 𝐶
0
𝑡

𝑔
31

0,0,𝑡;𝑋1


𝑔
32

0,0,𝑡;𝑋2
.

(133)

From Lemmas 24 and 27 we obtain the following
Lemma 28.

Lemma 28. Let 𝛼 and 𝛽 be as in Lemma 24. Then, for every
𝛿
31
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1) and 𝛿

32
∈ (0, 1) such that 𝜎

3
= 𝛿

31
+

𝛿
32
∈ ((3−2𝛼−𝛽)/𝛼, 1/𝑝


), 𝑝 ∈ (1/(1−𝛿

31
),∞), the operator

𝑄
3
defined by (107) maps 𝐶𝛿31 ([0, 𝑇]; 𝑋

1
) × 𝐶

𝛿32 ([0, 𝑇]; 𝑋
2
)

into 𝐶]3
0
([0, 𝑇]; 𝑋), ]

3
= (𝛼𝜎

3
+ 2𝛼 + 𝛽 − 3)/𝛼, and for every

𝑡 ∈ [0, 𝑇] satisfies the following estimate:


𝑄
3
(𝑔

31
, 𝑔

32
)
]3 ,0,𝑡;𝑋

≤ t−𝜎3+1/𝑝


𝐶
2 (𝑡) 𝑐3 (𝑡)


𝑔
31

𝛿31 ,0,𝑡;𝑋1
(∫

𝑡

0


𝑔
32



𝑝

𝛿32
,0,𝑠;𝑋2

ds)
1/𝑝

.

(134)

Proof. First, if 𝛿
31

∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1) and
𝑝 ∈ (1/(1 − 𝛿

31
),∞), then 1/𝑝


∈ (𝛿

31
, 1) ⊊ ((3 − 2𝛼 −

𝛽)/𝛼, 1). Consequently, the assumption 𝜎
3
= 𝛿

31
+ 𝛿

32
∈ ((3 −

2𝛼 − 𝛽)/𝛼, 1/𝑝

), 𝛿

32
∈ (0, 1), makes sense. Now, Lemma 27

yields K(𝑔
31
, 𝑔

32
) ∈ 𝐶

𝜎3

0
([0, 𝑇]; 𝑋) for any pair (𝑔

31
, 𝑔

32
) ∈

𝐶
𝛿31 ([0, 𝑇]; 𝑋

1
) × 𝐶

𝛿32 ([0, 𝑇]; 𝑋
2
). Then, recalling that

𝑄
3
(𝑔

31
, 𝑔

32
) = 𝑄

2
K(𝑔

31
, 𝑔

32
), the assertion follows from

Lemma 24, with 𝛿
2

and 𝑔
2

being replaced by 𝜎
3

and
K(𝑔

31
, 𝑔

32
), respectively. Finally, (134) follows from (117) and

(132).

We can now restore the loss of regularity produced by𝑄
2
.

Proposition 29. Let 5𝛼 + 2𝛽 > 6 in (H1). Then, for every
𝛿
3
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1/2), the operator 𝑄

3
defined by (107)

maps 𝐶𝛿3([0, 𝑇]; 𝑋
1
) ×𝐶

𝛿3([0, 𝑇]; 𝑋
2
) into 𝐶𝛿3

0
([0, 𝑇]; 𝑋), and
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for every 𝑡 ∈ [0, 𝑇] satisfies the following estimate, where 𝑝 ∈

(1/(1−2𝛿
3
),∞) and𝐶

3
(𝑡) = 𝐶

2
(𝑡)𝑐

3
(𝑡)max{1, 𝑡(𝛼𝛿3+2𝛼+𝛽−3)/𝛼}:


𝑄
3
(𝑔

31
, 𝑔

32
)
𝛿3 ,0,𝑡;𝑋

≤ 𝑡
1−2𝛿3−1/𝑝𝐶

3 (𝑡)

𝑔
31

𝛿3,0,𝑡;𝑋1
(∫

𝑡

0


𝑔
32



𝑝

𝛿3 ,0,𝑠;𝑋2

ds)
1/𝑝

.

(135)
Proof. Let 𝛿

3
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1/2) and let 𝑝 ∈ (1/(1 −

2𝛿
3
),∞) ⊊ (1/(1 − 𝛿

3
),∞). Then, 2𝛿

3
∈ ((6 − 4𝛼 −

2𝛽)/𝛼, 1/𝑝

) ⊆ ((3 − 2𝛼−𝛽)/𝛼, 1/𝑝


). We are thus in position

to apply Lemma 28 with 𝛿
31

= 𝛿
32

= 𝛿
3
from which we

deduce that 𝑄
3
maps 𝐶𝛿3([0, 𝑇]; 𝑋

1
) × 𝐶

𝛿3([0, 𝑇]; 𝑋
2
) into

𝐶
]3
0
([0, 𝑇]; 𝑋), ]

3
= (2𝛼𝛿

3
+ 2𝛼 + 𝛽 − 3)/𝛼. But, since our

choice for 𝛿
3
implies ]

3
> 𝛿

3
, we a fortiori have the fact that

𝑄
3
maps 𝐶𝛿3([0, 𝑇]; 𝑋

1
) × 𝐶

𝛿3([0, 𝑇]; 𝑋
2
) into 𝐶𝛿3

0
([0, 𝑇]; 𝑋).

Finally, (135) follows from (134) and the estimate ‖𝑔‖
𝛾,0,𝑡;𝑋

≤

max{1, 𝑡𝛿−𝛾}‖𝑔‖
𝛿,0,𝑡;𝑋

, 𝑔 ∈ 𝐶𝛿([0, 𝑇]; 𝑋), 𝛿 ≥ 𝛾.

The next Lemma 30 concerns the operator𝑄
4
. Its proof is

similar to that of Lemma 24, but with the essential difference
that the presence of 𝑦 ∈ 𝑌

𝑝

𝛾
allows us to use estimate (79)

in place of (14). As a consequence and provided to choose 𝛾
large enough, we will achieve a better result in which any loss
of regularity is observed.

Lemma 30. Let 2𝛼 + 𝛽 > 2 in (H1) and 𝑟 ∈ [1,∞]. Then, for
every 𝛿

4
∈ (0, 1) and 𝛾 ∈ (3−2𝛼−𝛽, 1) the operator𝑄

4
defined

by (108) maps 𝐶𝛿4([0, 𝑇];C) × 𝑌
𝑟

𝛾
, 𝑌𝑟

𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑟
, 𝑋

𝛾,𝑟

𝐴
},

into 𝐶
𝛿4

0
([0, 𝑇]; 𝑋), and for every 𝑡 ∈ [0, 𝑇] satisfies the

following estimate:
𝑄4

(𝑔
4
, 𝑦)

𝛿4,0,𝑡;𝑋
≤ 𝐶

4 (𝑡) 𝑡
(2𝛼+𝛽+𝛾−3)/𝛼𝑔4

𝛿4,0,𝑡;C
𝑦
𝑌𝑟
𝛾

.

(136)
Here 𝐶

4
(𝑡) is a nondecreasing function of 𝑡 depending on 𝛼, 𝛽,

𝛿
4
, 𝛾 and 𝑟.

Proof. Let 𝑡 ∈ [0, 𝑇], 𝑔
4
∈ 𝐶

𝛿4([0, 𝑇];C), 𝛿
4
∈ (0, 1), and

𝑦 ∈ 𝑌
𝑟

𝛾
, 𝛾 ∈ (3 − 2𝛼 − 𝛽, 1), 𝑟 ∈ [1,∞]. As in the proof of

Lemma 24 we set 𝛼 = (1 − 𝛼)/𝛼 and we observe that, since
2𝛼 + 𝛽 > 2 implies 𝛼 ∈ (1/2, 1], here 𝛼 ∈ [0, 1). Furthermore,
we denote by 𝜎

𝛼,𝛽,𝛾
the number (2𝛼 + 𝛽 + 𝛾 − 3)/𝛼 ∈ (0, 1), so

that the exponents (𝛽 + 𝛾 − 2)/𝛼 and (𝛽 + 𝛾 − 3)/𝛼 appearing
in (79) with 𝜃 = 1 and 𝜃 = 2may be rewritten, as 𝜎

𝛼,𝛽,𝛾
+𝛼−1

and 𝜎
𝛼,𝛽,𝛾

− 2, respectively. Then, using (79) with 𝜃 = 1, we
obtain
[𝑄4

(𝑔
4
, 𝑦)] (𝜏)

𝑋

≤ 𝑐
22

𝑔4
𝛿4,0,𝜏;C

𝑦
𝑌𝑟
𝛾

∫

𝜏

0

(𝜏 − 𝑠)
𝛿4+𝜎𝛼,𝛽,𝛾+𝛼−1d𝑠

= 𝑐
37

𝑔4
𝛿4,0,𝜏;C

𝑦
𝑌𝑟
𝛾

𝜏
𝛿4+𝜎𝛼,𝛽,𝛾+𝛼, ∀𝜏 ∈ [0, 𝑡] ,

(137)

where 𝑐
37
= 𝑐

22
(𝛿
4
+𝜎

𝛼,𝛽,𝛾
+𝛼)

−1. Hence, taking the supremum
with respect to 𝜏 ∈ [0, 𝑡], one has

𝑄4
(𝑔

4
, 𝑦)

0,0,𝑡;𝑋
≤ 𝑐

37

𝑔4
𝛿4,0,𝑡;C

𝑦
𝑌𝑟
𝛾

𝑡
𝛿4+𝜎𝛼,𝛽,𝛾+𝛼. (138)

Now, let (since [𝑄
4
(𝑔

4
, 𝑦)](0) = 0, the case 𝑡

1
= 0 follows

from (137) with 𝜏 = 𝑡
2
) 0 < 𝑡

1
< 𝑡

2
≤ 𝑡. We have

[𝑄
4
(𝑔

4
, 𝑦)](𝑡

2
) − [𝑄

4
(𝑔

4
, 𝑦)](𝑡

1
) = ∑

3

𝑘=1
𝐽
𝑘;𝑡1 ,𝑡2,𝑔4𝑦

, the
𝐽
𝑘;𝑡1 ,𝑡2,𝑔

’s, 𝑔 : [0, 𝑇] → 𝑋, being as in (120). Using (13) with
(𝑠, 𝑡, 𝜃) = (𝑡

1
− 𝑠, 𝑡

2
− 𝑠, 1), 𝑠 ∈ (0, 𝑡

1
), and (79) with 𝜃 = 2, and

letting (𝑐
38
, 𝑐
39
) = (𝑐

22
(1 − 𝛿

4
)
−1
, 𝑐
38
𝛿
−1

4
), we get


𝐽
1;𝑡1 ,𝑡2,𝑔4𝑦

𝑋

≤ 𝑐
22

𝑔4
𝛿4,0,𝑡1 ;C

𝑦
𝑌𝑟
𝛾

× ∫

𝑡1

0

[∫

𝑡2−𝑠

𝑡1−𝑠

𝜉
𝜎𝛼,𝛽,𝛾−2d𝜉] (𝑡

1
− 𝑠)

𝛿4d𝑠

≤ 𝑐
22

𝑔4
𝛿4,0,𝑡1 ;C

𝑦
𝑌𝑟
𝛾

∫

𝑡1

0

[∫

𝑡2−𝑠

𝑡1−𝑠

𝜉
𝛿4+𝜎𝛼,𝛽,𝛾−2d𝜉] d𝑠

≤ 𝑐
22

𝑔4
𝛿4,0,𝑡1 ;C

𝑦
𝑌𝑟
𝛾

× ∫

𝑡1

0

(𝑡
2
− 𝑠)

𝜎𝛼,𝛽,𝛾
[∫

𝑡2−𝑠

𝑡1−𝑠

𝜉
𝛿4−2d𝜉] d𝑠

≤ 𝑐
38

𝑔4
𝛿4,0,𝑡2 ;C

𝑦
𝑌𝑟
𝛾

𝑡
𝜎𝛼,𝛽,𝛾

2

× ∫

𝑡1

0

[(𝑡
1
− 𝑠)

𝛿4−1
− (𝑡

2
− 𝑠)

𝛿4−1
] d𝑠

= 𝑐
39

𝑔4
𝛿4,0,𝑡2 ;C

𝑦
𝑌𝑟
𝛾

𝑡
𝜎𝛼,𝛽,𝛾

2
[𝑡
𝛿4

1
+ (𝑡

2
− 𝑡

1
)
𝛿4
− 𝑡

𝛿4

2
]

≤ 𝑐
39

𝑔4
𝛿4,0,𝑡2 ;C

𝑦
𝑌𝑟
𝛾

𝑡
𝜎𝛼,𝛽,𝛾

2
(𝑡
2
− 𝑡

1
)
𝛿4
.

(139)

Now, let us examine 𝐽
𝑘;𝑡1 ,𝑡2,𝑔4𝑦

, 𝑘 = 2, 3. First, using (79) with
𝜃 = 1, we find

𝐽
2;𝑡1 ,𝑡2,𝑔4𝑦

𝑋

≤ 𝑐
22

𝑔4
𝛿4,0,𝑡2;C

𝑦
𝑌𝑟
𝛾

[∫

𝑡1

0

(𝑡
2
− 𝑠)

𝜎𝛼,𝛽,𝛾+𝛼−1d𝑠] (𝑡
2
− 𝑡

1
)
𝛿4

= 𝑐
40

𝑔4
𝛿4,0,𝑡2;C

𝑦
𝑌𝑟
𝛾

[𝑡
𝜎𝛼,𝛽,𝛾+𝛼

2
− (𝑡

2
− 𝑡

1
)
𝜎𝛼,𝛽,𝛾+𝛼

] (𝑡
2
− 𝑡

1
)
𝛿4

≤ 𝑐
40

𝑔4
𝛿4,0,𝑡2;C

𝑦
𝑌𝑟
𝛾

𝑡
𝜎𝛼,𝛽,𝛾+𝛼

2
(𝑡
2
− 𝑡

1
)
𝛿4
.

(140)

Instead, the same computations made to derive (137) yield

𝐽
3;𝑡1 ,𝑡2 ,𝑔4𝑦

𝑋

≤ 𝑐
22

𝑔4
𝛿4,0,𝑡2;C

𝑦
𝑌𝑟
𝛾

∫

𝑡2

𝑡1

(𝑡
2
− 𝑠)

𝛿4+𝜎𝛼,𝛽,𝛾+𝛼−1d𝑠

= 𝑐
37

𝑔4
𝛿4,0,𝑡2;C

𝑦
𝑌𝑟
𝛾

(𝑡
2
− 𝑡

1
)
𝛿4+𝜎𝛼,𝛽,𝛾+𝛼

.

(141)

From (139)–(141) and ‖[𝑄
4
(𝑔

4
, 𝑦)](𝑡

2
) − [𝑄

4
(𝑔

4
, 𝑦)](𝑡

1
)‖
𝑋
≤

∑
3

𝑘=1
‖𝐽
𝑘;𝑡1 ,𝑡2 ,𝑔4𝑦

‖
𝑋
, it follows that

[𝑄4
(𝑔

4
, 𝑦)] (𝑡

2
) − [𝑄

4
(𝑔

4
, 𝑦)] (𝑡

1
)
𝑋

≤ 𝑐
4 (𝑡) 𝑡

𝜎𝛼,𝛽,𝛾 𝑔4
𝛿4,0,𝑡;C

𝑦
𝑌𝑟
𝛾

(𝑡
2
− 𝑡

1
)
𝛿4
,

(142)
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where 𝑐
4
(𝑡) = 𝑐

39
+(𝑐

37
+𝑐

40
)𝑡
𝛼. Finally, summing up (138) and

(142) we get (136) with 𝐶
4
(𝑡) = 𝑐

37
𝑡
𝛿4+𝛼 + 𝑐

4
(𝑡). The proof is

complete.

Remark 31. Notice that if 𝑌𝑟
𝛾
= 𝑋

𝛾,𝑟

𝐴
, then in order to be sure

that the conclusions of Lemma 30 hold with 𝑦 which really
belongs to some intermediate space between𝑋 andD(𝐴) we
have to choose 𝛾 ∈ (3 − 2𝛼 − 𝛽, 𝛽). This is possible, provided
that the stronger assumption 2𝛼 + 𝛽 > 3 − 𝛽 ≥ 2 is satisfied.
Otherwise, if 2𝛼+𝛽 ∈ (2, 3−𝛽],𝛽 < 1, then 𝛾 ∈ (3−2𝛼−𝛽, 1) ⊊
[𝛽, 1) and 𝑦may be contained inD(𝐴).

Finally, for the operator 𝑄
5
we have the following result.

Again a loss of regularity is exhibited, even though of an
amount smaller than that in Lemma 24 (cf. Remark 33).

Lemma 32. Let 2𝛼 + 𝛽 > 2 in (H1). Then, for every 𝛿
5
∈

((2 − 𝛼 − 𝛽)/𝛼, 1), the operator 𝑄
5
defined by (109) maps

𝐶
𝛿5

0
([0, 𝑇]; 𝑋) into 𝐶]5

0
([0, 𝑇]; 𝑋), ]

5
= (𝛼𝛿

5
+ 𝛼 + 𝛽 − 2)/𝛼 ∈

(0, 𝛿
5
], and for every 𝑡 ∈ [0, 𝑇] satisfies the following estimate:

𝑄5
𝑔
5

]5 ,0,𝑡;𝑋
≤ 𝐶

5 (𝑡)
𝑔5

𝛿5 ,0,𝑡;𝑋
. (143)

Here 𝐶
5
(𝑡) is a nondecreasing function of 𝑡 depending also on

𝛼, 𝛽, and 𝛿
5
.

Proof. Let 𝑔
5
∈ 𝐶

𝛿5

0
([0, 𝑇]; 𝑋), 𝛿

5
∈ ((2 − 𝛼 − 𝛽)/𝛼, 1), and

]
5
= (𝛼𝛿

5
+ 𝛼 + 𝛽 − 2)/𝛼 ∈ (0, 𝛿

5
]. We still let 𝛼 = (1 − 𝛼)/𝛼

and as in Lemma 30 we have 𝛼 ∈ [0, 1). Further, observe that
𝛿
5
+ (𝛽 − 1)/𝛼 = ]

5
+ 𝛼 ∈ (0, 𝛿

5
]. Let 𝑡 ∈ [0, 𝑇]. Then, using

(14) and 𝑔
5
(0) = 0, we get

𝑄5
𝑔
5

0,0,𝑡;𝑋

≤ sup
𝜏∈[0,𝑡]

[𝑐
𝛼,𝛽,0

𝜏
(𝛽−1)/𝛼

+ 1]
𝑔5

𝛿5,0,𝜏;𝑋
𝜏
𝛿5

≤ [𝑐
𝛼,𝛽,0

+ 𝑡
(1−𝛽)/𝛼

]
𝑔5

𝛿5 ,0,𝑡;𝑋
𝑡
]5+𝛼.

(144)

Now, let (since [𝑄
5
𝑔
5
](0) = 0, the case 𝑡

1
= 0 follows from

(144) and ‖[𝑄
5
𝑔
5
](𝑡

2
)‖
𝑋
≤ ‖𝑄

5
𝑔
5
‖
0,0,𝑡2;𝑋

) 0 < 𝑡
1
< 𝑡

2
≤ 𝑡. We

have [𝑄
5
𝑔
5
](𝑡

2
) − [𝑄

5
𝑔
5
](𝑡

1
) = ∑

3

𝑘=1
𝑈
𝑘;𝑡1 ,𝑡2,𝑔5

, where for a
function 𝑔 : [0, 𝑇] → 𝑋 we let

𝑈
1;𝑡1 ,𝑡2,𝑔

:= e𝑡2𝐴 [𝑔 (𝑡
2
) − 𝑔 (𝑡

1
)] ,

𝑈
2;𝑡1 ,𝑡2,𝑔

:= (e𝑡2𝐴 − e𝑡1𝐴) 𝑔 (𝑡
1
) ,

𝑈
3;𝑡1,𝑡2 ,𝑔

:= 𝑔 (𝑡
1
) − 𝑔 (𝑡

2
) .

(145)

First, since 𝑡(𝛽−1)/𝛼
2

≤ (𝑡
2
− 𝑡

1
)
(𝛽−1)/𝛼 for every 𝛽 ∈ (0, 1], we

deduce that


𝑈
1;𝑡1 ,𝑡2,𝑔5

𝑋
≤ 𝑐

𝛼,𝛽,0
𝑡
(𝛽−1)/𝛼

2

𝑔5
𝛿5,0,𝑡2 ;𝑋

(𝑡
2
− 𝑡

1
)
𝛿5

≤ 𝑐
𝛼,𝛽,0

𝑔5
𝛿5,0,𝑡2 ;𝑋

(𝑡
2
− 𝑡

1
)
]5+𝛼

.

(146)

As far as 𝑈
2;𝑡1 ,𝑡2,𝑔5

is concerned, instead, rewriting e𝑡2𝐴 − e𝑡1𝐴

as −∫𝑡2
𝑡1

[(−𝐴)
1
]
∘e𝑟𝐴d𝑟 and using both 𝑔

5
(0) = 0 and (𝛼𝛿

5
+

𝛽 − 2)/𝛼 = ]
5
− 1, it follows that


𝑈
2;𝑡1 ,𝑡2,𝑔5

𝑋
≤ 𝑐

𝛼,𝛽,1

𝑔5
𝛿5,0,𝑡1 ;𝑋

𝑡
𝛿5

1
∫

𝑡2

𝑡1

𝑟
(𝛽−2)/𝛼d𝑟

≤ 𝑐
𝛼,𝛽,1

𝑔5
𝛿5,0,𝑡1 ;𝑋

∫

𝑡2

𝑡1

𝑟
]5−1d𝑟

≤ 𝑐
𝛼,𝛽,1

]−1
5

𝑔5
𝛿5,0,𝑡1;𝑋

(𝑡
]5
2
− 𝑡

]5
1
)

≤ 𝑐
𝛼,𝛽,1

]−1
5

𝑔5
𝛿5,0,𝑡1;𝑋

(𝑡
2
− 𝑡

1
)
]5
.

(147)

Then, since ‖𝑈
3;𝑡1 ,𝑡2,𝑔5

‖
𝑋
≤ |𝑔

5
|
𝛿5 ,0,𝑡2;𝑋

(𝑡
2
− 𝑡

1
)
𝛿5 , from (146)

and (147) we find
[𝑄5

𝑔
5
] (𝑡

2
) − [𝑄

5
𝑔
5
] (𝑡

1
)
𝑋

≤

3

∑

𝑘=1


𝑈
𝑘;𝑡1 ,𝑡2 ,𝑔5

𝑋
≤ 𝑐

5 (𝑡)
𝑔5

𝛿5 ,0,𝑡;𝑋
(𝑡
2
− 𝑡

1
)
]5
,

(148)

where 𝑐
5
(𝑡) = 𝑐

𝛼,𝛽,0
𝑡
𝛼
+𝑐

𝛼,𝛽,1
]−1
5
+𝑡

𝛿5−]5 . Summing up (144) and
(148) we obtain (143) with𝐶

5
(𝑡) = [𝑐

𝛼,𝛽,0
+𝑡

(1−𝛽)/𝛼
]𝑡
]5+𝛼+𝑐

5
(𝑡).

This completes the proof.

Remark 33. Thus, with the exception of 𝛽 = 1,𝑄
5
produces a

loss of regularity equal to 𝛿
5
− ]

5
= (2 − 𝛼 − 𝛽)/𝛼 ≤ (3 − 2𝛼 −

𝛽)/𝛼. In this sense 𝑄
5
behaves better than 𝑄

2
.

Remark 34. Notice that, under the weaker assumptions 𝛼 +
𝛽 > 1 and 𝑔

5
∈ 𝐶([0, 𝑇]; 𝑋), (86) with 𝑥 = 𝑔

5
(𝑡), 𝑡 ∈ [0, 𝑇],

yields 𝐴−1
[𝑄

5
𝑔
5
](𝑡) = [𝑄

5
(𝐴

−1
𝑔
5
)](𝑡) = ∫

𝑡

0
e(𝑡−𝑠)𝐴𝑔

5
(𝑡)d𝑠.

Similarly as we have done in Proposition 29 for restoring
the loss of regularity produced by 𝑄

2
, we now show how

Lemma 27 allows to restore that produced by 𝑄
5
. We begin

with the following version of Lemma 28 relative to 𝑄
6
, and

which is obtained combining Lemma 27 with Lemma 32
instead of Lemma 24.

Lemma 35. Let 𝛼 and 𝛽 be as in Lemma 32. Then, for every
𝛿
61
∈ ((2−𝛼−𝛽)/𝛼, 1) and 𝛿

62
∈ (0, 1) such that𝜎

6
= 𝛿

61
+𝛿

62
∈

((2 − 𝛼 − 𝛽)/𝛼, 1/𝑝

), 𝑝 ∈ (1/(1 − 𝛿

61
),∞), the operator 𝑄

6

defined by (110) maps 𝐶𝛿61 ([0, 𝑇]; 𝑋
1
) × 𝐶

𝛿62 ([0, 𝑇]; 𝑋
2
) into

𝐶
]6
0
([0, 𝑇]; 𝑋), ]

6
= (𝛼𝜎

6
+𝛼+𝛽−2)/𝛼, and for every 𝑡 ∈ [0, 𝑇]

satisfies the following estimate:

𝑄
6
(𝑔

61
, 𝑔

62
)
]6,0,𝑡;𝑋

≤ 𝑡
−𝜎6+1/𝑝



𝐶
5 (𝑡) 𝑐3 (𝑡)


𝑔
61

𝛿61 ,0,𝑡;𝑋1
(∫

𝑡

0


𝑔
62



𝑝

𝛿62
,0,𝑠;𝑋2

ds)
1/𝑝

.

(149)

Proof. First, if 𝛿
61
∈ ((2−𝛼−𝛽)/𝛼, 1) and𝑝 ∈ (1/(1−𝛿

61
),∞),

then 1/𝑝 ∈ (𝛿
61
, 1) ⊊ ((2 − 𝛼 − 𝛽)/𝛼, 1). Consequently, the

assumption 𝜎
6
= 𝛿

61
+𝛿

62
∈ ((2−𝛼−𝛽)/𝛼, 1/𝑝


)makes sense,
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provided to choose 𝛿
62
∈ (0, 1) small enough. Lemma 27 then

yields K(𝑔
61
, 𝑔

62
) ∈ 𝐶

𝜎6

0
([0, 𝑇]; 𝑋) for any pair (𝑔

61
, 𝑔

62
) ∈

𝐶
𝛿61 ([0, 𝑇]; 𝑋

1
) × 𝐶

𝛿62 ([0, 𝑇]; 𝑋
2
). Then, since 𝑄

6
(𝑔

61
, 𝑔

62
) =

𝑄
5
K(𝑔

61
, 𝑔

62
), the assertion follows from Lemma 32, with

the pair (𝛿
5
, 𝑔

5
) being replaced by (𝜎

6
,K(𝑔

61
, 𝑔

62
)). Finally,

(149) follows from (143) and (132).

From Lemma 35 we obtain the analogous of
Proposition 29 for 𝑄

6
.

Proposition 36. Let 3𝛼 + 2𝛽 > 4 in (H1). Then, for every
𝛿
6
∈ ((2 − 𝛼 − 𝛽)/𝛼, 1/2), the operator 𝑄

6
defined by (110)

maps 𝐶𝛿6([0, 𝑇]; 𝑋
1
) ×𝐶

𝛿6([0, 𝑇]; 𝑋
2
) into 𝐶𝛿6

0
([0, 𝑇]; 𝑋), and

for every 𝑡 ∈ [0, 𝑇] satisfies the following estimate, where 𝑝 ∈

(1/(1−2𝛿
6
),∞) and𝐶

6
(𝑡) = 𝐶

5
(𝑡)𝑐

3
(𝑡)max{1, 𝑡(𝛼𝛿6+𝛼+𝛽−2)/𝛼}:


𝑄
6
(𝑔

61
, 𝑔

62
)
𝛿6 ,0,𝑡;𝑋

≤ 𝑡
1−2𝛿6−1/𝑝𝐶

6 (𝑡)

𝑔
61

𝛿6,0,𝑡;𝑋1
(∫

𝑡

0


𝑔
62



𝑝

𝛿6 ,0,𝑠;𝑋2

ds)
1/𝑝

.

(150)

Proof. Let 𝛿
6
∈ ((2−𝛼−𝛽)/𝛼, 1/2) and𝑝 ∈ (1/(1−2𝛿

6
),∞) ⊊

(1/(1 − 𝛿
6
),∞). Then, 2𝛿

6
∈ ((4 − 2𝛼 − 2𝛽)/𝛼, 1/𝑝


) ⊆

((2−𝛼−𝛽)/𝛼, 1/𝑝

) andwe can apply Lemma 35with 𝛿

6𝑘
= 𝛿

6
,

𝑘 = 1, 2. We thus deduce that 𝑄
6
maps 𝐶𝛿6([0, 𝑇]; 𝑋

1
) ×

𝐶
𝛿6([0, 𝑇]; 𝑋

2
) into 𝐶]6

0
([0, 𝑇]; 𝑋), ]

6
= (2𝛼𝛿

6
+ 𝛼 + 𝛽 − 2)/𝛼.

But, since 𝛿
6
> (2 − 𝛼 − 𝛽)/𝛼 implies ]

6
> 𝛿

6
, we a fortiori

have the fact that 𝑄
6
maps 𝐶𝛿6([0, 𝑇]; 𝑋

1
) × 𝐶

𝛿6([0, 𝑇]; 𝑋
2
)

into 𝐶
𝛿6

0
([0, 𝑇]; 𝑋). Finally, (150) follows from (149) and

‖𝑄
6
(𝑔

61
, 𝑔

62
)‖
𝛿6,0,𝑡;𝑋

≤ max{1, 𝑡]6−𝛿6}‖𝑄
6
(𝑔

61
, 𝑔

62
)‖

]6,0,𝑡;𝑋
.

In Section 6wewill also encounter𝑄
5
acting on functions

which enjoy some space regularity, that is, functions 𝑔
5

which are Hölder continuous in time with values on 𝑌
𝑟

𝛾
∈

{(𝑋,D(𝐴))
𝛾,𝑟
, 𝑋

𝛾,𝑟

𝐴
}. In this case Lemma 32 can be refined,

and the loss of regularity produced by𝑄
5
is naturally restored

by the additional condition of space regularity on 𝑔
5
. In

some sense, the forthcoming Corollary 38 is the analogous of
Lemma 30, where the function 𝑔

4
𝑦 involved in the definition

of 𝑄
4
(𝑔

4
, 𝑦) (cf. (108)) was of class 𝐶𝛿4([0, 𝑇]; 𝑌𝑟

𝛾
).

Lemma 37. Let 𝛼 + 𝛽 > 1 in (H1) and 𝑌𝑟
𝛾
∈ {(𝑋,D(𝐴))

𝛾,𝑟
,

𝑋
𝛾,𝑟

𝐴
}, 𝛾 ∈ (2 − 𝛼 − 𝛽, 1), 𝑟 ∈ [1,∞]. Then, for every 𝛿

5
∈

(0, (𝛼 + 𝛽 + 𝛾 − 2)/𝛼], the operator 𝑄
5
defined by (109) maps

𝐶
𝛿5([0, 𝑇]; 𝑌

𝑟

𝛾
) into 𝐶

𝛿5

0
([0, 𝑇], 𝑋), and for every 𝑡 ∈ [0, 𝑇]

satisfies the following estimate:

𝑄5
𝑔
5

𝛿5,0,𝑡;𝑋
≤ 𝑐

41
𝑡
(𝛼+𝛽+𝛾−2−𝛼𝛿5)/𝛼 (2𝑡

𝛿5 + 1)
𝑔5

𝛿5,0,𝑡;𝑌
𝑟

𝛾

.

(151)

Here 𝑐
41
is a positive constant depending on 𝛼, 𝛽, 𝛾, and 𝑟.

Proof. Let 𝛾 ∈ (2 − 𝛼 − 𝛽, 1) ⊆ (1 − 𝛽, 1) and let 𝜒
𝛼,𝛽,𝛾

be the
number (𝛼 + 𝛽 + 𝛾 − 2)/𝛼 ∈ (0, 1), so that the exponent
(𝛽 + 𝛾 − 2)/𝛼 in (79) with 𝜃 = 1 is equal to 𝜒

𝛼,𝛽,𝛾
− 1.

Let 𝑔
5
∈ 𝐶

𝛿5([0, 𝑇]; 𝑌
𝑟

𝛾
), 𝛿

5
∈ (0, 𝜒

𝛼,𝛽,𝛾
], 𝑟 ∈ [1,∞]. Since

[𝑄
5
𝑔
5
](0) = 0, we assume that 𝑡 ∈ (0, 𝑇] and we observe that,

due to Propositions 6 and 12, [𝑄
5
𝑔
5
](𝑡) is rewritten as follows:

[𝑄
5
𝑔
5
] (𝑡) = [e𝑡𝐴 − 𝐼] 𝑔

5 (𝑡) = lim
𝜀→0
+

[e𝑡𝐴 − e𝜀𝐴] 𝑔
5 (𝑡)

= lim
𝜀→0
+

∫

𝑡

𝜀

𝐷
𝑠
e𝑠𝐴𝑔

5 (𝑡) d𝑠

= − lim
𝜀→0
+

∫

𝑡

𝜀

[(−𝐴)
1
]
∘

e𝑠𝐴𝑔
5 (𝑡) d𝑠

= −∫

𝑡

0

[(−𝐴)
1
]
∘

e𝑠𝐴𝑔
5 (𝑡) d𝑠.

(152)

Indeed, for every 𝜀 ∈ [0, 𝑡) and 𝑥 ∈ 𝑌𝑟
𝛾
, (79) with 𝜃 = 1 yields



∫

𝑡

𝜀

[(−𝐴)
1
]
∘

e𝑠𝐴𝑥 d𝑠
𝑋

≤ 𝑐
22‖𝑥‖𝑌𝑟

𝛾
∫

𝑡

𝜀

𝑠
𝜒𝛼,𝛽,𝛾−1d𝑠 ≤ 𝑐

41‖𝑥‖𝑌𝑟
𝛾
(𝑡 − 𝜀)

𝜒𝛼,𝛽,𝛾 ,

(153)

where 𝑐
41

= 𝑐
22
𝜒
−1

𝛼,𝛽,𝛾
. From (152) and (153) with (𝜀, 𝑡, 𝑥) =

(0, 𝜏, 𝑔
5
(𝜏)) we thus get

𝑄5
𝑔
5

0,0,𝑡;𝑋
= sup

𝜏∈[0,𝑡]

[𝑄5
𝑔
5
] (𝜏)

𝑋

≤ 𝑐
41

𝑔5
0,0,𝑡;𝑌𝑟

𝛾

𝑡
𝜒𝛼,𝛽,𝛾 .

(154)

Now, let 0 ≤ 𝑡
1
< 𝑡

2
≤ 𝑡. From (152) it follows that [𝑄

5
𝑔
5
](𝑡

2
)−

[𝑄
5
𝑔
5
](𝑡

1
) = −∑

2

𝑘=1
𝑉
𝑘;𝑡1 ,𝑡2 ,𝑔5

, where for every function 𝑔 :

[0, 𝑇] → 𝑌
𝑝

𝛾
we have set

𝑉
1;𝑡1 ,𝑡2,𝑔

:= ∫

𝑡1

0

[(−𝐴)
1
]
∘

e𝑠𝐴 [𝑔 (𝑡
2
) − 𝑔 (𝑡

1
)] d𝑠,

𝑉
2;𝑡1 ,𝑡2 ,𝑔

:= ∫

𝑡2

𝑡1

[(−𝐴)
1
]
∘

e𝑠𝐴𝑔 (𝑡
2
) d𝑠.

(155)

Hence, using (153) with the triplet (𝜀, 𝑡, 𝑥) being replaced
by (0, 𝑡

1
, 𝑔

5
(𝑡
2
) − 𝑔

5
(𝑡
1
)) and (𝑡

1
, 𝑡
2
, 𝑔

5
(𝑡
2
)), respectively, we

deduce that

𝑉
1;𝑡1 ,𝑡2,𝑔5

𝑋
≤ 𝑐

41

𝑔5
𝛿5,0,𝑡2 ;𝑌

𝑟

𝛾

𝑡
𝜒𝛼,𝛽,𝛾

1
(𝑡
2
− 𝑡

1
)
𝛿5
,


𝑉
2;𝑡1 ,𝑡2,𝑔5

𝑋
≤ 𝑐

41

𝑔5
0,0,𝑡2 ;𝑌

𝑟

𝛾

(𝑡
2
− 𝑡

1
)
𝜒𝛼,𝛽,𝛾

.

(156)

As a consequence, since 𝛿
5
∈ (0, 𝜒

𝛼,𝛽,𝛾
],

[𝑄5
𝑔
5
] (𝑡

2
) − [𝑄

5
𝑔
5
] (𝑡

1
)
𝑋

≤ 𝑐
41
𝑡
𝜒𝛼,𝛽,𝛾−𝛿5 (𝑡

𝛿5 + 1)
𝑔5

𝛿5,0,𝑡;𝑌
𝑟

𝛾

(𝑡
2
− 𝑡

1
)
𝛿5
.

(157)

Summing up (154) and (157), we obtain (151). The proof is
complete.

Since in Lemma 37 it is not required that 𝑔
5
(0) = 0, the

special case of the constant function 𝑔
5
(𝑡) = 𝑥 ∈ 𝑌

𝑝

𝛾
, 𝑡 ∈

[0, 𝑇], is admissible, and we obtain the following result.
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Corollary 38. Let 𝛼, 𝛽, and𝑌𝑟
𝛾
be as in Lemma 37, and let 𝑥 ∈

𝑌
𝑟

𝛾
, 𝛾 ∈ (2 − 𝛼 − 𝛽, 1), and 𝑟 ∈ [1,∞]. Then, for every 𝛿

7
∈

(0, (𝛼+𝛽+𝛾−2)/𝛼], the function [𝑄
7
𝑥](⋅) := (e⋅𝐴−𝐼)𝑥 belongs

to 𝐶𝛿7
0
([0, 𝑇]; 𝑋), and for every 𝑡 ∈ [0, 𝑇] satisfies the estimate

𝑄7
𝑥
𝛿7,0,𝑡;𝑋

≤ 𝑐
41
𝑡
(𝛼+𝛽+𝛾−2−𝛼𝛿7)/𝛼 (𝑡

𝛿7 + 1) 𝑐
41‖𝑥‖𝑌𝑟

𝛾
. (158)

Proof. Let 𝑔
5
(𝑡) = 𝑥 in the proof of Lemma 37, and observe

that𝑉
1,𝑡1 ,𝑡2 ,𝑔5

reduces to the zero element of𝑋. Estimate (158)
then follows from (154) and the second estimate in (156).

For later purposes, we conclude the section with the
following remark.

Remark 39. The condition 5𝛼 + 2𝛽 > 6 in (H1) required in
Proposition 29 is the strongest among the conditions for the
pair (𝛼, 𝛽) required in Corollary 14 and the other results of
this section. Indeed,

5𝛼 + 2𝛽 > 6 ⇒ 3𝛼 + 2𝛽 > 6 − 2𝛼 ≥ 4

⇒ 3𝛼 + 𝛽 > 4 − 𝛽 ≥ 3

⇒ 2𝛼 + 𝛽 > 3 − 𝛼 ≥ 2

⇒ 𝛼 + 𝛽 > 2 − 𝛼 ≥ 1.

(159)

Hence, if 5𝛼 + 2𝛽 > 6, then Corollary 14 and all the results
from Lemma 22 to Corollary 38 are applicable. Next we will
make large usage of this fact, but we warn the reader that, for
brevity and regarding it as acquired, we will not mention it
anymore.

5. Application to Maximal Time Regularity

Theresults of the previous sections are here applied to correct,
refine, and extend the results in [20] concerning the maximal
time regularity of the solutions to a class of degenerate
abstract evolution equations. Let (𝑋, ‖ ⋅ ‖

𝑋
) and (𝑍, ‖ ⋅ ‖

𝑍
)

be two complex Banach spaces, and consider the following
degenerate first-order integrodifferential Cauchy problem for
V : 𝐼

𝑇
→ 𝑋, where 𝐼

𝑇
= [0, 𝑇], 𝑇 > 0, and 𝑛

1
, 𝑛

2
∈ N:

𝐷
𝑡 (𝑀V (𝑡)) = [𝜆

0
𝑀+ 𝐿] V (𝑡) +

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V) (𝑡)

+

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(𝑡) 𝑦𝑖2

+ 𝑓 (𝑡) , 𝑡 ∈ 𝐼
𝑇
,

𝑀V (0) = 𝑀V
0
.

(160)

Here K is the convolution operator (104) in which
(𝑋

1
, 𝑋

2
, 𝑋

3
) = (𝑍,𝑋,𝑋), whereas 𝑀, 𝐿, and 𝐿

𝑖1
, 𝑖

1
=

1, . . . , 𝑛
1
, are closed single-valued linear operators from

𝑋 to itself, whose domains fulfill the relation D(𝐿) ⊆

⋂
𝑛1

𝑖1=1
[D(𝑀) ∩D(𝐿

𝑖1
)]. Further, we assume that

𝐿 admits a continuous inverse operator 𝐿
−1
∈ L (𝑋) ,

i.e., 0 ∈ 𝜌 (𝐿) ,
(161)

whereas we allow 𝑀 to have no bounded inverse. Hence, in
general, 𝐴 := 𝐿𝑀

−1 is only the m. l. operator defined by

D (𝐴) = {𝑥 ∈ D (𝑀
−1
) : 𝐿 (𝑀

−1
𝑥) ̸= 0}

= {𝑥 ∈ R (𝑀) : 𝑀
−1
𝑥 ∩D (𝐿) ̸= 0}

= {𝑥 ∈ R (𝑀) :

there exists 𝑦 ∈ D (𝐿) such that 𝑦 ∈ 𝑀
−1
𝑥}

= {𝑥 ∈ R (𝑀) : 𝑥 = 𝑀𝑦 for some 𝑦 ∈ D (𝐿)}

= 𝑀 (D (𝐿)) ,

𝐴𝑥 = ⋃

𝑦∈𝑀
−1
𝑥∩D(𝐿)

𝐿𝑦

= {𝐿𝑦 : 𝑦 ∈ D (𝐿) such that𝑥 = 𝑀𝑦} ,

𝑥 ∈ D (𝐴) .

(162)

Therefore, problem (160) can not be reduced, via the change
of unknown 𝑢 = 𝑀V, to an integrodifferential problem
related to single-valued linear operators. On the contrary,
due to (161) and the closed graph theorem, 𝑀𝐿

−1
, 𝐿

𝑖1
𝐿
−1

∈

L(𝑋), 𝑖
1
= 1, . . . , 𝑛

1
. As far as the data vector (𝜆

0
, V
0
, 𝑘

1
, . . . ,

𝑘
𝑛1
, ℎ

1
, . . . , ℎ

𝑛2
, 𝑦

1
, . . . , 𝑦

𝑛2
, 𝑓) is concerned, at the moment,

we only assume 𝜆
0
∈ C, V

0
∈ D(𝑀), 𝑘

𝑖1
: 𝐼

𝑇
→ 𝑍, ℎ

𝑖2
:

𝐼
𝑇
→ C, 𝑦

𝑖2
∈ 𝑋, 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, and 𝑓 : 𝐼

𝑇
→ 𝑋, in

order that (160) makes sense in𝑋.This minimal assumptions
will be refined later. In general, only strict solutions V to
(160) shall be investigated, where (cf. [22, 23]) by a strict
solution V to (160) we mean that, D(𝐿) being endowed with
the graph norm ‖ ⋅ ‖D(𝐿) = ‖ ⋅ ‖

𝑋
+ ‖𝐿 ⋅ ‖

𝑋
, V ∈ 𝐶(𝐼

𝑇
;D(𝐿)),

𝑀V ∈ 𝐶
1
(𝐼
𝑇
; 𝑋), and (160) holds. Clearly, if 𝑀−1 is really a

m. l. operator, then𝑀V(0) = 𝑀V
0
does not necessarily mean

V(0) = V
0
, but only V(0) − V

0
∈ 𝑀

−1
0. As we will see below,

if V
0
∈ D(𝐿) and the data 𝑘

𝑖1
, ℎ

𝑖2
, 𝑦

𝑖2
and 𝑓, 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
,

𝑙 = 1, 2, satisfy suitable assumptions, then for a strict solution
V to (160) it just holds V(0) = V

0
. Throughout the section, 𝑌𝑞𝜓,

𝜓 ∈ (0, 1), 𝑞 ∈ [1,∞], will always denote one between the
spaces (𝑋,D(𝐴))

𝜓,𝑞
and𝑋𝜓,𝑞

𝐴
, 𝐴 being defined by (162). That

is, 𝑌𝑞𝜓 ∈ {(𝑋,D(𝐴))
𝜓,𝑞
, 𝑋

𝜓,𝑞

𝐴
}. To avoid confusion, if more

than a single 𝑌𝑞𝜓 is involved in some statement, that is, if we
write 𝑥

𝑗
∈ 𝑌

𝑞

𝜓𝑗
, 𝑗 = 1, . . . , 𝑛, 𝑛 ∈ N, then it is understood that

the same choice has beenmade for all the𝑌𝑞𝜓𝑗 in the sense that
𝑌
𝑞

𝜓𝑗
= (𝑋,D(𝐴))

𝜓𝑗,𝑞
or 𝑌𝑞𝜓𝑗 = 𝑋

𝜓𝑗 ,𝑞

𝐴
for every 𝑗 = 1, . . . , 𝑛.

According to [2, Section 1.6], we recall that the𝑀-modi-
fied resolvent set 𝜌

𝑀
(𝐿) of 𝐿 is defined to be the set {𝑧 ∈ C :

(𝑧𝑀 − 𝐿)
−1

∈ L(𝑋)}. The bounded operator (𝑧𝑀 − 𝐿)
−1 is

called the𝑀 modified resolvent of 𝐿. It is easy to prove that
𝜌
𝑀
(𝐿) ⊆ 𝜌(𝐴) and that 𝑀(𝑧𝑀 − 𝐿)

−1
= (𝑧𝐼 − 𝐴)

−1, 𝑧 ∈

𝜌
𝑀
(𝐿) (cf. [2,Theorem 1.14]).With the notion of𝑀-modified

resolvent of 𝐿 at hand, we assume that

(H2) 𝜌
𝑀
(𝐿) contains a region Σ

𝛼
= {𝑧 ∈ C : Re 𝑧 ≥

−𝑐(|Im 𝑧| + 1)
𝛼
,Im 𝑧 ∈ R}, 𝛼 ∈ (0, 1], 𝑐 > 0, and
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for some exponent 𝛽 ∈ (0, 𝛼] and constant 𝐶 > 0 the
estimate ‖𝑀(𝜆𝑀 − 𝐿)

−1
‖L(𝑋)

≤ 𝐶(|𝜆|+1)
−𝛽 holds for

every 𝜆 ∈ Σ
𝛼
.

Before we proceed with our analysis we remark that, due
to the wide range of choices for the data vector, problem
(160) contains many subcases at its interior. So, in spite of the
case when at least one between the 𝑘

𝑖
’s is different from zero

and problem (160) is really an integrodifferential one, the
choice 𝑘

𝑖1
= 0, 𝑖

1
= 1, . . . , 𝑛

1
, yields to consider also various

nonintegrodifferential degenerate problems. For instance,
those corresponding to 𝜆

0
= 𝑘

𝑖1
= ℎ

𝑖2
= 0 and 𝜆

0
= 𝑘

𝑖1
=

𝑓 = 0, 𝑖
𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, respectively:

𝐷
𝑡 (𝑀V (𝑡)) = 𝐿V (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ 𝐼

𝑇
,

𝑀V (0) = 𝑀V
0
,

(163)

𝐷
𝑡 (𝑀V (𝑡)) = 𝐿V (𝑡) +

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(𝑡) 𝑦𝑖2

, 𝑡 ∈ 𝐼
𝑇
,

𝑀V (0) = 𝑀V
0
.

(164)

Although (164) differs from (163) only in the fact that 𝑓
is replaced with ∑

𝑛2

𝑖2=1
ℎ
𝑖2
(𝑡)𝑦

𝑖2
; nevertheless a very different

result is achieved when the 𝑦
𝑖2
’s are assumed to belong to𝑌𝑟

𝛾𝑖2

,
at least for opportunely chosen 𝛾

𝑖2
∈ (0, 1), 𝑖

2
= 1, . . . , 𝑛

2
. As

we will see (cf. Remark 51 and Theorem 56), in this situation
the loss of time regularity for the pair (𝐿V, 𝐷

𝑡
𝑀V)with respect

to that of 𝑓, typical of the case 𝛽 < 1 in (H2) (see [21,
Theorem 9], [2, Theorem 3.26], and [22, Theorem 7.2]), can
be restored in order that (𝐿V, 𝐷

𝑡
𝑀V) possesses the maximal

time regularity which is the minimal between the time
regularities of the ℎ

𝑖2
’s.The same phenomenon is carried over

into the integrodifferential case for the following problems,
corresponding to 𝜆

0
= ℎ

𝑖2
= 0, 𝑖

2
= 1, . . . , 𝑛

2
, and 𝜆

0
= 𝑓 = 0:

𝐷
𝑡 (𝑀V (𝑡)) = 𝐿V (𝑡) +

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V) (𝑡) + 𝑓 (𝑡) ,

𝑀V (0) = 𝑀V
0
,

(165)

𝐷
𝑡 (𝑀V (𝑡)) = 𝐿V (𝑡) +

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V) (𝑡) +

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(𝑡) 𝑦𝑖2

,

𝑀V (0) = 𝑀V
0
,

(166)

𝑡 ∈ 𝐼
𝑇
. When 𝛽 < 1, the loss of time regularity for the pair

(𝐿V, 𝐷
𝑡
𝑀V) with respect to that of the vector (𝑘

1
, . . . , 𝑘

𝑛1
, 𝑓)

in problem (165) (cf. [22, Theorem 7.1] and [23, Theorem 2.1]
for 𝑛

1
= 1) can be restored in problem (166) assuming that

𝑦
𝑖2

∈ 𝑌
𝑟

𝛾𝑖2

, 𝑖
2
= 1, . . . , 𝑛

2
. In this context (cf. Remark 51

and Theorem 53) the pair (𝐿V, 𝐷
𝑡
𝑀V) has the maximal time

regularity which is the minimal between the time regularities
of the 𝑘

𝑖1
’s and ℎ

𝑖2
’s.

We stress that, if 𝛽 = 1, then no loss of time regularity
is observed and all the quoted results agree with the well-
known theory of maximal regularity in spaces of continuous

functions for the nondegenerate version of (160), corre-
sponding to the case when 𝑀 = 𝐼 and 𝐿 generates an
analytic semigroup. Hence, roughly speaking, one can verify
the consistency of any result on problem (160) with condition
(H2) simply by letting 𝛽 = 1 on its statement, and then
checking if it is compatible with those for the nondegenerate
case. To this purpose, we recall that the question of maximal
regularity for the nondegenerate (possibly nonautonomous)
version of (160) has been deeply investigated by several
authors. See, for instance, [4, 6–8, 10, 32] for problem (165)
with (𝑀, 𝛽, 𝑛

1
) = (𝐼, 1, 1) and [9, 11] for problem (163) with

(𝑀, 𝛽) = (𝐼, 1).
Finally, assumption (161) excludes the case of 𝐿 = 0 in

(160), so that our results cannot be comparedwith those in [5,
33, 34]. There, assuming that the bilinear bounded operator
P underlying the definition ofK is the scalar multiplication
in𝑋, the problem

𝐷
𝑡
V (𝑡) = K (𝑘

1
, 𝐿

1
V) (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ 𝐼

𝑇
, V (0) = V

0

(167)

is treated under the following assumptions: (i) 𝐿
1
is a

closed densely defined linear operator generating an analytic
semigroup; (ii) 𝑘

1
: [0,∞) → R is absolutely Laplace trans-

formable. Observe that, if (𝑘
1
, 𝑓) = (1, 0), then problem

(167) reduces to the abstact wave equation 𝐷2

𝑡
V(𝑡) = 𝐿

1
V(𝑡),

𝐷
𝑡
V(0) = 0, V(0) = V

0
, whereas when𝑀 = 𝐼 and 𝜆

0
= 𝑘

𝑖1
=

ℎ
𝑖2
= 𝑓 = 0, 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, problem (160) reduces to

the abstract heat equation 𝐷
𝑡
V(𝑡) = 𝐿V(𝑡), V(0) = V

0
. In other

words, whereas [5, 33, 34] are concerned with the hyperbolic
case, here we are concerned with the parabolic one.

Let us now come back to problem (160). Of course,
assumption (H2) implies that the operator𝐴 defined by (162)
satisfies (H1), so that it generates a semigroup {e𝑡𝐴}

𝑡≥0
defined

by e0𝐴 = 𝐼 and (9) and satisfying (14). Assuming that V
0
∈

D(𝐿), we let

𝑤 = 𝐿 (V − V
0
) ⇐⇒ V = 𝐿

−1
𝑤 + V

0
. (168)

Then, by setting

𝐹
𝑤 (𝑡) = 𝜆

0
𝐴
−1
𝑤 (𝑡)

+

𝑛1

∑

𝑖1=1

[K (𝑘
𝑖1
, 𝑆

𝑖1
𝑤) (𝑡) +K (𝑘

𝑖1
, 𝐿

𝑖1
V
0
) (𝑡)]

+

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(𝑡) 𝑦𝑖2

+ V
1
+ 𝑓 (𝑡) , 𝑡 ∈ 𝐼

𝑇
,

(169)

where 𝐴−1
= 𝑀𝐿

−1
∈ L(𝑋), 𝑆

𝑖1
= 𝐿

𝑖1
𝐿
−1

∈ L(𝑋), 𝑖
1
=

1, . . . , 𝑛
1
, and V

1
= (𝜆

0
𝑀 + 𝐿)V

0
, we see that V is a strict

solution to (160) if and only if 𝑤 satisfies (indeed, if V ∈

𝐶(𝐼
𝑇
;D(𝐿)), then ‖𝑤(𝑡) − 𝑤(𝑠)‖

𝑋
= ‖𝐿[V(𝑡) − V(𝑠)]‖

𝑋
≤

‖V(𝑡) − V(𝑠)‖D(𝐿) → 0 as 𝑠 → 𝑡, 𝑡, 𝑠 ∈ 𝐼
𝑇
, that is, 𝑤 ∈ 𝐶

(𝐼
𝑇
; 𝑋). Conversely, if 𝑤 ∈ 𝐶(𝐼

𝑇
; 𝑋), then V = 𝐿

−1
𝑤 + V

0
∈

D(𝐿) and ‖V(𝑡) − V(𝑠)‖D(𝐿) ≤ (‖𝐿
−1
‖L(𝑋)

+ 1)‖𝑤(𝑡) −

𝑤(𝑠)‖
𝑋

→ 0 as 𝑠 → 𝑡, 𝑡, 𝑠 ∈ 𝐼
𝑇
, that is, V ∈ 𝐶(𝐼

𝑇
;D(𝐿)).

Finally, since 𝑀V = 𝐴
−1
𝑤 + 𝑀V

0
, we have 𝑀V ∈ 𝐶

1
(𝐼
𝑇
; 𝑋)
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if and only if 𝐴−1
𝑤 ∈ 𝐶

1
(𝐼
𝑇
; 𝑋)) 𝑤 ∈ 𝐶(𝐼

𝑇
; 𝑋), 𝐴−1

𝑤 ∈

𝐶
1
(𝐼
𝑇
; 𝑋), and solves to the following problem:

𝐷
𝑡
(𝐴

−1
𝑤 (𝑡)) = 𝑤 (𝑡) + 𝐹𝑤 (𝑡) ∈ 𝐴 (𝐴

−1
𝑤 (𝑡)) + 𝐹𝑤 (𝑡) ,

𝑡 ∈ 𝐼
𝑇
,

𝐴
−1
𝑤 (0) = 0 (i.e., 𝑤 (0) ∈ 𝐴0) .

(170)

Now let 2𝛼 + 𝛽 > 2, and assume that 𝑘
𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍), ℎ

𝑖2
∈

𝐶
𝜎𝑖2 (𝐼

𝑇
;C), and 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋), where 𝜂

𝑖1
, 𝜎

𝑖2
, 𝜇 ∈ (2 − 𝛼 −

𝛽/𝛼, 1), 𝑖
𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2. Then, if 𝑤 ∈ 𝐶(𝐼

𝑇
; 𝑋) is a

solution to (170) such that𝐴−1
𝑤 ∈ 𝐶

1
(𝐼
𝑇
; 𝑋), the function 𝐹

𝑤

satisfies

𝐹
𝑤
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) ,

𝛿 = min
𝑖𝑘=1,...,𝑛𝑘, 𝑘=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
, 𝜇} ∈ (

2 − 𝛼 − 𝛽

𝛼
, 1) .

(171)

Indeed, 𝛿 being the smallest Hölder exponent, for every 𝑖
𝑙
=

1, . . . , 𝑛
𝑙
, 𝑙 = 1, 2, we have 𝐴−1

𝑤, ℎ
𝑖2
𝑦
𝑖2
, 𝑓 ∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) and

K(𝑘
𝑖1
, 𝑆

𝑖1
𝑤), K(𝑘

𝑖1
, 𝐿

𝑖1
V
0
) ∈ 𝐶

𝜂𝑖1

0
(𝐼
𝑇
; 𝑋) → 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋) (cf.

Lemma 27 for the case (𝛿
31
, 𝛿

32
, 𝑋

1
, 𝑋

2
) = (𝜂

𝑖1
, 0, 𝑍,𝑋) with

the pair (𝑔
31
, 𝑔

32
) being replaced by (in fact, since 𝑆

𝑖1
=

𝐿
𝑖1
𝐿
−1

∈ L(𝑋), 𝑖
1
= 1, . . . , 𝑛

1
, if 𝑤 ∈ 𝐶(𝐼

𝑇
; 𝑋), then 𝑆

𝑖1
𝑤 ∈

𝐶(𝐼
𝑇
; 𝑋), whereas the constant functions 𝜅

𝑖1
(𝑡) = 𝐿

𝑖1
V
0
, 𝑡 ∈

𝐼
𝑇
, 𝑖
1
= 1, . . . , 𝑛

1
, obviously belong to 𝐶(𝐼

𝑇
; 𝑋)) (𝑘

𝑖1
, 𝑆

𝑖1
𝑤)

and (𝑘
𝑖1
, 𝐿

𝑖1
V
0
), resp.). Consequently (cf. [2, Theorem 3.7 and

Remark p. 54] with 𝑢
0

= 0), the solution 𝐴
−1
𝑤 to the

multivalued evolution problem 𝐷
𝑡
(𝐴

−1
𝑤) ∈ 𝐴(𝐴

−1
𝑤) + 𝐹

𝑤
,

𝐴
−1
𝑤(0) = 0 is necessarily of the form

𝐴
−1
𝑤 (𝑡) = [𝑄

1
𝐹
𝑤
] (𝑡) , 𝑡 ∈ 𝐼

𝑇
, (172)

with 𝑄
1
being the operator defined by (105). Further (cf. [2,

Remark p. 55] with 𝑢
0
= 0, and where 𝐴∘e𝑡𝐴 stands for

𝐷
𝑡
e𝑡𝐴 = −[(−𝐴)

1
]
∘e𝑡𝐴) the derivative of 𝐴−1

𝑤 is given by

𝐷
𝑡
(𝐴

−1
𝑤 (𝑡)) = e𝑡𝐴𝐹

𝑤 (𝑡) − [𝑄2
𝐹
𝑤
] (𝑡) , 𝑡 ∈ 𝐼

𝑇
\ {0} ,

(173)

with 𝑄
2
being the operator in (106). Notice that 𝑄

2
𝐹
𝑤
is well

defined by virtue of (127) with 𝑔 = 𝐹
𝑤
. Now let 𝑦

𝑖2
∈ 𝑌

𝑟

𝛾𝑖2

and V
1
+ 𝑓(0) ∈ 𝑌

𝑟

𝜑
where 𝛾

𝑖2
, 𝜑 ∈ (1 − 𝛽, 1), 𝑖

2
= 1, . . . ,

𝑛
2
, and 𝑟 ∈ [1,∞]. Since 𝐴−1

𝑤(0) = K(𝑘
𝑖1
, 𝑆

𝑖1
𝑤)(0) =

K(𝑘
𝑖1
, 𝐿

𝑖1
V
0
)(0) = 0, 𝑖

1
= 1, . . . , 𝑛

1
, from (169) it thus follows

that 𝐹
𝑤
(0) := 𝑥

0
is independent on 𝑤 and

𝑥
0
=

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(0) 𝑦𝑖2

+ V
1
+ 𝑓 (0) ∈ 𝑌

𝑟

𝛾
,

𝛾 = min
𝑖2=1,...,𝑛2

{𝛾
𝑖2
, 𝜑} ∈ (1 − 𝛽, 1) .

(174)

Indeed (cf. (20) or (38)), we have 𝑌𝑟
𝛾𝑖2

→ 𝑌
𝑟

𝛾
, 𝑖
2
= 1, . . . , 𝑛

2
,

and 𝑌
𝑟

𝜑
→ 𝑌

𝑟

𝛾
, the embeddings being equalities for those

between the numbers 𝛾
1
, . . . , 𝛾

𝑛2
and 𝜑 which are equal to

𝛾. Then, under these assumptions on the data, formula (173)
for 𝐷

𝑡
(𝐴

−1
𝑤(𝑡)) can be extended until 𝑡 = 0. For, we have

lim
𝑡→0
+𝐷

𝑡
(𝐴

−1
𝑤(𝑡)) = 𝑥

0
∈ 𝐴0 + 𝑥

0
and the differential

equation in (170) is satisfied even at 𝑡 = 0. To see this, we
observe that


𝐷
𝑡
(𝐴

−1
𝑤 (𝑡)) − 𝑥0

𝑋
≤ 𝐼

1 (𝑡) + 𝐼2,𝑤 (𝑡) + 𝐼3,𝑤 (𝑡) ,

𝑡 ∈ 𝐼
𝑇
\ {0} ,

(175)

where 𝐼
1
(𝑡) = ‖(e𝑡𝐴 − 𝐼)𝑥

0
‖
𝑋
, 𝐼

2,𝑤
(𝑡) = ‖e𝑡𝐴[𝐹

𝑤
(𝑡) − 𝑥

0
]‖
𝑋
,

and 𝐼
3,𝑤
(𝑡) = ‖[𝑄

2
𝐹
𝑤
](𝑡)‖

𝑋
. First, from Proposition 6 we get

lim
𝑡→0
+𝐼
1
(𝑡) = 0. On the other side, using 𝐹

𝑤
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋),

𝛿 ∈ ((2 − 𝛼 − 𝛽)/𝛼, 1) ⊆ ((1 − 𝛽)/𝛼, 1), we obtain

𝐼
2,𝑤 (𝑡) ≤ 𝑐

𝛼,𝛽,0

𝐹𝑤
𝛿,0,𝑡;𝑋

𝑡
(𝛼𝛿+𝛽−1)/𝛼

, 𝑡 ∈ 𝐼
𝑇
\ {0} , (176)

so that lim
𝑡→0
+𝐼
2,𝑤
(𝑡) = 0. Finally, (127) with 𝑔 = 𝐹

𝑤
yields

lim
𝑡→0
+𝐼
3,𝑤
(𝑡) = 0, too. Formula (173) thus holds at 𝑡 = 0

with𝐷
𝑡
(𝐴

−1
𝑤(0)) = lim

𝑡→0
+𝐷

𝑡
(𝐴

−1
𝑤(𝑡)) = 𝑥

0
.

Remark 40. In [2, Remark p. 55], formula (173) was extended
until 𝑡 = 0 only under the more restrictive assumption 𝑥

0
∈

𝑋
𝛾,∞

𝐴
, 𝛾 ∈ (1 − 𝛽, 1). Indeed [24, Proposition 5.2] was not

available at the time of [2] and only the strong continuity of
{e𝑡𝐴}

𝑡≥0
in the 𝑋-norm on the spaces 𝑋𝛾,∞

𝐴
, 𝛾 ∈ (1 − 𝛽, 1),

was known (cf. [2, Theorem 3.3]). Notice that in the case of
problem (163) the element 𝑥

0
reduces to 𝐿V

0
+ 𝑓(0), so that

in the nondegenerate case (𝑀, 𝛽) = (𝐼, 1) we get back the
classical assumption 𝐿V

0
+ 𝑓(0) ∈ (𝑋,D(𝐿))

𝛾,𝑟
, 𝛾 ∈ (0, 1),

𝑟 ∈ [1,∞] (see, for instance, [9, Theorem 4.3.1(iii)] and [11,
Theorem 4.5]).

Since (170) implies that𝑤(𝑡) = 𝐷
𝑡
(𝐴

−1
𝑤(𝑡))−𝐹

𝑤
(𝑡), from

(173) we thus find that

𝑤 (𝑡) = [𝑄
7
𝑥
0
] (𝑡) + (e𝑡𝐴 − 𝐼) [𝐹𝑤 (𝑡) − 𝑥0] − [𝑄2

𝐹
𝑤
] (𝑡) ,

𝑡 ∈ 𝐼
𝑇
,

(177)

where, according to the notation in Corollary 38, we have set
[𝑄

7
𝑥
0
](𝑡) = (e𝑡𝐴 − 𝐼)𝑥

0
. In particular, 𝑤(0) = 0. We conclude

that, under the previous assumptions on the pair (𝛼, 𝛽) and
on the data vector (𝑘

1
, . . . , 𝑘

𝑛1
, ℎ

1
, . . . , ℎ

𝑛2
, 𝑦

1
, . . . , 𝑦

𝑛2
, 𝑓, V

1
), if

𝑤 ∈ 𝐶(𝐼
𝑇
; 𝑋) solves (170), then necessarily 𝑤 ∈ 𝐶

0
(𝐼
𝑇
; 𝑋). As

a consequence (cf. (168)), the strict solution V to (160) satisfies
the initial condition just in the sense V(0) = V

0
.

Introduce the functions 𝑓 : 𝐼
𝑇
→ 𝑋 and ℎ̃

𝑖2
: 𝐼

𝑇
→ 𝑌

𝑟

𝛾𝑖2

,
𝑖
2
= 1, . . . , 𝑛

2
, defined by

𝑓 (𝑡) = 𝑓 (𝑡) − 𝑓 (0) , ℎ̃
𝑖2
(𝑡) = [ℎ

𝑖2
(𝑡) − ℎ𝑖2

(0)] 𝑦𝑖2
,

𝑡 ∈ 𝐼
𝑇
.

(178)

Then, replacing 𝐹
𝑤
with the right-hand side of (169), using

(174), and recalling the definitions of the operators 𝑄
𝑗
,



Abstract and Applied Analysis 25

𝑗 = 2, . . . , 6, in (106)–(110), from (177) we deduce that𝑤 ∈ 𝐶
0

(𝐼
𝑇
; 𝑋) solves the fixed-point equation

𝑤 = 𝑤
0
+ 𝑤

1
+ 𝑅𝑤, (179)

the functions 𝑤
𝑙
, 𝑙 = 0, 1, and the operator 𝑅𝑤 being defined

by

𝑤
0
:= 𝑄

7
𝑥
0
+

𝑛1

∑

𝑖1=1

𝑄
6
(𝑘

𝑖1
, 𝐿

𝑖1
V
0
) +

𝑛2

∑

𝑖2=1

𝑄
5
ℎ̃
𝑖2
+ 𝑄

5
𝑓, (180)

𝑤
1
:= −

𝑛1

∑

𝑖1=1

𝑄
3
(𝑘

𝑖1
, 𝐿

𝑖1
V
0
) −

𝑛2

∑

𝑖2=1

𝑄
4
(ℎ

𝑖2
, 𝑦

𝑖2
) − 𝑄

2
𝑓, (181)

𝑅𝑤 := 𝜆
0
[𝑄

5
(𝐴

−1
𝑤) − 𝑄

2
(𝐴

−1
𝑤)]

+

𝑛1

∑

𝑖1=1

[𝑄
6
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤) − 𝑄

3
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)] .

(182)

Conversely, let 𝑤 ∈ 𝐶
0
(𝐼
𝑇
; 𝑋) be a solution to the fixed-

point equation (179), and assume that the pair (𝛼, 𝛽) and the
data vector (𝑘

1
, . . . , 𝑘

𝑛1
, ℎ

1
, . . . , ℎ

𝑛2
, 𝑦

1
, . . . , 𝑦

𝑛2
, 𝑓, V

1
) satisfy

the assumptions below (170) and (173). Then, as before,
K(𝑘

𝑖1
, 𝑆

𝑖1
𝑤),K(𝑘

𝑖1
, 𝐿

𝑖1
V
0
) ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋) and ℎ

𝑖2
𝑦
𝑖2
, 𝑓 ∈

𝐶
𝛿
(𝐼
𝑇
; 𝑋), 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, 𝛿 ∈ ((2−𝛼−𝛽)/𝛼, 1) being as

in (171). We apply 𝐴−1
∈ L(𝑋) to both sides of (179), and we

show that 𝐴−1
𝑤 satisfies (172) with 𝐹

𝑤
∈ 𝐶(𝐼

𝑇
; 𝑋) as in (169),

so that 𝐴−1
𝑤 is a solution to problem (170). To this purpose,

we take into account Corollaries 14 and 26. Let 𝑡 ∈ 𝐼
𝑇
. First

(cf. Remark 34 and recall that𝑄
6
(⋅, ⋅) = 𝑄

5
K(⋅, ⋅)), using (86),

(174), and (178), we get

𝐴
−1
𝑤
0 (𝑡)

= ∫

𝑡

0

e(𝑡−𝑠)𝐴 [𝑥
0
+

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V
0
) (𝑡)

+

𝑛2

∑

𝑖2=1

ℎ̃
𝑖2
(𝑡) + 𝑓 (𝑡)] d𝑠

= ∫

𝑡

0

e(𝑡−𝑠)𝐴 [V
1
+

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V
0
) (𝑡)

+

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(𝑡) 𝑦𝑖2

+ 𝑓 (𝑡)] d𝑠.

(183)

Instead, due to the definition of𝑄
3
and𝑄

4
, using (125) we

obtain

𝐴
−1
𝑤
1 (𝑡)

= ∫

𝑡

0

e(𝑡−𝑠)𝐴{
𝑛1

∑

𝑖1=1

[K (𝑘
𝑖1
, 𝐿

𝑖1
V
0
) (𝑠) −K (𝑘

𝑖1
, 𝐿

𝑖1
V
0
) (𝑡)]

+

𝑛2

∑

𝑖2=1

[ℎ
𝑖2
(𝑠) − ℎ𝑖2

(𝑡)] 𝑦𝑖2
+ 𝑓 (𝑠) − 𝑓 (𝑡)} d𝑠.

(184)

Therefore, from (183), (184), and the definition (105) of 𝑄
1
it

follows that

𝐴
−1
[𝑤

0
+ 𝑤

1
] (𝑡)

= [𝑄
1
(V

1
+

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝐿

𝑖1
V
0
) +

𝑛2

∑

𝑖2=1

ℎ
𝑖2
𝑦
𝑖2
+ 𝑓)] (𝑡) ,

(185)

the left-hand side being well-defined due to Remark 23. As
far as𝐴−1

[𝑅𝑤](𝑡) is concerned, we first observe that,𝑤 being
in 𝐶(𝐼

𝑇
; 𝑋), from formula (126) and Remark 34 it follows

that [𝑄
2
(𝐴

−1
𝑤)](𝑡) and [𝑄

5
(𝐴

−1
𝑤)](𝑡) are both well defined

and equal to −∫𝑡
0
e(𝑡−𝑠)𝐴[𝑤(𝑠) − 𝑤(𝑡)]d𝑠 and ∫𝑡

0
e(𝑡−𝑠)𝐴𝑤(𝑡) d𝑠,

respectively. Consequently

[𝑄
5
(𝐴

−1
𝑤) − 𝑄

2
(𝐴

−1
𝑤)] (𝑡)

= ∫

𝑡

0

e(𝑡−𝑠)𝐴𝑤 (𝑠) d𝑠 = [𝑄
1
𝑤] (𝑡) .

(186)

Hence, commuting 𝐴−1
∈ L(𝑋) with both the integral sign

and the semigroup, one has

𝐴
−1
[𝑄

5
(𝐴

−1
𝑤) − 𝑄

2
(𝐴

−1
𝑤)] (𝑡) = [𝑄

1
(𝐴

−1
𝑤)] (𝑡) .

(187)

Similarly, since Remark 34 and formula (125) yield

𝐴
−1
[𝑄

6
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)] (𝑡) = ∫

𝑡

0

e(𝑡−𝑠)𝐴K (𝑘
𝑖1
, 𝑆

𝑖1
𝑤) (𝑡) d𝑠,

𝐴
−1
[𝑄

3
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)] (𝑡)

= −∫

𝑡

0

e(𝑡−𝑠)𝐴 [K (𝑘
𝑖1
, 𝑆

𝑖1
𝑤) (𝑠) −K (𝑘

𝑖1
, 𝑆

𝑖1
𝑤) (𝑡)] d𝑠,

(188)

we find that

𝐴
−1
[𝑄

6
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤) − 𝑄

3
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)] (𝑡)

= [𝑄
1
K (𝑘

𝑖1
, 𝑆

𝑖1
𝑤)] (𝑡) ,

(189)

𝑖
1
= 1, . . . , 𝑛

1
. In conclusion, from (187) and (189) it follows

that

𝐴
−1
[𝑅𝑤] (𝑡) = [𝑄

1
(𝜆

0
𝐴
−1
𝑤 +

𝑛1

∑

𝑖1=1

K (𝑘
𝑖1
, 𝑆

𝑖1
𝑤))] (𝑡) .

(190)

Summing up (185) and (190), we finally obtain 𝐴
−1
𝑤(𝑡) =

[𝑄
1
𝐹
𝑤
](𝑡), 𝐹

𝑤
being as in (169). This completes the proof of

the equivalence between problem (170) and the fixed point
equation (179), provided that the data satisfy the mentioned
assumptions.

Remark 41. We can summarize the previous reasonings as
follows: problem (160) has been reduced to the fixed-point
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equation (179) for the new unknow𝑤 = 𝐿(V− V
0
), V

0
∈ D(𝐿).

This fixed-point argument is similar to that first successfully
applied in [4, 7, 8, 32] to problem (165) with (𝑀, 𝛽, 𝑛

1
) =

(𝐼, 1, 1) and then generalized in [23] to the degenerate case.
A different approach has been followed in [6, 10] for the
nondegenerate case and in [22] for the degenerate one.There,
assuming that 𝑘

1
is absolutely Laplace transformable (cf.

[6, 22]) or of bounded variation (cf. [10]), problem (165) with
𝑛
1
= 1 is solved by constructing its relative resolvent operator.

We quote also [35] where themethod of constructing the fun-
damental solution for the equation without the integral term
is applied to a class of concrete degenerate integrodifferential
equations.

From now on, for 5𝛼 + 2𝛽 > 6, 𝛽 ∈ (0, 𝛼], 𝛼 ∈ (0, 1], and
] ∈ ((3−2𝛼−𝛽)/𝛼, 1), 𝐼

𝛼,𝛽,] ⊆ ((3−2𝛼−𝛽)/𝛼, 1/2) ⊆ (0, 1/2)

will denote the interval defined by

𝐼
𝛼,𝛽,]

=

{{{

{{{

{

(
3 − 2𝛼 − 𝛽

𝛼
, ]] , if ] ∈ (

3 − 2𝛼 − 𝛽

𝛼
,
1

2
) ,

(
3 − 2𝛼 − 𝛽

𝛼
,
1

2
) , if ] ∈ [1

2
, 1) .

(191)

Clearly, if ], 𝜌 ∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), ] ≤ 𝜌, then 𝐼
𝛼,𝛽,] ⊆ 𝐼

𝛼,𝛽,𝜌
.

Lemma42. Assume (161), and let 5𝛼+2𝛽 > 6 in (H2). Assume
that 𝑘

𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍), 𝜂

𝑖1
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 𝑖

1
= 1, . . . , 𝑛

1
,

and let 𝜂 = min
𝑖1=1,...,𝑛1

𝜂
𝑖1
. Then, for every fixed 𝛿 ∈ 𝐼

𝛼,𝛽,𝜂
, the

operator 𝑅 defined by (182) maps continuously 𝐶𝛿(𝐼
𝑇
; 𝑋) into

𝐶
𝛿

0
(𝐼
𝑇
; 𝑋), and for every 𝑡 ∈ 𝐼

𝑇
satisfies the following estimate,

where 𝑝 ∈ (1/(1 − 2𝛿),∞):

‖𝑅𝑤‖𝛿,0,𝑡;𝑋 ≤ 𝑐
42 (𝑇) (∫

𝑡

0

‖𝑤‖
𝑝

𝛿,0,𝑠;𝑋
ds)

1/𝑝

, 𝑤 ∈ 𝐶
𝛿
(𝐼
𝑇
; 𝑋) .

(192)

Here 𝑐
42
(𝑇) is a positive constant depending only on 𝑇, 𝜆

0
, 𝛼,

𝛽, 𝜂
𝑖1
, 𝛿, 𝑝, ‖𝑘

𝑖1
‖
𝜂𝑖1
,0,𝑇;𝑍

and ‖𝑆
𝑖1
‖
L(𝑋)

, 𝑖
1
= 1, . . . , 𝑛

1
.

Proof. Let 𝑘
𝑖1
∈ 𝐶

𝜂𝑖(𝐼
𝑇
; 𝑍), 𝜂

𝑖1
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 𝑖

1
= 1,

. . . , 𝑛
1
, and let us fix an arbitrary number 𝛿 ∈ 𝐼

𝛼,𝛽,𝜂
, where

𝜂 = min
𝑖1=1,...,𝑛1

𝜂
𝑖
. In particular, since 𝛿 ≤ 𝜂 ≤ 𝜂

𝑖
, we have

𝑘
𝑖1
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑍) with ‖𝑘

𝑖1
‖
𝛿,0,𝑡;𝑍

≤ max{1, 𝑡𝜂𝑖1−𝛿}‖𝑘
𝑖1
‖
𝜂𝑖1
,0,𝑡;𝑍

,

𝑖
1
= 1, . . . , 𝑛

1
. Now let 𝑤 ∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) and 𝑡 ∈ 𝐼

𝑇
. First,

formula (186) being applicable, we rewrite (182) as

𝑅𝑤 = 𝜆
0
𝑄
1
𝑤 +

𝑛1

∑

𝑖1=1

[𝑄
6
(𝑘

𝑖1 ,
𝑆
𝑖1
𝑤) − 𝑄

3
(𝑘

𝑖
, 𝑆

𝑖
𝑤)] . (193)

Now, we notice that 5𝛼 + 2𝛽 > 6 implies that

𝛼 + 𝛽 − 1

𝛼
=
5𝛼 + 2𝛽 − 3𝛼 − 2

2𝛼
>
4 − 3𝛼

2𝛼
≥
1

2
. (194)

Since (1 − 𝛽)/𝛼 ≤ (2 − 𝛼 − 𝛽)/𝛼 ≤ (3 − 2𝛼 − 𝛽)/𝛼, from (194)
it follows that 𝛿 ∈ 𝐼

𝛼,𝛽,𝜂
⊆ ((3 − 2𝛼 − 𝛽)/𝛼, 1/2) ⊆ ((2 − 𝛼 −

𝛽)/𝛼, 1/2) ⊊ ((1 − 𝛽)/𝛼, (𝛼 + 𝛽 − 1)/𝛼), and, consequently,

𝛼

𝛼 + 𝛽 − 1 − 𝛼𝛿
<

1

1 − 2𝛿
. (195)

We conclude (cf. Remark 39) that Lemma 22 and Proposi-
tions 29 and 36 are applicable with 𝛿 ∈ 𝐼

𝛼,𝛽,𝜂
and 𝑝 ∈ (1/(1 −

2𝛿),∞). Then, using estimates (111), (135), and (150) with the
pair (𝑔

1
, 𝛿

1
) and the quintuplets (𝑔

𝑙1
, 𝑔

𝑙2
, 𝛿

𝑙
, 𝑋

1
, 𝑋

2
), 𝑙 = 3, 6,

being replaced, respectively, by (𝑤, 𝛿) and (indeed, since 𝑆
𝑖1
=

𝐿
𝑖1
𝐿
−1
∈ L(𝑋), if 𝑤 ∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋), then 𝑆

𝑖1
𝑤 ∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) with

‖𝑆
𝑖1
𝑤‖

𝛿,0,𝑡;𝑋
≤ ‖𝑆

𝑖1
‖
L(𝑋)

‖𝑤‖
𝛿,0,𝑡;𝑋

, 𝑖
1
= 1, . . . , 𝑛

1
) (𝑘

𝑖1
, 𝑆

𝑖1
𝑤,

𝛿, 𝑍,𝑋), 𝑖
1
= 1, . . . , 𝑛

1
, from (193) we finally obtain

‖𝑅𝑤‖𝛿,0,𝑡;𝑋 ≤
𝜆0𝑄1

𝑤
𝛿,0,𝑡;𝑋

+ ∑

𝑙=3,6, 𝑖1=1,...,𝑛1


𝑄
𝑙
(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)

𝛿,0,𝑡;𝑋

≤ 𝑐
42 (𝑇) (∫

𝑡

0

‖𝑤‖
𝑝

𝛿,0,𝑠;𝑋
d𝑠)

1/𝑝

.

(196)

Here we have set 𝑐
42
(𝑇) = |𝜆

0
|𝐶

1
(𝑇) +

𝑇
1−2𝛿−1/𝑝

∑
𝑙=3,6, 𝑖1=1,...,𝑛1

𝐶
𝑙
(𝑇)‖𝑘

𝑖1
‖
𝛿,0,𝑇;𝑍

‖𝑆
𝑖1
‖
L(𝑋)

, where
𝐶
𝑙
(𝑇), 𝑙 = 1, 3, 6, are the values at 𝑡 = 𝑇 of the functions 𝐶

𝑙
(𝑡)

in Lemma 22 and Propositions 29 and 36.This completes the
proof.

Remark 43. Assume that in Lemma 42 the Hölder exponents
𝜂
𝑖1
∈ ((3−2𝛼−𝛽)/𝛼, 1) are such that 𝜂 = min

𝑖1=1,...,𝑛1
𝜂
𝑖
belongs

to ((3 − 2𝛼 − 𝛽)/𝛼, 1/2). In this case (cf. (191)), the choice
𝛿 = 𝜂 is admissible, and the meaning of Lemma 42 is that
the operator 𝑅 defined by (182) preserves the minimal of the
time regularities of 𝑘

1
, . . . , 𝑘

𝑛1
.

Corollary 44. Let the assumptions of Lemma 42 be satisfied,
and let 𝜂 and 𝑅 be as there. Then, for every fixed 𝛿 ∈ 𝐼

𝛼,𝛽,𝜂
, the

sequence {𝑅𝑛}∞
𝑛=0

(𝑅0 = 𝐼, 𝑅𝑛 = 𝑅𝑅
𝑛−1, 𝑛 ∈ N) satisfies the

following estimates, where 𝑤 ∈ 𝐶
𝛿
(𝐼
𝑇
; 𝑋) and 𝑝 ∈ (1/(1 −

2𝛿),∞):

𝑅
𝑛
𝑤
𝛿,0,𝑡;𝑋

≤ [𝑐
42 (𝑇)]

𝑛
(
𝑡
𝑛

𝑛!
)

1/𝑝

‖𝑤‖𝛿,0,𝑇;𝑋,

𝑡 ∈ 𝐼
𝑇
, 𝑛 ∈ N ∪ {0} .

(197)

Proof. Reasoning as in [23, p. 468], we prove (197) by
induction. Since for every fixed 𝛿 ∈ 𝐼

𝛼,𝛽,𝜂
the operator𝑅maps

𝐶
𝛿
(𝐼
𝑇
; 𝑋) in 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), replacing 𝑤 with 𝑅

𝑛
𝑤 in (192) and

introducing the sequence of scalar nonnegative nondecreas-
ing functions {𝜑

𝑛
}
∞

𝑛=0
defined by 𝜑

𝑛
(𝑡) = ‖𝑅

𝑛
𝑤‖

𝛿,0,𝑡;𝑋
, 𝑡 ∈ 𝐼

𝑇
,

from (192) we obtain

𝜑
𝑛+1 (𝑡) ≤ 𝑐

42 (𝑇) (∫

𝑡

0

𝜑𝑛 (𝑠)


𝑝d𝑠)
1/𝑝

,

𝑡 ∈ 𝐼
𝑇
, 𝑛 ∈ N ∪ {0} .

(198)
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Then, applying to (198) an induction argument in which the
first step of the induction follows from (192), we immediately
deduce the following estimates:

𝜑
𝑛 (𝑡) ≤ [𝑐

42 (𝑇)]
𝑛
(
𝑡
𝑛

𝑛!
)

1/𝑝

‖𝑤‖𝛿,0,𝑇;𝑋,

𝑡 ∈ 𝐼
𝑇
, 𝑛 ∈ N ∪ {0} .

(199)

The proof is complete.

Lemma 45. Let 5𝛼 + 2𝛽 > 6 in (H2) and V
0
∈ ⋂

𝑛1

𝑖1=1
D(𝐿

𝑖1
).

Assume that 𝑘
𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍), ℎ

𝑖2
∈ 𝐶

𝜎𝑖2 (𝐼
𝑇
;C), and 𝑦

𝑖2
∈

𝑌
𝑟

𝛾𝑖2

, where 𝜂
𝑖1
, 𝜎

𝑖2
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 𝛾

𝑖2
∈ (3 − 2𝛼 −

𝛽, 1), 𝑖
𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, and 𝑟 ∈ [1,∞]. Let 𝜏

1
=

min
𝑖𝑙=1,...,𝑛𝑙, 𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
}. Then, for every fixed 𝛿 ∈ 𝐼

𝛼,𝛽,𝜏1
, the

function𝑤
1
defined by (181) belongs to𝐶𝛿

0
(𝐼
𝑇
; 𝑋), provided that

𝑓 ∈ 𝐶
𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 𝜇

𝛼,𝛽
, 1), 𝜇

𝛼,𝛽
= (3 − 2𝛼 − 𝛽)/𝛼.

Proof. Let us fix 𝛿 ∈ 𝐼
𝛼,𝛽,𝜏1

, 𝜏
1
= min

𝑖𝑙=1,...,𝑛𝑙, 𝑙=1,2
{𝜂
𝑖1
, 𝜎

𝑖2
}. Of

course, 𝑘
𝑖1
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑍) and ℎ

𝑖2
∈ 𝐶

𝛿
(𝐼
𝑇
;C), 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
,

𝑙 = 1, 2. Then, Proposition 29 and Lemma 30 applied
with the quintuplets (𝑔

31
, 𝑔

32
, 𝛿

3
, 𝑋

1
, 𝑋

2
) and the quadruplet

(𝑔
4
, 𝑦, 𝛿

4
, 𝛾) being replaced, respectively, by (the constant

functions 𝜅
𝑖1
(𝑡) = 𝐿

𝑖1
V
0
, 𝑡 ∈ 𝐼

𝑇
, 𝑖 = 1, . . . , 𝑛

1
, being obviously

of class 𝐶
𝛿
(𝐼
𝑇
; 𝑋)) (𝑘

𝑖1
, 𝐿

𝑖1
V
0
, 𝛿, 𝑍,𝑋) and (ℎ

𝑖2
, 𝑦

𝑖2
, 𝛿, 𝛾

𝑖2
),

imply that 𝑄
3
(𝑘
𝑖1
, 𝐿

𝑖1
V
0
), 𝑄

4
(ℎ

𝑖2
, 𝑦

𝑖2
) ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), 𝑖

𝑙
=

1, . . . , 𝑛
𝑙
, 𝑙 = 1, 2. Now, since 𝛿 ∈ 𝐼

𝛼,𝛽,𝜏1
⊆ ((3 − 2𝛼 −

𝛽)/𝛼, 1/2) ⊆ (0, 1/2), the number 𝛿 + 𝜇
𝛼,𝛽

satisfies

3 − 2𝛼 − 𝛽

𝛼
< 𝛿 ≤ 𝛿 + 𝜇

𝛼,𝛽
<
6 − 3𝛼 − 2𝛽

2𝛼
< 1, (200)

and assumption 𝑓 ∈ 𝐶
𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 𝜇

𝛼,𝛽
, 1), is

meaningful. Lemma 24 with (𝑔
2
, 𝛿

2
) = (𝑓, 𝜇) then yields

𝑄
2
𝑓 ∈ 𝐶

]𝛼,𝛽,𝜇
0

(𝐼
𝑇
; 𝑋), ]

𝛼,𝛽,𝜇
= (𝛼𝜇 + 2𝛼 + 𝛽 − 3)/𝛼. Since

]
𝛼,𝛽,𝜇

≥ ]
𝛼,𝛽,𝛿+𝜇𝛼,𝛽

= 𝛿, we get𝑄
2
𝑓 ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), too. Summing

up, we get the assertion.

Before considering the function𝑤
0
in (180), we introduce

the following notation. In the sequel, for 3𝛼 + 2𝛽 > 4, 𝛽 ∈

(0, 𝛼], 𝛼 ∈ (0, 1], and ] ∈ ((2 − 𝛼 − 𝛽)/𝛼, 1), 𝐽
𝛼,𝛽,] ⊆ ((2 − 𝛼 −

𝛽)/𝛼, 1/2) ⊆ (0, 1/2) will denote the interval

𝐽
𝛼,𝛽,] =

{{{

{{{

{

(
2 − 𝛼 − 𝛽

𝛼
, ]] , if ] ∈ (

2 − 𝛼 − 𝛽

𝛼
,
1

2
) ,

(
2 − 𝛼 − 𝛽

𝛼
,
1

2
) , if ] ∈ [1

2
, 1) .

(201)

Notice that, since (2−𝛼−𝛽)/𝛼 ≤ (3−2𝛼−𝛽)/𝛼, if the stronger
condition 5𝛼 + 2𝛽 > 6 is satisfied, then (191) and (201) yield
𝐼
𝛼,𝛽,] ⊆ 𝐽

𝛼,𝛽,] for every fixed ] ∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1). The
introduction of the intervals 𝐽

𝛼,𝛽,] is justified by Lemma 46,
which requires a weaker condition on the pair (𝛼, 𝛽) than the
one in Lemmas 42 and 45.

Lemma 46. Let 3𝛼 + 2𝛽 > 4 in (H2), and let V
0
∈ D(𝐿).

Assume that 𝑘
𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑋), ℎ

𝑖2
∈ 𝐶

𝜎𝑖2 (𝐼
𝑇
;C), 𝑦

𝑖2
∈ 𝑌

𝑟

𝛾𝑖2

,

and V
1
+ 𝑓(0) ∈ 𝑌

𝑟

𝜑
, where 𝜂

𝑖1
, 𝜎

𝑖2
∈ ((2 − 𝛼 − 𝛽)/𝛼, 1),

𝛾
𝑖2
, 𝜑 ∈ (4 − 2𝛼 − 2𝛽, 1), 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, 𝑟 ∈ [1,∞],

and V
1
= (𝜆

0
𝑀 + 𝐿)V

0
. Let 𝛾 = min

𝑖2=1,...,𝑛2
{𝛾
𝑖2
, 𝜑} and 𝜏

0
=

min
𝑖𝑙=1,...,𝑛𝑙,𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
, 𝜒

𝛼,𝛽,𝛾
}, where 𝜒

𝛼,𝛽,𝛾
= (𝛼+𝛽+𝛾−2)/𝛼.

Then, for every fixed 𝛿 ∈ 𝐽
𝛼,𝛽,𝜏0

, the function 𝑤
0
defined by

(180) belongs to 𝐶𝛿
0
(𝐼
𝑇
; 𝑋), provided that 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈

[𝛿 + 
𝛼,𝛽
, 1), 

𝛼,𝛽
= (2 − 𝛼 − 𝛽)/𝛼.

Proof. Observe that (cf. (159)) all the results from Lemma 32
to Corollary 38 will be applicable. First, since 2𝛼 + 2𝛽 >

4 − 𝛼 ≥ 3, the choice 𝛾
𝑖2
, 𝜑 ∈ (4 − 2𝛼 − 2𝛽, 1), 𝑖

2
= 1, . . . , 𝑛

2
,

is meaningful. Moreover, since 𝛾 = min
𝑖2=1,...,𝑛2

{𝛾
𝑖2
, 𝜑} ∈

(4 − 2𝛼 − 2𝛽, 1), the number 𝜒
𝛼,𝛽,𝛾

= (𝛼 + 𝛽 + 𝛾 −

2)/𝛼 satisfies 𝜒
𝛼,𝛽,𝛾

∈ ((2 − 𝛼 − 𝛽)/𝛼, 1). Hence, 𝜏
0

=

min
𝑖𝑙=1,...,𝑛𝑙,𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
, 𝜒

𝛼,𝛽,𝛾
} ∈ ((2 − 𝛼 − 𝛽)/𝛼, 1), too, and

𝐽
𝛼,𝛽,𝜏0

is well defined. Now, let 𝛿 ∈ 𝐽
𝛼,𝛽,𝜏0

be fixed. Due to (20)
or (38), the element𝑥

0
defined by (174) belongs to𝑌𝑟

𝛾
, whereas

the functions ℎ̃
𝑖2
defined by (178) are of class 𝐶𝛿

0
(𝐼
𝑇
; 𝑌

𝑟

𝛾𝑖2

) →

𝐶
𝛿

0
(𝐼
𝑇
; 𝑌

𝑟

𝛾
). Then, since 𝛾 ∈ (4 − 2𝛼 − 2𝛽, 1) ⊆ (2 − 𝛼 −

𝛽, 1), from Lemma 37 and Corollary 38 applied with the pairs
(𝑔

5
, 𝛿

5
) and (𝑥, 𝛿

7
) being replaced by (ℎ̃

𝑖2
, 𝛿) and (𝑥

0
, 𝛿),

respectively, we deduce that 𝑄
5
ℎ̃
𝑖2
, 𝑄

7
𝑥
0
∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), 𝑖

2
=

1, . . . , 𝑛
2
. In addition, since the 𝑘

𝑖1
’s and the constant func-

tions 𝜅
𝑖1
(𝑡) = 𝐿

𝑖1
V
0
belong to 𝐶𝛿(𝐼

𝑇
; 𝑋), from Proposition 36

applied with (𝑔
61
, 𝑔

62
, 𝑋

1
, 𝑋

2
) = (𝑘

𝑖1
, 𝐿

𝑖1
V
0
, 𝑍, 𝑋), it follows

that 𝑄
6
(𝑘
𝑖1
, 𝐿

𝑖1
V
0
) ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), 𝑖

1
= 1, . . . , 𝑛

1
. Finally, since

𝛿 ∈ 𝐽
𝛼,𝛽,𝜏0

⊆ ((2 − 𝛼 − 𝛽)/𝛼, 1/2), the number 𝛿 + 
𝛼,𝛽

satisfies

2 − 𝛼 − 𝛽

𝛼
< 𝛿 ≤ 𝛿 + 

𝛼,𝛽
<
4 − 𝛼 − 2𝛽

2𝛼
< 1, (202)

and the assumption 𝑓 ∈ 𝐶
𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 

𝛼,𝛽
, 1), makes

sense. Then, the function 𝑓 = 𝑓 − 𝑓(0) being of class
𝐶
𝜇

0
(𝐼
𝑇
; 𝑋), Lemma 32 applied with (𝑔

5
, 𝛿

5
) = (𝑓, 𝜇) yields

𝑄
5
𝑓 ∈ 𝐶

]̃𝛼,𝛽,𝜇
0

(𝐼
𝑇
; 𝑋), ]̃

𝛼,𝛽,𝜇
= (𝛼𝜇 + 𝛼 + 𝛽 − 2)/𝛼. Since

]̃
𝛼,𝛽,𝜇

≥ ]̃
𝛼,𝛽,𝛿+𝛼,𝛽

= 𝛿, we conclude that 𝑄
5
𝑓 ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋),

too. Summing up, we get the assertion.

Remark 47. We stress that, if 𝛽 ∈ (0, 1) in (H2), then 0 <

𝜌
𝛼,𝛽

≤ 𝜇
𝛼,𝛽

, so that in both Lemmas 45 and 46 we have to
assume that 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋) with 𝜇 > 𝛿. This is necessary

in order to restore the loss of regularity produced by the
operators 𝑄

2
and 𝑄

5
.

We can now prove the main results of the section.

Theorem48. Assume (161) and V
0
∈ D(𝐿), and let 5𝛼+2𝛽 > 6

in (H2). Assume that 𝑘
𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍), ℎ

𝑖2
∈ 𝐶

𝜎𝑖2 (𝐼
𝑇
;C), 𝑦

𝑖2
∈

𝑌
𝑟

𝛾𝑖2

, and V
1
+ 𝑓(0) ∈ 𝑌

𝑟

𝜑
, where 𝜂

𝑖1
, 𝜎

𝑖2
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1),

𝛾
𝑖2
, 𝜑 ∈ (5 − 3𝛼 − 2𝛽, 1), 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, 𝑟 ∈ [1,∞],

and V
1
= (𝜆

0
𝑀 + 𝐿)V

0
. Let 𝛾 = min

𝑖2=1,...,𝑛2
{𝛾
𝑖2
, 𝜑} and 𝜏 =

min
𝑖𝑙=1,...,𝑛𝑙,𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
, 𝜒

𝛼,𝛽,𝛾
}, where 𝜒

𝛼,𝛽,𝛾
= (𝛼+𝛽+𝛾−2)/𝛼.

Then, for every fixed 𝛿 ∈ 𝐼
𝛼,𝛽,𝜏

problem (160) admits a unique
strict solution V ∈ 𝐶

𝛿
(𝐼
𝑇
;D(𝐿)) satisfying V(0) = V

0
and such

that 𝐿V, 𝐷
𝑡
𝑀V ∈ 𝐶𝛿(𝐼

𝑇
; 𝑋), provided that 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈

[𝛿 + 𝜇
𝛼,𝛽
, 1), 𝜇

𝛼,𝛽
= (3 − 2𝛼 − 𝛽)/𝛼.
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Proof. Of course, due to (159), the assumption 𝛾
𝑖2
, 𝜑 ∈ (5 −

3𝛼 − 2𝛽, 1), 𝑖
2
= 1, . . . , 𝑛

2
, makes sense. In addition, since

𝛾 = min
𝑖2=1,...,𝑛2

{𝛾
𝑖2
, 𝜑} ∈ (5 − 3𝛼 − 2𝛽, 1), we have 𝜒

𝛼,𝛽,𝛾
=

(𝛼 +𝛽+ 𝛾− 2)/𝛼 ∈ ((3 − 2𝛼 −𝛽)/𝛼, 1). Therefore, by virtue of
the choice of the Hölder exponents 𝜂

𝑖1
and 𝜎

𝑖2
, the number

𝜏 = min
𝑖𝑙=1,...,𝑛𝑙, 𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
, 𝜒

𝛼,𝛽,𝛾
} belongs to ((3 − 2𝛼 −

𝛽)/𝛼, 1) too, and the interval 𝐼
𝛼,𝛽,𝜏

is well defined. Further, the
numbers 𝜂, 𝜏

1
, and 𝜏

0
being as in the statements of Lemmas

42, 45, and 46, respectively, we have 𝜏 = 𝜏
0
≤ 𝜏

1
≤ 𝜂. As a

consequence, since 𝐼
𝛼,𝛽,𝜏

⊆ 𝐼
𝛼,𝛽,𝜏1

⊆ 𝐼
𝛼,𝛽,𝜂

and 𝐼
𝛼,𝛽,𝜏

⊆ 𝐽
𝛼,𝛽,𝜏

,
all the mentioned lemmas are applicable with 𝛿 ∈ 𝐼

𝛼,𝛽,𝜏
. To

this purpose, we stress that since ((3−2𝛼−𝛽)/𝛼, 1) ⊆ ((2−𝛼−

𝛽)/𝛼, 1) and (5−3𝛼−2𝛽, 1) ⊆ (4−2𝛼−2𝛽, 1) ⊆ (3−2𝛼−𝛽, 1),
the conditions for the applicability of both Lemmas 45 and
46 are fulfilled. Hence, now let 𝛿 ∈ 𝐼

𝛼,𝛽,𝜏
being fixed. First,

due to Lemma 42, the operator �̃� = 𝑅|
𝐶
𝛿

0
(𝐼𝑇;𝑋)

, �̃�𝑔 = 𝑅𝑔,
𝑔 ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), a fortiori maps 𝐶𝛿

0
(𝐼
𝑇
; 𝑋) into itself. Then,

𝐶
𝛿

0
(𝐼
𝑇
; 𝑋) being endowed with the same norm ‖ ⋅ ‖

𝛿,0,𝑇;𝑋
of

𝐶
𝛿
(𝐼
𝑇
; 𝑋), from (197) we obtain the estimates


�̃�
𝑛L(𝐶

𝛿

0
(𝐼𝑇;𝑋))

≤ [𝑐
42 (𝑇)]

𝑛
(
𝑇
𝑛

𝑛!
)

1/𝑝

, 𝑛 ∈ N ∪ {0} ,

𝑝 ∈ (
1

1 − 2𝛿
,∞) .

(203)

In particular, (203) yields that ∑
∞

𝑛=0
�̃�
𝑛 converges in

L(𝐶
𝛿

0
(𝐼
𝑇
; 𝑋)). From generalized Neumann’s Theorem it thus

follows that 1 ∈ 𝜌(�̃�), the inverse (𝐼 − �̃�)−1 ∈ L(𝐶
𝛿

0
(𝐼
𝑇
; 𝑋))

being precisely ∑
∞

𝑛=0
�̃�
𝑛. Since Lemmas 45 and 46 (both

applied with (observe here that if 𝜇 ∈ [𝛿 + 𝜇
𝛼,𝛽
, 1),

then the exponent ]̃
𝛼,𝛽,𝜇

in the last part of the proof of
Lemma 46 satisfies ]̃

𝛼,𝛽,𝜇
≥ ]̃

𝛼,𝛽,𝛿+𝜇𝛼,𝛽
≥ ]̃

𝛼,𝛽,𝛿+𝛼,𝛽
= 𝛿. For,

]
𝛼,𝛽,𝛿+𝜇𝛼,𝛽

= (𝛼𝛿 + 1 − 𝛼)/𝛼 = 𝛿 + (1 − 𝛼)/𝛼)𝑓 ∈ 𝐶
𝜇
(𝐼
𝑇
; 𝑋),

𝜇 ∈ [𝛿+𝜇
𝛼,𝛽
, 1) ⊆ [𝛿+𝜌

𝛼,𝛽
, 1)) imply that𝑤

0
, 𝑤

1
∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋),

we conclude that the fixed-point equation (179) admits the
unique solution

𝑤 =

∞

∑

𝑛=0

�̃�
𝑛
(𝑤

0
+ 𝑤

1
) ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋) . (204)

Observe now that the data vector (𝑘
1
, . . . , 𝑘

𝑛1
, ℎ

1
, . . . , ℎ

𝑛2
,

𝑓, 𝑦
1
, . . . , 𝑦

𝑛2
, V
1
+ 𝑓(0)) satisfies all the assumptions which

were needed to show the equivalence between the fixed-point
equation (179) and problem (170). Indeed, 𝛿 ≤ 𝜏 and 𝛿 ≤

𝛿 + 𝜇
𝛼,𝛽

≤ 𝜇 imply, respectively, that 𝑘
𝑖1
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑍), ℎ

𝑖2
∈

𝐶
𝛿
(𝐼
𝑇
;C) and 𝑓 ∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋), 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, whereas,

as in Lemma 46, 𝛾 = min
𝑖2=1,...,𝑛2

{𝛾
𝑖2
, 𝜑} implies that 𝑦

𝑖2
, V
1
+

𝑓(0) ∈ 𝑌
𝑟

𝛾
. Therefore, since 𝐴−1

∈ L(𝑋), if 𝑤 ∈ 𝐶
𝛿

0
(𝐼
𝑇
; 𝑋) is

the solution to the fixed-point equation (179), then 𝐴
−1
𝑤 ∈

𝐶
𝛿

0
(𝐼
𝑇
; 𝑋), too, and the function 𝐹

𝑤
defined by (169) satisfies

𝐹
𝑤
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) ,

𝑥
0
= 𝐹

𝑤 (0) =

𝑛2

∑

𝑖2=1

ℎ
𝑖2
(0) 𝑦𝑖2

+ V
1
+ 𝑓 (0) ∈ 𝑌

𝑟

𝛾
,

(205)

where 𝛿 ∈ 𝐼
𝛼,𝛽,𝜏

⊊ (2−𝛼−𝛽)/𝛼, 1), 𝛾 ∈ (5−3𝛼−2𝛽, 1) ⊊ (1−

𝛽, 1), and 𝑟 ∈ [1,∞]. Consequently, recalling (168), we have
proved that problem (160) has a unique strict global solution
V = 𝐿

−1
𝑤+V

0
∈ 𝐶

𝛿
(𝐼
𝑇
;D(𝐿)) satisfying V(0) = 𝐿

−1
𝑤(0)+V

0
=

V
0
and such that 𝐿V = 𝑤 + 𝐿V

0
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋). As far as the

regularity of𝐷
𝑡
𝑀V is concerned, instead, it suffices to observe

that (168), (170), 𝑤 ∈ 𝐶
𝛿

0
(𝐼
𝑇
; 𝑋), and 𝐹

𝑤
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) yield

𝐷
𝑡
𝑀V = 𝐷

𝑡
𝐴
−1
𝑤 = 𝑤 + 𝐹

𝑤
∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋) . (206)

The proof is complete.

Remark 49. Theorem 48 improves the faulty Thereoms 5.6
and 5.7 in [20] in two aspects. First, the assumption 3𝛼+8𝛽 >

10 is weakened to 5𝛼 + 2𝛽 > 6. In fact, 3𝛼 + 8𝛽 > 10

implies that 5𝛼 + 2𝛽 = 3𝛼 + 8𝛽 + 2𝛼 − 6𝛽 > 10 − 4𝛼 ≥ 6.
Hence, in the special case 𝛼 = 1, the constraint 𝛽 > 7/8

in [20] reduces to the definitely weaker 𝛽 > 1/2. Second,
in [20], only for 𝑛

1
= 𝑛

2
= 1 and opportunely chosen 𝛾 <

𝛽, the data 𝑦
1
and V

1
+ 𝑓(0) were assumed to belong to

the intermediate spaces 𝑋𝛾,𝑟

𝐴
, whereas here, removing the

assumption 𝛾 < 𝛽 and considering the general case 𝑛
1
, 𝑛

2
∈

N, we allow 𝑦
1
, . . . , 𝑦

𝑛2
and V

1
+ 𝑓(0) to belong also to the

interpolation spaces (𝑋,D(𝐴))
𝛾,𝑟
. To emphasize how much

these aspects are decisive, let 𝛼 = 1 in Theorem 48. Then, if
𝛽 ∈ (1/2, 2/3] and the choice 𝑋𝜓,𝑟

𝐴
is understood for 𝑌𝑟

𝜓
, we

have 𝛾
𝑖2
, 𝜑 ∈ (2 − 2𝛽, 1) ⊊ [𝛽, 1), and the spaces 𝑋𝛾𝑖2

,𝑟

𝐴
and

𝑋
𝜑,𝑟

𝐴
, 𝑖
2
= 1, . . . , 𝑛

2
, may be smaller thanD(𝐴). However, the

choice 𝑌𝑟
𝜓
= (𝑋,D(𝐴))

𝜓,𝑟
being admissible, in this situation

too we can solve problem (160) with the data in spaces larger
than D(𝐴). Further, since 2/3 < 7/8, in this case the results
in [20] would not be applicable. These observations lead us
to conclude that the more delicate approach followed in this
paper with respect to that in [20, Sections 4 and 5], and
especially the sharper results of the present Sections 3 and
4, yield a valuable refinement in the treatment of questions
of maximal time regularity for the strict solutions to (160); of
course, unless that the not too much significant case 𝛽 = 1 is
assumed in (H2).

Remark 50. The assumption 5𝛼+2𝛽 > 6 in (H2) implies that
𝛽 ∈ ((6 − 5𝛼)/2, 𝛼] ⊆ (1/2, 1] and 𝛼 ∈ (6/7, 1]. In particular,
if 𝛼 = 1, then Theorem 48 holds with 𝛽 ∈ (1/2, 1], 𝜂

𝑖1
, 𝜎

𝑖2
∈

(1 − 𝛽, 1), 𝛾
𝑖2
, 𝜑 ∈ (2 − 2𝛽, 1), 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, and

𝜇
1,𝛽

= 1−𝛽. Hence, 𝛾 ∈ (2−2𝛽, 1),𝜒
1,𝛽,𝛾

= 𝛽+𝛾−1 ∈ (1−𝛽, 𝛽),
and 𝛿 ∈ 𝐼

1,𝛽,𝜏
with 𝜏 ∈ (1 − 𝛽, 𝛽), where

𝐼
1,𝛽,𝜏

= (1 − 𝛽, 𝜏] , if 𝜏 ∈ (1 − 𝛽, 1
2
) ,

𝐼
1,𝛽,𝜏

= (1 − 𝛽,
1

2
) , if 𝜏 ∈ [1

2
, 𝛽) .

(207)

Clearly, if 𝛽 = 1, then 5𝛼 + 2𝛽 > 6 is redundant,
and Theorem 48 holds with 𝜂

𝑖1
, 𝜎

𝑖2
, 𝛾

𝑖2
, 𝜑 ∈ (0, 1), 𝑖

𝑙
=

1, . . . , 𝑛
𝑙
, 𝑙 = 1, 2, 𝜇

1,1
= 0, 𝛾 = 𝜒

1,1,𝛾
∈ (0, 1), and 𝛿 ∈ 𝐼

1,1,𝜏
,

𝜏 ∈ (0, 1), where 𝐼
1,1,𝜏

= (0, 𝜏] if 𝜏 ∈ (0, 1/2) and 𝐼
1,1,𝜏

=

(0, 1/2) if 𝜏 ∈ [1/2, 1).
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Remark 51. Observe that, if the 𝜂
𝑖1
’s and 𝜎

𝑖2
’s are assumed to

vary in the smaller interval 𝑈
𝛼,𝛽

:= ((3 − 2𝛼 − 𝛽)/𝛼, (𝛼 +

𝛽 − 1)/𝛼), then 𝜑 and the 𝛾
𝑖2
’s can be chosen such that

𝜏 = min
𝑖𝑙=1,...,𝑛𝑙, 𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
}. To this purpose, letting 𝜌 =

max
𝑖𝑙=1,...,𝑛𝑙, 𝑙=1,2

{𝜂
𝑖1
, 𝜎

𝑖2
} ∈ 𝑈

𝛼,𝛽
, it suffices to take 𝛾

𝑖2
, 𝜑 ∈

𝑉
𝛼,𝛽,𝜌

, 𝑖
2
= 1, . . . , 𝑛

2
, where 𝑉

𝛼,𝛽,𝜌
:= [2 + 𝛼𝜌 − 𝛼 − 𝛽, 1) ⊊

(5 − 3𝛼 − 2𝛽, 1). Then 𝛾 = min
𝑖2=1,...,𝑛2

{𝛾
𝑖2
, 𝜑} ∈ 𝑉

𝛼,𝛽,𝜌
and

𝜒
𝛼,𝛽,𝛾

= (𝛼 + 𝛽 + 𝛾 − 2)/𝛼 ≥ 𝜌. In other words, provided
that the data vector (𝑦

1
, . . . , 𝑦

𝑛2
, V
1
+𝑓(0)) is smooth enough,

the pair (𝐿V, 𝐷
𝑡
𝑀V) has the maximal time regularities which

is the minimal between the time regularities of the 𝑘
𝑖1
’s and

ℎ
𝑖2
’s.

We conclude with the results which follow from
Theorem 48 for problems (163)–(166).

Theorem52. Assume (161) and V
0
∈ D(𝐿), and let 5𝛼+2𝛽 > 6

in (H2). Assume that 𝑘
𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍) and 𝐿V

0
+ 𝑓(0) ∈ 𝑌

𝑟

𝛾
,

where 𝜂
𝑖1
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 𝑖

1
= 1, . . . , 𝑛

1
, 𝛾 ∈ (5 − 3𝛼 −

2𝛽, 1), and 𝑟 ∈ [1,∞]. Let 𝜏 = min
𝑖1=1,...,𝑛1

{𝜂
𝑖1
, 𝜒

𝛼,𝛽,𝛾
}, where

𝜒
𝛼,𝛽,𝛾

= (𝛼 + 𝛽 + 𝛾 − 2)/𝛼. Then, for every fixed 𝛿 ∈ 𝐼
𝛼,𝛽,𝜏

problem (165) admits a unique strict solution V ∈ 𝐶𝛿(𝐼
𝑇
;D(𝐿))

satisfying V(0) = V
0
and such that 𝐿V, 𝐷

𝑡
𝑀V ∈ 𝐶

𝛿
(𝐼
𝑇
; 𝑋),

provided that 𝑓 ∈ 𝐶
𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 𝜇

𝛼,𝛽
, 1), 𝜇

𝛼,𝛽
=

(3 − 2𝛼 − 𝛽)/𝛼.

Proof. Repeat the proofs of Lemmas 42, 45, and 46,
Corollary 44, and Theorem 48, letting there 𝜆

0
= ℎ

𝑖2
= 0,

𝑖
2
= 1, . . . , 𝑛

2
. To this purpose, observe that (169) and (174)

reduce to 𝐹
𝑤
(𝑡) = ∑

𝑛1

𝑖1=1
[K(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)(𝑡) +K(𝑘

𝑖1
, 𝐿

𝑖1
V
0
)(𝑡)] +

𝐿V
0
+ 𝑓(𝑡) and 𝑥

0
= 𝐿V

0
+ 𝑓(0). Consequently, (180)–(182)

change to 𝑤
0
= 𝑄

7
𝑥
0
+ ∑

𝑛1

𝑖1=1
𝑄
6
(𝑘
𝑖1
, 𝐿

𝑖1
V
0
) + 𝑄

5
𝑓, 𝑤

1
=

−∑
𝑛1

𝑖1=1
𝑄
3
(𝑘
𝑖1
, 𝐿

𝑖1
V
0
) − 𝑄

2
𝑓, and 𝑅𝑤 = ∑

𝑛1

𝑖1=1
[𝑄

6
(𝑘
𝑖1
, 𝑆

𝑖1
𝑤) −

𝑄
3
(𝑘
𝑖1
, 𝑆

𝑖1
𝑤)].

Theorem53. Assume (161) and V
0
∈ D(𝐿), and let 5𝛼+2𝛽 > 6

in (H2). Assume that 𝑘
𝑖1
∈ 𝐶

𝜂𝑖1 (𝐼
𝑇
; 𝑍), ℎ

𝑖2
∈ 𝐶

𝜎𝑖2 (𝐼
𝑇
;C), 𝑦

𝑖2
∈

𝑌
𝑟

𝛾𝑖2

, and 𝐿V
0
∈ 𝑌

𝑟

𝜑
, where 𝜂

𝑖1
, 𝜎

𝑖2
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 𝛾

𝑖2
, 𝜑 ∈

(5 − 3𝛼 − 2𝛽, 1), 𝑖
𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, and 𝑟 ∈ [1,∞]. Let

𝛾 = min
𝑖2=1,...,𝑛2

{𝛾
𝑖2
, 𝜑} and 𝜏 = min

𝑖𝑙=1,...,𝑛𝑙, 𝑙=1,2
{𝜂
𝑖1
, 𝜎

𝑖2
, 𝜒

𝛼,𝛽,𝛾
},

where 𝜒
𝛼,𝛽,𝛾

= (𝛼+𝛽+𝛾−2)/𝛼. Then, for every fixed 𝛿 ∈ 𝐼
𝛼,𝛽,𝜏

problem (166) admits a unique strict solution V ∈ 𝐶𝛿(𝐼
𝑇
;D(𝐿))

satisfying V(0) = V
0
and such that 𝐿V, 𝐷

𝑡
𝑀V ∈ 𝐶𝛿(𝐼

𝑇
; 𝑋).

Proof. Let 𝜆
0
= 𝑓 = 0 in the proofs of Lemmas 42, 45, and 46,

Corollary 44, and Theorem 48. In this case, (169) and (174)
reduce to 𝐹

𝑤
(𝑡) = ∑

𝑛1

𝑖1=1
[K(𝑘

𝑖1
, 𝑆

𝑖1
𝑤)(𝑡) +K(𝑘

𝑖1
, 𝐿

𝑖1
V
0
)(𝑡)] +

∑
𝑛2

𝑖2=1
ℎ
𝑖2
(𝑡)𝑦

𝑖2
+ 𝐿V

0
and 𝑥

0
= ∑

𝑛2

𝑖2=1
ℎ
𝑖2
(0)𝑦

𝑖2
+ 𝐿V

0
. Hence,

(180)–(182) change to 𝑤
0
= 𝑄

7
𝑥
0
+ ∑

𝑛1

𝑖1=1
𝑄
6
(𝑘
𝑖1
, 𝐿

𝑖1
V
0
) +

∑
𝑛2

𝑖2=1
𝑄
5
ℎ̃
𝑖2
, 𝑤

1
= −∑

𝑛1

𝑖1=1
𝑄
3
(𝑘
𝑖1
, 𝐿

𝑖1
V
0
) − ∑

𝑛2

𝑖2=1
𝑄
4
(ℎ

𝑖2
, 𝑦

𝑖2
),

and 𝑅𝑤 = ∑
𝑛1

𝑖1=1
[𝑄

6
(𝑘
𝑖1
, 𝑆

𝑖1
𝑤) − 𝑄

3
(𝑘
𝑖1
, 𝑆

𝑖1
𝑤)].

Let us now turn to the degenerate differential problems
(163) and (164).

Theorem54. Assume (161) and V
0
∈ D(𝐿), and let 5𝛼+2𝛽 > 6

in (H2). Assume that 𝐿V
0
+ 𝑓(0) ∈ 𝑌

𝑟

𝛾
, 𝛾 ∈ (5 − 3𝛼 − 2𝛽, 1),

𝑟 ∈ [1,∞], and let 𝜒
𝛼,𝛽,𝛾

= (𝛼 + 𝛽 + 𝛾 − 2)/𝛼. Then, for every
fixed 𝛿 ∈ 𝐼

𝛼,𝛽,𝜒𝛼,𝛽,𝛾
problem (163) admits a unique strict global

solution V ∈ 𝐶
𝛿
(𝐼
𝑇
;D(𝐿)) satisfying V(0) = V

0
and such that

𝐿V, 𝐷
𝑡
𝑀V ∈ 𝐶𝛿(𝐼

𝑇
; 𝑋), provided that 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 +

𝜇
𝛼,𝛽
, 1), 𝜇

𝛼,𝛽
= (3 − 2𝛼 − 𝛽)/𝛼.

Proof. Let 𝜆
0
= 𝑘

𝑖1
= ℎ

𝑖2
= 0, 𝑖

𝑙
= 1, . . . , 𝑛

𝑙
, 𝑙 = 1, 2, in

problem (160) and formulae (169), (174) and, (179)–(182).
Then, 𝐹

𝑤
(𝑡) = 𝐿V

0
+ 𝑓(𝑡), 𝑥

0
= 𝐿V

0
+ 𝑓(0) and 𝑤 =

𝑤
0
+ 𝑤

1
= 𝑄

7
𝑥
0
+ 𝑄

5
𝑓 − 𝑄

2
𝑓. Consequently, Lemma 42

and Corollary 44 are unneeded, and the proof ofTheorem 48
simplifies as follows. First, due to 𝛾 ∈ (5 − 3𝛼 − 2𝛽, 1) we
have 𝜒

𝛼,𝛽,𝛾
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), and the interval 𝐼

𝛼,𝛽,𝜒𝛼,𝛽,𝛾
is

well defined. Hence, let 𝛿 ∈ 𝐼
𝛼,𝛽,𝜒𝛼,𝛽,𝛾

being fixed. Since (cf.
(200)) 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 𝜇

𝛼,𝛽
, 1) ⊊ ((3 − 2𝛼 − 𝛽)/𝛼, 1),

reasoning as in the last part of the proof of Lemma 45 we get
𝑄
2
𝑓 ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋). Moreover (see the proof of Lemma 46),

since 𝑥
0
∈ 𝑌

𝑟

𝛾
, 𝛾 ∈ (5 − 3𝛼 − 2𝛽, 1) ⊆ (2 − 𝛼 − 𝛽, 1)

and 𝑓 ∈ 𝐶
𝜇

0
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 𝜇

𝛼,𝛽
, 1) ⊆ [𝛿 + 

𝛼,𝛽
, 1),


𝛼,𝛽

= (2−𝛼−𝛽)/𝛼, Corollary 38 and Lemma 32 applied with
(𝑥, 𝛿

7
) = (𝑥

0
, 𝛿) and (𝑔

5
, 𝛿

5
) = (𝑓, 𝛿+

𝛼,𝛽
) yield𝑄

7
𝑥
0
, 𝑄

5
𝑓 ∈

𝐶
𝛿

0
(𝐼
𝑇
; 𝑋). Summing up, we find that 𝑤 ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋). The

assertion then follows from V = 𝐿
−1
𝑤 + V

0
and (cf. (206))

𝐷
𝑡
𝑀V = 𝑤 + 𝐿V

0
+ 𝑓.

Remark 55. We refer to [19, Theorem 5.3] for a result of both
time and space regularity for problem (163). There, provided
that 𝜓 and 𝛿 are opportunely chosen and the data satisfy
assumptions similar to those in Theorem 54, it is shown that
𝐷
𝑡
𝑀V ∈ 𝐶

𝛿
(𝐼
𝑇
; (𝑋,D(𝐴))

𝜓,𝑟
), and that the higher is the

order 𝜓 of the interpolation space where we look for space
regularity, the lower is the Hölder exponent 𝛿 of regularity
in time. Notice that 𝐿V = 𝐷

𝑡
𝑀V − 𝑓 has no space regularity,

unless 𝑓 has too.

Theorem56. Assume (161) and V
0
∈ D(𝐿), and let 5𝛼+2𝛽 > 6

in (H2). Assume that ℎ
𝑖2
∈ 𝐶

𝜎𝑖2 (𝐼
𝑇
;C), 𝑦

𝑖2
∈ 𝑌

𝑟

𝛾𝑖2

, and 𝐿V
0
∈

𝑌
𝑟

𝜑
, where 𝜎

𝑖2
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 𝛾

𝑖2
, 𝜑 ∈ (5 − 3𝛼 − 2𝛽, 1),

𝑖
2
= 1, . . . , 𝑛

2
, and 𝑟 ∈ [1,∞]. Let 𝛾 = min

𝑖2=1,...,𝑛2
{𝛾
𝑖2
, 𝜑} and

𝜏 = min
𝑖2=1,...,𝑛2

{𝜎
𝑖2
, 𝜒

𝛼,𝛽,𝛾
}, where 𝜒

𝛼,𝛽,𝛾
= (𝛼 + 𝛽 + 𝛾 − 2)/𝛼.

Then, for every fixed 𝛿 ∈ 𝐼
𝛼,𝛽,𝜏

, problem (164) admits a unique
strict global solution V ∈ 𝐶𝛿(𝐼

𝑇
;D(𝐿)) satisfying V(0) = V

0
and

such that 𝐿V, 𝐷
𝑡
𝑀V ∈ 𝐶𝛿(𝐼

𝑇
; 𝑋).

Proof. Let 𝜆
0
= 𝑘

𝑖1
= 𝑓 = 0, 𝑖

1
= 1, . . . , 𝑛

1
, in problem (160)

and formulae (169), (174), and (179)–(182). Then, 𝐹
𝑤
(𝑡) =

∑
𝑛2

𝑖2=1
ℎ
𝑖2
(𝑡)𝑦

𝑖2
+ 𝐿V

0
, 𝑥

0
= ∑

𝑛2

𝑖2=1
ℎ
𝑖2
(0)𝑦

𝑖2
+ 𝐿V

0
and 𝑤 =

𝑤
0
+𝑤

1
= 𝑄

7
𝑥
0
+∑

𝑛2

𝑖2=1
𝑄
5
ℎ̃
𝑖2
−∑

𝑛2

𝑖2=1
𝑄
4
(ℎ

𝑖2
, 𝑦

𝑖2
).Therefore, as

inTheorem 54, we do not need Lemma 42 and Corollary 44,
and the proof of Theorem 48 simplifies as follows. Again,
𝛾 = min

𝑖2=1,...,𝑛2
{𝛾
𝑖2
, 𝜑} ∈ (5 − 3𝛼 − 2𝛽, 1) implies that



30 Abstract and Applied Analysis

𝜒
𝛼,𝛽,𝛾

∈ ((3−2𝛼−𝛽)/𝛼, 1), so that 𝜏 = min
𝑖2=1,...,𝑛2

{𝜎
𝑖2
, 𝜒

𝛼,𝛽,𝛾
} ∈

((3 − 2𝛼 − 𝛽)/𝛼, 1), and the interval 𝐼
𝛼,𝛽,𝜏

is well defined. Let
𝛿 ∈ 𝐼

𝛼,𝛽,𝜏
be fixed. First (see the proof of Lemma 45), since

𝛾
𝑖2
∈ (5−3𝛼−2𝛽, 1) ⊆ (3−2𝛼−𝛽, 1), Lemma 30 applied with

(𝑔
4
, 𝑦, 𝛿

4
, 𝛾) = (ℎ

𝑖2
, 𝑦

𝑖2
, 𝛿, 𝛾

𝑖2
) yields 𝑄

4
(ℎ

𝑖2
, 𝑦

𝑖2
) ∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋),

𝑖
2
= 1, . . . , 𝑛

2
. On the other side (see the proof of Lemma 46),

since 𝑥
0
∈ 𝑌

𝑟

𝛾
and ℎ̃

𝑖2
∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑌

𝑟

𝛾𝑖2

) → 𝐶
𝛿

0
(𝐼
𝑇
; 𝑌

𝑟

𝛾
), 𝛾 ∈ (5 −

3𝛼− 2𝛽, 1) ⊆ (2 −𝛼−𝛽, 1), from Lemma 37 and Corollary 38
appliedwith (𝑔

5
, 𝛿

5
) = (ℎ̃

𝑖2
, 𝛿) and (𝑥, 𝛿

7
) = (𝑥

0
, 𝛿)we deduce

that 𝑄
5
ℎ̃
𝑖2
, 𝑄

7
𝑥
0
∈ 𝐶

𝛿

0
(𝐼
𝑇
; 𝑋), 𝑖

2
= 1, . . . , 𝑛

2
. Summing up,

we find that 𝑤 ∈ 𝐶
𝛿

0
(𝐼
𝑇
; 𝑋), and the assertion again follows

from V = 𝐿
−1
𝑤 + V

0
and (cf. (206)) 𝐷

𝑡
𝑀V = 𝑤 + 𝐿V

0
+

∑
𝑛2

𝑖2=1
ℎ
𝑖2
𝑦
𝑖2
.

6. An Application to a Concrete Case

Theorem 48 is here applied to determine the right functional
framework where to search for the solution of an inverse
problem arising in the theory of heat conduction formaterials
with memory. To this purpose, let Ω ⊊ R𝑁, 𝑁 ∈ N, be
a bounded domain with boundary 𝜕Ω of class 𝐶1,1 (cf. [36,
p. 94]). If Ω represents a rigid thermal body with memory,
then the linearized theory of heat flow yields the following
equations linking the internal energy 𝑒, the heat flux q =

(𝑞
1
, . . . , 𝑞

𝑁
), and the temperature Θ (cf. [32, 37–40]):

𝑒 (𝑡, 𝑥) = 𝑒
0
+ 𝑎 (0, 𝑥)Θ (𝑡, 𝑥) + ∫

𝑡

0

𝐷
𝑡
𝑎 (𝑡 − 𝑠, 𝑥)Θ (𝑠, 𝑥) d𝑠,

𝑞
𝑗 (𝑡, 𝑥) = −

𝑟1

∑

𝑖=1

𝑏
𝑖 (0) 𝐶𝑖,𝑗 (𝑥;𝐷𝑥

)Θ (𝑡, 𝑥)

−

𝑟1

∑

𝑖=1

∫

𝑡

0

𝐷
𝑡
𝑏
𝑖 (𝑡 − 𝑠) 𝐶𝑖,𝑗 (𝑥;𝐷𝑥

)Θ (𝑠, 𝑥) d𝑠,

𝑗 = 1, . . . , 𝑁,

𝐷
𝑡
𝑒 (𝑡, 𝑥) = −div

𝑥
q (𝑡, 𝑥) + 𝑔 (𝑡, 𝑥)

= −

𝑁

∑

𝑗=1

𝐷
𝑥𝑗
𝑞
𝑗 (𝑡, 𝑥) + 𝑔 (𝑡, 𝑥) .

(208)

Here 𝑡 ∈ 𝐼
𝑇
, 𝐼
𝑇
= [0, 𝑇], 𝑇 > 0, 𝑥 = (𝑥

1
, . . . , 𝑥

𝑁
) ∈ Ω, 𝑟

1
∈ N,

𝑒
0
∈ R, and𝐷

𝑡
= 𝜕/𝜕𝑡, whereas the 𝐶

𝑖,𝑗
(𝑥; 𝐷

𝑥
)’s represent the

first-order linear differential operators

𝐶
𝑖,𝑗
(x; 𝐷

𝑥
) =

𝑁

∑

𝑘=1

𝑐
𝑖,𝑗,𝑘 (𝑥)𝐷𝑥𝑘

, 𝑥 ∈ Ω,

𝑖 = 1, . . . , 𝑟
1
, 𝑗 = 1, . . . , 𝑁,

(209)

where 𝑐
𝑖,𝑗,𝑘

∈ 𝐶
1
(Ω;R) and 𝐷

𝑥𝑘
= 𝜕/𝜕𝑥

𝑘
, 𝑖 = 1, . . . , 𝑟

1
,

𝑗, 𝑘 = 1, . . . , 𝑁. According to the terminology of [39, 40], the
functions 𝑎, 𝑏

𝑖
, 𝑖 = 1, . . . , 𝑟

1
, and 𝑔 are called, respectively, the

energy-temperature relaxation function, the heat conduction

relaxation functions, and the heat supply function and we
assume that they satisfy the following conditions:

𝐷
𝑘

𝑡
𝑎 (⋅, 𝑥) ∈ 𝐶 (𝐼𝑇;R) , 𝑘 = 0, 1, 2,

𝑎 (0, 𝑥) ≥ 0, 𝑥 ∈ Ω,

(210)

𝐷
𝑘

𝑡
𝑏
𝑖
∈ 𝐶 (𝐼

𝑇
;R) , 𝑘 = 0, 1, 𝑖 = 1, . . . , 𝑟

1
,

𝑔 ∈ 𝐶
1
(𝐼
𝑇
× Ω;R) .

(211)

Notice that, different from [32, 37–40], here the energy-
temperature relaxation function 𝑎 is assumed to depend also
on the spatial variable 𝑥 ∈ Ω. In physical terms, this is
equivalent to say that Ω represents a rigid inhomogeneous
material with memory. Furthermore, in contrast with the
quoted papers where only the cases 𝑟

1
= 1 and 𝐶

1,𝑗
(𝑥; 𝐷

𝑥
) =

𝐷
𝑥𝑗
are treated, here we have assumed that the history record

ofΩ is kept by an arbitrary number 𝑟
1
∈ N of heat conduction

relaxation functions and that the 𝐶
𝑖,𝑗
’s are the more general

first-order differential operators defined in (209).
By setting

𝑎
𝑗,𝑘

=

𝑟1

∑

𝑖=1

𝑏
𝑖 (0) 𝑐𝑖,𝑗,𝑘 ∈ 𝐶

1
(Ω;R) , 𝑗, 𝑘 = 1, . . . , 𝑁, (212)

from (208) and (209), it thus follows that the temperature Θ
must satisfy the following equation:

𝑎 (0, 𝑥)𝐷𝑡
Θ (𝑡, 𝑥) + 𝐷𝑡

𝑎 (0, 𝑥)Θ (𝑡, 𝑥)

+ ∫

𝑡

0

𝐷
2

𝑡
𝑎 (𝑡 − 𝑠, 𝑥)Θ (𝑠, 𝑥) d𝑠 − 𝑔 (𝑡, 𝑥)

=

𝑁

∑

𝑗,𝑘=1

𝐷
𝑥𝑗
[𝑎

𝑗,𝑘 (𝑥)𝐷𝑥𝑘
Θ (𝑡, 𝑥)]

+

𝑟1

∑

𝑖=1

∫

𝑡

0

𝐷
𝑡
𝑏
𝑖 (𝑡 − 𝑠)

𝑁

∑

𝑗=1

𝐷
𝑥𝑗
𝐶
𝑖,𝑗
(𝑥;𝐷

𝑥
)Θ (𝑠, 𝑥) d𝑠.

(213)

Let us now assume that 𝑎 is of the following special form:

𝑎 (𝑡, 𝑥) =

2

∑

𝑛=1

𝑚
𝑛 (𝑥) 𝑢𝑛 (𝑡) , (𝑡, 𝑥) ∈ 𝐼𝑇 × Ω, (214)

where the functions𝑚
𝑛
and 𝑢

𝑛
, 𝑛 = 1, 2, satisfy the following

conditions (cf. (210)):

𝑚
𝑛
∈ 𝐿

∞ (Ω) , 𝑛 = 1, 2,

𝑚
1
≥ 0, 𝑚

2
> 0,

(215)

𝑢
𝑛
∈ 𝐶

2
(𝐼
𝑇
;R) , 𝑛 = 1, 2,

𝑢
2 (0) = 0, 𝑢

1 (0) > 0, 𝐷
𝑡
𝑢
2 (0) > 0.

(216)
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Here, 𝐿
𝑞
(Ω) = 𝐿

𝑞
(Ω;R), 𝑞 ∈ [1,∞], is the usual 𝐿

𝑞

space with norm ‖ ⋅ ‖
𝑞;Ω

(cf. [36, Chapter 7]). Using𝑚
2
, 𝑢

1
(0),

𝐷
𝑡
𝑢
2
(0) > 0, for 𝑡 ∈ 𝐼

𝑇
and 𝑥 ∈ Ω we now set

𝑎
0 (𝑥) = −[𝑢

1 (0)]
−1
𝑚
2 (𝑥)𝐷𝑡

𝑢
2 (0) < 0, (217)

𝑎
𝑗,𝑘 (𝑥) = [𝑢

1 (0)]
−1
𝑎
𝑗,𝑘 (𝑥) , 𝑗, 𝑘 = 1, . . . , 𝑁, (218)

𝐿 (𝑥;𝐷
𝑥
) =

𝑁

∑

𝑗,𝑘=1

𝐷
𝑥𝑗
[𝑎

𝑗,𝑘 (𝑥)𝐷𝑥𝑘
] + 𝑎

0 (𝑥) , (219)

𝐿
𝑖
(𝑥;𝐷

𝑥
) = [𝑢

1 (0)]
−1

𝑁

∑

𝑗=1

𝐷
𝑥𝑗
𝐶
𝑖,j (𝑥;𝐷𝑥

) ,

𝑖 = 1, . . . , 𝑟
1
,

(220)

𝐿
𝑟1+𝑛

(𝑥;𝐷
𝑥
) = 𝐿

𝑟1+𝑛
(𝑥) = [𝑢

1 (0)]
−1
𝑚
𝑛 (𝑥) ,

𝑛 = 1, 2,

(221)

𝑘
𝑖 (𝑡) = 𝐷

𝑡
𝑏
𝑖 (𝑡) , 𝑖 = 1, . . . , 𝑟

1
,

𝑘
𝑟1+𝑛

(𝑡) = −𝐷
2

𝑡
𝑢
𝑛 (𝑡) , 𝑛 = 1, 2,

(222)

𝑔 (𝑡, 𝑥) = [𝑢
1 (0)]

−1
𝑔 (𝑡, 𝑥) ,

𝜆
0
= −[𝑢

1 (0)]
−1
𝐷
𝑡
𝑢
1 (0) ∈ R.

(223)

Then, since (214)–(216) yield 𝑎(0, 𝑥) = 𝑚
1
(𝑥)𝑢

1
(0) and

𝐷
𝑘

𝑡
𝑎(𝑡, 𝑥) = ∑

2

𝑛=1
𝑚
𝑛
(𝑥)𝐷

𝑘

𝑡
𝑢
𝑛
(𝑡), 𝑘 = 1, 2, if we multiply both

sides of (213) by [𝑢
1
(0)]

−1 and use (218)–(223), we are led to
the following basic differential equation for the temperature
Θ, where 𝑛

1
= 𝑟

1
+ 2:

𝐷
𝑡
[𝑚

1 (𝑥)Θ (𝑡, 𝑥)]

= 𝜆
0
𝑚
1 (𝑥)Θ (𝑡, 𝑥) + 𝐿 (𝑥;𝐷𝑥

)Θ (𝑡, 𝑥) + 𝑔 (𝑡, 𝑥)

+

𝑛1

∑

𝑖=1

∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) 𝐿 𝑖 (𝑥;𝐷𝑥

)Θ (𝑠, 𝑥) d𝑠,

𝑡 ∈ 𝐼
𝑇
, 𝑥 ∈ Ω.

(224)

We endow this differential equation with the initial condition
Θ(0, 𝑥) = Θ

0
(𝑥), 𝑥 ∈ Ω, and the Dirichlet boundary

condition Θ(𝑡, 𝑥) = 0, 𝑡 ∈ 𝐼
𝑇
, 𝑥 ∈ 𝜕Ω.

We now suppress the dependence on 𝑥 ∈ Ω, and we
transform (224) in a degenerate integrodifferential Cauchy
problem in a Banach space𝑋. To this purpose, for every fixed
𝑞 ∈ (1,∞) and observing that 𝑚

𝑛
∈ 𝐿

∞
(Ω) implies that

‖𝑚
𝑛
𝑢‖

𝑞;Ω
≤ ‖𝑚

𝑛
‖
∞;Ω

‖𝑢‖
𝑞;Ω

for every 𝑢 ∈ 𝐿
𝑞
(Ω), 𝑛 = 1, 2,

we set

𝑋 = D (𝑀) = D (𝐿
𝑟1+𝑛

) = 𝐿
𝑞 (Ω) , 𝑛 = 1, 2, (225)

D (𝐿) = 𝑊
2

𝑞
(Ω) ∩

∘

𝑊

1

𝑞
(Ω) , D (𝐿

𝑖
) = 𝑊

2

𝑞
(Ω) ,

𝑖 = 1, . . . , 𝑟
1
,

(226)

𝑀,𝐿
𝑟1+𝑛

∈ L (𝑋) , 𝑀𝑢 = 𝑚
1
𝑢,

𝐿
𝑟1+𝑛

𝑢 = 𝐿
𝑟1+𝑛

(𝑥) 𝑢, 𝑢 ∈ 𝑋, 𝑛 = 1, 2,

(227)

𝐿 : D (𝐿) ⊆ 𝑋 → 𝑋,

𝐿𝑢 = 𝐿 (𝑥;𝐷
𝑥
) 𝑢, 𝑢 ∈ D (𝐿) ,

(228)

𝐿
𝑖
: D (𝐿

𝑖
) ⊆ 𝑋 → 𝑋,

𝐿
𝑖
𝑢 = 𝐿

𝑖
(𝑥;𝐷

𝑥
) 𝑢, 𝑢 ∈ D (𝐿

𝑖
) , 𝑖 = 1, . . . , 𝑟

1
.

(229)

Here (cf. [36, Chapter 7]),𝑊𝑘

𝑞
(Ω) = 𝑊

𝑘

𝑞
(Ω;R), 𝑘 ∈ N ∪ {0},

𝑞 ∈ (1,∞), denotes the usual Sobolev space endowed with
the norm ‖ ⋅ ‖

𝑘,𝑞;Ω
((𝑊0

𝑞
(Ω), ‖ ⋅ ‖

0,𝑞;Ω
) = (𝐿

𝑞
(Ω), ‖ ⋅ ‖

𝑞;Ω
)),

whereas
∘

𝑊

𝑘

𝑞
(Ω) denotes the completion of 𝐶∞

0
(Ω;R) in

𝑊
𝑘

𝑞
(Ω), 𝐶∞

0
(Ω;R) being the set of all real-valued infinitely

differentiable functions having compact support in Ω. We
further assume that there exists positive constant Λ

𝑖
, 𝑖 =

0, . . . , 𝑟
1
, such that for every (𝑥, 𝜉) ∈ Ω × R𝑁 the following

inequalities hold:

𝑁

∑

𝑗,𝑘=1

𝑐
𝑖,𝑗,𝑘 (𝑥) 𝜉𝑗𝜉𝑘 ≥ Λ

𝑖

𝜉


2
, 𝑖 = 1, . . . , 𝑟

1
,

𝑟1

∑

𝑗,𝑘=1

𝑏
𝑖 (0) Λ 𝑖

≥ Λ
0
,

(230)

where |𝜉|2 = ∑
𝑁

𝑙=1
𝜉
2

𝑙
. Therefore, from (212), (218), and (230)

we get

𝑁

∑

𝑗,𝑘=1

𝑎
𝑗,𝑘 (𝑥) 𝜉𝑗𝜉𝑘 = [𝑢

1 (0)]
−1

𝑟1

∑

𝑖=1

𝑏
𝑖 (0)

𝑁

∑

𝑗,𝑘=1

𝑐
𝑖,𝑗,𝑘

𝜉
𝑗
𝜉
𝑘

≥ [𝑢
1 (0)]

−1
Λ
0

𝜉


2
.

(231)

From (225)–(231) it follows that𝑀, 𝐿, and 𝐿
𝑖
, 𝑖 = 1, . . . , 𝑛

1
,

are closed linear operators from 𝑋 to itself, and the relation
D(𝐿) ⊊ ⋂

𝑛1

𝑖=1
[D(𝑀) ∩ D(𝐿

𝑖
)] = 𝑊

2

𝑞
(Ω) holds. In

addition, due to (212), (217), (218), and (231), from [36,
Theorem 9.15 and Lemma 9.17], it follows that for every
fixed 𝑞 ∈ (1,∞) the operator 𝐿 admits an inverse operator
𝐿
−1

∈ L(𝑋;𝑊
2

𝑞
(Ω)). Hence, a fortiori, 𝐿−1 ∈ L(𝑋) and

so condition (161) is satisfied (observe also that 𝐿−1 ∈

L(𝑋;𝑊
2

𝑞
(Ω)) implies that the norms ‖ ⋅ ‖

2,𝑞;Ω
and ‖ ⋅ ‖D(𝐿) =

‖ ⋅ ‖
𝑞;Ω

+ ‖𝐿 ⋅ ‖
𝑞;Ω

are equivalent onD(𝐿). In fact, if V ∈ D(𝐿),
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then ‖V‖
2,𝑞;Ω

= ‖𝐿
−1
𝐿V‖

2,𝑞;Ω
≤ ‖𝐿

−1
‖L(𝑋;𝑊

2

𝑞
(Ω))

‖V‖D(𝐿) ≤

𝐶‖𝐿
−1
‖L(𝑋;𝑊

2

𝑞
(Ω))

‖V‖
2,𝑞;Ω

,𝐶 being a positive constant depend-
ing on max

𝑗,𝑘=1,...,𝑁
‖𝑎

𝑗,𝑘
‖
𝐶
1
(Ω;R)). The closed graph theorem

then yield 𝑀𝐿
−1
, 𝐿

𝑖
𝐿
−1

∈ L(𝑋), 𝑖 = 1, . . . , 𝑛
1
. Moreover

(cf. [19, formula (77)], and [41, formula (2.16)]), the following
estimate holds (of course, here𝑋 = 𝐿

𝑞
(Ω;R) is replaced with

the more general𝑋 = 𝐿
𝑞
(Ω;C)):


𝑀(𝜆𝑀 − 𝐿)

−1L(𝑋)
≤ 𝐶(|𝜆| + 1)

−𝛽
, ∀𝜆 ∈ Σ

1
, 𝛽 =

1

𝑞
,

(232)

where Σ
1
= {𝑧 ∈ C : Re 𝑧 ≥ −𝑐(|Im 𝑧| + 1), Im 𝑧 ∈ R}, 𝑐

being a suitable positive constant depending on 𝑞 and
‖𝑚

1
‖
∞;Ω

. Hence, condition (H2) is satisfied with 𝑋 = 𝐿
𝑞
(Ω)

and (𝛼, 𝛽) = (1, 1/𝑞). Notice that, since 𝑚
1
may have zeros

in Ω,𝑀−1 is in general a m. l. operator, so that 𝐴 = 𝐿𝑀
−1 is

determined by (cf. (162)):

D (𝐴) = 𝑀 (D (𝐿)) = {𝑚
1
V : V ∈ D (𝐿)} ,

𝐴𝑢 = {𝐿V : V ∈ D (𝐿) such that 𝑢 = 𝑚
1
V} , 𝑢 ∈ D (𝐴) .

(233)

Using the convolution operator K in (104) in which for
the bilinear operator P we take the scalar multiplication in
𝑋, from (224)–(229) we finally obtain that the temperature
Θ(𝑡) = Θ(𝑡, ⋅) solves the following degenerate integrodiffer-
ential Cauchy problem in𝑋:

𝐷
𝑡 (𝑀Θ (𝑡)) = [𝜆

0
𝑀+ 𝐿]Θ (𝑡)

+

𝑛1

∑

𝑖=1

K (𝑘
𝑖
, 𝐿

𝑖
Θ) (𝑡) + 𝑔 (𝑡) , 𝑡 ∈ 𝐼

𝑇
,

Θ (0) = Θ
0
.

(234)

Now, assume for a moment that we are interested in solving
the inverse problem of recovering both the temperature Θ
and the memory kernels 𝑘

1
, . . . , 𝑘

𝑟1
in (234). Clearly, due to

(222), if we recover 𝑘
1
, . . . , 𝑘

𝑟1
, then the heat conduction

relaxation functions 𝑏
1
, . . . , 𝑏

𝑟1
will be known too, unless of

the 𝑟
1
arbitrary constants 𝑏

𝑖
(0), 𝑖 = 1, . . . , 𝑟

1
. Indeed, 𝑏

1
(𝑡) =

𝑏
𝑖
(0)+∫

𝑡

0
𝑘
𝑖
(𝑠)d𝑠, 𝑡 ∈ 𝐼

𝑇
. To solve such an inverse problem, we

need 𝑟
1
additional informations other than the initial condi-

tion Θ(0) = Θ
0
, which, in general, suffices only to guarantee

the well-posedness of the direct problem of recovering Θ in
(234). Suppose then that the following additional pieces of
information are given:

Ψ
𝑗 [𝑀Θ (𝑡)] = 𝑔

𝑗 (𝑡) , 𝑡 ∈ 𝐼
𝑇
, 𝑗 = 1, . . . , 𝑟

1
, (235)

where Ψ
𝑗
∈ 𝑋

∗
= L(𝑋;R) and 𝑔

𝑗
∈ 𝐶

2+]𝑗(𝐼
𝑇
;R), ]

𝑗
∈ (0, 1),

𝑗 = 1, . . . , 𝑟
1
. We will search for a solution vector

(Θ, 𝑘
1
, . . . , 𝑘

𝑟1
) of the inverse problem (234) and (235) such

that Θ ∈ 𝐶
1+𝛿

(𝐼
𝑇
;D(𝐿)) and 𝑘

𝑗
∈ 𝐶

𝜂𝑗(𝐼
𝑇
;R), 𝑗 = 1, . . . , 𝑟

1
,

with the Hölder exponents 𝛿 and 𝜂
𝑗
, 𝑗 = 1, . . . , 𝑟

1
, to be

made precise in the sequel. We stress that here we will not
solve completely the mentioned inverse problem. For, its
detailed treatment would lead us out of the aims of this
paper. Our intention here is only to highlight how the main
results of Section 5 allow to determine the correct functional
framework in which the solution of the inverse problem has
to be searched. However, a complete treatment of the inverse
problem will be the object of a future paper.

Assuming that Θ ∈ 𝐶
1+𝛿

(𝐼
𝑇
;D(𝐿)) solves (234), we

introduce the new unknown

V (𝑡, 𝑥) = 𝐷
𝑡
Θ (𝑡, 𝑥) ⇐⇒ Θ(𝑡, 𝑥) = Θ

0 (𝑥) + ∫

𝑡

0

V (𝑠, 𝑥) d𝑠.

(236)

Then, differentiating (234) with respect to time and using

𝐷
𝑡
K (𝑘

𝑖
, 𝐿

𝑖
Θ) (𝑡)

= 𝐷
𝑡
∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) 𝐿 𝑖Θ (𝑠) d𝑠 = 𝐷

𝑡
∫

𝑡

0

𝑘
𝑖 (𝑠) 𝐿 𝑖Θ (𝑡 − 𝑠) d𝑠

= 𝑘
𝑖 (𝑡) 𝐿 𝑖Θ (0) + ∫

𝑡

0

𝑘
𝑖 (𝑠) 𝐿 𝑖𝐷𝑡

Θ (𝑡 − 𝑠) d𝑠

= 𝑘
𝑖 (𝑡) 𝐿 𝑖Θ0

+ ∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) 𝐿 𝑖V (𝑠) d𝑠,

(237)

we find that V ∈ 𝐶𝛿(𝐼
𝑇
;D(𝐿)) solves the following degenerate

integrodifferential problem:

𝐷
𝑡 (𝑀V (𝑡))

=[𝜆
0
𝑀+ 𝐿] V (𝑡)+

𝑛1

∑

𝑖=1

[K (𝑘
𝑖
, 𝐿

𝑖
V) (𝑡) + 𝑘𝑖 (𝑡) 𝑦𝑖]+𝑓 (𝑡) ,

𝑡 ∈ 𝐼
𝑇
,

𝑀V (0) = 𝑀V
0
,

(238)

where 𝑦
𝑖
= 𝐿

𝑖
Θ
0
, 𝑖 = 1, . . . , 𝑛

1
, 𝑓 = 𝐷

𝑡
𝑔 and𝑀V

0
= [𝜆

0
𝑀+

𝐿]Θ
0
+ 𝑔(0, ⋅) (indeed, since𝑀 is the multiplication operator

by the function 𝑚
1
independent of 𝑡, from the differential

equation in (234) with 𝑡 = 0 we get 𝑀V(0) = 𝑀𝐷
𝑡
Θ(0) =

[𝜆
0
𝑀 + 𝐿]Θ(0) + 𝑔(0)). Of course, (238) is the special case

(𝑖
1
, 𝑖
2
, 𝑛

2
) = (𝑖, 𝑖, 𝑛

1
), ℎ

𝑖
= 𝑘

𝑖
, 𝑖 = 1 . . . , 𝑛

1
, of problem (160).

Conversely, assume that V ∈ 𝐶
𝛿
(𝐼
𝑇
;D(𝐿)) solves (238).

Then, the function Θ defined by (236) belongs to 𝐶
1+𝛿

(𝐼
𝑇
;D(𝐿)) and solves (234). Indeed, using the fact that 𝑚

1
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does not depend on time and that𝑀, 𝐿, and 𝐿
𝑖
, 𝑖 = 1, . . . , 𝑛

1
,

are closed, we obtain

𝐷
𝑡 (𝑀Θ (𝑡)) − [𝜆0𝑀+ 𝐿]Θ (𝑡)

−

𝑛1

∑

𝑖=1

K (𝑘
𝑖
, 𝐿

𝑖
Θ) (𝑡) − 𝑔 (𝑡)

= 𝐷
𝑡
[𝑀(Θ

0
+ ∫

𝑡

0

V (𝑠) d𝑠)]

− [𝜆
0
𝑀+ 𝐿] [Θ

0
+ ∫

𝑡

0

V (𝑠) d𝑠]

−

𝑛1

∑

𝑖=1

∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) 𝐿 𝑖 [Θ0

+ ∫

𝑠

0

V (𝜉) d𝜉] d𝑠

− 𝑔 (0) − ∫

𝑡

0

𝐷
𝑠
𝑔 (𝑠) d𝑠

= 𝑀V (𝑡) − [𝜆0𝑀+ 𝐿]Θ
0

− ∫

𝑡

0

[𝜆
0
𝑀+ 𝐿] V (𝑠) d𝑠

−

𝑛1

∑

𝑖=1

∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) 𝐿 𝑖Θ0

d𝑠

−

𝑛1

∑

𝑖=1

∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) [∫

𝑠

0

𝐿
𝑖
V (𝜉) d𝜉] d𝑠

− 𝑔 (0) − ∫

𝑡

0

𝑓 (𝑠) d𝑠.

(239)

Now, observe that

𝑀V (𝑡) = 𝑀V
0
+ ∫

𝑡

0

𝐷
𝑠 (𝑀V (𝑠)) d𝑠

= [𝜆
0
𝑀+ 𝐿]Θ

0
+ 𝑔 (0) + ∫

𝑡

0

𝐷
𝑠 (𝑀V (𝑠)) d𝑠,

(240)

∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) 𝐿 𝑖Θ0

d𝑠 = ∫

𝑡

0

𝑘
𝑖 (𝑠) 𝐿 𝑖Θ0

d𝑠 = ∫

𝑡

0

𝑘
𝑖 (𝑠) 𝑦𝑖d𝑠,

𝑖 = 1, . . . , 𝑛
1
,

(241)

whereas an application of Fubini’s theorem combined with
the changes of variables 𝜉 = 𝑠 − 𝑟, 𝑟 − 𝑠 = 𝜏 and 𝑡 − 𝑠 = 𝜁

easily yields for every 𝑖 = 1, . . . , 𝑛
1
the following:

∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) [∫

𝑠

0

𝐿
𝑖
V (𝜉) d𝜉] d𝑠

= ∫

𝑡

0

𝑘
𝑖 (𝑡 − 𝑠) [∫

𝑠

0

𝐿
𝑖
V (𝑠 − 𝑟) d𝑟] d𝑠

= ∫

𝑡

0

[∫

𝑡

𝑠

𝑘
𝑖 (𝑡 − 𝑟) 𝐿 𝑖V (𝑟 − 𝑠) d𝑟] d𝑠

= ∫

𝑡

0

[∫

𝑡−𝑠

0

𝑘
𝑖 (𝑡 − 𝑠 − 𝜏) 𝐿 𝑖V (𝜏) d𝜏] d𝑠

= ∫

𝑡

0

K (𝑘
𝑖
, 𝐿

𝑖
V) (𝑡 − 𝑠) d𝑠

= ∫

𝑡

0

K (𝑘
𝑖
, 𝐿

𝑖
V) (𝜁) d𝜁 = ∫

𝑡

0

K (𝑘
𝑖
, 𝐿

𝑖
V) (𝑠) d𝑠.

(242)

Therefore, replacing (240)–(242) in (239), it follows for every
𝑡 ∈ 𝐼

𝑇
that

𝐷
𝑡 (𝑀Θ (𝑡)) − [𝜆0𝑀+ 𝐿]Θ (𝑡) −

𝑛1

∑

𝑖=1

K (𝑘
𝑖
, 𝐿

𝑖
Θ) (𝑡) − 𝑔 (𝑡)

= ∫

𝑡

0

{𝐷
𝑠 (𝑀V (𝑠)) − [𝜆0𝑀+ 𝐿] V (𝑠)

−

𝑛1

∑

𝑖=1

[K (𝑘
𝑖
, 𝐿

𝑖
V) (𝑠) + 𝑘𝑖 (𝑠) 𝑦𝑖] − 𝑓 (𝑠) } d𝑠,

(243)

and the latter integral is equal to zero by virtue of (238). Since
from (236) it follows that Θ(0) = Θ

0
, we have thus shown

that (234) and (238) are equivalent. Such an equivalence is
the first step in solving the mentioned inverse problem of
recovering the vector (Θ, 𝑘

1
, . . . , 𝑘

𝑟1
) with the help of the

additional information (235).
Let us now apply the linear functional Ψ

𝑗
, 𝑗 = 1 . . . , 𝑟

1
, to

(238). Using

Ψ
𝑗
[𝐷

𝑘

𝑡
(𝑀V (𝑡))] = Ψ

𝑗
[𝑀𝐷

𝑘+1

𝑡
Θ (𝑡)] = 𝐷

𝑘+1

𝑡
Ψ
𝑗 [𝑀Θ (𝑡)]

= 𝐷
𝑘+1

𝑡
𝑔
𝑗 (𝑡) , 𝑘 = 0, 1,

(244)

we thus find the following system of 𝑟
1
equations for the 𝑟

1

unknown 𝑘
1
, . . . , 𝑘

𝑟1
:

𝑟1

∑

𝑖=1

Ψ
𝑗
[𝑦

𝑖
] 𝑘

𝑖 (𝑡)

= 𝑁
𝑗 (𝑡) − Ψ𝑗 [𝐿V] −

𝑛1

∑

𝑖=1

Ψ
𝑗
[K (𝑘

𝑖
, 𝐿

𝑖
V) (𝑡)] ,

𝑗 = 1, . . . , 𝑟
1
,

(245)

where we have set (recall that 𝑘
𝑟1+𝑛

= −𝐷
𝑡
𝑢
𝑛
, 𝑛 = 1, 2, are

known)

𝑁
𝑗 (𝑡) = (𝐷

𝑡
− 𝜆

0
)𝐷

𝑡
𝑔
𝑗 (𝑡) − Ψ𝑗 [𝑓 (𝑡)]

−

2

∑

𝑛=1

Ψ
𝑗
[𝑦

𝑟1+𝑛
] 𝑘

𝑟1+𝑛
(𝑡) , 𝑗 = 1, . . . , 𝑟

1
.

(246)
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Therefore, if the matrixU := U
𝑦1 ,...,𝑦𝑟1

Ψ1 ,...,Ψ𝑟1

= (Ψ
𝑖
[𝑦

𝑗
])
𝑖,𝑗=1,...,𝑟1

has
determinant detU ̸= 0, then fromCramer’s formula it follows
that the solution (𝑘

1
, . . . , 𝑘

𝑟1
) of (245) is given by

𝑘
𝑗 (𝑡) = [detU]

−1

𝑟1

∑

𝑘=1

{𝑁
𝑘 (𝑡) − Ψ𝑘 [𝐿V]

−

𝑛1

∑

𝑖=1

Ψ
𝑘
[K (𝑘

𝑖
, 𝐿

𝑖
V) (𝑡)]}U

𝑘,𝑗

=: �̃�
𝑗
(V, 𝑘

1
, . . . , 𝑘

𝑟1
) (𝑡) , 𝑗 = 1, . . . , 𝑟

1
,

(247)

with U
𝑘,𝑗
, 𝑘, 𝑗 = 1, . . . , 𝑟

1
, being the cofactor of the element

Ψ
𝑘
[𝑦

𝑗
] of U (with the convention that U

1,1
= 1 in the case

of 𝑟
1
= 1). We have thus found a system of 𝑟

1
fixed-point

equations for the 𝑟
1
unknown 𝑘

1
, . . . , 𝑘

𝑟1
.

Now, let 𝑌𝑟
𝜓
∈ {(𝑋,D(𝐴))

𝜓,𝑟
, 𝑋

𝜓,𝑟

𝐴
}, 𝜓 ∈ (0, 1), 𝑟 ∈ [1,∞],

where 𝐴 is as in (233). Assume that V
0
in the initial condition

𝑀V(0) = 𝑀V
0
belongs toD(𝐿) and that

𝑘
𝑖
∈ 𝐶

𝜂𝑖 (𝐼
𝑇
,R) , 𝑓 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋) , 𝜂

𝑖
, 𝜇 ∈ (

1

𝑞
, 1) ,

𝑖 = 1, . . . , 𝑛
1
,

𝑦
𝑖
∈ 𝑌

𝑝

𝛾𝑖
, V

1
+ 𝑓 (0) ∈ 𝑌

𝑝

𝜑
, 𝛾

𝑖
, 𝜑 ∈ (

1

𝑞
, 1) ,

𝑝 ∈ [1,∞] , 𝑖 = 1, . . . , 𝑛
1
,

(248)

where V
1
= (𝜆

0
𝑀 + 𝐿)V

0
and 𝑞

 is the conjugate exponent
of 𝑞 ∈ (1,∞). Then (cf. (179) with (𝑖

1
, 𝑖
2
, 𝑛

2
) = (𝑖, 𝑖, 𝑛

1
),

(𝛼, 𝛽, 𝑍) = (1, 1/𝑞,R), and ℎ
𝑖
= 𝑘

𝑖
, 𝑖 = 1, . . . , 𝑛

1
), problem

(238) is equivalent to the fixed-point equation

𝑤 (𝑡) = 𝑅 (𝑤, 𝑘
1
, . . . , 𝑘

𝑟1
) (𝑡) +

1

∑

𝑙=0

𝑤
𝑙
(𝑘

1
, . . . , 𝑘

𝑟1
) (𝑡)

=: 𝑇 (𝑤, 𝑘
1
, . . . , 𝑘

𝑟1
) (𝑡) ,

(249)

where 𝑤 = 𝐿(V − V
0
) and

𝑤
0
(𝑘

1
, . . . , 𝑘

𝑟1
) = 𝑄

7
𝑥
0
+

𝑛1

∑

𝑖=1

[𝑄
6
(𝑘

𝑖
, 𝐿

𝑖
V
0
) + 𝑄

5
�̃�
𝑖
] + 𝑄

5
𝑓,

𝑤
1
(𝑘

1
, . . . , 𝑘

𝑟1
) = −

𝑛1

∑

𝑖=1

[𝑄
3
(𝑘

𝑖
, 𝐿

𝑖
V
0
) + 𝑄

4
(𝑘

𝑖
, 𝑦

𝑖
)] − 𝑄

2
𝑓,

𝑅 (𝑤, 𝑘
1
, . . . , 𝑘

𝑟1
) = 𝜆

0
[𝑄

5
(𝐴

−1
𝑤) − 𝑄

2
(𝐴

−1
𝑤)]

+

𝑛1

∑

𝑖=1

[𝑄
6
(𝑘

𝑖
, 𝑆

𝑖
𝑤) − 𝑄

3
(𝑘

𝑖
, 𝑆

𝑖
𝑤)] .

(250)

Here, the 𝑄
𝑗
’s, 𝑗 = 2, . . . , 6, are defined by (106)–(110), 𝑆

𝑖
=

𝐿
𝑖
𝐿
−1, and the functions 𝑓, �̃�

𝑖
and𝑄

7
𝑥
0
are defined by 𝑓(𝑡) =

𝑓(𝑡) − 𝑓(0), �̃�
𝑖
(𝑡) = [𝑘

𝑖
(𝑡) − 𝑘

𝑖
(0)]𝑦

𝑖
, and [𝑄

7
𝑥
0
](𝑡) = (e𝑡𝐴 −

𝐼)𝑥
0
, respectively, where (cf. (174)) 𝑥

0
= ∑

𝑛1

𝑖=1
𝑘
𝑖
(0)𝑦

𝑖
+ V

1
+

𝑓(0).
Then, since V = 𝐿

−1
𝑤 + V

0
, if we set 𝑅

𝑗
(𝑤, 𝑘

1
, . . . , 𝑘

𝑟1
) =

�̃�
𝑗
(𝐿

−1
𝑤 + V

0
, 𝑘

1
, . . . , 𝑘

𝑟1
), 𝑗 = 1, . . . , 𝑟

1
, and

Ξ (𝑤, 𝑘
1
, . . . , 𝑘

𝑟1
)

= (𝑇 (𝑤, 𝑘
1
, . . . , 𝑘

𝑟1
) , 𝑅

1
(𝑤, 𝑘

1
, . . . , 𝑘

𝑟1
) ,

. . . , 𝑅
𝑟𝑖
(𝑤, 𝑘

1
, . . . , 𝑘

𝑟1
)) ,

(251)

from (247) and (249)we deduce that to solve the inverse prob-
lems (234) and (235) for the unknown vector (Θ, 𝑘

1
, . . . , 𝑘

𝑟1
),

it suffices to show that the fixed-point equation

(𝑤, 𝑘
1
, . . . , 𝑘

𝑟1
) = Ξ (𝑤, 𝑘

1
, . . . , 𝑘

𝑟1
) (252)

has a unique solution. In general, this will be done by proving
that Ξ is a contraction map in the Banach space

𝑍
𝛿,𝜂1,...,𝜂𝑟1

= 𝐶
𝛿
(𝐼
𝑇
; 𝑋) × 𝐶

𝜂1 (𝐼
𝑇
;R) × ⋅ ⋅ ⋅ × 𝐶𝜂𝑟1 (𝐼

𝑇
;R) ,


(𝑓

0
, 𝑓

1
, . . . , 𝑓

𝑟1
)
𝑍𝛿,𝜂1,...,𝜂𝑟1

=
𝑓0

𝛿,0,𝑇;𝑋
+
𝑓1

𝜂1,0,𝑇;R
+ ⋅ ⋅ ⋅ +


𝑓
𝑟1

𝜂𝑟1 ,0,𝑇;R
,

(253)

at least for opportunely chosen Hölder exponents 𝛿 ∈ (0, 1)

and 𝜂
𝑖
∈ (1/𝑞


, 1), 𝑖 = 1, . . . , 𝑟

1
, and, eventually, sufficiently

small values of 𝑇 > 0. It is just in the choice of 𝛿 and
the 𝜂

𝑖
’s that the main result of Section 5 plays a key role.

The Hölder exponents have to be chosen so that the direct
problem (234) in which the 𝑘

𝑖
’s are assumed to be known is

well posed. Due to the shown equivalence between problems
(234) and (238), the well-posedness of the direct problem
(234) is then a consequence of Theorem 48 and formula
(236). More precisely, recalling Remark 50 for the case 𝛼 = 1,
an application of that theorem yields the following maximal
time regularity result for the solution Θ of (234).

Theorem 57. Let 𝑋, D(𝑀), D(𝐿), and D(𝐿
𝑖
), 𝑖 = 1, . . . , 𝑛

1
,

𝑛
1
= 𝑟

1
+ 2, 𝑟

1
∈ N, be defined by (225) and (226) with 𝑞 ∈

(1, 2). Let 𝑀, 𝐿, and 𝐿
𝑖
, 𝑖 = 1, . . . , 𝑛

1
, be defined by (227)–

(229) through (209), (212), and (215)–(221), and let (230) and
(231) be satisfied. Further, let (𝐴,D(𝐴)) be defined by (233),
and let 𝑌𝑟

𝜓
∈ {(𝑋,D(𝐴))

𝜓,𝑟
, 𝑋

𝜓,𝑟

𝐴
}, 𝜓 ∈ (0, 1), 𝑟 ∈ [1,∞]. Let

𝜂
𝑖
∈ (1/𝑞


, 1) and 𝛾

𝑖
, 𝜑 ∈ (2/𝑞


, 1), 𝑖 = 1, . . . , 𝑛

1
, and assume

that

𝑘
𝑖
∈ 𝐶

𝜂𝑖 (𝐼
𝑇
;R) , 𝑖 = 1, . . . , 𝑛

1
, Θ

0
∈ D (𝐿) ,

(𝜆
0
𝑀+ 𝐿)Θ

0
+ 𝑔 (0, ⋅) = 𝑀V

0
𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 V

0
∈ D (𝐿) ,

𝐿
𝑖
Θ
0
∈ 𝑌

𝑟

𝛾𝑖
, V

1
+ 𝐷

𝑡
𝑔 (0, ⋅) ∈ 𝑌

𝑟

𝜑
, 𝑖 = 1, . . . , 𝑛

1
,

𝑟 ∈ [1,∞] ,

(254)
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where 𝑘
𝑖
, 𝑖 = 1, . . . , 𝑛

1
, 𝑔 and𝜆

0
are defined by (222) and (223)

through (211) and (216), whereas V
1
= (𝜆

0
𝑀 + 𝐿)V

0
. Let 𝛾 =

min
𝑖=1,...,𝑛1

{𝛾
𝑖
, 𝜑} and 𝜏 = min

𝑖=1,...,𝑛1
{𝜂
𝑖
, 𝛾 − 1/𝑞


}, and let

𝐼
1,1/𝑞,𝜏

⊆ (1/𝑞

, 1/2) be the interval defined by (cf. (207) with

𝛽 = 1/𝑞)

𝐼
1,1/𝑞,𝜏

= (
1

𝑞
, 𝜏] , 𝑖𝑓 𝜏 ∈ (

1

𝑞
,
1

2
) ,

𝐼
1,1/𝑞,𝜏

= (
1

𝑞
,
1

2
) , 𝑖𝑓 𝜏 ∈ [

1

2
, 1) .

(255)

Then, for every fixed 𝛿 ∈ 𝐼
1,1/𝑞,𝜏

problem (234), or, equivalently,
problem (224), admits a unique strict solution Θ ∈ 𝐶

1+𝛿

(𝐼
𝑇
;D(𝐿)) satisfying𝐷

𝑡
Θ(0) = V

0
and such that𝐷

𝑡
𝑀Θ, 𝐿Θ ∈

𝐶
1+𝛿

(𝐼
𝑇
; 𝑋), provided that𝐷

𝑡
𝑔 ∈ 𝐶

𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 1/𝑞, 1).

Proof. Apply Theorem 48 with (𝑖
1
, 𝑖
2
, 𝑛

2
) = (𝑖, 𝑖, 𝑛

1
), (𝛼, 𝛽,

𝑍) = (1, 1/𝑞,R), and ℎ
𝑖
= 𝑘

𝑖
, 𝑖 = 1, . . . , 𝑛

1
, to the equivalent

problem (238). Since𝑀 is the multiplication operator by the
function𝑚

1
independent of 𝑡, the assertion then follows from

𝐷
𝑡
Θ = V ∈ 𝐶

𝛿
(𝐼
𝑇
;D(𝐿)), 𝐷

𝑡
Θ(0) = V(0), 𝐷

𝑡
𝐿Θ = 𝐿V ∈

𝐶
𝛿
(𝐼
𝑇
; 𝑋) and𝐷2

𝑡
𝑀Θ = 𝐷

𝑡
𝑀V ∈ 𝐶𝛿(𝐼

𝑇
; 𝑋).

Larger values of 𝑞 inTheorem 57 can be obtained assum-
ing more smoothness and some order of vanishing for the
function𝑚

1
. In fact, let𝑚

1
∈ 𝐶

1
(Ω) be such that the following

estimate holds for some positive constant𝐾:

∇𝑚1 (𝑥)
 :=

{

{

{

𝑁

∑

𝑗=1

[𝐷
𝑥𝑗
𝑚
1 (𝑥)]

2}

}

}

1/2

≤ 𝐾[𝑚
1 (𝑥)]

𝜗
,

𝑥 ∈ Ω, 𝜗 ∈ (0, 1) .

(256)

Then (232) holds with 𝛽 = 1/𝑞 being replaced by (cf. [41,
formulae (3.23) and (4.41)]):

𝛽 =
1

2 − 𝜗
, if 𝑞 ∈ (2 − 𝜗, 2) ,

𝛽 =
2

𝑞 (2 − 𝜗)
, if 𝑞 ∈ [2,∞) .

(257)

(precisely, in [41, formula (3.23)] it is shown that (|𝜆| +
1)‖𝑀𝑢‖

𝑞(2−𝜗)/2

𝑞;Ω
≤ 𝐶

𝑞
[‖𝑓‖

𝑞;Ω
‖𝑀𝑢‖

−1+𝑞(2−𝜗)/2

𝑞;Ω
+ ‖𝑓‖

𝑞(2−𝜗)/2

𝑞;Ω
],

where 𝑢 = (𝜆𝑀 − 𝐿)
−1
𝑓 and 𝑞 ∈ [2,∞). Using (cf. [41,

formula (2.15)]) ‖𝑀𝑢‖
𝑞;Ω

≤ ‖𝑚
1
‖
∞;Ω

‖𝑢‖
𝑞;Ω

≤ 𝐶‖𝑚
1
‖
∞;Ω

‖𝑓‖
𝑞;Ω

, we thus find that (|𝜆| + 1)‖𝑀𝑢‖
𝑞(2−𝜗)/2

𝑞;Ω
≤ 𝐶

𝑞
[(𝐶

‖𝑚
1
‖
∞;Ω

)
−1+𝑞(2−𝜗)/2

+ 1]‖𝑓‖
𝑞(2−𝜗)/2

𝑞;Ω
; that is, ‖𝑀(𝜆𝑀−

𝐿)
−1
‖L(𝑋)

≤ {𝐶
𝑞
[(𝐶‖𝑚

1
‖
∞;Ω

)
−1+𝑞(2−𝜗)/2

+ 1]}
2/[𝑞(2−𝜗)]

(|𝜆| +

1)
−2/[𝑞(2−𝜗)]). Under (256) we thus find the following better

result, where 𝑞may be greater than two.

Theorem 58. Let (256) holds, and let 𝑋, (𝑀,D(𝑀)), (𝐿,D
(𝐿)), (𝐿

𝑖
,D(𝐿

𝑖
)), 𝑖 = 1, . . . , 𝑛

1
, be as in Theorem 57, but with

𝑞 ∈ (2 − 𝜗, 2) ∪ [2, 4/(2 − 𝜗)). Let (254) be fulfilled, but with
𝜂
𝑖
∈ (1−𝛽, 1) and 𝛾

𝑖
, 𝜑 ∈ (2−2𝛽, 1), 𝑖 = 1, . . . , 𝑛

1
, where 𝛽 is as

in (257). Let 𝛾 = min
𝑖=1,...,𝑛1

{𝛾
𝑖
, 𝜑} and 𝜏 = min

𝑖=1,...,𝑛1
{𝜂
𝑖
, 𝛽 +

𝛾−1}, and let 𝐼
1,𝛽,𝜏

be as in (207).Then, for every fixed 𝛿 ∈ 𝐼
1,𝛽,𝜏

problem (234), or, equivalently, problem (224), admits a unique
strict solution Θ ∈ 𝐶

1+𝛿
(𝐼
𝑇
;D(𝐿)) satisfying 𝐷

𝑡
Θ(0) = V

0

and such that 𝐷
𝑡
𝑀Θ, 𝐿Θ ∈ 𝐶

1+𝛿
(𝐼
𝑇
; 𝑋), provided that 𝐷

𝑡
𝑔 ∈

𝐶
𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + 1 − 𝛽, 1).

Proof. It suffices to observe that for every 𝜗 ∈ (0, 1) and 𝑞 ∈

(2 − 𝜗, 2) ∪ [2, 4/(2 − 𝜗)), the number 𝛽 in (257) satisfies 𝛽 >

1/2. Hence, proceeding as in the proofs ofTheorem 57, except
for replacing there 𝛽 = 1/𝑞 with 𝛽 as in (257), we get the
assertion.

Appendix

Herewe clarifywhy the definition of𝑄
2
in [20] has to bemod-

ified in accordance to that in this paper. To avoid confusion
with the present notation, we will denote the operator 𝑄

2
in

[20] with 𝑆
2
. Precisely, in [20, formula (4.12)], 𝑆

2
was defined

as follows:

[𝑆
2
𝑔
2
] (𝑡) := ∫

𝑡

0

[(−𝐴)
1
]
∘

e(𝑡−𝑠)𝐴𝑔
2 (𝑠) d𝑠, 𝑡 ∈ [0, 𝑇] ,

(A.1)

and considered as acting on functions 𝑔
2
∈ 𝐶

𝛿2

0
([0, 𝑇]; 𝑋),

𝛿
2
∈ ((3 − 2𝛼 − 𝛽)/𝛼, 1), 3𝛼 + 𝛽 > 3. Even though 𝑔

2
(0) = 0,

formula (A.1) may have no sense, since

𝑆2𝑔2 (𝑡)
𝑋

≤ 𝑐
𝛼,𝛽,1

𝑔2
𝛿2,0,𝑡;𝑋

∫

𝑡

0

(𝑡 − 𝑠)
(𝛽−2)/𝛼

𝑠
𝛿2 d𝑠, (A.2)

and the integral on the right is not convergent, the exponent
(𝛽 − 2)/𝛼 being less or equal than −1. It is for this reason that
𝑔
2
(𝑠) in (A.1) has to be replaced with the increment 𝑔

2
(𝑠) −

𝑔
2
(𝑡) as in formula (106) (see inequality (118)) and to intro-

duce the operator𝑄
5
as in (109). Of course, as a consequence,

the definitions of 𝑄
3
and 𝑄

4
in [20, Lemmas 4.6 and 4.8] as

𝑆
2
K(𝑔

31
, 𝑔

32
) and 𝑆

2
(𝑔

4
𝑦), respectively, have to be changed

too in accordance with the present formulae (107) and (108)
containing the incrementsK(𝑔

31
, 𝑔

32
)(𝑠)−K(𝑔

31
, 𝑔

32
)(𝑡) and

[𝑔
4
(𝑠) − 𝑔

4
(𝑡)]𝑦. To this purpose, we want to make clear that,

contrarily to [20, Lemma 4.4], the statement and the proof of
[20, Lemma 4.8] is correct, since there the function inside the
integral on the right-hand side of (A.1) takes its values in an
opportune intermediate space𝑋𝜃,𝑟

𝐴
. However, the correctness

of that lemma does not suffice to proceed as in [20, Section 5]
to solve problem (160) with 𝑛

1
= 𝑛

2
= 1.

For the reader’s convenience we thus now indicate how
to change the definitions of the functions 𝑤

𝑗
, 𝑗 = 0, 1, and

the operator 𝑅𝑤 in [20, formulae (5.8)–(5.10)], and we state
the amended version of [20, Theorems 5.6 and 5.7]. First,
according to [20] where only this case was treated, let 𝑛

1
=

𝑛
2
= 1 in problem (160), andwrite 𝑘, ℎ,𝑦 in place of 𝑘

1
, ℎ

1
and

𝑦
1
, respectively. Then, under the same assumptions on the

vector (𝛼, 𝛽, 𝑘, ℎ, 𝑓) as those in the present Section 5, it can



36 Abstract and Applied Analysis

be shown that problem (160) with 𝑛
1
= 𝑛

2
= 1 is equivalent

to the fixed-point equation (179), where (cf. (180)–(182))

𝑤
0
= 𝑄

7
𝑥
0
+ 𝑄

6
(𝑘, 𝐿

1
V
0
) + 𝑄

5
ℎ̃ + 𝑄

5
𝑓,

𝑤
1
= −𝑄

3
(𝑘, 𝐿

1
V
0
) − 𝑄

4
(ℎ, 𝑦) − 𝑄

2
𝑓,

𝑅𝑤 := 𝜆
0
[𝑄

5
(𝐴

−1
𝑤) − 𝑄

2
(𝐴

−1
𝑤)]

+ 𝑄
6 (𝑘, 𝑆𝑤) − 𝑄3 (𝑘, 𝑆𝑤) .

(A.3)

Here, 𝑥
0
= V

1
+ ℎ(0)𝑦 + 𝑓(0), V

1
= (𝜆

0
𝑀+ 𝐿)V

0
, is the value

at 𝑡 = 0 of the function 𝐹
𝑤
defined by (169) with 𝑛

𝑙
= 𝑛

2
= 1,

𝑄
7
𝑥
0
, 𝑓 and ℎ̃ are defined, respectively, by (e𝑡𝐴−𝐼)𝑥

0
, 𝑓(𝑡)−

𝑓(0) and [ℎ(𝑡) − ℎ(0)]𝑦, 𝑆 is the operator 𝐿
1
𝐿
−1
∈ L(𝑋), and

the 𝑄
𝑗
’s, 𝑗 = 2, . . . , 6, are as in (106)–(110). Formulae (A.3)

replace the definitions of 𝑤
0
, 𝑤

1
and 𝑅𝑤 in [20, formulae

(5.8)–(5.10)]. Therefore, from Lemmas 42, 45, and 46 and
Corollary 44with 𝑛

1
= 𝑛

2
= 1weobtain the following version

of Theorem 48.

TheoremA.1. Assume (161) and V
0
∈ D(𝐿), and let 5𝛼+2𝛽 >

6 in (H2). Assume that 𝑘 ∈ 𝐶
𝜂
(𝐼
𝑇
; 𝑍), ℎ ∈ 𝐶

𝜎
(𝐼
𝑇
;C), 𝑦 ∈ 𝑌

𝑟

𝜃
,

and (𝜆
0
𝑀+𝐿)V

0
+𝑓(0) ∈ 𝑌

𝑟

𝜑
, where 𝜂, 𝜎 ∈ ((3−2𝛼−𝛽)/𝛼, 1),

𝜃, 𝜑 ∈ (5 − 3𝛼 − 2𝛽, 1), and 𝑟 ∈ [1,∞]. Let 𝛾 = min{𝜃, 𝜑} and
𝜏 = min{𝜂, 𝜎, (𝛼+𝛽+𝛾−2)/𝛼}. Then, for every fixed 𝛿 ∈ 𝐼

𝛼,𝛽,𝜏

the problem

𝐷
𝑡 (𝑀V (𝑡)) = [𝜆

0
𝑀+ 𝐿] V (𝑡) +K (𝑘, 𝐿

1
V) (𝑡)

+ ℎ (𝑡) 𝑦 + 𝑓 (𝑡) , 𝑡 ∈ 𝐼
𝑇
,

𝑀V (0) = 𝑀V
0

(A.4)

admits a unique strict solution V ∈ 𝐶
𝛿
(𝐼
𝑇
;D(𝐿)) satisfying

V(0) = V
0
and such that 𝐿V, 𝐷

𝑡
𝑀V ∈ 𝐶𝛿(𝐼

𝑇
; 𝑋), provided that

𝑓 ∈ 𝐶
𝜇
(𝐼
𝑇
; 𝑋), 𝜇 ∈ [𝛿 + (3 − 2𝛼 − 𝛽)/𝛼, 1).

Theorem A.1 substitutes [20,Theorem5.6 and 5.7]. Notice
that, differently than [20], here only one statement occurs.
In fact, the more suitable procedure followed in this paper
makes the separation in [20] of two distinct intervals inwhich
𝛾 may vary totally unneeded. Finally, letting 𝑛

1
= 𝑛

2
= 1 in

Theorems 52, 5.14, 54, and 56, we obtain the correct versions
of [20, Theorems 5.11, 53, and 5.16] for the subcases of (A.4)
corresponding to the choices 𝜆

0
= ℎ = 0, 𝜆

0
= 𝑓 = 0,

𝜆
0
= 𝑘 = ℎ = 0, and 𝜆

0
= 𝑘 = 𝑓 = 0, respectively. For

saving space, we leave this easy task to the reader.
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vol. 45, pp. 143–206, 1966 (French).

[31] H. Berens and P. L. Butzer, “Approximation theorems for
semi-group operators in intermediate spaces,” Bulletin of the
American Mathematical Society, vol. 70, pp. 689–692, 1964.

[32] A. Belleni-Morante, “An integro-differential equation arising
from the theory of heat conduction in rigid materials with
memory,” Unione Matematica Italiana, vol. 15, no. 2, pp. 470–
482, 1978.

[33] G. Da Prato and M. Iannelli, “Linear integro-differential equa-
tions in Banach spaces,” Rendiconti del Seminario Matematico
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